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Abstract

Background: The International Classification of Diseases (ICD) code is widely used as the reference in medical system and
billing purposes. However, classifying diseases into ICD codes still mainly relies on humans reading a large amount of written
material as the basis for coding. Coding is both laborious and time-consuming. Since the conversion of ICD-9 to ICD-10, the
coding task became much more complicated, and deep learning– and natural language processing–related approaches have been
studied to assist disease coders.

Objective: This paper aims at constructing a deep learning model for ICD-10 coding, where the model is meant to automatically
determine the corresponding diagnosis and procedure codes based solely on free-text medical notes to improve accuracy and
reduce human effort.

Methods: We used diagnosis records of the National Taiwan University Hospital as resources and apply natural language
processing techniques, including global vectors, word to vectors, embeddings from language models, bidirectional encoder
representations from transformers, and single head attention recurrent neural network, on the deep neural network architecture
to implement ICD-10 auto-coding. Besides, we introduced the attention mechanism into the classification model to extract the
keywords from diagnoses and visualize the coding reference for training freshmen in ICD-10. Sixty discharge notes were randomly
selected to examine the change in the F1-score and the coding time by coders before and after using our model.

Results: In experiments on the medical data set of National Taiwan University Hospital, our prediction results revealed F1-scores
of 0.715 and 0.618 for the ICD-10 Clinical Modification code and Procedure Coding System code, respectively, with a bidirectional
encoder representations from transformers embedding approach in the Gated Recurrent Unit classification model. The well-trained
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models were applied on the ICD-10 web service for coding and training to ICD-10 users. With this service, coders can code with
the F1-score significantly increased from a median of 0.832 to 0.922 (P<.05), but not in a reduced interval.

Conclusions: The proposed model significantly improved the F1-score but did not decrease the time consumed in coding by
disease coders.

(JMIR Med Inform 2021;9(8):e23230) doi: 10.2196/23230
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Introduction

The International Classification of Diseases (ICD) is a medical
classification list released by the World Health Organization,
which defines the universe of diseases, disorders, injuries, and
other related health conditions and the classifying standard of
diagnosis [1]. Since the first publication in 1893, the ICD has
become one of the most important indexes in medical
management systems, health insurance, or literature research.

At present, in most medical institutions, ICD-10 codes that are
used in diagnostic related group subsidy for inpatients mainly
rely on manual coding from a group of licensed and professional
disease coders on a case-by-case basis, who spend a lot of time
reading a multitude of medical materials. On the other hand,
some other cases—especially outpatients—are coded by
physicians.

Since the conversion from ICD-9 to ICD-10 in 2014, Taiwan
has used the ICD-10 as the reference for diagnostic-related
group subsidy. However, because of the complexity of the
ICD-10 structure and coding rules such as the code orders, the
inclusion and exclusion criteria, and the enormously increasing
number of ICD-10 codes, ICD-10 coding work became much
more laborious and time-consuming, even if a disease coder
with professional abilities takes approximately 30 minutes per
case on average. According to the analysis from Handbook of
Research on Informatics in Healthcare and Biomedicine, the
cost for adopting the ICD-10 system, including training of
disease coders, physicians, and code users; initial and long-term
loss of productivity among providers; and sequential conversion,
is estimated to range from a 1-time cost of US $425 million to
US $1.15 billion in addition to US $5-40 million per year in
lost productivity [2].

Previous studies had built a model for the ICD-9 system. In
2008, Farkas and Szarvas [3] utilized a rule-based approach

querying other reference tools to implement the ICD auto-coding
task. However, compared to ICD-9, ICD-10 contains more than
60,000 codes. Building a rule-based automatic system is
labor-intensive and time-consuming. In addition, the entirety
of the rules of the ICD-10 system is complicated even for disease
coders. For the aforementioned reasons, recent studies have
emphasized on deep learning– and natural language processing
(NLP)–related approaches; for instance, Zhang et al [4] used a
gated recurrent unit (GRU) network with content-based attention
to predict medication prescriptions on the basis of the disease
codes, and Wang et al [5] applied and compared NLP techniques
such as Global Vectors (GloVe) in an electronic health record
(EHR) data classification task.

In previous studies, we have already applied word to vectors
(Word2Vec), an NLP method, in an ICD-10 auto-coding task
and achieved an F1-score of 0.67/0.58 in Clinical Modification
(CM)/Procedure Coding System (PCS). Furthermore, we also
built an ICD-10 code recommendation system for ICD-10 users
[6,7]. In this study, we made a comparison on most of the recent
NLP approaches such as Word2Vec, embeddings from language
models (ELMo), and bidirectional encoder representations from
transformers (BERT). Furthermore, we introduced the attention
mechanism to our classification model to visualize the word
importance for training new coders in ICD-10 coding.

In the ICD classification framework illustrated in Figure 1, the
left panel denotes the large amounts of free-text data written by
physicians, which would be read and learned by the classifier
in the right panel of the graph with supervised learning.
Well-trained classifiers would be applied to predict the ICD-10
codes accurately for each patient. Furthermore, to distinguish
the primary, secondary, or additional diagnosis, a sequential
correction was conducted by coding the ICD-10 codes in a
sequential format, using a sequence-to-sequence model followed
by combining the classification coding results with the
sequential order outcome.
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Figure 1. Training and validation process for the ICD-10 classification and attention models. BBW: birth body weight; GA: gestational age; PRP:
platelet-rich plasma.

The attention framework for paragraph highlighting is also
illustrated in Figure 1. Different from the classification
framework, the input data in the left panel include both the
diagnoses and the corresponding ICD-10 definitions from the
National Health Insurance Administration rather than using
merely the diagnoses, and the output data in the right panel is
the attention weight matrix extracted from the predicting process
rather than the classification result. With a combination of these
2 methods, we constructed an ICD-10 auto-coding and training
system to assist ICD-10 code users.

Our study aims at building an automatic ICD-10 coding and
training system based on NLP technology, attention mechanism,
and Deep Neural Network (DNN) models, which are applied
for extracting information from EHR data, highlighting the key
points from the extracted features, and implementing an ICD-10
classification task with sequential correction, respectively, for
assisting all ICD-10 users.

Methods

Data Description
Our data were acquired from patients at National Taiwan
University Hospital (NTUH) from January 2016 to July 2018.
The ground-truth ICD-10 codes were annotated by the coders
at NTUH. Data attributes and types include account IDs, type
contents, course and treatment, and discharge diagnoses. The
distribution of ICD-10 codes is shown in our previous study
[7].

System Architecture
The entire process of the system constructing framework is
composed of data processing, feature extracting, model
constructing, model training, and web service building. To detail
and visualize the ICD-10 web service clearly in this study, the
complete workflow of the ICD-10 coding and training system
is illustrated in Figure 2.
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Figure 2. Complete framework of the ICD-10 auto-coding and training system. API: application programming interface; ICU: intensive care unit.

Data Processing

Preprocessing
Preprocessing, including the removal of Chinese words, null or
duplicate elements, punctuation, stop words, and infrequent
words, was applied before tokenization of the texts. The basic
preprocessing methods were applied using the Natural Language
Toolkit [8] and Scikit-Learn [9] library. We then randomly split
the data set at a 9:1 ratio into training and validation sets with
the Scikit-Learn library.

Postprocessing
In ICD-10 coding, combination codes remain an intractable
issue because, in some cases, disease coders cannot—and should
not—assign multiple diagnosis codes when a single combination
code clearly identifies all aspects of the patient’s diagnosis [10].

In this study, a user-defining panel is provided in the auto-coding
system to deal with combination codes by replacing the incorrect
outcomes, where the combination codes were either predicted
incorrectly or separated into 2 different codes on the basis of
the given codes.

Feature Extraction
During feature extraction, we applied NLP techniques, including
GloVe [11], Word2Vec [12], ELMo [13], BERT [14], and single
head attention recurrent neural network (SHA-RNN), to convert
the word contexts to numerical data and extract word and
contextual information. Except for the BERT-based pretrained
weight, we also attempted clinicalBERT [15] and BioBERT
[16], which were trained with clinical notes from MIMIC-III,
PubMed, and PubMed Central. Hyperparameters of the
embedding models are attached in Table 1.
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Table 1. Hyperparameters of word-embedding models.

Size/numberHyperparameters

Global Vector

100Word embedding size

Word to Vectors

300Word embedding size

Embeddings from Language Models

50Convolutional neural network char embedding size

100Convolutional neural network word embedding size

2Highway number

512Intermediate size

Bidirectional encoder representations from transformersa

768Word embedding size

768Sentence embedding size

768Position embedding size

3072Intermediate size

12Attention head number

12Hidden layer number

0.1Dropout

Single head attention recurrent neural network

1024Word embedding size

1024Hidden size

4Layer number

aClinical bidirectional encoder representations from transformers (BERT) and BERT for biomedical text mining shared the same hyperparameters with
BERT.

Classification Model
The classification model was constructed with 4 neural network
layers, including RNN and fully connected neural network
(FCNN), where the hyperparameters are shown in Table 2 and
the architecture is shown in Figure 3. The first layer is the word
embedding layer, which transforms the tokenized word list input
into word vectors. The second layer is a bidirectional GRU
(BiGRU) layer [17]. The remaining 2 layers are fully connected
layers, where the final fully connected layer should be set to
the size of the dimension we expect to predict. In our case, we
conducted 2 classification tasks, including whole label

classification for CM and PCS with 14,602/9780 labels of
CM/PCS in NTUH data records in total. Hence, the final fully
connected layer size should be set to 14,602 and 9780
dimensions, respectively. To make a comparison, a classification
model with only 1 fully connected layer— fully connected layer
2—was used as the baseline model. In addition, the attention
mechanism based on the Bahdanau [18] attention model was
introduced to our classification model to further extract the
keywords for ICD-10 coding by computing the weight
information of context—ICD title–vector pairs; that is, the
importance of the information with respect to the current target
word.

Table 2. Hyperparameters of the classification models.

SizeHyperparameters

256Bidirectional GRUa layer

700Fully connected layer 1

14,602/9780Fully connected layer 2 CM/PCSb

0.2Dropout

aGRU: Gated Recurrent Unit.
bCM/PCS: Clinical Modification/Procedure Coding System.
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Figure 3. Architecture of the Deep Neural Network classification model. BiGRU: Bidirectional Gated Recurrent Unit; GRU: Gated Recurrent Unit;
PReLU: Parametric Rectified Linear Unit.

Model Assessment
Micro F1-score is the harmonic mean of recall and precision,
which are the sum of the number of true-positive results divided
by sum of the number of all positive results and the sum of the
number of true-positive results divided by the sum of the number
of all relevant samples, respectively. The micro F1-score
considers the number for each label while calculating the recall
and precision; hence, it is appropriate for evaluating the
performance of a multi-label classification task with imbalanced
data set.

For realistic application in the auto-coding system, recall@K,
which calculates the proportion of correct answers in the first
K prediction results returned by the classifier, was also applied
for validating the model’s performance. In our case, considering
the limitation of the quantity of CM and PCS codes, 20 was
chosen as the K value.

ICD-10 Coding and Training System Framework
An ICD-10 auto-coding and training system prototype was
constructed with python3, ASP.NET Core 2.2 MVC, SQL
Server, and Vue.js. Whenever a user performs an action, such
as typing a discharge diagnosis or retrieving information from
a database on the frontend interface built with Vue.js, the axios,
a promise-based HTTP client for the browser and node.js, would
call for the Web application programming interface in the
backend built with ASP.NET Core 2.2 MVC to send the case
information to the backend for predicting and processing via
python3 or to the database for data preservation in SQL Server.
The complete system framework is illustrated in Figure 4. In
ICD-10 Coder and Trainer, with the discharge diagnosis as the
data input, the top 20 related ICD-10-CM/PCS codes and the
importance of each word related to the corresponding code
would be returned to all ICD-10 users for auxiliary.
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Figure 4. System architecture of the ICD-10 auto coding and training web service. API: application programming interface.

Comparing the Time Consumed and the F1-Score With
and Without the Auto-Coding System
We collected 60 discharge notes from February 2021 from the
Far Eastern Memorial Hospital (New Taipei City, Taiwan)
randomly. Nine coders participated in this experiment. The most
experienced coder provided the ground truth. The other 8 coders
were divided into 4 groups, and each case assigned to each
group could be coded by 2 coders. There are 2 parts in this
experiment. In part 1, we only provided medical record numbers,
and the coders coded the randomly assigned medical records
on a daily basis. Each group was assigned a different set of 10
cases. In part 2, we provided medical record numbers and ICD
codes predicted by our best DNN classification model. Each
group was randomly assigned 5 cases. We compared the time
consumed and the F1-score between parts 1 and 2 and performed

a paired samples Wilcoxon signed-rank test. A 2-tailed P<.05
was considered significant. Furthermore, a questionnaire was
designed to collect coders’ opinions on this system.

Results

ICD-10-CM Whole Label Classification
In the NTUH data set, the complete ICD-10-CM codes (ie, CM
codes with 3-7 characters) corresponding to the discharge
diagnosis records comprise 14,602 labels in total. The best DNN
classification model based on BERT embedding and FCNN
with BiGRU could achieve an F1-score of 0.715 and recall@20
of 0.873. Table 3 shows all comparisons of the whole label
classification. Classification results with different BERT
pretrained models show no significant effect on performance
in both of baseline and BiGRU models.

Table 3. F1-score and Recall@20 of all embedding models in the International Classification of Diseases-10 Clinical Modification.

Recall@20F1-scoreBaseline F1-scoreEmbedding model

0.8730.6800.355Word to Vectors

0.8360.6350.220Global Vectors

0.8520.6310.633Embeddings from Language Models

0.8690.7100.715Bidirectional encoder representations from
transformers–based

0.8690.7140.712Clinical bidirectional encoder representations
from transformers model

0.8630.7010.709Bidirectional encoder representations from
transformers for biomedical text mining

0.8350.5700.402Single Head Attention Recurrent Neural
Network

ICD-10-PCS Whole Label Classification
In the ICD-10-PCS whole label classification task, the complete
ICD-10-PCS code (ie, PCS codes with 7 characters)
corresponding to discharge diagnosis records comprised 9513

labels. Progress and discharge diagnosis were applied for
training the DNN model. The results summarized in Table 4
imply that our best DNN classification model based on BERT
embedding and FCNN with BiGRU could achieve an F1-score
of 0.618 and a recall@20 of 0.887.
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Table 4. F1-score and recall@20 of all embedding models in the International Classification of Diseases-10 Procedure Coding System.

Recall@20F1-scoreBaseline F1-scoreEmbedding model

0.8500.5800.278Word to Vectors

0.8410.5200.120Global Vectors

0.8740.5570.547Embeddings from Language Models

0.8800.6110.618Bidirectional encoder representations from transformers–based

0.8870.6150.596Clinical bidirectional encoder representations from transformers model

0.8800.6130.611Bidirectional encoder representations from transformers for biomedical text
mining

0.8790.5270.269Single Head Attention Recurrent Neural Network

ICD-10 Classification With Attention
By introducing the attention mechanism into the classification
model, the relation and importance between word pairs could
be computed and visualized. For instance, for 2 sentences, “He
had coronary artery disease. Also, he got fever.” and “A heart
disease,” weight information for the word “heart” might focus
on “coronary” or “artery.” Hence, by extracting the attention
weights of the diagnoses and ICD-10 definitions, how coders

focus on the words within diagnoses during the ICD-10 coding
process could be well understood (Figure 5). Furthermore, the
extracted diagnosis attention weights and the corresponding
ICD-10 code could be visualized by highlighting the key words,
the weight of which would be higher than a certain threshold,
for training a new coder in disease coding. By considering all
positive cases and negative sampling up to 40 cases in total, the
classification model with the attention mechanism could achieve
an F1-score of 0.86.

Figure 5. Visualization of attention weights.

ICD-10 Coding and Training System Framework
The objective of this study is to build an ICD-10 auto-coding
and training system for assisting disease coders to elevate their
work efficiency and coding accuracy. An ICD-10
auto-predicting interface with discharge diagnosis as the
reference is available on the internet [19] for accelerating the
coding efficiency. The DNN model executed by the python
script would return the top 20 ICD-10-CM and ICD-10-PCS
codes with a recall@20 of 0.87 and 0.88, respectively. The
predicting process of each case takes less than 30 seconds, which
drastically shortens the coding time of 30 minutes per case on

average. In addition, training for ICD-10 coding is also provided
under the training tab. Given a paragraph of discharge diagnosis,
the key words to support the code could be highlighted by
clicking on the target code.

To make the prediction more flexible and adaptable to disease
coders in different hospitals, postprocessing rules for dealing
with exceptions, such as combination codes and hospital
consensus, could be defined under the rule definition panel.
Users could apply the default setting or build their own setting
to apply the specific coding style. The ICD-10 auto-coding,
training, and rule defining panels are shown in Figures 6, 7, and
8 respectively.
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Figure 6. ICD-10 auto-coding panel.

Figure 7. ICD-10 auto-training panel.
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Figure 8. Postprocessing user defining panel.

Time Consumed and F1-Score With and Without the
Auto-Coding System
The ICD-10 auto-coding system with our best DNN
classification model significantly improved the coders’ mean
F1-score from a median of 0.832 to 0.922 (P<.05) but did not

decrease their mean coding time (P=.64), as shown in Table 5.
The questionnaire revealed that a coder took approximately
20-40 minutes on average to code a case, and 62.5% of coders
are willing to use this system in their work. This system might
potentially help them not only increase the accuracy of
ICD-coding but also save their time.

Table 5. Time consumed and the F1-score with and without the auto-coding system.

Mean F1-score in part 2c,g,hMean F1-score in part 1a,f
Mean time consumed in part 2c,d,e

(minutes:seconds)
Mean time consumed in part 1a,b

(minutes:seconds)Coder

0.8930.80105:1107:491

0.9600.90006:0108:192

0.9510.98006:1604:573

0.9500.86707:3205:024

0.9780.76605:1806:235

0.8920.65203:5305:236

0.8380.81505:2505:457

0.8270.84806:4305:338

aWithout the auto-coding system.
bMedian time consumed in part 1=5 minutes 39 seconds (95% CI 5 minutes 1 second to 7 minutes 54 seconds).
cWith the auto-coding system.
dMedian time consumed in part 2=5 minutes 43 seconds (95% CI 4 minutes 56 seconds to 6 minutes 52 seconds).
eNonsignificant difference in the mean time consumed by coders between parts 1 and 2 of the study (2-tailed P=.64 derived from a paired samples
Wilcoxon signed-rank test).
fMedian F1-score in part 1=0.832 (95% CI 0.744-0.915).
gMedian F1-score in part 2=0.922 (95% CI 0.836-0.963).
hSignificant difference in mean F1-scores between parts 1 and 2 (2-tailed P<.05 derived from a paired samples Wilcoxon rank sum test).
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Discussion

Principal Findings
Compared to a previous study on ICD-9 classification with
85,522 training data and an F1-score of 0.41 [20], our best DNN
classification model based on the BERT embedding method
and FCNN with BiGRU achieved an F1-score of 0.715 and
recall@20 of 0.873. Comparing to the baseline model with only
1 fully connected layer, models with BiGRU showed better
performance within the embedding approaches using fixed word
embedding vectors. However, within embedding methods that
are more flexible, such as BERT, the BiGRU classification
model shows no significant effect on performance. This indicates
that higher-level embedding techniques such as ELMo and
BERT could certainly be able to sequentially consider the
contextual semantics information; since they widely introduce
the BiGRU and BiLSTM layers or other contextual information
extraction methods within their model architectures. On the
other hand, among all the embedding methods, BERT showed
the best performance; however, it seems that initializing with
different BERT pretrained weights has no significant influence
on the classification results. However, the simplified BERT
model SHA-RNN could only achieve 0.57 on the classification
task and could not achieve over 0.41 on the baseline model.
This might result from the lack of the corpus on training of the
embedding model, comparing to BERT models which were
trained with millions of articles from Bookcorpus, Wikipedia,
etc; we only used our own discharge diagnosis records on
SHA-RNN training. This implies the ability of the BERT model
to learn and extract the information well in a specific field via
only the fine-tuning process; thus, there is no need to train our
BERT model from scratch with our own data set, but rather
only to initialize with the pretrained weight and fine-tune with
our own data set.

Another previous study compared BERT with other DNNs in
ICD-10 auto-coding in nontechnical summaries of animal
experiments. They achieved a micro F1-score of 73.02% with
BioBERT, which is comparable to our results [21]. However,
nontechnical summaries of animal experiments are not as
complicated as the medical records we worked on and BioBERT
could perform better than BERT in their data set, but no
significant difference was observed in the medical records, as
shown herein. Another study found that contextualized deep
learning representation models including BERT and ELMo
outperform noncontextualized representation models in
discovering medical synonyms [22], which is consistent with
our findings.

Our system improved the coder’s mean F1-score (P<.05) but
did not decrease the mean coding time (P=.64). One of the
explanations is that coders had not become familiar with this
system yet, and the other explanation is that relatively simple
cases were included in this experiment, which led them to take
less than 20-40 minutes per case during their daily work, as
they indicated in their questionnaire responses. The long-term
effect of the ICD-10 auto-coding system should be investigated
in the future to determine whether the coding time can be saved.

Limitations
Our study has some limitations. First, our training data are
derived from only 1 medical center. The performance in other
hospitals could be affected by different writing habits, and
different disease prevalence. Second, combination codes remain
an intractable issue because in some cases, disease coders cannot
and should not assign multiple diagnosis codes in cases where
a single combination code clearly identifies all aspects of the
patient’s diagnosis. In our results, the combination codes were
either predicted incorrectly or separated into 2 different codes.
In addition, there are multiple diagnoses that corresponded to
multiple codes in order; that is, primary diagnosis, secondary
diagnosis, tertiary diagnosis, etc [10]. However, the
classification model could only give the probability of each
code rather than the corresponding order. To resolve the problem
while maintaining high performance in the classification task,
we proposed a novel approach by combining the Seq2Seq
model, which gives the code order. Finally, our system is still
new to coders, and few coders have used it. After more users’
responses are collected, further analysis and modification can
be performed to improve our system.

Conclusions
In this study, an ICD-10 classification model developed using
NLP and a deep learning model without any background
knowledge from EHR data yielded an F1-score of 0.715 and
0.618 for CM and PCS, respectively. In addition, we built and
released the platform for automated ICD-10 prediction and
training based on our well-trained models for free to ICD-10
users worldwide and further shortened the coding time from
20-40 minutes to 30 seconds per case. Our platform can be
found on the internet [19]. Our system can significantly improve
coders’ F1-score in ICD-10 coding.

In future studies, we shall attempt to develop and provide other
functions such as user feedback and auto-training with new
input data to our model. ICD-10 codes in different hospitals
with different coding styles will also be constructed in
accordance with the amount of user information and prediction
history records to improve the automated ICD-10 coding and
training system further.
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Abbreviations
BERT: bidirectional encoder representations from transformers
BiGRU: Bidirectional Gated Recurrent Unit
BioBERT: bidirectional encoder representations from transformers for biomedical text mining
CM: Clinical Modification
DNN: Deep Neural Network
EHR: Electronic Health Records
ELMo: Embeddings from Language Models
FCNN: fully-connected neural network
GloVe: Global Vectors
GRU: Gated Recurrent Unit
ICD: International Classification of Diseases
NTUH: National Taiwan University Hospital
NLP: natural language processing
PCS: Procedure Coding System
SHA-RNN: Single Head Attention Recurrent Neural Network
Word2Vec: Word to Vectors
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