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Abstract

Background: Accurate detection of bleeding events from electronic health records (EHRs) is crucial for identifying and
characterizing different common and serious medical problems. To extract such information from EHRs, it is essential to identify
the relations between bleeding events and related clinical entities (eg, bleeding anatomic sites and lab tests). With the advent of
natural language processing (NLP) and deep learning (DL)-based techniques, many studies have focused on their applicability
for various clinical applications. However, no prior work has utilized DL to extract relations between bleeding events and relevant
entities.

Objective: In this study, we aimed to evaluate multiple DL systems on a novel EHR data set for bleeding event–related relation
classification.

Methods: We first expert annotated a new data set of 1046 deidentified EHR notes for bleeding events and their attributes. On
this data set, we evaluated three state-of-the-art DL architectures for the bleeding event relation classification task, namely,
convolutional neural network (CNN), attention-guided graph convolutional network (AGGCN), and Bidirectional Encoder
Representations from Transformers (BERT). We used three BERT-based models, namely, BERT pretrained on biomedical data
(BioBERT), BioBERT pretrained on clinical text (Bio+Clinical BERT), and BioBERT pretrained on EHR notes (EhrBERT).

Results: Our experiments showed that the BERT-based models significantly outperformed the CNN and AGGCN models.
Specifically, BioBERT achieved a macro F1 score of 0.842, outperforming both the AGGCN (macro F1 score, 0.828) and CNN
models (macro F1 score, 0.763) by 1.4% (P<.001) and 7.9% (P<.001), respectively.

Conclusions: In this comprehensive study, we explored and compared different DL systems to classify relations between
bleeding events and other medical concepts. On our corpus, BERT-based models outperformed other DL models for identifying
the relations of bleeding-related entities. In addition to pretrained contextualized word representation, BERT-based models
benefited from the use of target entity representation over traditional sequence representation
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Introduction

Background
Bleeding refers to the escape of blood from the circulatory
system either internally or externally. Bleeding events are
common and frequently have a major impact on patient quality
of life and survival. Bleeding events are common adverse drug
events, particularly among patients with cardiovascular
conditions who are prescribed anticoagulant medications [1].

We are seeing a marked increase in the use of anticoagulants,
driven predominantly by the increased prevalence of atrial
fibrillation (AF), a prothrombotic condition for which
anticoagulants are frequently indicated. In the United States,
the number of AF patients is increasing rapidly, mostly in the
elderly population, with a projection of 12 million by 2050 [2,3].
The chance of having a stroke from AF can be as high as 10%
within 5 years of AF diagnosis [4]. Clinicians must weigh stroke
risk against the risk of bleeding from anticoagulants [5,6]. Most
published data on the risks of anticoagulants come from clinical
trials, where major bleeding outcomes are rigorously adjudicated
by trained abstractors. However, there are limitations to this
approach, as there are many important groups that are
underrepresented in clinical trials. Real-world data are lacking,
in part owing to the significant time and cost associated with
manual chart review, which is the current gold standard for
bleeding classification. With a lack of available risk calculators
for a situation like this, it is challenging to advise anticoagulants
to older AF patients as they are at high risk for both stroke and
anticoagulant complications, for example, bleeding [7-9].
Clinicians and researchers would benefit from new ways to
classify the relations between bleeding events and related
medical entities to provide more accurate risk and benefit
assessments of commonly used medications, particularly
anticoagulants.

Clinical notes, such as electronic health records (EHRs), contain
rich information for various studies including but not limited
to epidemiological research, pharmacovigilance, and drug safety
surveillance [10,11]. However, bleeding and its attributes are
mostly documented in the unstructured EHR narratives instead
of the structured fields [10]. With the availability and success
of different deep learning (DL) techniques, building accurate
and effective DL-based natural language processing (NLP)
systems can alleviate this problem and prove viable against
more expensive and time-consuming manual annotations.
Therefore, in this work, we evaluated different DL models for
relation classification between bleeding events and related
medical concepts. Relation classification is the task of
classifying relations for a pair of target entities from a text span.
For example, given the text span “clotted blood was found in
the entire colon,” the task is to detect the relation between the
bleeding event “clotted blood” and anatomic site “colon.”

A majority of previous studies on clinical text have primarily
focused on the relations between medications and other factors
such as adverse drug effects (ADEs) [12-15]. However, to our
knowledge, there has been no prior work that aims at identifying
bleeding event–related relations from EHRs using DL-based

NLP systems. The advantages of such systems make them the
right group of candidates to investigate for this task.

Relevant Literature
Realizing the importance of relation classification tasks for
clinical narratives, different research groups released several
publicly available data sets and launched shared tasks with a
focus on relation classification in the clinical domain [15-19].
These include detecting relation types among medical problems,
tests, and treatments [16], as well as relations between
medications and their various attributes, such as dosage and
ADEs [15,17-19]. Our task can be closely compared to any of
these tasks.

In general, the relation classification problem can be solved by
different systems or models, including rule-based systems,
non-DL–based machine learning models, and DL models,
depending on the domain and context. For example, Kang et al
[20] used the Unified Medical Language System (UMLS) [21]
to build a knowledge base where relations between medications
and ADEs can be detected based on the shortest path between
them. Xu et al [22] applied support vector machines (SVMs)
to determine the relation between drugs and diseases, while
Henriksson et al [11] used random forest.

Studies have compared non-DL–based machine learning models
with DL models for relation classification, and the results are
mixed. Munkhdalai et al [12] used a recurrent neural network
(RNN) on clinical notes for relation identification and found
that an SVM with a rich feature set outperformed the RNN on
their data set. In contrast, Luo et al [23] showed that a
convolutional neural network (CNN) with pretrained medical
word embeddings is superior to traditional machine learning
methods. A similar observation was made by He et al [24] for
their CNN model with a multipooling operation.

Beyond traditional RNN and CNN models, Li and Yu [13]
evaluated a capsule network and multilayer perceptron (MLP)
for single domain and multidomain relation classification tasks
on EHR data sets and found that although there was a slight
improvement, the capsule network model was not superior to
the MLP model. Christopoulou et al [14] developed
intrasentence models based on bidirectional long short-term
memory (bi-LSTM) and attention mechanism. The authors also
employed a transformer network [25] for building an
intersentence model. For clinical conversations, Du et al [26]
proposed a relation span attribute tagging (R-SAT) model that
utilizes bi-LSTM and has been shown to outperform the baseline
by a large margin for two relation classification tasks.

Recent DL architectures, such as Bidirectional Encoder
Representations from Transformers (BERT) [27] and graph
convolutional network (GCN), have shown promising results
for relation classification across different domains. Wu and He
[28] used BERT with entity information for relation
classification on the SemEval-2010 Task 8 data set [29] and
obtained better results than other state-of-the-art methods. Soares
et al [30] introduced a new training scheme for BERT, matching
the blank (MTB), which gave superior performance on three
different data sets. Lin et al [31] used BERT to solve the
sentence-agnostic temporal relation extraction problem for
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clinical text. Guo et al [32] proposed a novel GCN model with
attention and densely connected layers, named the
attention-guided graph convolutional network (AGGCN), which
utilizes the full dependency tree information of the input
sequences. In their experiments, the AGGCN achieved
significant performance gain over the other GCN-based systems
on multiple relation classification data sets. A GCN has also
been employed on different biomedical tasks successfully,
including biomedical event extraction [33] and measurement
of semantic relatedness between UMLS concepts [34], among
others.

Among different DL models, CNN, BERT, and AGGCN are
currently the most representative architectures. However, despite
being state-of-the-art models, few studies have evaluated the
three models parallelly for clinical relation classification, which
is the focus of this study.

Objective
In this study, we focused on the evaluation of three different
state-of-the-art DL systems for the relation classification task
on a new curated EHR data set. These systems included a CNN,
a GCN with attention (AGGCN), and models based on BERT.
In particular, a GCN has not yet been explored in any clinical
setting for relation classification. The contributions of this work
can be summarized as follows: (1) this is the first study to
identify the relations between bleeding events and other relevant
medical concepts; (2) we provide comparative analyses of three
different DL architectures for the relation classification task on
a new EHR data set; and (3) we explored the effects of
additional domain knowledge on the AGGCN model, as well
as how entity position representations influence BERT models’
predictions.

Methods

Data Set
With approval from the Institutional Review Board at the
University of Massachusetts Medical School and a memorandum

of understanding between the University of Massachusetts
Medical School and Northwestern University, we annotated
1046 deidentified discharge summaries from patients with
cardiovascular diseases who received anticoagulants during
their stays at hospitals affiliated with Northwestern University.
The notes were annotated by five medical experts under the
supervision of two senior physicians. From the comprehensive
list of 13 entity types, we chose five relevant to bleeding and
the relations among them. This resulted in four relation types
for our relation classification study as follows: (1) bleeding
event-bleeding anatomic site (Event-Site), (2) bleeding
event-bleeding lab evaluation (Event-Lab), (3) bleeding
event-suspected alternative cause (Event-AltCause), and (4)
bleeding lab evaluation-severity (Lab-Severity).

A bleeding event indicates the escape of blood from the
circulatory system. Examples of bleeding events from our cohort
include mentions such as “hemorrhage,” “black tarry stools,”
and “clotted blood.” Bleeding anatomic site is the corresponding
anatomic site for a bleeding event, for example, “esophagus”
in the phrase “blood oozing in esophagus.” Bleeding lab
evaluation is any relevant laboratory test, and severity is the
test value when in an abnormal range. Suspected alternative
cause indicates possible alternative causes for bleeding other
than anticoagulants.

Our cohort of 1046 notes included 15,363 relation instances.
There was a large variation in token length, ranging from 3 to
985. For our task, we chose a subset that had instances with
token length no more than 1000. Since most DL models do not
handle long input sequences and 99.11% (15,226) of the 15,363
relation instances had a token length less than 1000, we used
these 15,226 instances to build the final data set. This included
both intrasentence and intersentence relations. All the relation
types and their frequencies for this cohort are provided in Table
1. We also list relation lengths for each relation type, which is
the number of tokens between the two target entities. It can be
noticed that out of the four relation types on average, Event-Lab
and Event-AltCause had significantly longer relation lengths
with wider spreads.

Table 1. Data statistics.

Relation length, mean (SD)OccurrencesRelation type

4.81 (10.20)3495Event-Site

93.69 (137.99)3314Event-Lab

48.08 (94.02)4947Event-AltCausea

3.26 (4.82)3470Lab-Severity

aAltCause: suspected alternative cause.

We used the NLTK package [35] to tokenize EHR text. For all
experiments, we maintained a train, validation, and test split of
60:20:20 on the note level. We also generated negative relation
instances by taking permutations of all possible entity pairs that
did not have any relationship between them. For all three splits,
this resulted in a set of negative relations that was two to three
times the other relations combined. For the training and
development sets, we down-sampled the negative relations such
that their frequency was similar to the other four relation types

combined. We did not perform down-sampling for the test set,
so it would be representative of the real EHR note distribution.

Figure 1 shows the relation distribution in our data set for
different relation lengths. The x-axis indicates the range (eg,
≤20 indicates all instances that have a relation length of 20 or
lower), and the y-axis indicates the percentage of instances at
that range. Positive relations are all relation instances that belong
to the four relation types described above. Here, we can see a
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steep increase for the negative relations compared to the positive
relations. This shows that, on average, negative relations had
longer relation lengths. For example, as we increased the relation
length upper bound from 50 to 100, there was almost a 30%

increase in negative relations, whereas for positive relations, it
was less than 10%. In particular, negative relations had a mean
relation length of 74.01 (SD 49.40). We discuss the implications
of relation length in the Results section.

Figure 1. Relation distribution for different relation lengths. Neg: negative; Pos: positive; Rels: relations.

Models
For this work, we evaluated three different state-of-the-art DL
architectures (CNN, GCN, and BERT), which we describe
briefly below.

CNN
CNN is a class of deep feed-forward neural networks that is
specialized for data with a high degree of temporal or spatial
correlation such as image data. CNNs have also been widely
used for various NLP tasks with success, including relation
classification [36-39]. Our CNN relation classification model
was built upon the work of Nguyen and Grishman [37], which
is a state-of-the-art CNN architecture for relation classification

in the open domain. As shown in Figure 2, the model utilizes
five separate convolutional layers with filters of different
window sizes to capture rich local n-gram features. For example,
“128@2” in the first CNN block indicates 128 filters with a
window size of 2. Each layer is followed by a tanh nonlinearity.
Finally, we used a maxpool layer, concatenated the output,
applied dropout, and added a fully connected layer, followed
by a softmax layer for the final classification. As input, we used
pretrained word embeddings concatenated with randomly
initialized positional embeddings. We used positional
embeddings to embed the relative positions of the target entities
and other words in a relation instance, as it has been shown to
improve various NLP tasks including relation classification
[24,40].
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Figure 2. The high-level view of our convolutional neural network (CNN) model. It has five different CNN modules with filters of different window
sizes, followed by maxpooling and concatenation. The inference layer includes a dropout, a fully connected layer, and a softmax layer. Positione1 and
Positione2 refer to the relative positions of each word from entity1 and entity2, respectively. AltCause: suspected alternative cause.

GCN
Since semantic coding has enjoyed success in clinical NLP [41],
GCNs [42] may be effective and powerful as they represent the
semantic or syntactic dependency of input sequences as graphs,
which have shown superior performance for the relation
classification task in the open domain [32,43]. We implemented
the AGGCN [32], which incorporates dense connections for
rich dependency information and multihead attention [25] for
soft pruning the trees (Figure 3). Here, each sentence
corresponds to a graph, represented in the form of an adjacency
matrix A, where Aij=1 if node i and node j have an edge between
them and Aij=0 otherwise. Additional model details are available
in Multimedia Appendix 1.

Unlike the previous work [32], we built semantic graphs instead
of syntactic graphs. This was motivated by decades of NLP
work in the clinical domain that highlights the advantages of
semantic parsers [41,44]. To construct the graph, we used the

UMLS Metathesaurus [21]. First, we mapped an input sentence
to the UMLS concepts using MetaMap [44]. We considered all
words in an input sequence as the nodes in a graph, each with
a self-loop. Then, for every two nodes, we connected them if
they had a semantic relation (eg, child-of) and were identified
as at least one of the 26 preselected semantic types. These
semantic types were chosen to prioritize bleeding events and
relevant entities (Multimedia Appendix 2). However, owing to
data sparsity, this resulted in disconnected graphs where most
of the nodes had no incoming or outgoing edge. As an
alternative, we relaxed the criteria by connecting nodes to each
other (belonged to any of the 26 semantic types). In a separate
experiment, we repeated the same process with all 127 semantic
types from the UMLS Metathesaurus.

In addition, we investigated two different methods, namely,
initializing A from a uniform distribution and initializing A
with all 1s (all nodes are connected to each other). Finally, we
explored semantic-type embeddings (STEs). A comparison of
these methods is available in the Results section.
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Figure 3. The high-level view of our attention-guided graph convolutional network (AGGCN) model. A is the adjacency matrix used to represent the
graph data. The core of the model is comprised of M identical blocks (AGGCN blocks), each with three types of layers as follows: one attention-guided
layer, N densely connected layers, and one linear combination layer. Details are available in Multimedia Appendix 1. AltCause: suspected alternative
cause; Emb: embedding; POS: parts of speech.

BERT
BERT [27] is a language representation model that was
pretrained on a large text corpus using unsupervised objectives.
BERT has been shown to outperform most of the DL models
in various NLP tasks, including clinical applications [45]. At
its core, BERT employs bidirectional transformers [25] with
multihead attention mechanisms. Paired with an effective
pretraining scheme for unsupervised tasks, namely, masked
language modeling and next sentence prediction, BERT can
provide a rich contextual representation for any text sequence.
BERT’s contextualized word representations can be fine-tuned
for any downstream NLP task. In this work, we used three
variants of BERT (BERT pretrained on biomedical data
[BioBERT] [46], BioBERT pretrained on clinical text
[Bio+Clinical BERT] [47], and BioBERT pretrained on EHR
notes [EhrBERT] [45]), all of which have been shown to
improve clinical NLP applications. They all share the same
architecture with a difference in their pretraining corpora.

In our implementation (Figure 4), for a target entity pair, we
used four reserved tokens ([E1], [E2], [\E1], and [\E2]) to mark
the start and end of the entities. For our task, to handle an input
sequence larger than 512 word pieces, we modified the BERT
encoder so that it could slide over any input sequence with a
stride, essentially splitting the sequence into multiple 512 word
piece–long subsequences. It later merges the fine-tuned hidden
representations of the subsequences depending on the maximum
context window. A maxpool operation is performed over the
subsequences’ [CLS] tokens to create the final [CLS]
representation. Later the feature extraction module constructs
features from the final hidden representations. It can be from
either the [CLS] token or a fusion of entity start or end tokens.
In particular, we experimented with approaches, such as the
maxpool of entity-start tokens ([E1] and [E2]), concatenation
of entity-start tokens, and max-pool of entity-end tokens ([\E1]
and [\E2]). Details about these are provided in the Results
section (Experiments With BioBERT subsection). Finally, we
added a fully connected layer on top for the relation
classification.
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Figure 4. The high-level view of a Bidirectional Encoder Representations from Transformers (BERT)-based model. AltCause: suspected alternative
cause.

Evaluation Metrics
All the models were evaluated using precision, recall, and F1
score. We report both micro- and macro-averaged scores.
Averaged over all the instances, micro-averaged scores give an
overall evaluation and therefore are biased toward the class with
the highest instances. On the contrary, macro-averaged scores
help obtain a better understanding of the models’ performance
across different classes as it is averaged over all the classes.

Experimental Setup
All model hyperparameters were fine-tuned on the development
set. For the CNN model, we included five convolutional layers,
each with 128 filters and different window sizes (2, 3, 4, 5, and
6). We chose Adam as the optimizer with a learning rate of 0.01,
and the dropout rate was 0.5. The model was trained for 300
epochs. We found 300 and 10 to work the best as the dimensions
for word and position embeddings, respectively. For the
AGGCN model, we used part-of-speech (POS) embeddings in
addition to pretrained word embeddings. Here, the dimensions
were 30 and 300, respectively. We ran the AGGCN model for
100 epochs with a learning rate of 0.5 and stochastic gradient
descent optimizer. Other hyperparameters included three heads
for the attention layer, three AGGCN blocks, two and five
sublayers in the first and second dense layers, etc. For both the
CNN and AGGCN models, we used global vectors for word
representation (GLOVE) [48] as pretrained word embeddings.

We used the popular library Transformers [49] for implementing
our BERT models. As mentioned in the Models subsection, we

modified the existing implementation so that it could cover
sequences of all lengths. We used a stride of 128 with a

maximum sequence length of 512. The learning rate was 5×10-5

and the dropout rate was 0.1. We initialized each BERT model’s
encoder with corresponding pretrained weights. All models
were fine-tuned for 15 epochs.

Cross-entropy loss was used for training all the models. In each
experiment, we used an early stopping criterion based on the
model’s performance on the development set. All models were
evaluated on the same hold out test set, and the reported results
were averaged over three independent runs. All model trainings
and evaluations were performed on Tesla V100 GPUs (Nvidia).

Results

Comparison of the Models
We report our results for the relation classification task in Table
2. All BERT-based models did comparatively better than the
CNN and AGGCN models. The BioBERT model achieved a
1.3% absolute improvement (P<.001) over the AGGCN model
in both micro and macro F1 scores, while the difference with
the CNN model was even more significant at almost 8%
(P<.001). A similar performance improvement was observed
for the Bio+Clinical BERT model but with a lower recall. The
CNN model performed the worst for all relation types. For each
model, we also report the macro scores of two ensemble methods
(last two rows) where both improved the model performance.
P values were calculated following the work by
Berg-Kirkpatrick et al [50]
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Table 2. Performance comparison of convolutional neural network (CNN), attention-guided graph convolutional network (AGGCN), and Bidirectional
Encoder Representations from Transformers–based models (BERT).

ModelRelation type and perfor-
mance

EhrBERTeBio+Clinical BERTdBioBERTcAGGCNbCNNa

Event-Site

0.942 (0.024)0.929 (0.020)0.916 (0.058)0.941 (0.009)0.910 (0.003)Precision, mean (SD)

0.920 (0.024)0.930 (0.016)0.942 (0.009)0.947 (0.006)0.817 (0.003)Recall, mean (SD)

0.977 (0.003)0.929 (0.003)0.928 (0.027)0.944 (0.002)0.861 (0.003)F1 score, mean (SD)

Event-Lab

0.587 (0.031)0.618 (0.023)0.616 (0.029)0.619 (0.014)0.653 (0.014)Precision, mean (SD)

0.802 (0.012)0.785 (0.010)0.793 (0.027)0.737 (0.022)0.629 (0.011)Recall, mean (SD)

0.677 (0.022)0.691 (0.011)0.692 (0.009)0.672 (0.002)0.641 (0.003)F1 score, mean (SD)

Event-AltCausef

0.721 (0.014)0.718 (0.026)0.708 (0.048)0.718 (0.017)0.640 (0.006)Precision, mean (SD)

0.803 (0.009)0.792 (0.015)0.828 (0.029)0.723 (0.030)0.596 (0.012)Recall, mean (SD)

0.760 (0.006)0.753 (0.008)0.761 (0.017)0.720 (0.007)0.617 (0.004)F1 score, mean (SD)

Lab-Severity

0.963 (0.011)0.974 (0.007)0.977 (0.005)0.967 (0.003)0.907 (0.004)Precision, mean (SD)

0.991 (0.004)0.991 (0.001)0.993 (0.001)0.986 (0.004)0.963 (0.001)Recall, mean (SD)

0.977 (0.003)0.982 (0.004)0.985 (0.003)0.976 (0.002)0.934 (0.002)F1 score, mean (SD)

Micro

0.783 (0.013)0.793 (0.020)0.786 (0.038)0.800 (0.014)0.768 (0.006)Precision, mean (SD)

0.873 (0.005)0.868 (0.009)0.885 (0.017)0.838 (0.015)0.739 (0.006)Recall, mean (SD)

0.826 (0.009)0.829 (0.007)0.832 (0.015)0.818 (0.001)0.753 (0.002)F1 score, mean (SD)

Macro

0.803 (0.007)0.810 (0.017)0.804 (0.032)0.811 (0.010)0.777 (0.005)Precision, mean (SD)

0.879 (0.006)0.874 (0.009)0.889 (0.016)0.848 (0.014)0.751 (0.005)Recall, mean (SD)

0.836 (0.007)0.839 (0.005)0.842 (0.012)0.828 (0.001)0.763 (0.003)F1 score, mean (SD)

Macro (majority voting)

0.8230.8240.8220.8130.778Precision

0.8870.8820.8950.8490.752Recall

0.8510.8510.8550.8290.764F1 score

Macro (averaging predictions)

0.8280.8260.8240.8130.779Precision

0.8860.8790.8790.8550.753Recall

0.8540.8500.8500.8330.765F1 score

aCNN: convolutional neural network.
bAGGCN: attention-guided graph convolutional network.
cBioBERT: BERT pretrained on biomedical data.
dBio+Clinical BERT: BioBERT pretrained on clinical text.
eEhrBERT: BioBERT pretrained on electronic health record notes.
fAltCause: suspected alternative cause.
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Domain Knowledge for the AGGCN
For the AGGCN, we first experimented with different
approaches to encode information from graph inputs. The
AGGCN uses an n × n adjacency matrix A to represent a graph
with n nodes. For our inputs, we built the graph based on
MetaMap [44], as explained in the Models subsection. To
understand the importance of domain-specific knowledge
(UMLS), we also removed the UMLS knowledge by connecting
all the nodes (tokens) of a graph (input sequence) to each other
(all connected). This is equivalent to setting all the elements in

A to 1. In addition, we also explored a weighted graph
(Uniform). For this, we built A using a uniform distribution with
the half-open interval [0,1).

As shown in Table 3, predefining the graph using the domain
knowledge did not improve the overall performance. Several
factors may have contributed to this result, including the noise
introduced by MetaMap for mapping text to the UMLS concepts
and the incompleteness of concept relations in the UMLS. Our
results showed that the weighted graph (Uniform) achieved the
best performance.

Table 3. AGGCN (Attention-guided graph convolutional network) performance with different methods.

MethodaMetric and performance

Uniform + STEdUniformAll ConnectedMetaMap (All)cMetaMap (26)b

Micro

0.796 (0.011)0.800 (0.014)0.783 (0.025)0.757 (0.026)0.774 (0.008)Precision, mean (SD)

0.836 (0.007)0.838 (0.015)0.845 (0.018)0.852 (0.019)0.829 (0.007)Recall, mean (SD)

0.816 (0.007)0.818 (0.001)0.812 (0.005)0.801 (0.006)0.800 (0.003)F1 score, mean (SD)

Macro

0.805 (0.011)0.811 (0.010)0.798 (0.019)0.781 (0.018)0.787 (0.008)Precision, mean (SD)

0.848 (0.008)0.848 (0.014)0.855 (0.017)0.865 (0.018)0.844 (0.007)Recall, mean (SD)

0.825 (0.008)0.828 (0.001)0.824 (0.003)0.816 (0.003)0.813 (0.003)F1 score, mean (SD)

aAll methods used global vectors for word representation (GLOVE) and part-of-speech (POS) embeddings.
bMetaMap (26) used 26 specific semantic types.
cMetaMap (All) used all 127 semantic types from the Unified Medical Language System Metathesaurus.
dSTE: semantic-type embedding.

We also evaluated the effects of STEs. The UMLS had a total
of 127 semantic types, from which we identified 26 semantic
types relevant to our work (Uniform + STE). For a word with
multiple semantic types, we used the semantic type with the
highest MetaMap Indexing (MMI) score. Our results with STEs,
however, did not improve the performance. We also evaluated
POS embeddings and entity-type embeddings. Results from our
experiments suggested that only POS embeddings improved
performance, while entity-type embeddings slightly degraded
performance. Other experiments included the use of different
pretrained word embeddings. Surprisingly, we found that the
biomedical word embeddings [51] did not perform well
compared with the GLOVE embeddings on our data set. In
summary, the best combination for AGGCN includes adjacency
matrix initialization from uniform distribution and the use of
GLOVE and POS embeddings.

Experiments With BERT
For classification, there are various ways to extract the
contextualized sequence representations from BERT. The most

common approach is to use [CLS] token embedding. In this
work, since entity positions were already encoded in the input
sequence, we explored different alternatives [30]. For example,
we considered fusing the entity start tokens’ embeddings ([E1]
and [E2]) and the entity end tokens’ embeddings ([\E1] and
[\E2]). The fusion function was either maxpooling or
concatenation. To our knowledge, this is the first study to
evaluate different approaches for extracting BERT
representation for clinical relation classification.

We used BioBERT as a representative of the BERT-based
models, and the results are shown in Table 4. Although [CLS]
token embedding is the most common approach, our results
suggested that its performance is close to taking the
concatenation of the entity start or end tokens’ embeddings. In
fact, the best performing method was the maxpool of the entity
start tokens’ embeddings, resulting in 1% improvement in the
macro F1 score over [CLS]-only representation.
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Table 4. Effect of different sequence representation methods on the BioBERT (BERT pretrained on biomedical data) model.

MacroMicroMethod and performance

[CLS] only

0.803 (0.024)0.779 (0.040)Precision, mean (SD)

0.873 (0.011)0.866 (0.015)Recall, mean (SD)

0.832 (0.010)0.819 (0.015)F1 score, mean (SD)

Maxpool-start tokens

0.804 (0.032)0.786 (0.038)Precision, mean (SD)

0.889 (0.016)0.885 (0.017)Recall, mean (SD)

0.842 (0.012)0.832 (0.015)F1 score, mean (SD)

Maxpool-end tokens

0.800 (0.027)0.780 (0.036)Precision, mean (SD)

0.885 (0.014)0.878 (0.015)Recall, mean (SD)

0.837 (0.010)0.825 (0.014)F1 score, mean (SD)

Maxpool-start tokens + [CLS]

0.794 (0.028)0.775 (0.034)Precision, mean (SD)

0.887 (0.014)0.882 (0.014)Recall, mean (SD)

0.835 (0.012)0.824 (0.014)F1 score, mean (SD)

Concatenate-start tokens

0.787 (0.015)0.762 (0.021)Precision, mean (SD)

0.891 (0.008)0.886 (0.011)Recall, mean (SD)

0.832 (0.006)0.819 (0.008)F1 score, mean (SD)

Concatenate-end tokens

0.793 (0.005)0.768 (0.007)Precision, mean (SD)

0.885 (0.009)0.880 (0.009)Recall, mean (SD)

0.833 (0.005)0.820 (0.005)F1 score, mean (SD)

Concatenate-start tokens + [CLS]

0.777 (0.021)0.743 (0.034)Precision, mean (SD)

0.898 (0.006)0.895 (0.008)Recall, mean (SD)

0.827 (0.013)0.811 (0.017)F1 score, mean (SD)

Effect of Relation Length
As pointed out in Table 1, the four relation types have a wide
range of relation lengths. Relation length (ie, the number of
words between the target entities) acts as context and hence can
influence the training process. To demonstrate how it affected

our trained models, we created multiple subsets of our test set,
each with a different range for relation length. Each subset
contained only those test instances that had a relation length
within the subset range. We chose the AGGCN and BioBERT
models and ran inference on all the test subsets. The results are
shown in Figure 5.
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Figure 5. Effect of relation length on model performance. The x-axis indicates the subset range, for example, "≤20" indicates the test subset that consists
of all the instances with a relation length of 20 or lower. AGGCN: attention-guided graph convolutional network; BERT: Bidirectional Encoder
Representation from Transformers; BioBERT: BERT pretrained on biomedical data.

For both models, the test F1 scores kept decreasing until the
relation length range reached 200, with an exception for the
BioBERT macro score that had the lowest F1 score at 150. After
this point, the macro F1 scores surpassed their respective micro
scores, and surprisingly, both models’ F1 scores improved
despite the increase in relation length. This is slightly
counterintuitive, as a larger relation length should have been
difficult for the models to understand. To understand this
behavior, we manually reviewed the gold labels and model
predictions for all the test instances that had a relation length
of 200 or higher. As expected, we found that all these instances
were from either the relation types (Event-Lab and
Event-AltCause) or a negative relation. Interestingly, all the
model predictions were also within these three types. This shows
that the models learned the correlation between relation length
and relation type as a shortcut [52] and consequently did not
consider Event-Site and Lab-Severity as possible relation types
for longer relation lengths, resulting in improved overall
performance. Our analyses showed the limitations of machine
learning models in that they might learn from correlations, not
causality, and this might lead to model overfitting.

However, a drawback of learning this shortcut is labeling many
negative relations as Event-Lab or Event-AltCause, as negative
relations have long relation lengths on average (refer to the
Dataset subsection). For both models, this generated many false
positives, resulting in low precision. This also explains the huge
difference between precision and recall for these two relation
types (Table 2).

Model Performance With Data Size
For any supervised DL method, the amount of available labeled
data almost always plays a key role in the overall model
performance. In our task, we wanted to evaluate how this affects
the models, namely AGGCN and BioBERT. To this end, we
trained both models with different portions of the training data
separately and measured their performances. We observed an
upward trend (Figure 6) for both, indicating that more training
data would be better for our clinical relation classification task
irrespective of the model type and metric averaging criterion.
However, the AGGCN appeared to have less deviation (low
standard deviation) with more data (a high slope), as opposed
to BioBERT, for which the deviations were higher, although
the performance differences remained statistically significant
between the two models.

Figure 6. Effect of training data size on model performance. Each error bar indicates the standard deviation range at the corresponding point. AGGCN:
attention-guided graph convolutional network; BERT: Bidirectional Encoder Representation from Transformers; BioBERT: BERT pretrained on
biomedical data.
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Discussion

Principal Findings
The results of our experiments demonstrated that fine-tuned
BERT-based models outperformed both the CNN and AGGCN
models by a significant margin. This can be attributed to the
richer and contextualized representation of the pretrained BERT
models compared to pretrained word embeddings, such as
GLOVE, even when paired with POS embeddings and domain
knowledge (for AGGCN). In our experiment, we found that the
CNN significantly underperformed the AGGCN and
BERT-based models by a large margin, primarily because of
its inability to capture the global context of the input sequences.
On the other hand, although all BERT-based models
outperformed the AGGCN model by relatively small margins,
they were statistically significant (P<.001).

Despite model architectural differences, all models had better
performance on the Event-Site and Lab-Severity relation types
(eg, F1 scores of 0.928 and 0.985, respectively, for BioBERT).
However, their performances for Event-Lab and Event-AltCause
were relatively poor (eg, F1 scores of 0.692 and 0.761,
respectively, for BioBERT). As shown in Table 1, these two
relation types had comparatively larger relation lengths. This
phenomenon would result in difficulty in annotation, thereby
negatively impacting performance. Moreover, the lengthy
context could pose challenges for the DL models as well. Both
could have contributed to the overall poor performance for these
two categories. In addition, except for the CNN model, we
observed significant differences between precision and recall.

Our results showed that incorporating the concept relations from
the UMLS did not improve AGGCN’s performance. One
possible reason might be the data sparsity, that is, only few
concepts were connected in the graph input for the AGGCN.
When a token is not identified by MetaMap as relevant but is
important for classifying the instance, putting a 0 in its
corresponding node position in the adjacency matrix A sends
an erroneous signal to the model. This is a possible area for
improvement, and we will work on this as part of our future
work. On the other hand, A initialized with a uniform
distribution gave the best recall and a better F1 score. This
approach might seem counterintuitive as it does not necessarily
pass any useful information unlike a dependency tree. However,
this can be reasoned as the input dependency tree serves as an
initialization, helping the attention-guided layers to build
multiple edge-weighted graphs. This acts as a soft-pruning
strategy where the model learns how the nodes should be
connected to each other and on which connections to focus.

A quick look at the standard deviations reveals that Bio+Clinical
BERT and EhrBERT were more stable than BioBERT, as both
had utilized large scale EHR notes for the pretraining process.
BioBERT had the highest F1 score, but different instantiations
of the network gave widely different results, contributing to the
higher standard deviation. The AGGCN was also better than
BioBERT in this regard. Thus, we suggest using Bio+Clinical
BERT or EhrBERT when stability is the primary concern.
BioBERT on the other hand had the highest recall, which may
be an important criterion for clinical applications. For the

AGGCN, the key advantage was the model being lightweight
and consequently having a faster inference (Multimedia
Appendix 3).

Error Analysis
We conducted error analysis for the two relations (Event-Lab
and Event-AltCause) where models performed poorly for both
recall and precision scores. We analyzed the BioBERT model
and made the following observations:

1. Most incorrect predictions were false positives, driven by the
target entity types. For example, the model incorrectly predicted
an Event-Lab relation in “Irrigation catheter was placed in ED
and [hematuria]e1 has improved. Repeat [H&H]e2 is >8 and
bleeding has stopped.”

2. Another common source of error was the model incorrectly
labeling a negative relation sequence that described a patient’s
medical history that was not directly related to the present
diagnosis. For example, “Likely source thought to be upper GIB
given hx of bleeding [ulcer]e1 in past + [hematemesis]e2.” Here,
the model predicts the relation Event-AltCause between the
target entities. Though the entity GIB can be a suspected
alternative cause, both target entities are from the patient’s
previous history.

3. Another reason for error was the existence of the relation in
the instance but between different entities. For example, take
the negative relation instance “Daily CBC show anemia ([Hbg]e1

8.7 - 8.8, current at 8.7), with low Fe, transferrin+TIBC wnl,
high ferritin. Labs support hemolytic anemia with low
haptoglobin, high LDH, high tbili and indirect bili. Per inpatient
attending read, blood smear showed no schistocytes, bite cells
or heinz bodies, with few reticulocytes visualized per hpf, final
report pending. CT kidney/pelvis showed no gross GU
abnormalities and left gluteal [hematoma]e2.” Here, the model
predicted an Event-Lab relation though Hbg and hematoma do
not have any such relation. However, there is an Event-Lab
relation here between Hbg and anemia.

4. Limited corpus size and no additional domain knowledge
made it difficult for the model to make predictions on relation
instances with never-observed words or medical acronyms. In
some cases, it was worsened due to the lack of grammatical
consistency and coherent patterns.

Conclusions
In this work, we studied three state-of-the-art DL architectures
for a relation classification task on a novel EHR data set. Our
work is the first to identify the relations between a bleeding
event and related clinical concepts. Our results showed that
BERT-based models performed better than attention-guided
GCN and CNN models. Further experiments suggested that
semantic graphs built using the UMLS semantic types and
relations between them did not help the GCN model. On the
other hand, incorporating entity token information improved
the performance of BERT-based models. We also demonstrated
the impacts of relation length and training data size. In our future
work, we plan to explore richer domain knowledge and distant
supervision. Additionally, leveraging our earlier work on named
entity recognition (NER) [53], we aim to build a joint learning
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pipeline that integrates both NER and relation classification for bleeding events and relevant medical concepts.
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