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Abstract

Background: The secondary use of structured electronic medical record (sEMR) data has become a challenge due to the
diversity, sparsity, and high dimensionality of the data representation. Constructing an effective representation for sEMR data is
becoming more and more crucial for subsequent data applications.

Objective: We aimed to apply the embedding technique used in the natural language processing domain for the sEMR data
representation and to explore the feasibility and superiority of the embedding-based feature and patient representations in clinical
application.

Methods: The entire training corpus consisted of records of 104,752 hospitalized patients with 13,757 medical concepts of
disease diagnoses, physical examinations and procedures, laboratory tests, medications, etc. Each medical concept was embedded
into a 200-dimensional real number vector using the Skip-gram algorithm with some adaptive changes from shuffling the medical
concepts in a record 20 times. The average of vectors for all medical concepts in a patient record represented the patient. For
embedding-based feature representation evaluation, we used the cosine similarities among the medical concept vectors to capture
the latent clinical associations among the medical concepts. We further conducted a clustering analysis on stroke patients to
evaluate and compare the embedding-based patient representations. The Hopkins statistic, Silhouette index (SI), and Davies-Bouldin
index were used for the unsupervised evaluation, and the precision, recall, and F1 score were used for the supervised evaluation.

Results: The dimension of patient representation was reduced from 13,757 to 200 using the embedding-based representation.
The average cosine similarity of the selected disease (subarachnoid hemorrhage) and its 15 clinically relevant medical concepts
was 0.973. Stroke patients were clustered into two clusters with the highest SI (0.852). Clustering analyses conducted on patients
with the embedding representations showed higher applicability (Hopkins statistic 0.931), higher aggregation (SI 0.862), and
lower dispersion (Davies-Bouldin index 0.551) than those conducted on patients with reference representation methods. The
clustering solutions for patients with the embedding-based representation achieved the highest F1 scores of 0.944 and 0.717 for
two clusters.

Conclusions: The feature-level embedding-based representations can reflect the potential clinical associations among medical
concepts effectively. The patient-level embedding-based representation is easy to use as continuous input to standard machine
learning algorithms and can bring performance improvements. It is expected that the embedding-based representation will be
helpful in a wide range of secondary uses of sEMR data.
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Introduction

The past decade has witnessed an explosion in the amount of
digital information stored in electronic medical records (EMRs),
which contain massive quantities of information on the clinical
history of patients. The wide secondary use of this information
for various clinical applications has become a prevalent trend
[1], helping to make diagnostic decisions [2-4], predict patient
outcomes [5-8], and provide treatment recommendations [9-11].

As we all know, the method of data representation is becoming
more and more crucial for the performance of data applications
[12,13]. Recently, many researchers have made preliminary
attempts to convert different types of medical data to vectors
by representation learning. They have then applied EMR data
with these representations to clinical tasks [6,14,15], making
more effective use of medical data and improving performance
in the predictive analyses. Cui et al [6] compared the
performances of three distributed representation methods (ie,
Skip-gram, Continuous Bag-of-Words, and latent semantic
analysis) for the prediction of hospital cost and length of stay
(LOS). Ning et al [15] trained vector representations for medical
concepts from biomedical journal articles through Skip-gram
and proposed a fully automated feature extraction method for
disease phenotyping based on the medical concept vector
representation. Moreover, some researchers learned patient
representation through deep learning [3,5,12]. Zhe Wang et al
[5] designed a feature rearrangement representation based on
the convolutional neural network for heart failure mortality
prediction. Lei Wang et al [3] used autoencoder, an unsupervised
deep learning algorithm, to generate lower-dimensional
representations from EMR data in various predictive tasks such
as readmission prediction and pneumonia prediction. A similar
study [12] used the recurrent neural network–based denoising
autoencoder to encode patient records into low-dimensional
and dense vectors for heart failure prediction.

However, there are still challenges in the representation of
structured EMR (sEMR) data containing high-dimensional and
diverse features. Such features as demographic characteristics,
disease diagnoses, physical examinations and procedures, and
laboratory tests may have discrete or continuous values, making
it difficult to reveal the latent relations among them. Moreover,
it is difficult to make full use of every available feature
(laboratory tests, for example) due to the unavoidable missing
values. It is worth exploring how to deal with the patient records
with features that are unequal in length.

Therefore, in this study, we leveraged a distributed embedding
technique originated in natural language processing (NLP), the
Skip-gram algorithm, with several adaptive changes to obtain
effective representations from the sEMR data. The feature
representation was evaluated by the dimension reduction
visualization method and feature correlation analysis method.
We further conducted clustering analyses on patients expressed
with the proposed representations to evaluate the representation
scheme. We aimed to explore the feasibility and superiority of

the embedding-based representations in data mining tasks for
sEMR data.

Methods

Study Data and Data Preprocessing
The sEMR data of 144,375 hospital admissions for 104,752
patients were collected from Xuanwu Hospital, Capital Medical
University, Beijing, China, between January 2014 and December
2016. Patients’ features were grouped into seven major
categories: demographic characteristics, hospital admission and
discharge, utilization of medical resources, disease diagnoses
(identified by International Classification of Disease, Tenth
Revision [ICD-10] code), examination and procedures
undergone (identified by International Classification of Diseases,
Ninth Revision, Clinical Modification [ICD-9-CM] code),
laboratory tests, and medications (Table S1 in Multimedia
Appendix 1). They were maintained for each hospital stay. If a
patient had multiple hospitalizations or multiple laboratory tests,
only the first hospitalization or laboratory test was included.
Patients’ personal information was completely removed from
the data set before we could access the data remotely, ensuring
the data were used in an anonymous and safe manner. The study
and data use were approved by the Human Research Ethics
Committees of the hospital.

Data analysis concentrated on a certain disease would be more
targeted and specific because a certain group of patients may
have similar characteristics. Stroke is a severe disease with high
prevalence, high mortality, and high disability [16,17]. It is
meaningful and crucial to mine the knowledge hidden in the
data for stroke diagnosis and treatment. Thus, we focused on
stroke patients for representation evaluation. In the data set,
there were 8232 records involving adult patients with a primary
diagnosis of stroke (ICD-10 codes I60 to I64, I66, and I67.8
[18]). Among them, 1397 patients had a primary diagnosis of
hemorrhagic stroke (HS; ICD-10 codes I60 to I62) and 6835 of
ischemic stroke (IS; ICD-10 codes I63, I64, I66, and I67.8).

Because the Skip-gram algorithm required discrete inputs, values
of continuous features were binned into several discrete values.
Age was grouped into <18, 18-34, 35-44, 45-59, and ≥60 years.
Each laboratory test item was categorized into 2 classes (normal
and abnormal) or 3 classes (high, medium, and low) according
to the clinical laboratory test references. Other continuous
features were grouped into 4 percentile bins (quartiles), each
containing one-fourth of all samples (Table S1 in Multimedia
Appendix 1). Therefore, a feature had several discrete values
called medical concepts. For example, the feature “sex” had
two concepts, male and female. If a patient record was
considered as a sentence, the medical concepts in the record
were then considered as words in the sentence. All the records
composed the training corpus. Features involved in the
representation included demographic characteristics, hospital
admission, utilization of medical resources, disease diagnoses,
physical examinations and procedures, laboratory tests, and
medications. Features related to the patient’s outcomes,
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including LOS, hospital cost, and the discharging route, were
used to evaluate the patient representations; thus, they were
excluded from both training corpora. The full corpus consisted
of 13,757 unique medical concepts derived from 104,752 patient
records, while a subcorpus consisted of 3769 unique medical
concepts derived from records of 8232 stroke patients.

Medical concepts were initially encoded in one-hot vectors,
where the dimension of the one-hot vector equaled the number
of distinct concepts in the data set. In the one-hot code scheme,
a vocabulary of all the distinct medical concepts in the corpus
was generated first; then, each medical concept was represented
as a 0-1 vector, where the index of the target concept in the
vocabulary was set to 1, and all the others were set to 0.

Embedding-Based Representation
We used the Skip-gram algorithm [19] to learn the representation
of medical features. The Skip-gram algorithm can map words
into a low-dimensional real number space where the relevant
words were located closely. Assuming that similar words may
share similar contexts, the Skip-gram algorithm predicted
surrounding words of the current (target) word. The same
context prediction was repeated as the target word moving to
the next. The goal of the Skip-gram algorithm was to maximize
the following average log probability:

where T was the length of the sentence that contained the target
word, c (set to 5 in this study) was the size of the training context
(called window size), wt and wt+j denoted the target word and
the jth neighboring words before or after the target word in the
training context window, v represented the d-dimensional (d
was set to 200 in this study) real number vector of the word,
and W (13,757 and 3769 for full corpus and stroke corpus in
this study) was the total number of words in the corpus.

Unlike a natural language sentence with a relatively fixed word
order, a medical concept’s location in a record was appointed
manually. It was difficult to assume that the more relevant the
concepts were, the closer they were located in a record.
Therefore, medical concepts relevant to the target concept might
not appear in the training context window in Equation (1). To
reduce the impact of the concept sequence on the Skip-gram
algorithm, we used the shuffling mechanism [14] to rearrange
the order of medical concepts within each record in the corpus
randomly. The shuffled corpus was then used for training
embedding vectors. The shuffling-training process was
performed 20 times, resulting in 20 embedding vectors
corresponding to one medical concept. The average of these
vectors was considered the final embedding representation of
the concept. Because a patient could only take one medical
concept for a certain feature, the feature was therefore
represented as an embedding vector. After training with the

Skip-gram algorithm, a patient who had k medical concepts for
k features would have k real number vectors. The average of
these vectors was considered the embedding-based
representation for the patient.

Evaluation of the Representation Schemes

Evaluation of the Feature Representation
The feature representation was first evaluated visually by
mapping the d-dimensional real number vector space into a
two-dimensional space using the t-distributed stochastic
neighbor embedding (t-SNE) algorithm [14,20]. We used the
software Python 3.7 and the sklearn.manifold.TSNE tool for
the visualization. The t-SNE algorithm’s main parameters were
as follows: dimension of the embedded space=2, perplexity=30,
learning rate=200, number of iterations=1000, gradient
calculation method=Barnes-Hut, and angle=0.5. We compared
the reduction visualization of medical concepts’vectors training
with different corpora. For the purpose of clarity, 441 diagnosis
concepts that occurred in at least ten records in the stroke corpus
were mapped into the two-dimensional space. They were divided
into 14 categories according to the Clinical Classifications
Software code [21] for further analysis.

The embedding-based feature representation was then evaluated
on how it could capture the latent association among features.
We identified the 10 closest medical concepts from each of the
diagnosis, laboratory test, physical examination and procedure,
medication, and other feature categories in the low-dimensional
embedding space for two index diagnosis concepts:
subarachnoid hemorrhage (SAH) and occlusion and stenosis of
middle cerebral artery (OSMCA). The similarities between the
index diagnosis concepts and others were measured by cosine
similarity, which was suitable for numerical vectors.

Evaluation of the Patient Representation
The distributed embedding technique had the advantage of
revealing the potential relevance among samples [19], and the
unsupervised clustering analysis was a machine learning task
that depended more on the sample relevance. Therefore,
clustering analysis was used for determining whether the
proposed patient representation had a certain advantage in
revealing the potential relevance among patients, thus making
the clustering solution more aggregative. For the purpose of
comparison, 6 embedding-based patient representation schemes
and 2 reference schemes were employed. Four embedding-based
representations were generated using the initial full corpus, the
initial stroke corpus, the shuffled full corpora, and the shuffled
stroke corpora as the training corpus. Additionally, to explore
the impacts of the numbers of features included in the training
context on the representations, we also designed two
representation learning schemes that used the initial full and
stroke corpora with the maximum window sizes of 255 and 224,
respectively. The maximum window size was the length of the
record that had the most medical concepts in the corpus. Two
commonly used data representation methods were used as the
reference methods; one was the multi-hot representation, which
was the bitwise summations of one-hot codes for all features,
and the other was the mixture of multi-hot codes for discrete
features and original values for continuous features. In the
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mixture representation, we selected 59 laboratory tests in at
least 90% of stroke patients. Missing values in the laboratory
tests were interpolated using the median of the corresponding
laboratory tests. Figure S1 in Multimedia Appendix 1 depicts
the representation schemes used in this study with simple
examples.

We conducted k-means clustering analyses on the stroke
patients, using cosine distance for the embedding-based
representations, Jaccard distance [22] for the multi-hot
representation, and Jaccard distance (for discrete features) plus
cosine distance (for continuous features) for the mixture
representation. We evaluated clustering solutions by Hopkins
statistics [23], Silhouette index (SI) [24], and Davies-Bouldin
index (DBI) [24]. Hopkins statistics describe the uniformity of
data for clustering, while the SI validates the consistency within
clusters, and the DBI measures the average similarity between
each cluster and the one that most resembles it. The values of
Hopkins statistics and DBI range from 0 to 1, while the value
of SI ranges from −1 to 1. Higher Hopkins statistics and SI and
lower DBI suggest better clustering results. SI was also used to
compare k-means clustering solutions for different values of k
to determine the optimal number of clusters in this study. The

features related to the patient’s outcomes were compared to
identify the differences between the clusters. Clustering
solutions were also assessed concerning the clinical
characteristics, including demographic characteristics, utilization
of medical resources, disease diagnoses, laboratory tests,
procedures, and patient outcomes. Differences in these clinical
features were compared among clusters by statistical tests,
aiming to confirm whether the knowledge discovered by the
clustering analyses was consistent with the clinical facts or new
to the medical domain.

Results

Feature Representation Visualization
Figure 1 shows the embedding vectors for disease concepts
trained with different corpora in the two-dimension space.
Vectors for disease concepts trained with the stroke corpus
(Figures 1D and E) were more concentrated than those with the
full corpus (Figures 1A and B). Further, disease vectors trained
with the shuffled full corpus (Figure 1A) showed stronger
disease aggregation compared with those trained with the initial
full corpus (Figure 1B) and those trained with the full corpus
using the maximum window size (Figure 1C).

Figure 1. Embedding vectors of diagnosis concepts in the t-distributed stochastic neighbor embedding space. The embedding vectors were trained by
Skip-gram algorithm with a window size of 5 from (A) the shuffled full corpora, (B) the initial full corpus, (D) the shuffled stroke corpora, and (E) the
initial stroke corpus, with a window size of 255 from (C) the initial full corpus, and with a window size of 224 from (F) the initial stroke corpus.
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As shown in Figure 2B, most of the disease concepts related to
hemorrhagic stroke (red dots) and cardiovascular disease (orange
dots) were concentrated inside the red and orange circles,
respectively, suggesting that disease concepts of the same
categories were more likely to come together in the embedding
space. Further, the nearby medical concepts in the embedding
space were usually clinically correlated. For example, in the
embedding space, the disease concepts coded by different
ICD-10 codes but in the same rough disease category were able

to gather together (eg, circulatory system disease with ICD-10
codes beginning with Q2 and I in Figure 2A). Additionally, as
shown in Figure 2C, diseases of abnormal perception symptoms
and signs such as coma (ICD-10 code, R40.205), tetraplegia
(G82.501), and malaise and fatigue (R53xx09) were adjacent
to cerebrovascular diseases of intracerebral hemorrhage
(I61.002, I61.005, I61.601, and I61.902) and cerebral infarction
(I63.905). This was consistent with the clinical facts [25].

Figure 2. Visualization of the selected 441 diagnosis concepts in the embedding space. (A) and (C) are the locally enlarged areas in black rectangle
boxes of (B), in which the embedding vectors were trained from the full corpus with the concept shuffling and were projected to a place by the t-distributed
stochastic neighbor embedding technique.

Features Correlation Analysis
Table 1 lists the 3 closest medical concepts (from different
feature categories) to two cerebrovascular diseases: SAH and
OSMCA. Among medical concepts of different categories, even
if heterogeneous, clinically relevant concepts could be identified
by the cosine similarity among concept vectors. For example,
the closest laboratory tests to SAH were red and turbid
cerebrospinal fluid, consistent with clinical fact. Moreover, the
embedding vectors could reveal more detailed information about
the medical concepts in the same rough category. For two
diagnosis concepts of typical cerebrovascular diseases, SAH
and OSMCA, the closest procedures were aneurysm clipping

and percutaneous drug-eluting stent implantation, which were
usually used for treating SAH and OSMCA in clinical,
respectively. Besides, the closest concepts to the same index
concept were not precisely the same when their representations
were training with the full and stroke corpus, but both were
clinically relevant to the index concept. We also noticed that
the cosine similarities between the index concept and their
closest concepts in the stoke corpus were larger than in the full
corpus. For example, the average of the similarities of the
disease SAH and its 15 closest medical concepts were 0.910
and 0.973 in the full and the stroke corpus, respectively. Table
S2 in Multimedia Appendix 1 shows the 10 medical concepts
closest to SAH and OSMCA for each feature category.
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Table 1. The 15 closest medical concepts whose embedding representations were trained with the full corpus and the stroke corpus of the disease
concepts subarachnoid hemorrhage and the occlusion and stenosis of middle cerebral artery.

Subarachnoid hemorrhageOcclusion and stenosis of middle cerebral arteryCategory

SimilarityClosest conceptbSimilarityClosest conceptaSimilarityClosest concepta

0.976Subarachnoid hemorrhage
from posterior communicat-
ing artery

0.932Subarachnoid hemorrhage
from anterior communicat-
ing artery

0.964Occlusion and stenosis of anterior
cerebral artery

Disease

diagnoses

0.975Subarachnoid hemorrhage
from anterior communicat-
ing artery

0.929Subarachnoid hemorrhage
from posterior communicat-
ing artery

0.962Occlusion and stenosis of multiple and
bilateral cerebral arteries

0.971Aneurysm0.925Bronchitis, not specified
as acute or chronic

0.958Occlusion and stenosis of posterior
cerebral artery

0.975Cerebrospinal fluid trans-
parency: turbid

0.933Cerebrospinal fluid color:
red

0.915Platelet aggregation test with turbidime-
try: high

Laboratory
tests

0.959Cerebrospinal fluid color:
blood color

0.904Cerebrospinal fluid trans-
parency: turbid

0.914Plasma protein C: high

0.958White blood cell count in
cerebrospinal fluid: high

0.863Cerebrospinal fluid color:
orange

0.910Platelet aggregation test with turbidime-
try: low

0.986Embolization of intracranial
aneurysm

0.985Embolization of intracra-
nial aneurysm

0.861Percutaneous drug-eluting stent implan-
tation

Procedures

0.974Aneurysm clipping0.974Aneurysm clipping0.848Percutaneous drug-eluting stent implan-
tation of subclavian artery

0.965Skull titanium plate place-
ment

0.960Embolization of intracra-
nial vessels

0.822Transcranial angioplasty

0.987Tramadol0.938Hypertonic sodium chlo-
ride hydroxyethyl starch
40 injection

0.938Probucol tabletMedications

0.983Fasudil0.895Nimodipine0.924Songling Xuemaikang capsulec

0.982Dezocine injection0.894Fructose sodium diphos-
phate injection

0.920Yufeng Ningxin Drop Pillsc

0.976ICU of Neurosurgery depart-
ment

0.924Neurosurgery ICUd0.858Allergic to metforminOthers

0.964Discharge department: Neu-
rosurgery department

0.796Ventilator utilization0.852Allergic to vinpocetine

0.962Admission department:
Neurosurgery department

0.796Discharge department:
Neurosurgery department

0.852Allergic to iopromide

aEmbedding vectors of concepts were trained with the full corpora.
bEmbedding vectors of concepts were trained with the stroke corpora.
cTraditional Chinese medication.
dICU: intensive care unit.

Patient Clustering Analysis
In the k-means clustering analyses, the optimal k was determined
to be 2, where the corresponding SI value was the highest when
k changed from 2 to 15 in each of the representation schemes
(Figure S2 in Multimedia Appendix 1). The greatest values of

Hopkins statistics (0.931) and SI (0.862) and the lowest value
of DBI (0.551) were seen in the clustering solution in which
patients were represented by the embedding vectors (Table 2),
suggesting that patients with the embedding vectors could be
clustered with higher uniformity and aggregation and lower
dispersion.
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Table 2. Clustering performance on interval evaluation indexes based on various patient representations.

Cluster evaluation indexesParameters for trainingRepresentation schemes

Davies-Bouldin indexSilhouette indexHopkins statisticWindow sizeCorpus with shufflingCorpus used

1.0670.7830.9225YesFullEmbedding-based

representation

0.551b0.862a0.9135YesStroke

1.7110.6850.9035NoFull

1.3820.6720.9255NoStroke

1.0650.7830.922255NoFull

0.7720.7900.931c224NoStroke

3.2360.2330.813N/AN/AN/AeMulti-hot representationd

4.1570.1410.918N/AN/AN/AMixture representationf

aHighest value of the Silhouette index.
bLowest value of the Davies-Bouldin index.
cHighest value of the Hopkins statistic.
dMulti-hot representation: representation method of the combinations of one-hot codes.
eN/A: not applicable.
fMixture representation: representation method of the combination of multi-hot codes for discrete features and real numbers for continuous values of
age and laboratory tests.

Among the 8 clustering solutions, cluster 1 contained an average
of 6869 (range 6214-7704) patients, of whom 92.2% (range
85.5%-95.7%) had a primary diagnosis of IS. Cluster 2
contained an average of 1363 (range 528-2018) patients, of
whom 63.1% (range 51.2%-74.5%) had a primary diagnosis of
HS. Therefore, we used IS as the label of patients in cluster 1
and HS as the label of patients in cluster 2. Among the
embedding-based representations, the representation trained
with the shuffled full corpus reached the greatest F1 scores of
0.944 and 0.717 for clusters 1 and 2, respectively (Table 3). In
this clustering solution, 95.0% (6495/6835) of the IS patients
and 69.4% (970/1397) of the HS patients were correctly grouped
into clusters 1 and 2, respectively. Among the patients
(340/6835, 5.0%) with a primary diagnosis of IS who were
grouped into cluster 2, 9.4% (32/340) of them had HS as the
secondary diagnosis. Meanwhile, among the patients (427/1397,
30.6%) with a primary diagnosis of HS who were grouped into
cluster 1, 48.9% (209/427) of them had IS as the secondary

diagnosis. In this situation, the clustering performance might
be underestimated.

Between clusters 1 and 2 of stroke patients represented by the
embedding vectors learned from shuffled full corpus, there were
significant differences in mortality rate (45/6922, 0.65% vs
91/1310, 6.95%, P<.001), cost per hospital stay (17.7 vs 113.0
thousand yuan renminbi, P<.001), and LOS (9.8 vs 12.6 days,
P<.001). Patients in cluster 2 occupied more medical resources
than those in cluster 1 concerning the ventilator (544/1310,
41.5% vs 105/6922, 1.5%, P<.001) and intensive care unit
(1025/1310, 78.2% vs 353/6922, 5.1%, P<.001). This might
partially be linked to the fact that patients in cluster 2 usually
also had such acute diseases as pneumonia (189/1310, 14.4%
vs 318/6922, 4.6%, P<.001), while patients in cluster 1 had
chronic diseases like paralysis (3735/6922, .54.0% vs 119/1310,
9.1%, P<.001). Table S3 in Multimedia Appendix 1 depicts
more comparisons.
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Table 3. Clustering performance on interval evaluation indexes based on various patient representations.

Evaluation indexesCluster 2 patients, nCluster 1 patients, nTrue labelParameters for trainingRepresentation

F1 scoreRecallPrecisionWindow sizeShuffleCorpus used

0.944b0.9500.9383406495ISa5YesFullEmbedding-
based

0.717d0.6940.740970427HSc

0.9420.9550.9283056530IS5YesStroke

0.6870.6380.745891506HS

0.9060.9640.8552486587IS5NoFull

0.2910.2000.5302801117HS

0.9240.9470.9033636472IS5NoStroke

0.5680.5000.658698699HS

0.9250.9220.9275306305IS255NoFull

0.6390.6470.630904493HS

0.9320.9330.9324576378IS224NoStroke

0.6680.6660.671930467HS

0.8970.8590.9389615874ISN/AN/AN/AfMulti-hote

0.5990.7220.5121009388HSN/AN/AN/A

0.9110.8700.9578905945ISN/AN/AN/AMixtureg

0.6610.8070.5591128269HSN/AN/AN/A

aIS: ischemic stroke.
bHighest F1 score for cluster 1.
cHS: hemorrhagic stroke.
dHighest F1 score for cluster 2.
eMulti-hot: representation method of the combinations of one-hot codes.
fN/A: not applicable.
gMixture: representation method of the combination of multi-hot codes for discrete features and real numbers for continuous values of age and laboratory
tests.

Discussion

Principal Findings
Representation for structured medical data is critical for data
mining tasks in the medical domain [3,5,6,14]. The one-hot
code scheme is a simple and widely used representation.
However, it may be unsuitable for the complex and diverse
EMR data due to its high dimensionality and sparsity. Analyses
of massive one-hot coded data may require greater
computational power because of not only their high-dimensional
and sparse nature but also the unclear potential relevance of the
data [26]. Therefore, many studies have focused on effective
and efficient data representation. In this study, we adopted an
embedding-based method derived from NLP techniques to
represent the structured patient data. The proposed
representations brought a deep and intuitive insight into
associations among medical concepts and a great performance
improvement in a similarity-based data mining task.

The distributed embedding representations have the merits of
low dimensionality and the capability for revealing the latent
relationship among the represented objects [19]. Thus, the
embedding-based or deep learning–based representation has

been widely used in various applications, especially in the
clinical NLP domains, to represent unstructured medical texts,
including biomedical publications [27], clinical notes [28], and
radiology reports [29-31]. With these representations,
researchers could perform feature engineering with less expert
effort and transform raw texts into low-dimensional dense
vectors with clinical meanings and further identify implicit
patterns in patients. Inspired by the representation learning from
the unstructured medical data, researchers adopted these
representation methods for structured medical data, including
medical codes such as diagnosis codes, procedure codes, and
drug codes [5,32], laboratory tests [12], and time-related data,
which was informative for patients [1,12,33,34].

In this study, we borrowed the idea from this originally
text-oriented technique and applied it to sEMR data with diverse
patient features. We embedded each medical concept into a
low-dimensional real number vector using the Skip-gram
algorithm. Both the visualized and quantitative analyses showed
that the embedding-based feature representation provided a
relatively clear understanding of the associations and
connections among the medical concepts, which were consistent
with medical knowledge and clinical practice. On the other
hand, clustering solutions on patients represented with
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embedding vectors showed a better clustering nature than those
expressed with multi-hot vectors. The embedding-based
representation showed advantages in dimension reduction and
in the convenience of numerical computation and association
mining in this study.

An informative representation was usually derived from different
modalities and medical data sources, such as cross-sectional
and longitudinal data, and quantitative indexes and narrative
notes. In this study, demographic characteristics, diagnoses,
physical examinations and procedures, laboratory tests,
medications, and hospital admission and discharge were all
brought into the feature representation learning. A particular
and unavoidable characteristic of laboratory tests was that
patients might take different laboratory test items according to
the need for diagnosis and treatment. This must result in lots of
missing values for laboratory tests. The joint use of the
discretization of continuous values and the Skip-gram algorithm
solved the problem, making all the available features to be fully
used. Clustering analyses showed that patients represented by
embedding vectors were more likely to cluster together than
those represented in the original form, where about
three-quarters of laboratory tests were dropped due to missing
values. It may partially attribute to the inclusion of all the
features and discretization of the continuous features.

When using the Skip-gram algorithm for representation learning
for sEMR data, several adaptive changes had been made. First,
we applied the shuffling mechanism when building the training
corpus to reduce the impact of the concept order on the coverage
of the training context. Glicksberg et al [14] randomly shuffled
the medical concepts within a time interval. We further extended
the idea of shuffling concepts. The medical concepts were
rearranged randomly within a patient record 20 times. The
resulting 20 embedded vectors for each medical concept trained
with different shuffled corpora were then averaged as the final
embedding vector. Results from several evaluation tasks showed
that the shuffling-based representation at both the feature and
patient level had a more satisfactory performance compared
with their not shuffling-based counterparts.

In the Skip-gram algorithm, the range of training context was
also crucial to the algorithm performance. For the same reason
as for using a shuffling method, we set the window size to the
maximum to have the training context covered the most
neighboring concepts. However, there was no outstanding
performance improvement in the clustering task. The finding
was consistent with other studies [33,35] that found
performances got worse as the window size increased. It
indicated that wide training context might introduce redundant
information or even noise to the training. Besides, the corpus
used in the Skip-gram algorithm was also linked to the

performance improvement on the clustering task in this study.
Stroke patients whose representations were trained with the
corpus including all the patient records were clustered into two
groups with higher aggregation and lower dispersion than those
whose representations were trained with the corpus including
only stroke patients’ records. The finding was similar to that of
a study by Yanshan Wang et al [27] that the embedding-based
representation from the public domain corpora showed more
satisfactory results in biomedical information retrieval than
from the biomedical domain corpora.

Limitations
Our study had some limitations. First, we did not use
time-oriented patient records with critical importance for
evaluating the patient course and prognosis. The history of
medical events may affect future medical events; these medical
sequence data are crucial for clinical diagnosis and treatment.
Rich time-oriented data, including time-series features in an
inpatient record and the temporality between multiple inpatient
records, were used for learning patient representations by some
algorithms targeted at sequence data, such as recurrent neural
network [12], time-aware attention method [33], Deepr [36],
and Patient2Vec [37]. Those time-related representations, which
captured patients’ sequential information from a longitudinal
perspective, could be used for supervised prediction tasks
[12,36,37], and the unsupervised task-like disease clustering
analyses at the feature level [33]. In contrast, we just took the
cross-sectional data with diverse feature types of patients,
focusing on a certain hospitalization’s static characteristics, into
the effective representations by Skip-gram algorithm at both
feature and patient levels. Second, a patient representation was
just a simple average of the embedding vectors for features with
equal weights. This may be not completely consistent with the
fact that clinical features may have different importance to the
diagnosis of a specific disease. Last, we only evaluated the
effectiveness of the embedding-based patient representation
with clustering analysis. The proposed patient representation
needs more validation in various clinically meaningful tasks.

Conclusions
In this study, we applied an embedding technique in learning
the patient representation from sEMR data with different types
of clinical features. With the original Skip-gram algorithm’s
adaptive changes, the embedding-based representations could
somehow reflect the potential associations among features and
patients. The performance improvement in a clinically
meaningful clustering task suggested the proposed patient
representation’s effectiveness and efficiency. It is expected that
the embedding-based representation will be helpful in a wide
range of secondary uses of EMR data.
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