
Original Paper

Effects of Background Colors, Flashes, and Exposure Values on
the Accuracy of a Smartphone-Based Pill Recognition System
Using a Deep Convolutional Neural Network: Deep Learning and
Experimental Approach

KyeongMin Cha1, MSc; Hyun-Ki Woo1,2, MSc; Dohyun Park1, MSc; Dong Kyung Chang1,3, MD, PhD; Mira Kang1,4,
MD, PhD
1Department of Digital Health, Samsung Advanced Institute of Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
2EvidNet Inc, Seongnam-si, Gyeonggi-do, Republic of Korea
3Division of Gastroenterology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Republic of Korea
4Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea

Corresponding Author:
Mira Kang, MD, PhD
Department of Digital Health
Samsung Advanced Institute of Health Sciences & Technology
Sungkyunkwan University
81 Irwon-ro, Gangnam-gu
Seoul, 06351
Republic of Korea
Phone: 82 01099336838
Fax: 82 0234101000
Email: kang.mirad@gmail.com

Abstract

Background: Pill image recognition systems are difficult to develop due to differences in pill color, which are influenced by
external factors such as the illumination from and the presence of a flash.

Objective: In this study, the differences in color between reference images and real-world images were measured to determine
the accuracy of a pill recognition system under 12 real-world conditions (ie, different background colors, the presence and absence
of a flash, and different exposure values [EVs]).

Methods: We analyzed 19 medications with different features (ie, different colors, shapes, and dosages). The average color
difference was calculated based on the color distance between a reference image and a real-world image.

Results: For images with black backgrounds, as the EV decreased, the top-1 and top-5 accuracies increased independently of
the presence of a flash. The top-5 accuracy for images with black backgrounds increased from 26.8% to 72.6% when the flash
was on and increased from 29.5% to 76.8% when the flash was off as the EV decreased. However, the top-5 accuracy increased
from 62.1% to 78.4% for images with white backgrounds when the flash was on. The best top-1 accuracy was 51.1% (white
background; flash on; EV of +2.0). The best top-5 accuracy was 78.4% (white background; flash on; EV of 0).

Conclusions: The accuracy generally increased as the color difference decreased, except for images with black backgrounds
and an EV of −2.0. This study revealed that background colors, the presence of a flash, and EVs in real-world conditions are
important factors that affect the performance of a pill recognition model.

(JMIR Med Inform 2021;9(7):e26000) doi: 10.2196/26000

KEYWORDS

pill recognition; deep neural network; image processing; color space; color difference; pharmaceutical; imaging; photography;
neural network; mobile phone

JMIR Med Inform 2021 | vol. 9 | iss. 7 | e26000 | p. 1https://medinform.jmir.org/2021/7/e26000
(page number not for citation purposes)

Cha et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:kang.mirad@gmail.com
http://dx.doi.org/10.2196/26000
http://www.w3.org/Style/XSL
http://www.renderx.com/


Introduction

Recently, smartphone cameras have been used to not only take
photos but also recognize objects via models with enhanced
performance and artificial intelligence models [1,2]. The study
of photo recognition is not only limited to a person or a thing,
such as a car; it can even extend to analyzing a person’s hair
color or specifying the color of an object, such as a red car [3].

Many researchers are exploring new algorithms related to color
in the field of image learning. For example, gray-scale images
can be colored automatically by using a convolutional neural
network (CNN) through a new method [4]. Additionally,
Lunit—a well-known medical artificial intelligence

company—presented an algorithm that enhances the color of
an image as if it was corrected by a professional [5].

Color is an important component that is used to recognize
objects, especially pharmaceuticals. The United States Federal
Drug Administration approves solid pharmaceuticals and pills,
which have physical identifiers. Each pill should have its own
unique physical features, that is, unique shapes, sizes, colors,
and imprints (the letter or number carved onto the medicine),
which need to be approved [6]. However, in some cases, all
features of medicines, except for the color, can be the same [7].
For instance, Amaryl (glimepiride)—an oral pill for controlling
the blood sugar levels of patients with diabetes—has identical
physical features across all 1-mg, 2-mg, and 4-mg dosages
except for their colors (Figure 1).

Figure 1. Examples of pills with the same physical features (except for color).

In 2016, the National Institutes of Health hosted a competition
to promote the easy recognition of unknown medications. Even
though the competition used reference images that were
photographed in a professionally supervised setting, the accuracy
of drug recognition was not very high. Since the quality of a
picture taken by a smartphone can be greatly influenced by
illumination (lighting), shading, and background color, it is
difficult to develop a system for image recognition [8]. Pill
colors are especially affected by lighting hues and fluorescent
light (Figure 2). In addition, there are no quantitative analyses
for determining how a pill recognition system can be affected
by external factors [6,9]. The most recent work related to drug

recognition studies that involve deep learning has been
conducted on wearable smart glasses developed for patients
with visual impairment. Additionally, drug detection has been
enhanced with feature pyramid networks and CNNs. However,
despite recent improvements in pill recognition via a model
approach, the effects of environmental factors have not been
analyzed [10,11].

In this study, we sought to determine the accuracy of a pill
recognition system under 12 different real-world conditions (ie,
different background colors, the presence and absence of a flash,
and different exposure values [EVs]).
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Figure 2. Effects that external environments (fluorescent lighting) have on the colors of pills in images. A: Flash is on. B: Flash is off.

Methods

Photo Shooting Equipment and Image Preprocessing

Data Acquisition Process for Reference Images
The smartphone used in this study was the Samsung Galaxy S7
Edge, which was equipped with a dual-pixel 12.0-megapixel

front camera with an aperture of f/1.7. An already intact camera
app and the autofocus feature of the smartphone software were
used. For lighting, 2 light-emitting diode panels were used. The
flash was positioned at a height of 20 cm, and the intensity of
illumination was set to 1145 lux. The background color was
black, and the flash was turned off (Figure 3).

Figure 3. Photographic equipment (photo box) for taking images under the reference condition. LED: light-emitting diode.
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Data Acquisition Process for Real-World Images
The photos were taken under 12 conditions that involved

different background colors (black or white), the presence or
absence of a flash, and 3 different EVs (+2.0, 0, and −2.0; Table
1).

Table 1. Real-world image sets for the 12 conditions.

ConditionImage set name

Exposure valueFlashBackground color

−2.0OnBlackB_O_EV-2.0

0OnBlackB_O_EV0

+2.0OnBlackB_O_EV+2.0

−2.0OnWhiteW_O_EV-2.0

0OnWhiteW_O_EV0

+2.0OnWhiteW_O_EV+2.0

−2.0OffBlackB_X_EV-2.0

0OffBlackB_X_EV0

+2.0OffBlackB_X_EV+2.0

−2.0OffWhiteW_X_EV-2.0

0OffWhiteW_X_EV0

+2.0OffWhiteW_X_EV+2.0

Image Preprocessing
Figure 4 shows the 9 steps for processing images of the region
of interest (ROI). This process was conducted to improve deep
neural network–based image recognition accuracy by
eliminating image noise and improving the quality of the picture
[12]. Python 3.5.3 and the OpenCV 3.2 library were used to
process each image [13]. The photos were converted to

gray-scale images and blurred to reduce image noise. Afterward,
we experimented with applying the different threshold options
of the OpenCV library to each pill image. The Canny edge
detector algorithm was used to define the ROI (a drug’s edge)
[14,15]. Next, the processed picture was combined with the
original picture, and all other areas except for the pill were
omitted. Finally, the inner edge of the pill image was set within
a square-shaped boundary, and this image was saved.
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Figure 4. Image preprocessing algorithm for extracting an object. Step 1 (A): take pictures using a smartphone. Step 2 (B): convert image to a gray-scale
image. Step 3 (C): use the blur and threshold options to process the image. Step 4 (D): Canny edge detection. Step 5 (E): create a black background.
Step 6 (F): use the FillPoly function to process the image. Step 7 (G): use the bitwise operation to combine the original image with the processed image.
Step 8 (H): draw a rectangle-shaped boundary and perform object extraction. Step 9 (I): use the final pill image as the reference image to train the model.

Test Drug Type
A total of 19 different types of pills were used in this study. The
different features of the pills (7 colors, 7 shapes, and 7 types)

can be seen in Table 2. Figure 5 shows all of the example images
of the pills; the numbers on the upper left-hand corners were
the labels used in the deep learning process.
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Table 2. Characteristics of the reference set (shape, color, and dosage form).

Instances, nCharacteristic

Shape

6

3

4

1

2

2

1

Color

1Pink

5Blue

5White

4Yellow

1Green

2Yellow-green

1Orange

Dosage form

10Film-coated tablet

2Sugar-coated tablet

6Uncoated tablet

1Hard capsule

Figure 5. Sample images of the pills used in the experiment. Yellow pills include pills 6, 12, 13, 14, and 16. Green pills include pills 5, 7, and 11.
“Other” pills include the rest of the pills.
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Color Difference

Factors Affecting the Color
Figure 6 shows the pill images that were taken under the

reference condition and under the 12 real-world conditions. The
colors of the pills differed based on the background colors, the
presence of a flash, and EVs.

Figure 6. Representative examples of pill images. A: reference condition. B: 12 real-world conditions (image sets: B_O_EV-2.0, B_O_EV0, B_O_EV+2.0,
W_O_EV-2.0, W_O_EV0, W_O_EV+2.0, B_X_EV-2.0, B_X_EV0, B_X_EV+2.0, W_X_EV-2.0, W_X_EV0, and W_X_EV+2.0).

Color Space
The spatial color concept, which is expressed as a 3D chart, was
used to calculate the differences in color quantitatively. The
Commission Internationale de l’Eclairage (CIE) L*a*b* color
space is a spatial color chart that is used worldwide to represent
colors that can be detected by the human eye. After the red,
green, and blue (RGB) color space is converted to a CIE XYZ
color space, it is then converted to a CIE L*a*b* color space
that separates the lighting and the color [16]. The CIE and CIE
1976 L*a*b* include some colors that human eyes cannot detect.
L* represents brightness with values that range from 0 to 100.
Parameters a* (green to red) and b* (blue to yellow) range from
−120 to 120 [17,18].

To quantify the color of the ROI, the process shown in Figure
7 was followed. By using the RGB analysis plugin of the ImageJ
1.52 program (National Institutes of Health), the RGB color
space was changed to an XYZ color space [19] via the following
equations:

X = 0.4303R + 0.3416G + 0.1784B

(1)

Y = 0.2219R + 0.7068G + 0.0713B

(2)

Z = 0.0202R + 0.1296G + 0.9393B

(3)

The XYZ color space was then converted to an L*a*b* color
space, as follows:

L* = 116f(Y/Yn) – 16

(4)

a* = 500(f[X/Xn] – f[Y/Yn])

(5)

b* = 200(f[Y/Yn] − f(Z/Zn)]

(6)

f(q) = 7.787q + (16/116) (q≤0.008856)

(8)

After computing the values of L*, a*, and b*, ∆E was calculated
with the following equation, where ∆E is the color difference:

The color differences were calculated by subtracting the color
distances in images taken under the real-world conditions from
the color distances in images taken under the reference
condition. The color distance of 19 medications was presented
as means with SDs. A three-way repeated measures analysis of
variance (ANOVA), which was followed by a Bonferroni
posthoc test, was used to examine the effects that background
color (black vs white), the presence of a flash (flash on vs flash
off), and EV (+2.0, 0, and −2.0) had on color differences. A P
value of <.05 was considered to be statistically significant. The
statistical analysis was performed by using R software, version
3.6.2 (The R Foundation).
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Figure 7. Color space conversion process. The conversion of RGB to CIE L*a*b* involves equations 1-8. △E is calculated by using equation 9. CIE:
Commission Internationale de l’Eclairage; RGB: red, green, and blue.

Model Learning Process
A total of 34,000 images were taken manually by using a
smartphone. We used images without augmentation. The number
of images in the training set was 19,000, and the number of
images in the validation set was 5000. We used 5000 images
for the tests conducted under the reference condition and 5000
images for the tests conducted under real-world conditions.

The model architecture used in this study was a CNN that used
a deep learning algorithm (GoogLeNet) with 22 layers and 9
inception modules [20]. We used the NVIDIA Deep Learning
Graphics Processing Unit Training System (DIGITS) for the
learning framework [21]. In this framework, top-1 accuracy
refers to the extent to which a model’s answer exactly matches
the expected answer. Top-5 accuracy refers to the extent to
which the five highest model answers match the expected
answer. Accuracy refers to the number of correct predictions
divided by the total number of predictions. Loss refers to the
penalty for a bad prediction. GoogLeNet has two auxiliary
classifiers for combating the vanishing gradient problem. Loss1
is the first auxiliary classifier’s output, and Loss2 is the second
auxiliary classifier’s output [20].

Results

Figure 8 shows the results of model training via the DIGITS
framework. Our model recognized the correct pill with a top-1
accuracy of 84.54% and a top-5 accuracy of 99.89% for the
reference test image set. Figure 9 shows the top-1 and top-5

accuracies and the average color differences for images taken
under the 12 real-world conditions. For images with black
backgrounds, as the EV decreased, the top-1 and top-5
accuracies increased independently of the presence of a flash.
The top-5 accuracy for images with black backgrounds increased
from 26.8% to 72.6% when the flash was on and increased from
29.5% to 76.8% when the flash was off as the EV decreased.
However, the top-5 accuracy increased from 62.1% to 78.4%
for images with white backgrounds when the flash was on. The
best top-1 accuracy was 51.1% (white background; flash on;
EV of +2.0). The best top-5 accuracy was 78.4% (white
background; flash on; EV of 0). The results of the repeated
measures ANOVA and the Bonferroni posthoc test for over 19
medications, as displayed in Figure 9, were used to assess the
variances in color differences. Color differences based on EV
values varied significantly (all P values in the repeated measures
ANOVA were <.05). The results of the repeated measures
ANOVA for color differences among 19 medications are as
follows: P=.02 (black background and flash on); P=.02 (black
background and flash off); P<.001 (white background and flash
on); and P<.001 (white background and flash off). With regard
to the Bonferroni posthoc test results, for images with white
backgrounds that were taken with the flash turned on or off, all
P values were <.001 between the image groups with different
EVs. Color differences among images with black backgrounds
that were taken with the flash turned on were statistically
different between the EV +2.0 and EV 0 groups (P=.004) and
between the EV0 and EV −2.0 groups (P=.004). Color
differences among images with black backgrounds that were
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taken with the flash turned off were significantly different
between the EV +2.0 and EV 0 groups (P=.005) and between
the EV 0 and EV −2.0 groups (P=.03). When excluding the
conditions of black backgrounds and an EV of −2.0, the
accuracy generally increased as the color difference decreased.
When the 19 medications were sorted into 3 groups by pill color
(ie, yellow, green, and other), the color differences among the

color subgroups were not dependent on the colors of pills in
images with white backgrounds. However, the color differences
among the color subgroups were dependent on the colors of
pills in images with black backgrounds. The pill color, as well
as environmental factors such as the background color, the
presence of a flash, and EVs, can affect the accuracy of a pill
recognition system (Figure 9).

Figure 8. Model learning results. Top-1 accuracy refers to the extent to which a model’s answer exactly matches the expected answer. Top-5 accuracy
refers to the extent to which the five highest model answers match the expected answer. Accuracy refers to the number of correct predictions divided
by the total number of predictions. “(train)” refers to the training process and “(val)” refers to the validation process. Loss refers to the penalty for a
bad prediction. Loss1 and Loss2 are two auxiliary classifiers of GoogLeNet.
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Figure 9. A: Comparison of top-1 and top-5 accuracies. B: Comparison of color differences based on background color, the presence of a flash, and
EV. Color differences are presented as means with SDs. EV: exposure value.

Discussion

The National Library of Medicine Pill Image Recognition
Challenge was hosted by the National Institutes of Health in
2016. The three winners obtained a mean average precision of
0.27, 0.09, and 0.08. Their top-5 accuracy values were 43%,
12%, and 11% for 5000 query and consumer images. Although
the competition can be seen as a promising initial step for pill

identification, solid medication recognition systems are still in
the difficult process of development. The reason for this seems
to be that the quality of real-world images tends to be affected
by illumination, shading, background color, or shooting
direction, unlike reference images.

In our study, it was shown that smaller color differences yielded
higher recognition accuracy except for images with black
backgrounds and images with an EV of −2.0. In other words,
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the accuracy of pill recognition is generally inversely
proportional to color difference. These exceptions may have
been due to the following: (1) it is believed that the Euclidean
distance between two colors may not be proportional to the
precise color difference; and (2) other factors, such as pill
imprints, shapes, and colors, can influence the recognition rate.

Color differences are a crucial problem, especially for pill
recognition systems. In previous studies, a few methods were
suggested for enhancing pill recognition. MedSnap (MedSnap
LLC) is a smartphone-based pill identification system that uses
an adaptive color correction algorithm. However, despite the
fact that it corrects for color differences, this system has a
disadvantage; it has to use a controlled surface to improve its
pill recognition rate [22]. In a study on a deep learning model
for dermatology, the authors recommended retaking the photo
if it is of poor quality due to brightness or noise levels. Thus,

adjusting the camera settings to match the optimized settings
for a photo can yield better quality photos and improve the
accuracy of medicine recognition systems [23,24]. Furthermore,
the enhancement of drug detection via a model approach for
minimizing color differences is warranted in the future.

This study reveals that background colors, the presence of a
flash, and EVs in real-world conditions are important factors
that affect the performance of pill recognition models.
Depending on certain image conditions, pill colors can also
affect pill recognition accuracy. However, this factor may not
affect accuracy as much as environmental factors [25]. Further
study is warranted on other factors, such as photography angles
and heights, pill shapes, background colors, tablet and capsule
conditions, and smartphone models that affect color differences
and pill recognition accuracy [26-28].
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