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Abstract

Background: In the pediatric intensive care unit (PICU), quantifying illness severity can be guided by risk models to enable
timely identification and appropriate intervention. Logistic regression models, including the pediatric index of mortality 2 (PIM-2)
and pediatric risk of mortality III (PRISM-III), produce a mortality risk score using data that are routinely available at PICU
admission. Artificial neural networks (ANNs) outperform regression models in some medical fields.

Objective: In light of this potential, we aim to examine ANN performance, compared to that of logistic regression, for mortality
risk estimation in the PICU.

Methods: The analyzed data set included patients from North American PICUs whose discharge diagnostic codes indicated
evidence of infection and included the data used for the PIM-2 and PRISM-III calculations and their corresponding scores. We
stratified the data set into training and test sets, with approximately equal mortality rates, in an effort to replicate real-world data.
Data preprocessing included imputing missing data through simple substitution and normalizing data into binary variables using
PRISM-III thresholds. A 2-layer ANN model was built to predict pediatric mortality, along with a simple logistic regression
model for comparison. Both models used the same features required by PIM-2 and PRISM-III. Alternative ANN models using
single-layer or unnormalized data were also evaluated. Model performance was compared using the area under the receiver
operating characteristic curve (AUROC) and the area under the precision recall curve (AUPRC) and their empirical 95% CIs.

Results: Data from 102,945 patients (including 4068 deaths) were included in the analysis. The highest performing ANN
(AUROC 0.871, 95% CI 0.862-0.880; AUPRC 0.372, 95% CI 0.345-0.396) that used normalized data performed better than
PIM-2 (AUROC 0.805, 95% CI 0.801-0.816; AUPRC 0.234, 95% CI 0.213-0.255) and PRISM-III (AUROC 0.844, 95% CI
0.841-0.855; AUPRC 0.348, 95% CI 0.322-0.367). The performance of this ANN was also significantly better than that of the
logistic regression model (AUROC 0.862, 95% CI 0.852-0.872; AUPRC 0.329, 95% CI 0.304-0.351). The performance of the
ANN that used unnormalized data (AUROC 0.865, 95% CI 0.856-0.874) was slightly inferior to our highest performing ANN;
the single-layer ANN architecture performed poorly and was not investigated further.

Conclusions: A simple ANN model performed slightly better than the benchmark PIM-2 and PRISM-III scores and a traditional
logistic regression model trained on the same data set. The small performance gains achieved by this two-layer ANN model may
not offer clinically significant improvement; however, further research with other or more sophisticated model designs and better
imputation of missing data may be warranted.
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Introduction

Background
The use of risk models in medicine enables timely and more
targeted interventions for a given patient and facilitates
benchmarking quality of care and conduct of clinical studies
[1]. It is often necessary to quantify the severity of illness in
the pediatric intensive care unit (PICU). Estimating the
probability of mortality or expected length of stay from early
admission data with such risk models is mainly used for quality
improvement and benchmarking; however, it might enable a
clinician to make objective medical decisions regarding the
state of the patient, the necessary level of care, possible
treatments, discharge plans, or expected costs [2-4].

PICUs are data-rich environments with a wide range of
physiological variables that are responsive to interventions over
short periods and outcomes that are well-defined and generally
quantifiable [5]. Thus, the PICU provides fertile ground to
develop and test prediction models of risks and outcomes. A
score, which is quick and pragmatic to use, can enable the timely
identification of adverse conditions and may be used to tailor
appropriate interventions [6]. Two commonly encountered
pediatric risk scores are the pediatric index of mortality 2
(PIM-2) [2] and pediatric risk of mortality III (PRISM-III) [1].
Both are derived from logistic regression models, which estimate
mortality risk and have been validated with respective areas
under the receiver operating characteristic curves (AUROCs)
of 0.90 and 0.89 [1,7].

Increased computing capabilities, big data, and machine learning
algorithms enable the application of artificial intelligence (AI)
for clinical decision support [8]. Artificial neural networks
(ANNs), a subtype of AI, can be used in different medical areas
and have been shown to outperform physicians in diagnosis
based on medical imaging or data from electronic medical
records [9-12]. A recurrent neural network is a type of ANN
that is most commonly used for sequential data. An ANN-based
cardiac risk score, which used the recurrent neural network
approach, was able to detect small changes in an
electrocardiogram segment, which cannot be found by visual
inspection [11]; another was used to classify clinical time series
data for pediatric patients in critical care [12].

The clinical adoption of ANN-based risk models relies on
gaining physicians’ trust in the use of AI [13,14], which may
include, but is not limited to, demonstrating better performance
than traditional regression approaches.

Objectives
The primary aim of this study is to examine the performance
of an ANN-based approach compared to that of traditional
approaches based on logistic regression models when applied
to estimating the risk of mortality in children admitted to PICU
with suspected sepsis. We developed an ANN model using

features required in the PIM-2 and PRISM-III models to predict
mortality outcomes (died or survived) in a large North American
registry data set and evaluated the ANN’s performance using
the AUROC. We compared its performance with the benchmark
PIM-2 and PRISM-III scores, as well as a logistic regression
model, trained on the study data set, which used the same
features as PIM-2 and PRISM-III.

Methods

Study Design and Approval
In this study, we used data from a North American PICU registry
to compare the performance of an ANN model with PIM-2 and
PRISM-III scores. The data set was obtained from Virtual
Pediatric Systems (VPS), LLC, a registry of prospectively
collected records from 130 PICUs in the United States and
Canada. This is a secondary analysis of data obtained for a
different purpose—to develop a simple risk stratification score
for children with sepsis [6]. Ethical approval for the study was
obtained from the University of British Columbia/Children’s
and Women’s Health Centre of British Columbia Research
Ethics Board (H15-01398). The requirement for written
informed consent was waived by the research ethics board, as
this study was a secondary analysis of registry data. This
manuscript has been prepared in accordance with the guidelines
for Transparent Reporting if a multivariable prediction risk
model for Individual Prognosis or Diagnosis.

As sepsis diagnosis might not necessarily be known or
documented at the time of admission to the PICU, we identified
all children in the VPS data set whose diagnostic codes at
discharge exhibited evidence of an infection, and combined
with their admission to the PICU, this provides a reasonably
strong indication for sepsis. This allowed us to create a
representative data set of children with a high likelihood of
sepsis.

Study Data Set

Data Available for Analysis
The analyzed data set included data on PICU admissions
between January 1, 2009, and December 31, 2014. Data were
available from 102,945 children, of whom 4068 died (mortality
rate 3.95%). Each entry included a variety of vital signs,
laboratory tests, and other clinical information, including the
variables required to calculate the PIM-2 and PRISM-III scores.
The clinical data used in this analysis were solely from early
admission to the PICU. Hence, the longer the length of stay,
the less associated these predictors were with the outcome under
investigation: mortality or survival at PICU discharge.

Although the variables for PIM-2 and PRISM-III were collected
from the same source, these models captured data from different
sampling windows. For any given PICU admission, the VPS
data set provides a single measurement for each variable used
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by these 2 risk scores as required for their respective
calculations.

PRISM-III Variables and Sampling Window
PRISM-III uses the highest or lowest values of systolic blood
pressure, heart rate, temperature, mental status, pupillary
reflexes, acidosis, pH, PCO2, total carbon dioxide (CO2), PaO2,
glucose, potassium, creatinine, blood urea nitrogen, white blood
cell count, platelet count, and prothrombin time or partial
thromboplastin time [1]. Values included were measured in the
first 12 hours of PICU care; laboratory variables were also
considered up to 2 hours before PICU admission.

PIM-2 Variables and Sampling Window
PIM-2 uses the first recorded values of systolic blood pressure,
pupillary reaction to light, PaO2, base excess, early mechanical
ventilation (yes or no), elective PICU admission (yes or no),
admission following surgery (yes or no), admission following
cardiopulmonary bypass, high-risk diagnoses (nine options:
cardiac arrest preceding intensive care unit (ICU) admission,
severe combined immune deficiency, leukemia or lymphoma
after first induction, spontaneous cerebral hemorrhage,
cardiomyopathy or myocarditis, hypoplastic left heart syndrome,
HIV infection, liver failure as the main reason for ICU
admission, or neurodegenerative disorder), and low-risk
diagnoses (five options: main reason for ICU admission of
asthma, bronchiolitis, croup, obstructive sleep apnea, or diabetic
keto-acidosis) [2]. Values included were measured in the first
hour of PICU care starting at the time of the first face-to-face
meeting of the patient with a PICU team member.

Not all vital signs were collected routinely for every patient, so
the data set was only sparsely populated, and the vital signs
used for calculating PIM-2 and PRISM-III scores were
incomplete in some cases, for example, the Glasgow Coma
Score (mental status) was missing from 60.2% (61,976/102,945)
of cases. In the calculation of both PIM-2 and PRISM-III scores,
missing vital signs are taken as a sign of being normal, that is,
healthy, as such tests were not ordered or performed by the
PICU team [1,2]. For example, a missing Glasgow Coma Score
is interpreted as indicating a normal mental status and is input
to the model as such. This assumption is discussed further in
the Limitations section.

Preprocessing
Preprocessing was performed in Python (v3.8.5; Python
Software Foundation) to perform three tasks: (1) generate the
training and test sets, (2) address missing values in the data set,
and (3) generate new variables through data transformation.

Generation of Training and Test Sets
The total data set was initially divided into training and test sets
using a stratified approach to ensure that the class ratio for
mortality remained approximately equal for the training, test,
and full data sets. ANN and logistic regression models were
built on the training sets and evaluated on the test sets, and the
results were compared against the PIM-2 and PRISM-III models.
The overall data set was bootstrapped 100 times to generate the
training and test sets.

Addressing Data Missingness Through Simple
Substitution
The data set was examined for missing entries, and the missing
values were imputed based on the feature type; specifically, the
missing values in categorical features, such as pupillary reaction
and coma status, were imputed using the most common value
(mode). The missing values in numerical features, such as
glucose or PCO2, were imputed using the median value, as most
of these features did not follow a normal distribution. Median
and mode approaches were used to build imputation models
and fill the missing values in the training set, and these
imputation models were applied to the test set separately to
avoid a data leakage problem.

Generation of New Variables Through Data
Transformation
We performed minimum-maximum normalization to normalize
numerical data for the ANN and logistic regression models. The
minimum and maximum values of each feature from the training
set were used to normalize the data in the training and test sets
to avoid data leakage. Dummy encoding was performed on
categorical features that contained more than 2 distinct values,
such as pupillary reaction, but all categorical features with only
2 distinct values were dichotomized to accommodate them in
the machine learning models. We used thresholds defined by
PRISM-III to define normal and abnormal values. PIM-2 does
not have defined thresholds; however, it penalizes any diversion
of a vital sign from its normal value continuously.

Model Training
We built an ANN model using the Keras framework on top of
TensorFlow (Google Brain Team) in Python (Python Software
Foundation), with training conducted in Jupyter notebook
(IPython). The Python code files that were used to build the
models and generate results are available in Multimedia
Appendix 1. We used a grid approach to determine the optimum
configuration while designing the neural network. We tested
various configurations between 1 and 3 hidden layers and 8 and
32 neurons per hidden layer, with a rule-of-thumb approach to
limit the number of hidden layer neurons to the neurons in the
input layer. Through experimentation, we identified that a
2-layer ANN, with 32 nodes in the first hidden layer and 16
nodes in the second hidden layer, performed better than the
other configurations we tested. Our final model consisted of 32
input features (consisting of the variables used in the PRISM-III
[1] and PIM-2 [2] models; see the Study Data Set section), and
the 2 hidden layers, with each node using rectifier linear unit
activation functions; finally, a sigmoid activated dense layer
was used to predict the mortality for each instance (Figure 1).
The model was compiled using an adam optimizer with a binary
cross-entropy loss function. While keeping the main network
the same, we also evaluated the model with unnormalized data
as well as a model with only a single hidden layer. We
conducted training with a batch size of 32 and observed that
the loss remained constant after 100 epochs.
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Figure 1. Artificial neural network architecture with two hidden layers: the node in input layer “iXy” processes data from pediatric intensive care unit
admission “X” with feature “y” (such as age, length of stay, pupillary reaction, etc). The total number of features in the data set is denoted by “n.” The
first and second hidden layers are represented by h1 and h2, respectively, with a subscript to denote the node number. The output layer has a single
node (o), which shows probability of mortality for patient “X.” ReLU: rectifier linear unit.

The ANN model was trained with features used in the PIM-2
and PRISM-III models to predict the outcome (died or survived);
AUROC was used as an evaluation metric while training the
model. Finally, we developed a logistic regression model for
comparison using the same features from PIM-2 and PRISM-III.

Model Evaluation
The empirical range of AUROC scores was computed for each
test set (obtained from bootstrap) using the sklearn.metrics
function in Python. The test set that resulted in the median
AUROC value was used to determine the optimum Youden
index value. This threshold was then used to calculate the false
positive rate (FPR) and false negative rate (FNR) for each test
set, and the 95% empirical CIs were reported by pooling the
results from all the test sets [15-17]; median and ranges of
pooled results were reported for all other indices. We also
reported the area under the precision recall curve (AUPRC) and
its empirical 95% CI for each model. A Welch 2-sided t test
was used to compare AUROC and AUPRC for model pairs.

To compare how the models performed at specific true positive
rate (TPR) and FPR levels, we fixed the TPR values at 95%,
90%, and 85% and computed the corresponding median FPR
values (from all the test sets) for ANN, logistic regression,
PIM-2, and PRISM-III. Similarly, we also reported the median
TPR results by fixing the FPR at 5%, 10%, and 15%.

Results

Data Set Characteristics
The data set included 102,945 children with infection admitted
between 2009 and 2014, of whom 4068 died (3.95% mortality
rate). The training sets contained 72,061 children, of whom a
median of 2852 (range 2790-2903) died, equivalent to a 3.96%
mortality rate; the test sets contained 30,884 children, of whom
a median of 1216 (range 1165-1278) died, equivalent to a 3.94%
mortality rate (Table 1).
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Table 1. Overview of study population with demographics and risk factors split by outcome (N=102,945)a.

TestingTrainingSurvived
(n=98,877)

Died
(n=4068)

All (n=102,945)Characteristic

Survived
(n=29,668)

Died
(n=1216)

Survived
(n=69,209)

Died
(n=2852)

16,797 (56.62)655 (53.87)39,075 (56.46)1531 (53.68)55,872 (56.5)2186 (53.73)58,058 (56.39)Males, n (%)

Age

29.3 (7.9-99.4)42.45 (7.2-
135.25)

28.4 (7.3-98.4)37.8 (6.9-
138.4)

28.6 (7.5-
98.7)

39.3 (7.0-
137.7)

28.9 (7.5-100.3)Age (months), median
(IQR)

1283 (4.32)97 (7.98)3108 (4.49)245 (8.59)4391 (4.44)342 (8.41)4733 (4.6)<1 month, n (%)

12,340 (41.59)420 (34.54)29,195 (42.18)980 (34.36)41,535 (42.01)1400 (34.41)42,935 (41.71)1-23 months, n (%)

6578 (22.17)209 (17.19)14,967 (21.63)510 (17.88)21,545 (21.79)719 (17.67)22,264 (21.63)2-5 years, n (%)

5402 (18.21)234 (19.24)12,474 (18.02)542 (19)17,876 (18.08)776 (19.07)18,652 (18.12)6-12 years, n (%)

4063 (13.69)255 (20.97)9461 (13.67)574 (20.13)13,524 (13.68)829 (20.39)14,353 (13.94)13-18 years, n (%)

2 (0.01)1 (0.08)4 (0.01)1 (0.04)6 (0.01)2 (0.05)8 (0.01)>18 years, n (%)

Primary diagnosis category, n (%)

18,828 (63.46)436 (35.86)43,696 (63.14)968 (33.94)62,524 (63.23)1404 (34.51)63,928 (62.1)Respiratory

3313 (11.17)408 (33.56)7588 (10.96)979 (34.33)10,901 (11.02)1387 (34.1)12,288 (11.94)Infectious

980 (3.3)42 (3.45)2447 (3.54)120 (4.21)3427 (3.47)162 (3.98)3589 (3.49)Neurological

627 (2.11)24 (1.97)1518 (2.19)79 (2.77)2145 (2.17)103 (2.53)2248 (2.18)Gastrointestinal

520 (1.75)12 (0.99)1219 (1.76)18 (0.63)1739 (1.76)30 (0.74)1769 (1.72)Dermatologic

Location before PICUb admission, n (%)

8659 (29.19)514 (42.27)20,280 (29.3)1238 (43.41)28,939 (29.27)1752 (43.07)30,691 (29.81)Inpatient

5412 (18.24)164 (13.49)12,447 (17.98)412 (14.45)17,859 (18.06)576 (14.16)18,435 (17.91)Postoperative admission

Resuscitation procedures

411 (1.39)169 (13.9)864 (1.25)419 (14.69)1275 (1.29)588 (14.45)1863 (1.81)Cardiac massage before
PICU, n (%)

15,228 (51.33)1012 (83.22)35,258 (50.94)2405 (84.33)50,486 (51.06)3417 (84)53,903 (52.36)Mechanical ventilation
within 24 hours, n (%)

12,121 (40.86)795 (65.38)28,161 (40.69)1863 (65.32)40,282 (40.74)2658 (65.34)42,940 (41.71)Mechanical ventilation
within 1 hour, n (%)

3.4 (1.6-7.8)7.5 (2.4-
22.7)

3.4 (1.7-7.8)7.1 (2.2-
21.0)

3.4 (1.7-7.8)7.2 (2.2-
21.4)

3.5 (1.7-8.0)Length of stay (days), me-
dian (IQR)

0.5 (0.3-1.4)8.3 (1.6-
39.2)

0.5 (0.3-1.4)10.2 (1.7-
47.8)

0.5 (0.3-1.4)10 (1.7-44.6)0.63 (0.3-1.6)PRISM-IIIc probability of
death (%), median (IQR)

0.9 (0.3-3.3)4.8 (2.1-
17.6)

0.9 (0.3-3.3)5.3 (2.9-
18.2)

1 (0.3-3.3)5.2 (2.8-18)1 (0.4-3.5)PIM-2d probability of
death (%), median (IQR)

0 (0)1216 (100)0 (0)2852 (100)0 (0)4068 (100)4068 (3.95)Died, n (%)

aData are reported separately for the complete population and the training and test cohorts. Note that only the top 5 primary diagnosis categories are
reported. In addition, note that only the initial 3 columns are true results; the remaining 4 are median values over the 100 data sets created.
bPICU: pediatric intensive care unit.
cPRISM-III: pediatric risk of mortality III.
dPIM-2: pediatric index of mortality 2.

As is commonly encountered in large clinical registries using
clinical availability of routinely collected data, between 0.41%
(424/102,945) and 80.27% (82,636/102,945) of entries were
missing per feature required for PRISM-III: more commonly
measured vital signs, such as systolic blood pressure and heart

rate, had fewer missing values (424/102,945,
0.41%-517/102,945, 0.5%), whereas others were missing many
entries, such as CO2 (49,837/102,945, 48.41% missing) and
partial thromboplastin time (82,636/102,945, 80.27% missing).
For PIM-2, only 2.05% (2115/102,945) of entries were missing
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the numerical feature systolic blood pressure, whereas base
excess was missing in 84.73% (87,230/102,945) of entries, and
both fraction of inspired oxygen and PaO2 were missing from
94.18% (96,958/102,945) of the entries. On the other hand,
there was no missing information in any of the binary features,
such as high- or low-risk diagnosis and recovery from surgery,
which are features required for the PIM-2 calculation.

Model Performance: ANN Trained Using Imputed and
Normalized Data
With the ANN trained on normalized data, the median FPR was
mostly close to 18.4% (range 12.5%-30.8%) and the median
FNR value was 24% (range 12.7%-33.2%; Table 2), with a
median accuracy of 81.3% (range 69.9%-86.7%) on the test set.

Table 2. Performance characteristics of 4 different mortality prediction modelsa.

Missed cases (FNRc), n (%)False positive detections (FPRb), n (%)Threshold trigger (%)Prediction model

377 (31.5)7278 (24.5)3.36PIM-2d

651 (54.3)1052 (3.5)f2.21PRISM-IIIe

317 (26.8)5142 (17.3)0.50Logistic regression

289 (24.0)f5467 (18.4)0.04ANNg

aComparison of the pediatric index of mortality 2, pediatric risk of mortality III, a traditional logistic regression model, and artificial neural network–based
approach. For each model, the threshold was selected by optimizing the Youden index.
bFPR: false positive rate.
cFNR: false negative rate.
dPIM-2: pediatric index of mortality 2.
ePRISM-III: pediatric risk of mortality III.
fThe best value in this category.
gANN: artificial neural network.

The AUROCs for PIM-2 and PRISM-III were 0.805 (95% CI
0.801-0.816) and 0.844 (95% CI 0.841-0.855), respectively.
The ANN (AUROC 0.871, 95% CI 0.862-0.880) performed

better than both PIM-2 (P<.001) and PRISM-III (P<.001; Figure
2).

Figure 2. Receiver operating characteristic curves for four different mortality prediction models: pediatric index of mortality 2, pediatric risk of mortality
III, logistic regression, and our best artificial neural network–based approach. The areas under the receiver operating characteristics curve and their
95% CI are indicated in the bottom-right corner. ANN: artificial neural network; AUC: area under the receiver operating characteristic curve; LR:
logistic regression; PIM-2: pediatric index of mortality 2; PRISM-III: pediatric risk of mortality III.
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Similar results were observed using AUPRC, which indicated
that the ANN (AUPRC 0.372, 95% CI 0.345-0.396) performed
better than PIM-2 (AUPRC 0.234, 95% CI 0.213-0.255; P<.001)
and PRISM-III (AUPRC 0.348, 95% CI 0.322-0.367; P<.001;
Figure 3). The ANN achieved the highest TPR compared with

the logistic regression, PIM-2, and PRISM-III when FPR was
fixed at 5%, 10%, or 15%. Similarly, FPR was lowest for the
ANN when TPR was fixed at 85% or 90% (Table 3). However,
the logistic regression model showed the smallest FPR when
TPR was fixed at 95%.

Figure 3. Precision recall curves for four different mortality prediction models: pediatric index of mortality 2, pediatric risk of mortality III, logistic
regression, and our best artificial neural network–based approach. The areas under the precision recall curves and their 95% CI, are indicated in the top
right corner. ANN: artificial neural network; AUPRC: area under the precision recall curve; LR: logistic regression; PIM-2: pediatric index of mortality
2; PRISM-III: pediatric risk of mortality III.

Table 3. Median true positive rate and median false positive rate of 4 different mortality prediction modelsa.

FPRc (%)TPRb (%)Prediction model

TPR fixed at 85%TPR fixed at 90%TPR fixed at 95%FPR fixed at 15%FPR fixed at 10%FPR fixed at 5%

44.25464.656.848.135.6PIM-2d

36.749.466.868.460.548.8PRISM-IIIe

31.441.655.1f69.861.248.4Logistic regression

30.7f41.1f5670.8f62.6f49.7fANNg

aComparison of the pediatric index of mortality 2, pediatric risk of mortality III, a traditional logistic regression model, and artificial neural network–based
approach.
bTPR: true positive rate.
cFPR: false positive rate
dPIM-2: pediatric index of mortality 2.
ePRISM-III: pediatric risk of mortality III.
fThe best value in this category.
gANN: artificial neural network.
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The lowest FPR observed at the Youden-optimized threshold
point for any of the models evaluated was 3.5% using
PRISM-III, with a corresponding FNR of 54.3% (Table 2). If
we target an FPR of 3.5%, the corresponding FNRs for the other
models were 68.7% for PIM-2, 55.8% for the logistic regression,
and 54% for the ANN.

Model Performance: Logistic Regression Using
Imputed and Nonnormalized Data
The accuracy of the logistic regression model was 81.9% (range
81.4%-82.5%), with an FPR of 17.3% (range 17%-18.3%) and
an FNR of 26.8% (range 23.7%-29.9%; Table 2). The AUROC
was 0.862 (95% CI 0.852-0.872) and the AUPRC was 0.329
(95% CI 0.304-0.351). The logistic regression model also
showed better performance, as measured by AUROC, than both
PIM-2 (P<.001) and PRISM-III (P<.001; Figure 2), but
PRISM-III performed better than the logistic regression model
when evaluated using AUPRC (Figure 3).

Although the AUROCs of the ANN and logistic regression
overlap, it was found that ANN performed better than logistic
regression (P<.001).

Model Performance: ANN Trained Using Imputed and
Nonnormalized Data
The accuracy of the ANN model trained using the
nonnormalized data set with imputed data was 82.5% (range
69.6%-89.2%). The FPR value was 17.9% (range 9.7%-31.1%),
and the FNR value was 26.7% (range 13.9%-39.3%; Table 2).
The AUROC was 0.865 (95% CI 0.856-0.874), which was lower
than that of the model with normalized data (P<.001). The
AUPRC value was 0.355 (95% CI 0.328-0.376).

Using nonnormalized data, the ANN model had an FPR of
16.8% (95% CI 14.8%-18.2%) at a TPR of 73.3% and achieved
its highest TPR of 73.4% (95% CI 71.4%-75.6%) for an FPR
of 17.3%.

Discussion

Principal Findings

Summary of Results
We created an ANN-based pediatric risk prediction score using
the features included in PIM-2 and PRISM-III scores, which
we trained on patients from a large North American multicenter
pediatric cohort with presumed sepsis as identified by a
discharge diagnosis of infection. The overall performance of
the ANN model with binary cross-entropy loss was better than
the PIM-2 and PRISM-III scores, with median AUROCs of
0.871 (ANN) versus 0.805 (PIM-2; P<.001) and 0.844
(PRISM-III; P<.001). It also performed better than a traditional
logistic regression model that used the same features required
by PIM-2 and PRISM-III. However, these performance gains
may not represent a clinically significant improvement. Our
evaluation of the ANN approach with a single hidden layer and
nonnormalized data returned poorer results than the other models
evaluated.

Improved Performance, but Is It Relevant?
Our highest performing ANN was significantly better,
statistically, than PIM-2 and PRISM-III using the AUROC and
AUPRC measures of performance. The ANN missed fewer
cases than PIM-2, PRISM-III, and the logistic regression model
(ie, the ANN had a lower FNR; Table 2) at their respective ideal
thresholds, as determined by optimizing their respective Youden
indices; however, its rate of false positive detections was higher
than that of PRISM-III and marginally higher than that of the
logistic regression model (ie, the ANN had a higher FPR) at
these Youden-optimized thresholds. This may suggest an
opportunity for further optimization and evaluation, but it should
be noted that the ANN did not miss more cases than PRISM-III
(ie, the ANN had an equivalent FNR) when the FPR was fixed
at the value of 3.5% (PRISM-III’s Youden-optimized threshold).
A direct comparison between models is challenging given that
model selection will depend to a large extent on the clinical
context; in some settings, a single objective (eg, to minimize
FPR) may be the overriding concern, whereas in other cases, a
balance of multiple objectives may be required (eg, to minimize
both FPR and FNR).

Despite limited performance gains and increased robustness,
the improvement may not be clinically relevant and is unlikely
to overcome the initial concerns that physicians might have
about the new model. The limited performance gains were not
surprising. Although studies have proposed that ANNs
outperform logistic regression models [12,18] or offer at least
partially better performance [19], a recent systematic review of
71 studies found no superior performance of ANN over logistic
regression models [20]. However, ANN-based models allow
for the tuning of performance characteristics, which offers a
potential advantage.

Trust Issues as a Barrier to ANN Use in Risk Modeling
The successful acceptance of AI-based risk models requires
physicians’ willingness to accept AI models and the
interpretability of those models. Although clinically improved
performance might help this case, trust is a key element in
acceptance, which is built (or lost) in a dynamic and evolving
process [13,21]. Our failure to demonstrate a significant
improvement in clinical performance will not help overcome
the barriers to adoption.

Future AI-based risk models may need to become more
interpretable to find acceptance [14], and the higher the risk,
the more interpretability is needed to earn the trust. Including
clinicians and patients in the development of AI models may
be a step toward promoting acceptability and interpretability.
Certification and licensure for AI models might also help build
trust in model-based risk scores [22,23]. Finally, it may be useful
to assure the user that the model is a tool and not a replacement
for the clinician [13].

Challenges With Skewed Data
The working data set was skewed: only 3.95% (4068/102,945)
of instances had the outcome as died. Local minima are a
problem frequently associated with imbalanced data sets, and
customized learning algorithms, cost functions, or external
approaches (ie, resampling the data set) can be used to help

JMIR Med Inform 2021 | vol. 9 | iss. 8 | e24079 | p. 8https://medinform.jmir.org/2021/8/e24079
(page number not for citation purposes)

Ghanad Poor et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


overcome this problem [24]. Some ANNs tended to predict
(mostly) everyone as a survivor; given the overall mortality rate
of the population (4068/102,945, 3.95%), even assuming every
patient will survive results in an accuracy of approximately
96%, but with an FPR of zero and an FNR of one. A traditional
experimental setup with accuracy as an evaluation metric fails
when building models with skewed data, as the models tend to
be biased toward the majority class (here survived) [25]. This
challenge can be addressed by modifying the cost function to
maximize the AUROC of the model [25].

Limitations
The main limitation of this work is the fact that out of several
ANN-based models evaluated, only 1 type learned to
discriminate between survival and death of patients effectively.
Despite attempts to address the root cause (imbalance of
outcomes in the data set), this suggests that the approaches
selected may not have been optimal and that further network
types and designs should be considered in future approaches.
Following the initial positive outcomes with this model,
secondary training on a data set can be used to fine-tune the
ANN model.

The information included in the new models was limited to risk
factors from PIM-2 and PRISM-III. By creating new features
such as vital sign combinations or ratios [26], which in principle
can be emulated by adding hidden layers, one might be able to
provide another significant performance boost to the model.
However, this did not seem to be the case in a recent sepsis
prediction competition [27], where novel methods or
applications seemed to be more promising than the creation of
new features.

Another limitation was the relatively low number of complete
patient entries in the VPS data set. Given that VPS is a curated
data set, the potential reasons for this likely stem from local
practices, such as tests not being required for clinical
management in particular cases or it being generally decided
that recording the results of these tests is optional. Although it
makes the creation and use of some modeling techniques more
difficult, this is an unavoidable feature of real-world clinical
data. Characterizing the missingness to inform modeling might
offer a valuable approach, but such features may not be
generalizable because they represent local patterns of practice.
To use models without the filtering layer, simple imputation
approaches were used; however, data were likely not missing

at random, which invalidates some of the (median or mode
imputation) approaches used. More sophisticated approaches
for handling data missingness, such as multivariate imputation
by chained equations, may yield better performance [28,29], as
the substituted values are likely closer to specific cases than the
overall population. Importantly, physicians should inform the
treatment of missing values, which might boost confidence in
the methods used. It might be possible to use a complete time
series in an ANN instead of extreme values observed in a certain
window, which could improve performance.

This study explored only a limited range of ANN design
techniques. For example, we used rectifier linear unit activation
in the hidden layers but did not evaluate the effect of other
activation functions on model performance; similarly, we used
the adam optimizer to identify the optimal ANN architecture
but did not evaluate alternative optimizers. Thus, more
exhaustive experimentation may yield improved performance
results. Similarly, Youden index was used as a pragmatic
approach to identify the optimal cut off by maximizing the
models’ true positive and true negative rates. However, selecting
the appropriate operating point for clinical implementation
should consider alternative approaches to finding the optimal
threshold and would also require a more nuanced evaluation of
clinical priorities, which might, for example, penalize missed
cases over false positives.

A major limitation to the development of a new risk score is
the lack of recognized clinically acceptable performance criteria
to assess the utility of integrating ANN-based risk scores into
daily clinical routines. In their absence, it is difficult to make a
clear statement on the clinical utility of models with slightly
better performance compared with existing risk scores.

Conclusions
This study examined the performance of ANN models over
logistic regression-based models to estimate the risk of mortality
in the PICU. A simple 2-layer ANN demonstrated better
performance than traditional logistic regression, PIM-2, and
PRISM-III; the statistically significant improvement in
performance may not be clinically significant. Further work,
including involvement of physicians in defining performance
thresholds, better handling of data missingness, and possibly
the use of more sophisticated ANN-modeling methods, will be
required to achieve meaningful advances to guide
decision-making in the care of critically ill children.
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