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Abstract

Background: Medical writing styles can have an impact on the understandability of health educational resources. Amid current
web-based health information research, there is a dearth of research-based evidence that demonstrates what constitutes the best
practice of the development of web-based health resources on children’s health promotion and education.

Objective: Using authoritative and highly influential web-based children’s health educational resources from the Nemours
Foundation, the largest not-for-profit organization promoting children’s health and well-being, we aimed to develop machine
learning algorithms to discriminate and predict the writing styles of health educational resources on children versus adult health
promotion using a variety of health educational resources aimed at the general public.

Methods: The selection of natural language features as predicator variables of algorithms went through initial automatic feature
selection using ridge classifier, support vector machine, extreme gradient boost tree, and recursive feature elimination followed
by revision by education experts. We compared algorithms using the automatically selected (n=19) and linguistically enhanced
(n=20) feature sets, using the initial feature set (n=115) as the baseline.

Results: Using five-fold cross-validation, compared with the baseline (115 features), the Gaussian Naive Bayes model (20
features) achieved statistically higher mean sensitivity (P=.02; 95% CI −0.016 to 0.1929), mean specificity (P=.02; 95% CI
−0.016 to 0.199), mean area under the receiver operating characteristic curve (P=.02; 95% CI −0.007 to 0.140), and mean macro
F1 (P=.006; 95% CI 0.016-0.167). The statistically improved performance of the final model (20 features) is in contrast to the
statistically insignificant changes between the original feature set (n=115) and the automatically selected features (n=19): mean
sensitivity (P=.13; 95% CI −0.1699 to 0.0681), mean specificity (P=.10; 95% CI −0.1389 to 0.4017), mean area under the receiver
operating characteristic curve (P=.008; 95% CI 0.0059-0.1126), and mean macro F1 (P=.98; 95% CI −0.0555 to 0.0548). This
demonstrates the importance and effectiveness of combining automatic feature selection and expert-based linguistic revision to
develop the most effective machine learning algorithms from high-dimensional data sets.

Conclusions: We developed new evaluation tools for the discrimination and prediction of writing styles of web-based health
resources for children’s health education and promotion among parents and caregivers of children. User-adaptive automatic
assessment of web-based health content holds great promise for distant and remote health education among young readers. Our
study leveraged the precision and adaptability of machine learning algorithms and insights from health linguistics to help advance
this significant yet understudied area of research.
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Introduction

Background
Web-based health education and promotion has become
increasingly popular among all age groups [1]. Although existing
research on web-based health educational materials has focused
on adults or general readers, there is an increasing body of
research on the assessment and evaluation of web-based
educational resources on children’s health [2,3]. Clinical and
academic research shows that effective writing styles can have
an impact on the understanding and reception of medical and
health educational resources for different reader groups [4-6].
There is a pressing need to investigate the writing style of
web-based health resources on children’s health promotion and
education for the main readers of such materials as parents and
child caregivers to ensure information relevance and
acceptability. The Agency for Healthcare Research and Quality
is the lead federal agency charged with improving the safety
and quality of America’s health care system, including pediatric
health care products and services [7]. The Agency for Healthcare
Research and Quality has developed the Patient Education
Materials Assessment Tool (PEMAT) to ensure the development
and delivery of quality health care products and services. Key
assessment criteria of PEMAT include health information
understandability, relevance, and actionability [8,9].

Much of the current research has focused on exploring these
assessment dimensions separately using long-standing
readability tools [10-13] or machine learning algorithms of
natural language features [14-16] using features such as general
medical vocabularies, consumer medical vocabulary, natural
language features such as a part of speech features [17-19], and
other metadata [20]. Furthermore, many of these data-intensive
and data-driven studies did not consider insights from research
fields directly relevant to health educational resource
development and evaluation. The lack of model interpretability
has largely limited the applicability of such computational
research in practical health education. How to effectively link
linguistic research, health education, and machine learning
modeling needs to be addressed.

The core question of our study is to develop machine learning
models to discriminate and predict what constitutes a suitable
writing style of web-based health resources on children’s health
promotion and education. Research-based evidence is needed
to inform and improve the current practice of web-based health
educational resource development on health issues related to
the promotion of children’s health and well-being for readers
such as parents, caregivers of children, and teenagers. Our study
aims to assess the writing styles of web-based health resources
on children’s health through an integrated, holistic approach,
that is, the development of machine learning models to evaluate
whether the content and the writing style of a piece of web-based
health educational material is more related to children’s health
promotion and education, or more for the general public. The
underlying hypothesis of our study is that the content and writing

style of high-quality web-based health educational resources
vary with the intended readership, which is based on the
principles of clinically developed guidelines for health
educational resource assessment such as PEMAT [21-23] and
health educational research findings in support of user-oriented
health communication styles [24-31].

Data Sets and Feature Extraction

Corpus Data Collection and Classification
The Nemours Foundation is the world’s largest nonprofit
organization dedicated to improving the health and well-being
of children, and the website of the Foundation has high-quality
health education resources developed by medical experts and
experienced health educators purposefully for different
readerships including parents, children (aged ≤13 years) and
teenagers (aged 13-20 years) [32]. Given the inherent difficulties
of conducting large-scale surveys of web-based health
educational materials among young children, we used
high-quality, authoritative, and children-oriented health materials
on the KidsHealth website [33] as the training data to develop
machine learning algorithms to predict the relevance and
suitability of health education resources for young children with
English as the native language. The entire data set contains
around 200 children-oriented health texts and 800 adult health
texts that we collected on websites developed by nonprofit
health organizations and intended for the public, such as the
World Health Organization (Multimedia Appendix 1 presents
some of the websites used).

Text Screening Criterion
For the selection of health information for the general public,
the main screening criteria were that the websites must have
been certified by the Health on the Net Foundation, an
international accreditation authority of web-based health
information, and they must have been developed by health
authorities to provide accurate health educational information.
These included governmental health organizations, accredited
nonprofit health organizations engaged in health promotion and
education, or national or regional associations of specific disease
prevention and control. We carefully screened a total of 200
children’s health readings from the website of Nemours
KidsHealth [33] as one of the most authoritative children health
education websites, accredited by the Health on the Net
Foundation [34] for its authority (details of the editorial team
and the site team are clearly stated), justifiability (health
information is complete and provided in an objective, balanced,
and transparent manner), and transparency (the site is easy to
use, and its mission is clear). The intended readers were clearly
the parents and caregivers of children, as shown in the
user-specific website structure. It should be noted that there was
a clear imbalance between the two sets of health texts, which
reflects the reality of web-based health educational resources,
as children-oriented health materials are much less than
adult-oriented health resources.
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Corpus Annotation of Semantic Features
We annotated the health texts using the semantic tagging system
developed by the University of Lancaster, United Kingdom
[35]. The annotated health texts contained 115 semantic features
under 21 lexical categories—A: general or abstract terms; B:
the body and individual; C: arts and crafts; E: emotions; F: food
and farming; G: government and politics; H: architecture,
housing, and the home; I: money, commerce, and industry; K:
entertainment, sports, or games; L: live and living things; M:
movement, location, travel, and transport; N: numbers and
measurement; O: substances, materials, objects, and equipment;
P: education; Q: language or communication; S: social actions,
states, and process; T: time, W: world and environment; X:
psychological actions, states, and processes; Y: science or
technology; Z: names and grammars. Although the University
of Lancaster Semantic Annotation System (USAS) was
developed for general English studies, it has wide applications
in specialist language studies, including health education and
information. It is one of the most commonly used English
semantic annotation systems.

Our study chose USAS purposefully, as we aimed to select
linguistic and semantic features that may be used for developing
machine learning algorithms to predict the semantic relevance
and suitability of web-based health information among children.
The semantic features described earlier are more suitable for
analyzing and modeling the content relevance of health
information. Many current studies use grammatical or syntactic
features to develop machine learning algorithms for health
information evaluation. However, grammatical, syntactic,
morphological, or other types of structural or functional
linguistic features cannot be used to study the contents of health
information. The relevance of health information content for
specific populations is largely underexplored in current health
informatics using natural language processing and machine
learning. Our study took advantage of the extensive English
semantic coverage of USAS and developed algorithms using a
small number of semantic features (20 from the original 115
semantic features) that measured diverse dimensions of the
relevance and suitability of web-based health contents for
English-speaking young children: approaches to medical
knowledge acquisition; assessment of health situations;
describing efforts; complexity of actions; attention, stress, or
emphasis on key points; and finally, communicative
interactivity. All these dimensions of health information
relevance and suitability for young readers are supported and
represented by semantic features incorporated in the
comprehensive annotation system of USAS.

Statistical Analysis
Table 1 shows the Mann-Whitney U test of linguistic features
as statistically significant features in web-based health education
texts on the education of children’s versus adults’ health. The
results show that children-oriented and adult-oriented health
resources had statistically significant differences in the originally
annotated semantic features (n=115). In addition to the
two-tailed P values, the effect sizes (Cohen d) of the independent
sample two-tailed t test were produced to measure the statistical
differences between the two sets of health texts. As the mean

differences were taken between health texts for children and
adult health promotion, a positive Cohen d effect size indicated
that a certain semantic feature is a characteristic feature of
children-oriented health resources. A negative Cohen d effect
size suggested that a semantic feature is more significant in
health educational resources intended for the public.

A number of semantic features were identified as characteristic
of adult-oriented health resources: semantic features that had
large negative Cohen d effect sizes (above 0.5) included B2
health and disease (P<.001; Cohen d=−0.802); B3 medicine
and medical treatment (P<.001; Cohen d=−0.800); Z2
geographical names (P<.001; Cohen d=−0.674); Z3 other proper
names (P<.001; Cohen d=−0.594); M7 places (P<.001; Cohen
d=−0.587); Y1 science and technology generally (P<.001;
Cohen d=−0.522); Z99 out-of-dictionary rare expressions
(Plt;.001; Cohen d=−0.776); A15 safety or danger (P<.001;
Cohen d=−0.543); and S1 social actions, states, and processes
(P<.001; Cohen d=−0.547). Semantic features with medium
effect sizes (Cohen d=−0.5 to 0.3) were related to social
processes, money, religion, and numeracy: G1 government,
politics, and election (P<.001; Cohen d=−0.496); W3
geographical terms (P<.001; Cohen d=−0.414); L1 life and
living things (P<.001; Cohen d=−0.391); I1 money generally
(P<.001; Cohen d=−0.370); L2 living creature (P<.001; Cohen
d=−0.362); S5 social groups and affiliation (P<.001; Cohen
d=−0.356); S9 religion (P=.001; Cohen d=−0.324); and N1
numbers (P=.006; Cohen d=−0.315).

Textual features that were statistically significant in
children-oriented health texts reflected the different cognitive
processing of health information and health communication
styles between children and adults. Semantic features that had
a large Cohen d effect size (0.5-0.9) for children-oriented health
texts included words indicating simple actions and steps: M1
moving, coming, and going (P<.001; Cohen d=0.547); M2
putting, taking pulling, and pushing (P<.001; Cohen d=0.517);
E2 emotional expressions of like or dislike feelings (P<.001;
Cohen d=0.556); X3 sensory words describing sight, taste, feel,
and touch feelings (P<.001; Cohen d=0.684); S4 kinships
(P<.001; Cohen d=0.713); X8 expressions describing efforts,
attempts, and resolution (P<.001; Cohen d=0.803); and words
of textual coherence or logical structure—Z8 pronouns (P<.001;
Cohen d=0.907); Z6 negative expression (P<.001; Cohen
d=0.764); and Z7 conditional expressions (P<.001; Cohen
d=0.575).

There were two semantic categories related to emphasis, stress,
and attention: A14 focusing subjuncts that draw attention to or
focus on (P=.04; Cohen d=0.519) and A13 words as maximizers,
boosters, approximators, and compromisers (P<.001; Cohen
d=0.645). Semantic features that were identified as characteristic
features of children-oriented health reading of a medium Cohen
d effect size (0.3-0.5) included F1 food-related expressions
(P<.001; Cohen d=0.493); O1 substances and materials generally
(P<.001; Cohen d=0.49); B1 terms relating to the human body
and bodily processes (P=.002; Cohen d=0.362); O4 physical
attributes (P<.001; Cohen d=0.348); and E4 expressions of
happiness or sadness (P<.001; Cohen d=0.493).
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The large number of semantic features of statistical significance
(P<.05) and medium-to-large effect sizes (Cohen d 0.3-0.9)
needed to be further reduced to a smaller set of textual features
to ensure the stability, efficiency, and convenience of any
empirical assessment tool to be developed. The following
sections will elaborate on machine learning–assisted automatic
feature selection, followed by a review and revision of the
empirical analytical instrument from the perspective of
user-adaptive health resource design and health linguistics. The
final machine learning model aims to provide high-precision
automated predictions of the suitability of web-based health
educational resources for young readers.

Machine learning algorithms are known for their lack of
interpretability compared with statistical models. Through the
successive permutation of the predictor features in the final
algorithm (Gaussian Naive Bayes [GNB]), we calculated the
impact of individual features on the performance of the
algorithm, that is, its sensitivity and specificity. Two sets of
semantic features were identified as significant contributors to
the prediction of children- versus adult-oriented health
educational resources. Each set of features that emerged in the
process of algorithm development represented a balanced
combination of semantic classes, which were statistically
significant features in children- or adult-oriented materials.

Table 1. Semantic feature of health educational texts.

Effect size (Cohen d)Statistical differenceAdult-oriented,
mean (SD)

Children-oriented,
mean (SD)

Semantic features

P valueaMann-Whitney U test

0.340.1767510.04.1 (4.994)5.65 (7.267)A5: evaluation: good or bad

−0.543<.00156287.01.560 (3.950)0.230 (1.020)A15: safety or danger

−0.802<.00141001.022.45 (30.619)7.910 (13.792)B2: health and disease

−0.800<.00146443.512.46 (17.280)4.360 (8.392)B3: medicine and medical treatment

0.491<.00151368.03.490 (13.801)10.30 (25.407)F1: food

0.547<.00152775.02.92 (5.259)5.27 (7.399)M1: moving, coming, going

−0.547<.00154876.53.820 (6.090)1.850 (2.738)S1: social actions, states, and processes

0.207.0465131.510.22 (16.519)12.42 (15.635)S2: people

0.713<.00152886.51.070 (3.247)2.860 (4.221)S4: kin

−0.356<.00158355.02.520 (4.771)1.500 (3.672)S5: groups and affiliation

−0.318.00762823.56.920 (9.634)5.140 (6.315)S8: helping or hindering

−0.324.00164677.00.440 (1.587)0.140 (0.738)S9: religion and the supernatural

−0.181.1667348.012.94 (15.022)11.3 (12.639)T1: time

0.684<.00150469.02.020 (4.618)4.920 (7.606)X3: sensory

0.019.3769246.01.83 (3.612) 1.88 (3.619)X9: ability

−0.674<.00145505.53.120 (6.184)0.550 (1.496)Z2: geographical names

0.764<.00151392.03.080 (4.861)5.840 (5.958)Z6: negative

0.907<.00146155.031.56 (38.830)59.79 (53.287)Z8: pronoun

−0.776<.00139069.037.58 (49.684)13.74 (17.037)Z99: unmatched expressions

aAsymptotic significance (two-tailed).

Methods

We applied machine learning algorithms to learn the important
features for detecting the writing styles of web-based health
educational resources on children’s health promotion and
education. Recursive feature elimination (RFE), ridge classifier
(RC), extreme gradient boosting (XGBoost) [36], and support
vector machine (SVM) [37] were used to assist in automatic
feature selection. RFE is commonly used with SVM (denoted
as RFE_SVM) to build a model and remove unimportant
features [38]. In addition to linear models such as SVM,
tree-based models are also an effective method to learn feature
importance, and XGBoost was used as the learning estimator

of RFE (denoted as RFE_XGB). For algorithms RC, SVM, and
RFE, we used the implementation in scikit-learn [39]. For
XGBoost, we used the Python package xgboost [40].

For the RC and RFE algorithms, scikit-learn has built-in
cross-validation variants RidgeClassifierCV and RFECV, which
perform leave-one-out five-fold cross-validation to search for
the best hyper-parameters and select the best cross-validated
features, respectively. For SVM, which only needs to tune the
regularization parameter C, we applied the commonly used
GridSearchCV for hyperparameter tuning. The GridSearchCV
algorithm performs an exhaustive search over specified
parameter values to determine the best and cross-validated
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parameter values of the model. For XGBoost, which has nine
hyper-parameters including some continuous ones, we applied
RandomizedSearchCV, which performs a randomized search
over parameters and samples a fixed number of parameter
settings from the specified distribution. We set the number of
parameter settings n_iter of Randomized SearchCV as 300. The
hyperparameter n_iter defines the number of parameter settings
that are sampled. With a large value of n_iter, the algorithm
was able to find better hyper-parameters from a large parameter
setting with high quality. The fine-tuned results of the better
hyper-parameters are shown in Multimedia Appendix 2. For
the hyper-parameters that were not listed, we used the default
values in the model.

We applied RFE_SVM and RFE_XGB to evaluate the
cross-validation score when increasing the number of selected
features. The automatic tuning results of the number of features

selected by cross-validation are shown in Multimedia Appendix
2. As shown in the results (Figures 1 and 2), both the SVM and
XGBoost model gained a nearly stable cross-validation score
greater than 0.9 when the number of selected features was equal
to or greater than 40. This result indicated that when only 40
features were used, the model was still able to achieve good
performance, and adding more features did not help much. As
a result, we applied 40 as a threshold to select the top 40
important features learned by RC and XGBoost. The details of
the selected top 40 features of RC and XGBoost are shown in
Multimedia Appendix 2 and Figures 3 and 4. RFE_SVM learned
95 features, eliminating 20 unimportant features from all 115
features. For the RFE_XGB, 97 features were selected, and 18
unimportant features were eliminated. Finally, the intersected
19 features from the RC, XGBoost, RFE_SVM, and RFE_XGB
were selected as automatically learned features from the machine
learning algorithms.

Figure 1. Automatic tuning of the number of features selected with cross-validation of RFE_XGB.

Figure 2. Automatic tuning of the number of features selected with cross-validation of RFE_SVM.
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Figure 3. Automatic feature importance ranking using extreme gradient boost tree. XGBoost: extreme gradient boosting.

Figure 4. Automatic feature importance ranking using the ridge classifier.

Results

Feature Selection Results
Table 2 shows the performance of the three machine learning
classifiers on the testing data, which were largely similar in
terms of overall model accuracy, macro average F1, and F1 for
adult- and children-oriented health readings. The top semantic
features in the initial automatic feature selection were as follows
(for a detailed description of these codes, see the USAS):

• RC: Z99, B3, S1, T1, A2, B2, A6, K4, A12, W5, A15, N1,
S9, S5, Y1, S8, X4, Z2, X9, Y2, S3, A14, F3, X2, X8, T2,
K3, A5, G3, B5, O2, X3, M1, X5, F1, S2, O1, S4, Z6, Z8

• XGB Tree: X2, E2, X9, T2, X5, A2, E3, S2, A15, A5, Z7,
N6, M7, O4, A13, G1, X3, Z5, E5, K5, Y2, S4, O1, L3,
Q3, Z99, B3, T1, S8, B2, L1, Z8, Z2, Z3, I1, X8, Q4, F1,
Z6, A12

• RFE using SVM as the feature scoring algorithm: A2, A3,
A4, A5, A6, A7, A9, A10, A11, A12, A13, A14, A15, B1,
B2, B3, B5, C1, E4, E5, E6, F1, F3, F4, G1, G2, G3, H2,
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H3, H4, H5, I1, I2, I3, I4, K1, K2, K3, K4, K5, L1, L2, L3,
M1, M3, M4, M5, M6, M8, N1, N2, N3, N4, N5, N6, O2,
O3, O4, P1, Q1, Q2, Q3, Q4, S1, S2, S3, S4, S5, S6, S7,
S8, S9, T1, T2, T4, W1, W2, W4, W5, X2, X3, X4, X5,
X6, X7, X9, Y1, Y2, Z1, Z2, Z3, Z4, Z6, Z8, Z99

• RFE using XGB as the feature scoring algorithm: A1, A2,
A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14,
A15, B1, B2, B3, B4, B5, C1, E1, E2, E3, E4, E6, F1, F2,

G1, H3, H4, I1, I2, I3, I4, K3, K4, K5, K6, L2, L3, M1,
M2, M3, M4, M5, M6, M7, N1, N3, N4, N5, N6, O1, O2,
O3, O4, Q1, Q2, Q3, Q4, S1, S2, S3, S4, S5, S6, S7, S8,
S9, T1, T2, T3, T4, W1, W3, W4, X2, X3, X5, X6, X7, X8,
X9, Y1, Y2, Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z99

• The common 19 features of the four feature selection
algorithms are as follows: Z8, S2, S8, F1, A5, S4, X3, M1,
T1, S5, S9, Z99, A15, S1, X9, Z6, B2, Z2, B3.

Table 2. Classifiers used for automatic feature selection.

F1RecallPrecisionMacro average F1aAccuracyClassifier and text class

0.890.925Ridge classifier

0.950.910.99Adult-oriented readings

0.840.970.74Children-oriented readings

0.890.93SVMb

0.960.960.95Adult-oriented readings

0.820.80.84Children-oriented readings

0.900.94XGBc

0.960.980.95Adult-oriented readings

0.840.780.91Children-oriented readings

aF1 = 2 × [(precision × recall) / (precision + recall)].
bSVM: support vector machine.
cXGB: extreme gradient boosting.

Table 3 shows the comparison of the performance of algorithms
using the original 115 features as predictor variables and the
automatically selected 19 semantic features as predictor
variables. With GNB classifier, we reduced the predictor
variables from 115 to 19, the mean sensitivity (of the five folds
of data) decreased from 0.685 to 0.634 (0.074%), the mean
specificity increased from 0.771 to 0.903 (17.04%), and the
mean area under the receiver operating characteristic curve
(AUC) increased from 0.822 to 9.882 (7.21%). Similar patterns
were observed with K-nearest neighbor (KNN). Mean sensitivity
decreased from 0.973 to 0.943 when the predictor variables
reduced in number. By contrast, the model mean specificity
increased by 33.7% from 0.526 to 0.703 and the mean AUC
increased by 3.79% from 0.901 to 0.935. This suggested that
for some algorithms such as GNB and KNN, feature selection
can increase the model efficiency, at least partially. However,
with XGB, both mean sensitivity and mean specificity decreased
by around 0.5%, resulting in a decrease of mean AUC of 0.95%.
The decrease in the mean sensitivity, mean specificity, and mean
AUC of XGB and the decrease in mean specificity of GNB and
KNN using automatically selected features indicated that further
linguistic revision was needed. Linguistic review of the
automatically selected features will ascertain whether the
automatically selected features were linguistically meaningful
and explainable.

Features that were deemed linguistically irrelevant or
unexplainable will be replaced by semantic features that are
highly relevant and significant for health language studies.
Incorporating insights from language studies into automatic
feature selection will help in the development of adaptive and

interpretable machine learning algorithms. Increasing the
interpretability and practical usability of algorithms can be
achieved at the stage of the linguistic review of automatically
selected feature sets.

We eliminated S9, T1, S2, and Z2 and added X8, A12, A11,
A13, and A14. These were the semantic features that were
highly relevant to health linguistics. X8 are terms depicting the
level of effort and resolution. This is a statistically significant
feature of children’s educational resources (P<.001; Cohen
d=0.803). Typical words of X8 were tried, fights, hard, fighting,
try, and struggling, which were prevalent in health educational
resources for children to describe bodily reactions to diseases
and viruses. In contrast, adult-oriented health education
resources were abundant in words and expressions of A12,
which were abstract terms denoting the varying levels of
difficulties: challenge, adversity, and complexity. The
independent t test showed that A12 was a characteristic semantic
feature of general health materials (P<.001; Cohen d=−0.234).
A11 included abstract terms denoting importance or significance
and abstract terms denoting noticeability or markedness. Typical
words of A11 were main, significant, important, serious,
principal, emergency, distinctive, urgent, crucial, and
emergencies that were abundant in adult health educational
resources (P<.001; Cohen d=−0.0348). A13 included words
such as maximizers, boosters, approximators, and compromisers
(P<.001; Cohen d=0.645). Typical words of A13 were very,
almost, more, as, about, up, to, approximately, fully, even, and
enormously, which were prevalent in children’s health education
resources. Finally, A14 focused on subjuncts that drew attention
to or to focus upon (P=.04; Cohen d=0.519). Typical words of
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A14 were especially, just, and only, which were highly frequent in children’s health educational readings.

Table 3. Performance of classifiers using 115 (originally tagged) and 19 (automatically selected) features.

AUCa, mean (SD)Specificity, mean (SD)Sensitivity, mean (SD)Classifier and feature sets

GNBb

0.822 (0.062)0.771 (0.116)0.685 (0.125)All 115 features

0.882 (0.054)0.903 (0.063)0.634 (0.074)Automatically selected 19 features

KNNc

0.901 (0.032)0.526 (0.096)0.973 (0.013)All 115 features

0.935 (0.023)0.703 (0.048)0.943 (0.028)Automatically selected 19 features

XGBd

0.978 (0.012)0.766 (0.059)0.982 (0.01)All 115 features

0.970 (0.016)0.737 (0.051)0.970 (0.019)Automatically selected 19 features

aAUC: area under the receiver operating characteristic curve.
bGNB: Gaussian Naive Bayes.
cKNN: K-nearest neighbor algorithm.
dXGB: extreme gradient boosting.

Table 4 shows the linguistic profiling framework we developed
for the revised set of semantic features. It includes the 15
automatically selected features and the manually added five
features based on their relevance for health linguistic and
language studies, as well as their function as statistically
significant, large characteristic features of children- versus
adult-oriented health educational readings. The linguistic
framework for comparing health texts intended for these two
distinct readerships contained three key dimensions that were
cognitive abilities, social context of health issues, and
user-adaptive health communication style. Under each
dimension, there were several contrastive semantic features
which help to distinguish health readings for different readers.
Within the dimension of cognitive abilities, four semantic
features reflect the different scope of health knowledge of
children versus adults. For example, F1 food-related words and
expressions (creams, peanuts, spread, appetite, foods, salt, sugar,
meal, pasta, and rice), and X3 sensory expressions describing
taste, color, sight, feel, and sound of things (hearing, see, notice,
scented, hear, watch, sound, smell, colorful, etc) were prevalent
in children’s health readings as their main approach to health
knowledge acquisition. In contrast, more abstract, complex,
rare, difficult words were characteristic features of adult health
readings—B2: medicine (medical, condition, disorder, stroke,
tumor, injury, illness, health, miscarriage, infertility, etc); B3:
medical treatment (neurological, diagnosed, computed
tomography, cure, scan, medicinal, analgesic, healing, diagnosis,
drugs, etc), and Z99: complex, out-of-dictionary words
(cyclones, aldosterone, noncancerous, vestibulocochlear,
neurofibromatosis, tinnitus, muskrat, ondatra, zibethicus,
herbivore, alkanes, esters, aldehydes, etc).

Children and adults also use different approaches to assess
health events and situations: A5 words that evaluate events in
terms of good or bad and false or true were more prevalent in
children’s readings with typical words such as wrong, right,

better, good, true, positive, improved, greater, ok, and best. In
contrast, A15 words that assess health situations in terms of
safety, risk, and harm were more prevalent in adult health
readings with typical expressions that we found in the corpus:
at-risk, safe, dangerous, exposures, hazard, safety, insurance,
warning, alert, and alarming. X9 terms describing success and
failure, gains and losses, and benefits and risks were also
prevalent in adult health materials. This finding aligns well with
the latest research on health communication using the Prospect
Theory [41], which highlights the human propensity to maximize
benefits and minimize risks, including in health care and medical
settings. Typical words of X9 included effective, successful,
lose, achieve, gains, go wrong, overcome, solve, cope, and
competent. The complexity of actions is another important
feature of health education reading [42,43]. In children’s health
readings, simple actions and verbs describing the direction of
movements were prevalent—typical words in M1 were moving,
coming, and going, get, follow, step, and steps. In contrast, the
mean frequency of S8 words describing levels of help, obstacles,
and hindrance was statistically higher in adult health readings
such as stop, prevent, cooperate, benefits, resistance, protect,
protecting, support, supporting, and help.

We also identified predictor features that are relevant to the
social context of health issues [44]. This dimension includes
two sets of semantic features of interpersonal relations and the
socioeconomic contexts of health issues. For example, S4 words
of kinships (family, parents, siblings, relatives, children,
household, families, etc) were more common in children’s health
readings, whereas S5 words of people’s social groups and
affiliation were prevalent in adult health educational readings
such as network, loneliness, community, member, partnership,
and alliance. Another important semantic feature is S1 terms
related to participation, involvement, entitlement, and eligibility
or describing personality traits such as strength, weakness,
vulnerability, and disadvantaged. Typical words of S1 were

JMIR Med Inform 2021 | vol. 9 | iss. 7 | e30115 | p. 8https://medinform.jmir.org/2021/7/e30115
(page number not for citation purposes)

Xie et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


vulnerable, self-esteem, meeting, helplessness, social, and
contacts, which were highly frequent in adult health readings.
We could not find an equivalent semantic feature class in
children’s health readings to match S1 as a characteristic of
adult health readings.

The health communicative style is another key dimension of
semantic features [30]. We found that an effective
communicative style is particularly relevant for children-oriented
health educational readings [45]. For example, to match the
machine learning–selected feature of A11 terms describing
importance and priority, we added two functionally equivalent
semantic features that were prevalent in children’s health
readings to help increase the emphasis and stress on the key

health messages of the texts: A13 and A14. Both were mostly
adverbs describing the degree, levels, extent, severity of objects,
and events. For example, typical words in A13 were very,
almost, more, as, about, up, to, approximately, fully, even,
enormously; and typical words of A14 were especially, just,
and only. These words stand in contrast with A11 words that
characterize the prioritization and importance attribution among
adults: main, significant, important, serious, principal,
emergency, distinctive, urgent, crucial, and emergencies. Finally,
terms that help increase the logical coherence of health readings
were highly frequent in children’s health readings but not in
adult readings. These include Z8, the use of pronouns (it, this,
who, that, you, what, we, they, their, which, your, our, and
anything), and Z6, the use of negative expressions.

Table 4. Revised linguistic evaluation framework with final 20 features.

Texts on adults’ healthTexts on children’s healthDimensions of linguistic analyses

Cognitive abilities

Scope of health knowledge •• B2 (medicine); B3 (medical treatment)F1 (food)
•• Z99 (complex and out-of-dictionary words)X3 (sensory: taste, sound, and

touch)

Assessment of situations •• A15 (safety or danger)A5 (good or bad and true or false)
• X9 (success or failure, gains or loss, and benefits or risks)

Describing efforts •• A12 (level of difficulty)X8 (level of efforts or resolution)

Complexity of actions •• S8 (level of help or hindrance)M1 (actions of movement)

The social context of health issues

Interpersonal relations •• S5 (social groups and affiliation)S4 (kin)

Socioeconomic context •• S1 (terms related to participation, involvement, entitlement, eligibil-
ity; or describing personality traits such as strength, weakness, vul-
nerability, and disadvantaged)

N/Aa

Communicative style

Attention emphasis and
stress

•• A11 (importance)A13 (degree)
• A14 (particularizers)

Logical coherence •• N/AZ8 (pronouns)
• Z6 (negative)

aN/A: not applicable.

Table 5 shows features in the linguistic evaluation framework
for a binary logistic regression analysis (enter) with
children-oriented health resources as the reference class. The
statistical result aligns with the linguistic analysis well: 10
semantic features had negative unstandardized coefficients and
less than 1 odds ratio, suggesting that with the increase of values
in these features, the odds of the health text being a
children-oriented health reading were higher than those of the
health text being an adult health reading. For example, the odds
ratio of Z6 negative expressions (P<.001) was 0.778 (95% CI
0.69-0.876), which means that with the increase of one Z6 word,
the odds of the health text being an adult health reading reduced
by a mean of 22.2%. The odds ratio of S4 (words describing
kinships; P<.001) was 0.823 (95% CI 0.746-0.907), meaning

with the increase of one word of S4 (such as parents, siblings,
grandparents, etc), the odds of the health text being a children’s
reading was 17.7% higher than those of the health text being
an adult-oriented health reading. X8 (P=.07), A14 (P=.66), M1
(P=.17), and A13 (P=.39) were statistically insignificant
predictor variables. Similarly, 10 semantic features were
identified as characteristic features of adult health readings:
A11, B2, B3, Z99, X9, S8, S5, S1, A12, A15. A11 and X9 were
statistically insignificant predictor variables. The odds ratio of
A15 was 1.945 (95% CI 1.335-2.833), which means that with
the increase of one word of A15 (words evaluating safety,
danger, or risks of health events), the odds of the health text
being an adult reading was 94.5% higher than those of the text
being a children-oriented health reading.
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Table 5. Predictor variables of binary logistic regression (children=0; adult=1).

ValuesRelevance of semantic features to outcomes

ORa (95% CI)P valueWald testβ (SE)

Semantic features related to higher ORs of health texts on children’s health

0.778 (0.690-0.876)<.00116.966−0.252 (0.061)Z6

0.796 (0.621-1.021).073.233−0.228 (0.127)X8

0.823 (0.746-0.907)<.00115.351−0.195 (0.050)S4

0.875 (0.820-0.933)<.00116.715−0.134 (0.033)X3

0.902 (0.837-0.971).0067.418−0.104 (0.038)A5

0.939 (0.707-1.246).660.192−0.063 (0.144)A14

0.948 (0.878-1.022).171.927−0.054 (0.039)M1

0.963 (0.942-0.984).00111.374−0.038 (0.011)F1

0.965 (0.889-1.047).390.744−0.036 (0.042)A13

0.979 (0.964-0.994).0067.589−0.021 (0.008)Z8

Semantic features related to higher ORs of health texts on adults’ health

1.031 (0.871-1.219).730.1240.030 (0.086)A11

1.032 (1.007-1.058).016.3970.032 (0.013)B2

1.068 (1.030-1.108)<.00112.4250.066 (0.019)B3

1.069 (1.046-1.093)<.00135.8490.067 (0.011)Z99

1.126 (0.993-1.277).073.4000.118 (0.064)X9

1.176 (1.087-1.273)<.00116.1370.162 (0.040)S8

1.281 (1.146-1.432)<.00119.0560.248 (0.057)S5

1.322 (1.118-1.562).00110.7030.279 (0.085)S1

1.346 (1.103-1.642).0038.5730.297 (0.102)A12

1.945 (1.335-2.833).00112.0030.665 (0.192)A15

aOR: odds ratio.

Performance Comparison of Classifiers Using Three
Sets of Features
Tables 6-10 show the results of the comparison of GNB
algorithms developed using the originally tagged
multidimensional feature set (n=115), automatically selected
feature set (n=19), and linguistically enhanced feature set
(n=20). Table 7 shows that both the automatically selected and
the linguistically enhanced feature set achieved statistically
improved AUC over the original high-dimensional feature set:
automatically selected (P=.008) and linguistically enhanced
(P=.02), significant at the adjusted P=.17 using Bonferroni
correction. The difference in AUC between the two streamlined
feature sets was not statistically significant (P=.56). In terms
of model sensitivity, the automatically selected feature set did

not achieve statistically significant improvement over the OR
feature set (P=.13) but the linguistically enhanced feature set
did (P=.01). The sensitivity of the linguistically enhanced feature
set was also statistically improved over the automatically
selected feature set (P<.001). In terms of model specificity, the
automatically selected feature set did not improve over the OR
feature set (P=.10), but the linguistically enhanced feature set
did (P=.01). The specificity between the automatically selected
and linguistically enhanced feature sets did not differ
significantly (P=.53). Finally, in terms of macro F1, which
provides a balanced assessment of the model performance, the
automatically selected feature set did not improve over the
baseline OR feature set (P=.98). The linguistically enhanced
feature set improved significantly over the OR feature set
(P=.006) and automatically selected feature set (P=.001).
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Table 6. Performance of machine learning models using different sets of features as predictors.

Macro F1b, mean (SD)Specificity, mean (SD)Sensitivity, mean (SD)AUCa, mean (SD)Algorithm

0.6336 (0.080)0.7714 (0.1161)0.6848 (0.1252)0.8224 (0.0617)115 features

0.6333 (0.067)0.9029 (0.0626)0.6339 (0.0743)0.8817 (0.0539)19 features (automatic selec-
tion)

0.7248 (0.0451)0.8629 (0.0843)0.7733 (0.076)0.8888 (0.0315)20 features (linguistic re-
view)

aAUC: area under the receiver operating characteristic curve.
bF1 = 2 × [(precision × recall) / (precision + recall)].

Table 7. Pairwise corrected resampled t test of area under the receiver operating characteristic curve differences using three sets of features as predictors.

P value (two-tailed)95% CI of mean differenceMean difference (%)DescriptionPair

.008a0.0059 to 0.11267.209619 features versus 115 features1

.02a−0.0071 to 0.13998.072920 features versus 115 features2

.56−0.0421 to 0.05630.805220 features versus 19 features3

aP value significant at .0167 (Bonferroni correction).

Table 8. Pairwise corrected resampled t test of sensitivity differences using three sets of features as predictors.

P value (two-tailed)95% CI of the mean differenceMean difference (%)DescriptionPair

.13−0.1699 to 0.0681−7.433619 features versus 115 features1

.011a−0.016 to 0.192912.920420 features versus 115 features2

<.001a0.1048 to 0.17421.988520 features versus 19 features3

aP value significant at .0167 (Bonferroni correction).

Table 9. Pairwise corrected resampled t test of specificity differences using three sets of features as predictors.

P value (two-tailed)95% CI of the mean differenceMean difference (%)DescriptionPair

.10−0.1389 to 0.401717.03719 features versus 115 features1

.01a−0.0163 to 0.199111.851920 features versus 115 features2

.53−0.2923 to 0.2123−4.430420 features versus 19 features3

aP value significant at .0167 (Bonferroni correction).

Table 10. Pairwise corrected resampled t test of macro F1 differences using three sets of features as predictors.

P value (two-tailed)95% CI of the mean differenceMean difference (standardized; %)DescriptionPair

.98−0.0555 to 0.0548−0.053919 features versus 115 features1

.006a0.0158 to 0.166514.381320 features versus 115 features2

.0010.0422 to 0.140714.443020 features versus 19 features3

aP value significant at .0167 (Bonferroni correction).

We also tested the scalability and effectiveness of the 20
linguistically enhanced features (Figure 5). We compared the
performance with 115 initial all features (ALL) and 19
automatically selected features. The data were randomly divided
into a training set and test set with different split rates of 0.2,
0.4, 0.6, and 0.8. The performance was evaluated using receiver
operating characteristic curve and AUC metrics. As shown in

Figure 5, the model using linguistically enhanced features
always yielded the best performance with a stable AUC score
of 0.89 with the different training data set size. Moreover, when
using only 20% data for training (train=0.2), the model using
linguistically enhanced features still achieved a much higher
performance than the baseline (using ALL features),
demonstrating its effectiveness and potential for scalability.
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Thus, incorporating both linguistic features and machine
learning features can better help in the interpretation and

auto-learning of health educational materials.

Figure 5. Scalability and effectiveness of the 20 linguistically enhanced features. AS: automatically selected; AUC: area under the receiver operating
characteristic curve; LE: linguistically enhanced; ROC: receiver operating characteristic curve.

Discussion

Principal Findings
Our study illustrated machine learning–assisted selection of
textual features to develop new algorithms to predict the content
and writing style of credible web-based resources for children’s
health education and promotion among the parents and
caregivers of young children. We used high-quality health
educational resources developed by influential children’s health
promotion and educational organizations as training data. We
illustrated that feature selection to reduce high-dimensional
feature sets is an effective method for improving the efficiency
of machine learning algorithms, as shown by the improved
performance of the AUC of the model using automatically
selected features (n=19) as predictor variables over the originally
tagged feature set (n=115; P=.008). However, specificity,
sensitivity, and macro F1 did not improve when using the
automatically selected feature set. We then refined automatic
feature selection by incorporating linguistic insights from health
linguistics and user-oriented health communication. The
linguistically enhanced features led to a statistically significant
improvement in sensitivity; macro F1 over the automatically
selected feature set: sensitivity (P<.001) and macro F1 (P=.001);
and statistically significant improvement of AUC, sensitivity,
specificity, and macro F1 over the original high-dimensional
feature set: AUC (P=.02), sensitivity (P=.01), specificity
(P=.01), and macro F1 (P=.006).

Machine learning algorithms were known for their lack of
interpretability. Through the successive permutation of the
linguistically enhanced predictor variables in the developed
GNB algorithm, we explored the individual impact of each
feature on the model’s sensitivity and specificity. Two sets of
semantic features emerged as large contributors to the model’s
ability to predict the suitability of health educational resources
for adults and children, respectively. We found the final
algorithm interpretable using the linguistic profiling framework
developed for those automatically selected features. For the
prediction of adult-oriented health education readings, that is,
features highly relevant for the sensitivity of the model, 11
semantic features were identified as large contributors as
indicated by the decrease of sensitivity in their absence: X3
(−9.4%; words of sensory: taste, sound, touch, sight, smell, etc),

S4 (−8.93%; kinships), Z99 (−8.78%; complex words), A14
(−7.99%; focusing subjuncts that draw attention to or to focus
upon), Z8 (−6.9%) (pronouns), A11 (−6.11%; terms describing
importance and priority), S1 (−5.96%; terms of participation,
involvement, entitlement, and eligibility or describing
personality traits such as strength, weakness, vulnerability, and
disadvantaged), A5 (−5.94%; words of evaluating good or bad
or true or false), B3 (−5.33%; medical treatment), S8 (−4.86%;
words describing levels of help, obstacles, and hindrance), X9
(−0.31%; success or failure; gains or loss; or benefits or risks).

For the prediction of health education readings on children’s
health, that is, features highly relevant for the specificity of the
model, 10 semantic features were identified as large
contributors, as shown by the decrease in model specificity with
the successive permutation of these features (Figure 6): X8
(−24.5%; words describing efforts and resolution), F1 (−23.18%;
food-related words), S5 (−14.57%; social groups and affiliation),
A15 (−9.93%; words evaluating safety and danger), M1
(−9.27%; movement words), B2 (−9.27%; medicine), Z6
(−8.61%; negative), A13 (−5.96%; degree), A12 (−2.65%;
difficulty), and X9 (−0.66%; success or failure; gains or loss;
and benefits or risks).

It is worth noting that features identified as key contributors to
model sensitivity were not necessarily features that were
statistically significant in adult-oriented health readings (Table
1). For example, X3, S4, A14, Z8, and A5 were statistically
significant in children’s health resources, which however had
large impacts on the model sensitivity (Figure 7). Similarly, S5,
A15, B2, A12, and X9 were statistically significant features of
adult health materials but they also had an impact on model
specificity, which is the ability of the machine learning
algorithm to predict health texts as children-oriented health
materials. This led to our interpretation that the newly developed
algorithm represents a balanced mix of linguistically relevant,
meaningful semantic features that were statistically significant
in either children or adult health materials. Thus, the approach
to outcome prediction of machine learning differs significantly
from that of statistical analysis. However, our study
demonstrated that both statistical and linguistic insights can
improve the performance of machine learning–assisted feature
selection and subsequent prediction.
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Figure 6. Impact of selected features on mean sensitivity.

Figure 7. Impact of selected features on mean specificity.
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Limitations and Future Research
The size of the training data set was relatively small, with a
couple hundred texts of children-oriented health readings.
However, this reflects the reality, as children’s health
educational resources are much less than adult health readings.
As a result, the model specificity was consistently lower than
the model sensitivity. In addition, in the linguistic evaluation
framework (Table 4), the structure was not well balanced. Items
were not complete for all evaluation subcategories, such as
health communication styles. Further studies are required to fill
the research gaps that emerged in this study.

Conclusions
Our study has shown that children-oriented and adult-oriented
health educational readings in English have distinct semantic

features that can be effectively exploited to develop machine
learning algorithms with proven discriminatory accuracy.
Specifically, we identified three large sets of semantic features
related to the varying cognitive approaches to health information
acquisition, the social contexts of health issues, and
user-adaptive health communication styles. Machine learning
is known to lack interpretability. Our study developed algorithms
that are interpretable from the perspective of linguistics and
user-oriented health information assessment. Thus, our study
shows that a more integrated approach to computerized health
information assessment combining insights from fields such as
linguistics and health education can help harness the power of
machine learning to advance applied social and health research.
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