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Abstract

Background: Tuberculosis (TB) is a pandemic, being one of the top 10 causes of death and the main cause of death from a
single source of infection. Drug-induced liver injury (DILI) is the most common and serious side effect during the treatment of
TB.

Objective: We aim to predict the status of liver injury in patients with TB at the clinical treatment stage.

Methods: We designed an interpretable prediction model based on the XGBoost algorithm and identified the most robust and
meaningful predictors of the risk of TB-DILI on the basis of clinical data extracted from the Hospital Information System of
Shenzhen Nanshan Center for Chronic Disease Control from 2014 to 2019.

Results: In total, 757 patients were included, and 287 (38%) had developed TB-DILI. Based on values of relative importance
and area under the receiver operating characteristic curve, machine learning tools selected patients’most recent alanine transaminase
levels, average rate of change of patients’ last 2 measures of alanine transaminase levels, cumulative dose of pyrazinamide, and
cumulative dose of ethambutol as the best predictors for assessing the risk of TB-DILI. In the validation data set, the model had
a precision of 90%, recall of 74%, classification accuracy of 76%, and balanced error rate of 77% in predicting cases of TB-DILI.
The area under the receiver operating characteristic curve score upon 10-fold cross-validation was 0.912 (95% CI 0.890-0.935).
In addition, the model provided warnings of high risk for patients in advance of DILI onset for a median of 15 (IQR 7.3-27.5)
days.

Conclusions: Our model shows high accuracy and interpretability in predicting cases of TB-DILI, which can provide useful
information to clinicians to adjust the medication regimen and avoid more serious liver injury in patients.

(JMIR Med Inform 2021;9(7):e29226) doi: 10.2196/29226
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Introduction

Tuberculosis (TB) is an infectious disease caused by the bacillus
Mycobacterium tuberculosis. It is one of the top 10 causes of
death worldwide and the leading cause of death from a single
infectious disease [1]. In 2019, approximately 10 million people
were diagnosed with TB and 1.4 million people died worldwide
[1]. To prevent the spread of pulmonary TB, timely and effective
anti-TB treatment is very important [2]. First-line anti-TB drugs
include pyrazinamide (PZA), ethambutol (EMB), isoniazid
(INH), and rifampin (RIF) [3-6]. When treating patients with
TB, drug-induced liver injury (DILI) is the most frequent and
serious side effect [7-10]. Among various populations, the
incidence of TB-DILI ranges from 2.3% to 27.7% during
anti-TB therapy [11-14]. Researchers have suggested that
anti-TB drugs are hepatotoxic [11,15-18].

TB-DILI may result from direct toxic injury to hepatocytes by
anti-TB drugs or their metabolites or immune-mediated liver
injury and induction of hepatocyte apoptosis caused by anti-TB
drugs that trigger multiple inflammatory immune pathways
[11,19]. TB-DILI is characterized by a transient mild elevation
of transaminases or acute hepatitis [20]. Fulminant hepatic
failure is likely to develop in severe cases, whereas chronic
hepatitis occurs in a minority of patients.

Currently, clinical liver tests usually include biochemical
parameters of blood, such as transaminases including alanine
transaminase (ALT), alkaline phosphatase, bilirubin, lactate
dehydrogenase, and albumin, along with liver imaging and
histopathologic evaluation. It is difficult to distinguish DILI
from non-DILI on the basis of these indicators, since test results
are largely consistent in DILI and non-DILI detection. In
addition, clinical markers commonly used at present, accounting
for neither differences in type and mechanisms of action of
hepatotoxic drugs nor individual patients’ characteristics, only
facilitate evaluation based on toxicity outcomes [21]. Therefore,
identification of predictors at clinical stages and risk predictors
of TB-DILI among patients has become an urgent and necessary
task.

Previous studies have shown that TB-DILI is associated with
some demographic characteristics and underlying chronic
disease [12,22-26]. Patterson et al [27] suggested that an increase
in pretreatment ALT and the gradient of ALT changes increase
the risk of late TB-DILI. Thus, in addition to the cumulative
anti-TB drug dose, ALT levels and demographic variable such
as age, gender, education level, income, and BMI were included
in our model as predictors. Various models are used to identify
drugs associated with the risk of DILI at the preclinical stage
[28]. Machine learning models have demonstrated strong
predictive power and retained a simple form for communication
with researchers [29-39]. XGBoost is a boosting ensemble
machine learning algorithm that integrates a few classification
and regression trees models to form a strong classifier [40,41].
It performs well in dealing with nonlinear and complex

relationships among variables [42]. We designed an interpretable
prediction model by using the XGBoost algorithm and identified
the most robust and meaningful predictors of the risk of
TB-DILI. Then, using these discriminative predictors, the
machine learning model built an interpretable decision tree to
provide early warning signals before TB-DILI occurs, so as to
help clinicians adjust the medication plan in time and potentially
reduce the possibility of TB-DILI. In this study, we
retrospectively assessed 757 patients with TB who were
registered for treatment in Nanshan District (Shenzhen, China)
from 2014 to 2019.

Methods

Data
We extracted data on 757 pulmonary TB cases registered in the
Hospital Information System of Shenzhen Nanshan Center for
Chronic Disease Control from 2014 to 2019, including those
that are smear-positive and undergoing initial treatment. Some
patients did not have continuous treatment or were initially
discharged from hospital and subsequently rehospitalized,
resulting in the recorded treatment duration exceeding the
normal range and unclear cumulative dosage of anti-TB drugs.
Such abnormal cases are not able to contribute to predictions
among patients receiving regular treatment. Thus, we selected
300 days as a time-window empirically on the basis of the
typical course of TB treatment [1]. We excluded cases of
TB-DILI that were recorded 300 days after the start of the
anti-TB treatments. In total, data from 743 patients were finally
included in the model. We defined patients as positive DILI
cases in accordance with the American Thoracic Society criteria
[11]: in the presence of hepatitis symptoms, the increase in ALT
levels was 3-fold the normal upper limit, and in the absence of
hepatitis symptoms, this increase was 5-fold the normal upper
limit.

Patients’ demographic and clinical data included gender, age,
weight, education level, income, height, hepatitis B status,
diabetes status, cumulative anti-TB drug dose, and ALT levels.
For patients who did not develop TB-DILI, we collected their
total amount of prescribed anti-TB medication as of the latest
hepatic examination. For patients who developed TB-DILI, we
recorded their cumulative dose of anti-TB medication as of the
time when TB-DILI was detected. In addition, we measured the
patient’s most recent ALT levels before the last hepatic
examination, and the average rate of change of the last 2 ALT
levels tested before the final liver function test. We calculated
the cumulative dose of each drug separately (PZA, RFP, EMB,
and INH) for combination drug therapy.

Upon initiation of therapy, the patients were segregated to form
the training and validation data sets. The data of patients
admitted before April 2019 (607 patients and 186 smear-positive
cases) and after April 2019 (136 patients and 95 smear-positive
cases) were included in the training and validation data sets,
respectively.
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Descriptive Statistics
Descriptive statistics were calculated for positive and TB-DILI
cases. Demographic and laboratory data of the 2 groups were
compared using 2-sample t tests for normally distributed
continuous variables, the Kruskal–Wallis rank sum test for
nonnormally distributed continuous variables, and chi-square
tests for categorical variables. Missing values were omitted
when tested for differences. Multimedia Appendix 1 shows the
proportion of missing values for each variable.

Prediction Model
We used the XGBoost algorithm for the prediction model [41].
XGBoost is a high-performance machine learning algorithm
based on the tree boosting system [43-47]. It uses a
sparsity-aware learning algorithm to process sparse data and
weighted quantile sketch to approximate tree learning [41].
Since the decision tree is a simple classifier composed of
hierarchically organized dichotomous determinations, its
structure also demonstrates good interpretability [48-50]. In
addition, the model can deal with missing values well. When
the model searches for the best candidate split criteria for tree
growth, they will also assign a default direction for the missing
values on those nodes [41]. The interpretable criteria and high
tolerance for missing data in the decision tree make the model
robust and meaningful when dealing with clinical data. To obtain
a model that can be conveniently applied in a clinical setting,
we attempted to reduce the complexity of the model as much
as possible. Hence, we choose the single-tree XGBoost
algorithm as the prediction model.

To build the model, we first included all demographic and
clinical data as predictors. The dependent variable is DILI status,
which is a binary outcome. We trained the single-tree XGBoost
algorithm with the training set. By considering each feature’s
contribution for each tree in the model, we determined their
relative importance to the tree model [51]. We repeated stratified
10-fold cross-validation 100 times to model on the training data
set to obtain the mean value of each feature’s relative
importance. Then, we arranged the top 10 predictors in
accordance with their relative importance. The predictors were
added into the model individually in descending order of relative
importance to form 10 candidate models. We repeated stratified
10-fold cross-validation 100 times to the candidate models on
the basis of the training data set to obtain the mean area under
the receiver operating characteristic curve (AUC) and selected
the model with the maximum AUC as the final model. Then,
we trained the selected model with the whole training data set
to obtain the interpretable decision tree. The detailed process
of the stratified k-fold cross-validation and the parameters set
in model is provided in Multimedia Appendix 1.

Evaluation of Model Performance
We trained the model with the whole training data set and
applied the model on the validation data set. We then evaluated
the prediction results on the basis of the confusion matrix, which

is a specific table to visualize the performance of a classification
model [52]. In accordance with the confusion matrix, we
calculated the value of the following evaluation indicators:
precision, recall, F1 value, classification accuracy, and balanced
error rate. Detailed descriptions of the formulae for the
indicators are provided in Multimedia Appendix 1. To determine
whether the model can send early an warning signal in time,
we also calculated the duration from the timepoint when model
sent the warning signal to the actual date of TB-DILI diagnosis
among incorrectly classified cases. Meanwhile, we compared
the performance (AUC) of the single-tree XGBoost algorithm
with that of the multitree XGBoost algorithm, logistic
regression, single-tree random forest algorithm, and multitree
random forest algorithm through 10-fold cross-validation using
the whole data set. We determined 95% CI values for AUC
values with the DeLong method [53]. We applied selected
variables to train the single-tree XGBoost model since variable
selection is part of the whole algorithm. The complete data set
was applied to train the other models. In addition, we applied
multiple imputation by chained equations [54] to address
missing data for logistic regression.

Sensitivity Analysis
We selected 250 days and 350 days as alternative time windows
to filter data. Then, we trained the model and compared the
selected predictors. Performance (AUC) of the original model
and that of 2 alternative models were also compared on the basis
of the whole data set through 10-fold cross-validation. All
analyses were performed with R (version 4.0.4, The R
Foundation). The codes used in this study can be found in the
GitHub repository [55].

Results

In total, 743 patients were included in the analysis, of whom
281 (37.8%) and 462 (62.2%) were classified as
TB-DILI–positive and –negative, respectively. Table 1 shows
the descriptive statistics. The median age of patients was 30
(IQR 25-45) years, and 484 (65.1%) patients were male. Most
patients (n=272, 43.5%) had a bachelor’s degree or higher
education level. Median weight of the patients was 56 (IQR
50-63) kg and their median height was 168 (IQR 160-173) cm.
In total, 24 (3.2%) patients had hepatitis B, and 69 (9.3%)
patients had diabetes. The proportion of male patients who had
DILI (n=281, 74.0%) was significantly higher than that of
patients who did not have DILI (n=276, 59.7%). The most
recently determined ALT level and average rate of change of
the last 2 ALT measures of patients with DILI (27.0 U/L, IQR
17.0-34.0 U/L and 0.27 U/[Lday], IQR 0.0-0.6 U/[Lday],
respectively) were significantly higher than those of patients
who did not have DILI (11.0 U/L, IQR 8.3-16.0 U/L and 0.0
U/[Lday], IQR –0.1 to 0.1 U/[Lday], respectively). Figure 1
shows the number of TB-DILI cases on each day after the
initiation of anti-TB treatment. The median time from treatment
to the onset of DILI is 27 (IQR 15-48) days.
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Table 1. Demographic and clinical characteristics of patients (N=743).

P valuePositive cases (n=281)Negative cases (n=462)OverallCharacteristics

<.001208 (74.0)276 (59.7)484 (65.1)Males, n (%)

.6231 (25-44)30 (25-45)30 (25-45)Agea (years), median (IQR)

.0657.0 (51.5-63.0)55.00 (49.0-63.0)56.0 (50.0-63.0)Weighta (kg), median (IQR)

.55Education level, n (%)

78 (30.8)123 (33.1)201 (32.2)Lower than middle school

59 (23.3)93 (25.0)152 (24.3)Middle school

116 (45.8)156 (41.9)272 (43.5)Bachelor’s degree or higher

.002600,000 (500,000-1,000,000)500,000 (300,000-800,000)500,000 (300,000-800,000)Incomea (RMBb), median (IQR)

.03168.0 (162.0-173.0)167.0 (160.0-172.0)168.0 (160.0-173.0)Heighta (cm), median (IQR)

.818 (2.8)16 (3.5)24 (3.2)Hepatitis B, n (%)

.2321 (7.5)48 (10.4)69 (9.3)Diabetes, n (%)

.3920.2 (18.7-22.2)19.9 (18.4-22.0)20.0 (18.5-22.1)BMIa, median (IQR)

<.0015.4 (3.0-25.6)24.0 (3.1-87.9)16.8 (3.0-60.0)Pyrazinamide dosea (g), median (IQR)

<.0013.2 (1.2-12.6)40.5 (5.5-94.5)13.5 (1.3-67.5)Rifampicin dosea (g), median (IQR)

<.0015.3 (2.2-18.8)50.3 (4.4-139.2)18.7 (2.2-91.1)Ethambutol dosea (g), median (IQR)

<.0012.0 (0.6-6.5)22.8 (3.6-58.3)8.1 (0.8-37.0)Isoniazid dosea (g), median (IQR)

<.00127.0 (17.0-34.0)11.0 (8.3-16.0)13.0 (10.0-23.0)Recent alanine transaminase measurementa,c

(U/L), median (IQR)

<.0010.27 (0.0 to 0.6)0.00 (–0.1 to 0.1)0.0 (–0.1 to 0.1)Rate of change in alanine transaminase lev-

elsa,d (U/[Lday]), median (IQR)

aNonnormally distributed variables.
b1 RMB=US $0.15.
cPatients’ most recently determined alanine transaminase level before the latest hepatic examination.
dAverage rate of change of the patients’ last 2 alanine transaminase measures before the final liver function test (increment divided by the duration).

Figure 1. Days from tuberculosis treatment to the onset of drug-induced liver injury among the patients in our study. DILI: drug-induced liver injury,
TB: tuberculosis.
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Figure 2 shows the top 10 important variables selected by the
single-tree XGBoost model. The most recent ALT levels were
found to be the most important factor in the prediction process.
We added 10 variables in the model individually to form 10
candidate models. After 10-fold cross-validation 100 times with
the training and testing data sets, the model with 4 variables
had the maximum AUC value (Table 2). Thus, we selected the
model with 4 variables (the most recent ALT measure, average

rate of change of the last 2 ALT measures, cumulative dose of
PZA, and cumulative dose of EMB) as the final model. Then,
we trained the selected model with the whole training data set.
Figure 3 shows the content of a single decision tree of the model.
The decision process starts from the most recent ALT test value,
and then dichotomous determinations are made at each node in
the decision tree; this process ends with outputting predictions
(high or low risk of DILI).

Figure 2. Top 10 important variables selected by the single-tree XGBoost model. ALT: alanine transaminase, EMB: ethambutol, INH: isoniazid, PZA:
pyrazinamide, RFP: rifampicin.

Table 2. Summary of AUCa values for candidate model.

AUC, mean (SD)Variables, nCandidate model

0.908 (0.043)11

0.912 (0.040)22

0.913 (0.041)33

0.918 (0.040)44 (selected model)

0.917 (0.040)55

0.915 (0.040)66

0.913 (0.040)77

0.913 (0.041)88

0.912 (0.041)99

0.911 (0.041)1010

aAUC: area under the receiver operating characteristic curve.
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Figure 3. Detailed overview of the single decision tree of the model. The decision process starts from the left (most recent ALT measure) and ends at
the right ("Yes": high risk of drug-induced liver injury or "No": low risk of drug-induced liver injury). Dichotomous determinations are made at every
node in the decision tree. Cumulative doses of PZA and EMB are referenced. Black paths are the default direction for missing values. ALT: alanine
transaminase, EMB: ethambutol, PZA: pyrazinamide, RFP: rifampicin.

Table 3 summarizes the performance of the model on basis of
the validation data set (136 cases). A total of 70 cases of DILI
were correctly predicted, and 33 negative cases were
successfully predicted. The model had a precision of 90%, recall
of 74%, classification accuracy of 76%, balanced error rate of
77%, and F1 value of 81%. For correctly predicted cases, the
median number of days between DILI onset and the provision
of warnings of high risk by the model for the patients was 15
(IQR 7.3-27.5) days (Figure 4). Multimedia Appendix 1 shows
a comparison of the performance of the single-tree XGBoost
model and the multitree XGBoost model, logistic regression
model, and multi- or single-tree random forest model on the
whole data set, based on the receiver operating characteristic
curve and the AUC. The multitree XGBoost model performed
the best (AUC=0.940, 95% CI 0.924-0.956). The single-tree
XGBoost model had an AUC of 0.912 (95% CI 0.890-0.935),

which was very similar to that of the multitree model and higher
than that of the rest of the models.

Table 4 shows the AUC values for candidate models under
different time windows upon sensitivity analysis. Both final
models under different time windows included the 4 most
important predictors, same as those of our original model. The
most recent ALT measure, average rate of change of patients’
last 2 ALT measures, and cumulative dose of PZA were
identified as the best predictors in all 3 models. Nevertheless,
our original model also selected the cumulative dose of EMB
as an important predictor and, while being trained on the basis
of 250-day and 350-day time windows, selected cumulative
doses of RFP and INH, respectively. The performance of the 3
models is summarized in Multimedia Appendix 1, which shows
that all 3 models have similar patterns of the receiver operating
characteristic curve and provided largely consistent AUC values.

Table 3. Model performancea with the validation data set.

NoYesPrediction or reference model

870Yes, n

3325No, n

aPrecision=90%, recall=74%, F1 value=81%, classification accuracy=76%, and balanced error rate=77%.
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Figure 4. Number of days between the onset of drug-induced liver injury and the model providing warnings of high risk for patients with TB-DILI.
TB-DILI: tuberculosis with drug-induced liver injury.

Table 4. Summary of AUCa values for candidate models upon sensitivity analysis.

AUC of the model with a 350-day time window,
mean (SD)

AUC of the model with a 250-day time window,
mean (SD)

Variables, nCandidate model

0.913 (0.042)0.910 (0.040)11

0.911 (0.040)0.916 (0.039)22

0.915 (0.041)0.920 (0.039)33

0.915 (0.041)0.922 (0.039)44 (selected model)

0.915 (0.041)0.921 (0.039)55

0.915 (0.042)0.918 (0.038)66

0.915 (0.041)0.918 (0.039)77

0.913 (0.041)0.917 (0.039)88

0.913 (0.041)0.916 (0.039)99

0.912 (0.041)0.916 (0.039)1010

aAUC: area under the receiver operating characteristic curve.

Discussion

Principal Findings
Anti-TB drugs are one of the most common and effective means
of treating TB in the clinical setting and can effectively control
disease progression among patients with TB. Nevertheless,
studies have suggested that patients are likely to develop DILI
during the treatment process owing to the hepatotoxicity of
anti-TB drugs [11,15-18] and long duration of TB treatment
[56]. Clinicians often have difficulties in predicting the efficacy
of anti-TB treatment as well as liver injury status in patients
with TB. To identify reliable and accurate predictors and better
predict DILI during TB treatment, we built the single-tree
XGBoost machine learning model and selected variables with
significant effects. Our model can provide suggestions to
clinicians to adjust their medication regimens in a timely manner
to avoid causing more severe liver injury. To our knowledge,

this is the first time that XGBoost model has been applied to
predict DILI at the clinical treatment stage.

Interestingly, the proportion of TB-DILI cases is significantly
higher among men compared than among women (Table 1).
This result is consistent with that of Chang et al [23], which
suggested that males were 2.1-fold more likely to develop
hepatotoxicity than females after being adjusted for age. We
found that patients with DILI had significantly higher values
for the most recent ALT measure and higher mean rates of
change between the 2 most recent ALT measures than those
without DILI (Table 1). Singanayagam et al [57] also
demonstrated the association between pretreatment ALT and
2-week on-treatment ALT levels in patients with DILI.

Based on the results of variable selection, the significant
predictors for predicting DILI are the most recent ALT measure,
average change rate of the last 2 ALT measures, and the
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cumulative doses of PZA and EMB. According to the decision
tree (Figure 3), the decision process of our model was to initially
focus on the most recent ALT measure of a patient and then
comprehensively evaluate the rate of change in ALT levels and
the cumulative intake dose of both PZA and EMB to make
predictions. A previous study [58] reported that the initial
concentration of PZA and its metabolites are associated with
hepatotoxicity [58]. Cao et al [59] suggested that combination
therapy with PZA, INH, and RIF is likely to increase the risk
of hepatotoxicity compared to monotherapy with INH and RIF.
In addition, the addition of a low dose of PZA to a regimen of
INH, RIF, and EMB did not significantly increase the incidence
of DILI in the first 2 months of anti-TB therapy [60]. In the
branches of our single-tree model (Figure 3), thresholds to
determine whether the cumulative dose of anti-TB drugs
contributed to the development of DILI under different situations
were also provided.

Currently, various machine learning algorithms have been
assessed for early detection of DILI and have shown to have a
high prediction accuracy [61,62]. Xu et al [63] proposed a deep
learning model, which achieved a classification accuracy of
86.9% in external validation for DILI prediction after training
with a set of 475 samples. Dominic et al [64] combined
mechanistic detection of hepatic safety with a Bayesian machine
learning algorithm to build the model, which has a balanced
accuracy of 86%, sensitivity of 87%, and specificity of 85%,
thus improving the prediction of DILI risk. In addition, the
XGBoost model was applied to increase the specificity of mass
TB screening [65]. Our model also demonstrated the high
prediction accuracy and interpretability of the XGBoost model
at the clinical treatment stage.

Compared with alternative models, the multitree XGBoost
model performed the best, as revealed from the AUC value upon
cross-validation (Multimedia Appendix 1). The single-tree
XGBoost model displayed similar performance to that of the
multitree XGBoost model. Since the single-tree model is easier
to interpret, takes up fewer computing resources, and provides
predictions in a shorter period of time, the single-tree XGBoost
model is more suitable in the clinical setting. In addition, the
single-tree XGBoost model performed better than multitree
random forest model and single-tree random forest model. The

logistic regression model is also interpretable. Nevertheless,
since linear models cannot directly process missing values, the
missing clinical data could affect the performance of logistic
regression. For multiple imputation, additional assumptions and
prior information are required, which is likely to complicate the
process and reduce the robustness of the model. In addition,
sensitivity analysis has shown that our model has a consistently
high prediction accuracy when trained with different time
windows. Therefore, the single-tree XGBoost model is the most
appropriate among all candidate models.

Limitations
Our model also has some limitations of note. First, although the
model identified the most meaningful predictors for the risk of
TB-DILI, pathological conclusions should be made cautiously
since the model was entirely driven by the data input. The model
needs to be adjusted accordingly when the data are updated.
Second, there is a lack of validation for our model on other data
sets. Future studies could further explore these issues by
applying the model in a combined larger data set. Inputting
more data is likely to contribute to the identification of more
effective predictors and generate higher prediction accuracy. In
addition, it is also necessary to validate the model’s performance
on an imbalanced data set to determine whether a further
reweighting or resampling is needed to improve prediction
accuracy.

Conclusions
We developed a single-tree XGBoost model, which
demonstrated the patients’ most recent ALT measure, average
rate of change of patients’ 2 latest ALT measures, and
cumulative doses of PZA and EMB as the best predictors for
assessing the DILI risk. In the validation data set, the model
displayed high accuracy (precision=90%, recall=74%,
classification accuracy=76%, and balanced error rate=77%) and
interpretability in predicting the TB-DILI cases. In addition,
the median number of days between the model providing
warnings of high risk among patients and DILI onset is 15 (IQR
7.3-27.5) days, which suggests that it is possible for clinicians
to adjust the medication regimen by referring to the model’s
prediction and avoid causing more serious liver injury.
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