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Abstract

Background: Minimizing adverse reactions caused by drug-drug interactions (DDIs) has always been a prominent research
topic in clinical pharmacology. Detecting all possible interactions through clinical studies before a drug is released to the market
is a demanding task. The power of big data is opening up new approaches to discovering various DDIs. However, these data
contain a huge amount of noise and provide knowledge bases that are far from being complete or used with reliability. Most
existing studies focus on predicting binary DDIs between drug pairs and ignore other interactions.

Objective: Leveraging both drug knowledge graphs and biomedical text is a promising pathway for rich and comprehensive
DDI prediction, but it is not without issues. Our proposed model seeks to address the following challenges: data noise and
incompleteness, data sparsity, and computational complexity.

Methods: We propose a novel framework, Predicting Rich DDI, to predict DDIs. The framework uses graph embedding to
overcome data incompleteness and sparsity issues to make multiple DDI label predictions. First, a large-scale drug knowledge
graph is generated from different sources. The knowledge graph is then embedded with comprehensive biomedical text into a
common low-dimensional space. Finally, the learned embeddings are used to efficiently compute rich DDI information through
a link prediction process.

Results: To validate the effectiveness of the proposed framework, extensive experiments were conducted on real-world data
sets. The results demonstrate that our model outperforms several state-of-the-art baseline methods in terms of capability and
accuracy.

Conclusions: We propose a novel framework, Predicting Rich DDI, to predict DDIs. Using rich DDI information, it can
competently predict multiple labels for a pair of drugs across numerous domains, ranging from pharmacological mechanisms to
side effects. To the best of our knowledge, this framework is the first to provide a joint translation-based embedding model that
learns DDIs by integrating drug knowledge graphs and biomedical text simultaneously in a common low-dimensional space. The
model also predicts DDIs using multiple labels rather than single or binary labels. Extensive experiments were conducted on
real-world data sets to demonstrate the effectiveness and efficiency of the model. The results show our proposed framework
outperforms several state-of-the-art baselines.

(JMIR Med Inform 2021;9(6):e28277) doi: 10.2196/28277
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Introduction

An increasing amount of research in clinical studies is focusing
on drug-drug interactions (DDIs) because the majority of
adverse drug reactions (ADRs) occur between pairs of drugs.
ADRs may lead to patient morbidity and mortality, accounting
for 3% to 5% of all in-hospital medication errors [1].
Furthermore, patients with 2 or more diseases (eg, older adult
patients with chronic diseases) have a higher risk of an ADR if
they take 5 or more different drugs simultaneously [2,3].
Detecting DDIs based on experimentation is a time-consuming
and laborious process for clinicians. This signals the need for
a more comprehensive and automated method of predicting
unknown DDIs before a new drug can be released.

Traditional experimental approaches in vitro [4], in vivo [5],
and in populo [6] focus on small sets of specific drug pairs and
have laboratory limitations. Many machine learning approaches,
such as similarity or feature-based approaches [7-9], have been
proposed to predict DDIs. Recently, several graph neural
networks and long short-term memory methods based on
knowledge graphs (KGs), such as KG neural network [10] and
KG-DDI [11], have significantly outperformed traditional
shallow machine learning methods. The superior performance
of these proposed methods can be attributed to their use of the
prior knowledge and learning of higher-level representations
for DDI detection. However, as these approaches only predict
binary DDIs or those that have been predefined in structured
databases, they may be hampered by robustness caused by data
sparsity and vast computation requirements. Although several
approaches [12-14] have used natural language processing
techniques to extract DDIs from biomedical text, to the best of
our knowledge, they have not employed drug KGs to improve
performance.

With the increasing emergence of biomedical data, many
world-leading biomedical researchers are now focusing on
automatically populating and completing biomedical KGs using
the huge volume of structured databases and text available to
the public. HKG [15], Knowlife [16], and DrugBank [17] are
just a few examples. Efforts such as Bio2RDF [18] and Linked
Open Drug Data [19] have mapped similar entities in different
KGs and built large heterogeneous graphs that contain an
abundance of basic biomedical facts about drugs. SPARQL
[20], a query language for KGs, supports the retrieval and
manipulation of drug-related facts distributed over different
KGs. Unfortunately, these biomedical KGs are affected by
incomplete and inaccurate data that impede their application in
the field of safe medicine development.

Existing KGs already include thousands of relation types,
millions of entities, and billions of facts [19]. As noted, KG
applications based on conventional graph-based algorithms are
restricted by data sparsity and computational inefficiency. To
address these problems, graph embedding techniques [9,21-26]
based on representation learning for KGs have been proposed
that embed both entities and relations into a continuous
low-dimensional vector space. Among these methods,

translation-based models [9,22,24] are the most simple and
effective. Currently, they represent the state-of-the-art in
knowledge acquisition and inference and link prediction [9]. In
light of these analogies, DDIs can be treated as a category of
relations in a drug KG, and KG embedding techniques can be
used to predict unknown DDIs. However, most translation-based
methods only concentrate on predefined relations or unstructured
text and fail to exploit the link between existing relations and
rich unstructured text.

Leveraging both drug KGs and biomedical text is a promising
pathway for rich and comprehensive DDI prediction, but it is
not without issues. Our proposed model seeks to address the
fo l lowing  cha l l enges :  da ta  no i se  and
incompleteness—real-world KGs are known to be inaccurate,
incomplete, and unreliable for direct use; data sparsity—the
potential DDI information in both KGs and biomedical text is
sparse, and estimating the potential DDIs in such a long-tailed
distribution is difficult ;  computational
complexity—undoubtedly, this will be precluded from practice
if graph-based algorithms are employed to process large-scale
KGs or represent data objects with simple one-hot feature
vectors.

Given these challenges, we propose a novel framework called
Predicting Rich DDI (PRD). The framework is based on graph
embedding techniques and treats specific DDI predictions as a
linked prediction process. The proposed framework proceeds
as follows: A large, high-quality drug KG is generated from
distributed drug resources, which includes data on drug-target
interactions, the impact of drugs on gene expression, the
outcomes of drugs in clinical trials, and so on. A novel
translation-based embedding model embeds the entities and
relations in the drug KG into a low-dimensional space, and an
autoencoder incorporates the descriptions of the DDIs from
biomedical text as representations into the same semantic space.
The decoder predicts the corresponding labels for potential DDIs
based on the learned embeddings.

To the best of our knowledge, our PRD approach is the first
method that is able to predict comprehensive and specific DDIs
based on large-scale drug KGs and comprehensive biomedical
text on pharmacology and ADRs. Our method further includes
a joint translation-based embedding model that encodes the KG
and rich DDI information from biomedical text into a shared
low-dimensional space. The DDI predictions are then translated
into a linked prediction process from the learned embeddings.
Extensive experiments on real-world data sets were conducted
to evaluate the framework. The results show that the framework
can be powerful in predicting rich DDIs and outperforms several
state-of-the-art baselines in terms of both capability and
accuracy.

Methods

Figure 1 shows the architecture of the proposed framework. It
consists of 3 key phases: drug KG generation, joint embedding
learning, and DDI relations prediction.
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Figure 1. Overview of the framework. DDI: drug-drug interaction.

Drug KG Generation
A typical KG usually arranges knowledge as a triple set of facts
that indicates the relation between 2 entities, and thus comprises
a head entity, a relation, and a tail entity. These are denoted as
(h, r, t).

First, a basic drug KG is constructed by collecting drug-related
entities and relations among these entities. We follow the data
model of drug-related extraction settings defined in the work
of Kamdar and Musen [27], in which the types of entities or
relations are summarized in the fashion depicted in Table 1.
Specifically, we use SPARQL federation queries [20] to extract
triples that contain 4 types of drug-related entities (E1~E4) and

5 types of biological relations (R1~R4) from a variety of
biomedical sources (eg, Bio2RDF [18]). These extracted triples
are defined as basic triples in our drug KG according to
definition 1: (basic triple) B = (E, R) is a set of basic triples in
the form (h, r, t), where E = E1∪ E2 …∪ E4 is a set of entities;
and R = R1 ∪ R2…∪ R5 is a set of relations, h, t ∈ E, and r ∈
R.

For instance, we can extract “(etanercept, hasTarget,
lymphotoxin-alpha)” as a basic triple in our drug KG, which
indicates that there is a relationship “hasTarget” linking
etanercept to lymphotoxin-alpha, meaning that
lymphotoxin-alpha is one of the targets of etanercept.

Table 1. Entities and relations of basic triples in Kamdar and Musen [27].

Entity or relation interpretationVariable

E

DrugsE1

DrugsE2

PathwaysE3

PhenotypesE4

R

Drug, hastarget, proteinR1

Drug, hasenzyme, proteinR2

Drug, hastransporter, proteinR3

Protein, ispresentin, pathwayR4

Pathway, isimplicatedin, phenotypeR5

A specific DDI between 2 drugs can be captured by multiple
key phrases extracted from biomedical text, as shown in Figure
2. Hence, we collect biomedical DDI text documenting drug
pairs (eg, DDI corpus [28], MEDLINE abstracts, and DrugBank
DDI documents). We remove all stop words from raw text and
use an entity linking method [29] to align the drug names in the

biomedical text with the KG. The top-n labels (n=5) are then
selected from the biomedical text for each DDI based on the
term frequency-inverse document frequency (TF-IDF) features
(some other textual features can be used to rank the labels
instead).
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Figure 2. A drug knowledge graph is shown on the left with missing relations represented as dotted lines. There is usually no direct DDI relation
between drugs. DDI descriptions from the biomedical text are shown on the right. The words in red represent concerns regarding DDI information in
terms of both adverse DDIs and in-depth ways drugs can interact in pharmacology. DDI: drug-drug interaction.

Based on this, the DDI relations between drug entities are
defined as a set of labels rather than as a single label according
to definition 2: (rich DDI triple) T = (E1, L) is a set of rich DDI
triples in the form (u, l, v), where E1 is a set of drug entities; L
is a fixed label vocabulary from biomedical text; and u, v ∈ E1

and l = {n1, n2, …} ⊆ L is the set of labels to describe the DDI
information.

For instance, the following is an example of a rich DDI triple:
(etanercept, {immunosuppressants, enhancetoxicity, anemia,
infections}, leflunomide), where “enhancetoxicity” means
etanercept can enhance the toxicity of leflunomide. Note that
the DDI relations between 2 drugs are bidirectional; hence, our
method replaces each rich DDI relation with 2 directed triples
of opposing directions in the drug KG.

Formally, the generated drug KG is defined according to
definition 3 (drug KG): the drug KG, G, is denoted as (E, B, T),
where E = E1 ∪ E2…∪ E4 is a set of entities, B is a set of basic
triples, and T is a set of rich DDI triples.

Joint Embedding Learning
KG embedding mainly consists of 3 steps: representation of
entities and relations, definition of a scoring function, and
encoding of the entity and relation into dense vectors. This
section introduces the translation-based KG embedding model
that learns representations from the drug KG, G = (E, B, T) and
the optimization described in the following sections.

Basic Triple Encoder
For a set of basic triples, B, the method aims to encode entities
and relations into a continuous vector space. This paper, without
loss of generality, uses the bold letters h, r, t to denote the
embedding vectors h, r, t. We adopt the translation-based
mechanism h+r≈t to capture the correlations between entities
and relations. Translation in this context refers to a translation
operation r between 2 entity vectors h and t in the
low-dimensional space. We follow the TransR model in Lin et

al [22] to represent entities and relations in distinct vector spaces
bridged by relation-specific matrices so as to learn more
thorough graph representations. Specifically, for each triple, (h,

r, t) ∈ B, h and t are embedded into h, t ∈ Rk, and r is embedded

into r ∈ Rd. For each relation r, a projection matrix Mr ∈ R (k×d)

×projects entities from the entity space to the relation space.
The energy function zbte (h, r, t) is then defined as follows:

zbte (h, r, t) = b1 – ‖hMr + r – tMr ‖(L1/L2) (1)

where b1 is a bias constant.

The conditional probability of a triple h, r, t is defined as
follows:

(2)

P(t|h, r), P(r|h, t) can be defined in an analogous manner. The
likelihood of observing a triple (h, r, t) is defined as follows:

L(h, r, t) = logP(h│r, t) + logP(t│h, r) + logP(r│h,
t) (3)

By maximizing the conditional likelihoods of all existing triples
in B, the objective function is defined as follows:

(4)

It is worth mentioning that other graph embedding models, such
as HOLE [23], can also be easily adopted for basic triple
encoding. In the interest of brevity, this paper only explores the
effectiveness of TransR.

Rich DDI Triple Encoder
The interaction l between 2 drug entities, u and v, in rich DDI
triples (u, l, v), ∈T, can also be represented as translations in

low-dimensional space. We set u, v∈ Rk, l∈ Rd. The energy
function zdte (u, l, v) is defined as follows:
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zdte (u, l, v) = b2 – ‖uMr + l – vMl ‖(L1/L2) (5)

where b2 is a bias constant and Ml = R×d is the projection matrix.
Following the analogous method in the basic triple encoder, the
conditional likelihoods of all existing triples are maximized as
follows:

(6)

Note, in equation 5, l is the relation representation obtained
from l = {n1, n2,…}. This will be introduced in-depth next.

A deep autoencoder is employed to construct the relation

representation l∈Rd for a rich DDI triple (u, l, v) ∈ T.
Specifically, a DDI relation, l, is described by a set of labels l
= {n1, n2,… } ⊆ L. The corresponding binary vector for l is

initialized as s = , where si = 1 if ni ∈ l, and si = 0 otherwise.
The deep autoencoder then takes the binary vector s as input
and uses the following nonlinear transformation layers to

transform the label set into the low-dimensional space Rk:

h(1) = f(W(1) s + b(1))

h(i) = f(W(i)h(i–1) + b(i)), I = 2, …, K (7)

where f is the activation function and K is the number of layers.

Here, h(i), W(i), and b(i) represent the hidden vector,
transformation matrix, and the bias vector in the i-th layer,
respectively.

There are 2 parts to the autoencoder: an encoder and a decoder.
The encoder employs the tanh activation function to obtain the

DDI relation representation l = h(K/2). The decoder deciphers

the embedding vector of l to obtain a reconstructed vector .

Intuitively, PRD should then minimize the distance 

because the reconstructed vector should be similar to s.
However, the number of zero elements in s is usually much
larger than that of nonzero elements due to data sparsity. This
leads the decoder to tend to reconstruct zero elements rather
than nonzero elements, which conflicts with our purpose. To
overcome this obstacle, different weights are set for different
elements, and the following objective function is maximized:

(8)

where b3 is a bias constant, x is a weight vector, and ⊙ is

denoted as the Hadamard product. For x = , xi = 1, if si =
0, and xi = β > 1 otherwise. According to equation 8, the

probability of P can be defined as follows:

(9)

where S is the set of binary vectors of all DDI relations. The
likelihood of reconstructing the binary vector s of a relation l
can be defined as follows:

L(l) = logP (10)

By maximizing the likelihoods of the encoding and the decoding
for all described relations l, the objective function can be defined
as follows:

(11)

Joint Learning and Optimization
The goal of the framework PRD is to not only represent the
basic triples (drug KG B) but also the rich DDI triples
(biomedical text T) in a unified joint embedding model.
Considering the above 3 objective functions (equations 4, 6,
and 11) together, the optimization function is defined as follows:

O(X) = Lbte + Ldte + Lrcl + γC(X) (12)

where X represents the embeddings of entities and relations,
and γ is a hyper-parameter that weights the regularization factor
C(X), which is defined as follows:

C(X) = (13)

where [x]+ = max(0, x) denotes the positive part of x. The
regularization factor will normalize the embeddings during
learning. We adopted the approach by Srivastava et al [30] to
prevent deep neural networks from overfitting and used the
Adam algorithm [31] to maximize the objective function.

It is impractical to directly compute the normalizers in P(h│r,

t), P(t│h, r), P(r│h, t), and P , as calculating them would
require summing the complete set of entities and relations. To
address this problem, we use the negative sampling method
from Mikolov et al [32] to transform the objective functions.
Taking P(h│r, t) as an example, the following objective
function is maximized instead of using its original form:

logσ(zbte (h, r, t))

(14)

where c is the number of negative examples, σ(x) = 1/(1 +

exp(–x)) is the sigmoid function, is the invalid triple set,

and zneg is a function randomly sampling instances from .
When a positive triple (h, r, t) ∈ B is selected to maximize
equation 14, c-negative triples are constructed by sampling
entities from a uniform distribution over E and replacing the
head of (h, r, t). The objective functions of P(r│h, t), P(t│h,

r), logP , and L(u. l. v) are transformed and maximized in
an equivalent manner. Finally, PRD iteratively selects random
mini-batches from the training set to learn the embeddings
efficiently until convergence.

DDI Relations Prediction
The DDI prediction task can be defined as a link prediction
problem on KG; that is, with the learned deep autoencoder and
the embedding vectors of all entities and relations, the
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framework PRD can leverage the translation mechanism to
predict the missing DDI relations between 2 drug entities. To
be more specific, given 2 drug entities u, v∈E1, the following
equation predicts the potential relation embedding l between u
and v.

l = vMl – uMl (15)

Finally, with the decoder part of the learned deep autoencoder,
PRD can obtain the label set l by decoding the embedding vector
l.

Results

To examines the effectiveness of the DDI prediction framework
PRD, we performed 2 types of experiments. First, we compared
the performance of our model to several baseline methods on
binary-type DDI predictions. We then investigated PRD’s
strengths in modeling rich DDI relations between drug entities.
The results demonstrate that PRD significantly outperformed
the baselines in terms of both accuracy and capability.

Data Construction
Experiments in this paper were performed on 2 real drug-related
data sets, Bio2RDF [18] and DDI Corpus [28].

Bio2RDF (version 4) is an open-source project that provides
11 billion triples from 35 biological and pharmacological KGs
across a wide variety of drug-related entities, such as proteins,
targets, and diseases. It is accessible online via the SPARQL
endpoint.

DDI Corpus (2013 version) is a semantically annotated corpus
of documents describing DDIs from the DrugBankdatabase and
MEDLINE abstracts. It contains 233 MEDLINE abstracts and
784 DrugBank texts on the DDIs subjects. There are a total of
5021 annotated DDIs in 18,491 pharmacological sentences.

Following the federation queries in Kamdar and Musen [27],
we extracted basic triples for our drug KG from 4 different KGs
in Bio2RDF: (1) DrugBank [17] provides comprehensive data
about drug, disease, and target information; (2) Kyoto
Encyclopedia of Genes and Genomes [33] offers pathways,
proteins, and drugs information; (3) PharmGKB [34] contains
protein-drug-disease relations; (4) Comparative Toxicogenomics
Database ([35] provides data about protein interactions and
pathway-disease relations.

For the rich DDI triples, we collected 4694 DrugBank DDI
sentences about 8197 drugs from the DDI corpus. The top 5
labels from each sentence were selected based on TF-IDF to
construct rich DDI triples and build the DDI label vocabulary.
To overcome the issue of inconsistent drug names between basic
triples and rich DDI triples, we applied the entity linking method
[29] to align the drug aliases.

The drug KG we constructed contains 71,460 basic triples, 4694
rich DDI triples, 8197 drug entities, 305,642 other entities, and
1053 distinct labels in the DDI vocabulary.

Baselines
For the baseline approaches, DDI prediction and state-of-the-art
KG embedding methods were used. Three DDI methods were
used:

1. Tiresias [8] is a large-scale similarity-based framework that
predicts DDIs through link prediction. It takes various
sources of drug-related data and knowledge as inputs and
generates binary DDI predictions as outputs.

2. Syntax Convolutional Neural Network (SCNN) [36]
represents a DDI extraction method based on a SCNN to
extract 4 predefined DDI types (ADVICE, EFFECT, INT,
and MECHANISM) from the biomedical literature.

3. Multitask dyadic DDI prediction (MDDP) [37] defines the
DDI type prediction problem as a multitask dyadic
regression problem. It can predict the specific DDI type
between 2 drugs.

Two state-of-the-art KG embedding methods were used:

1. TransE [9] is the most representative translational distance
model to embed components of a KG, including entities
and relations, into continuous vector spaces. These
embeddings can also be used for link prediction.

2. TransR [22] shares a similar approach with TransE, but
represents entities and relations in distinct vector spaces
bridged by relation-specific matrices.

Evaluation Method and Metrics
Given a drug KG with some DDI relations removed, rich DDI
prediction aims to predict the occurrence of DDI relations among
drug entities. DDI relations with a rate of 0.3 chosen randomly
as the ground truths for the test set were removed, and the
remaining KG was used as the training set. We also randomly
sampled an equal number of drug pairs with no DDI relations
to serve as the negative sample in the test set.

To make an unbiased comparison, we first treated DDI
prediction as a binary classification task. Tiresias is already a
binary classification model. For SCNN and MDDP, we defined
the 2 DDI types as yes and no in the training model. For TransE,
TransR, and our PRD method, we concatenated the
representations of the entities of a candidate drug pair to form
the feature vector and used logistic regression to train classifiers.
We then treated multiple DDI type predictions as a multilabel
classification task. For Tiresias, SCNN, and MDDP, we used
their feature representation methods and adopted one-versus-rest
logistic regression to train a multilabel classifier. For TransE
and TransR, we separated each training triple (u, l, v) where l
= {n1, n2,…} into several triples (ie, [u, ni, v] for ni∈l), which
could be directly used to train the models.

We used 10-fold cross-validation on the training set to tune
PRD’s embedding model. We determined the optimal
parameters using a grid search strategy. The search ranges for
the various parameters were as follows: the learning rate λ for
the Adam algorithm {0.1, 0.01, 0.001}; γ for the soft constraints
{0.1, 0.01, 0.001}; the vector dimension k {20, 50, 80, 100};
and all bias constants b1, b2, b3, c were 10 to 10. The training
instances were conducted over 1000 iterations. The running
time per iteration was 391 seconds. The best configurations for
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the joint model were λ=0.001, γ=0.01, k=100, b1=5, b2=5,b3=1,
c=10, and K=3, with L1 being used as a dissimilarity metric.

We used receiver operator characteristic curves and
precision-recall curves to evaluate the proposed method on
binary DDI-type predictions. For multiple DDI- type predictions,
we followed the setting in TransE [9] and report the 2 measures
as evaluation metrics: the average rank of all correct relations
(MeanRank) and the proportion of correct relations ranked in
top k (Hits@k). The above metrics may be biased for methods
that rank other correct labels higher in the same label set. Hence,
all other correct labels were filtered out before ranking. The
filtered version is denoted as “Filter,” and the unfiltered version
is denoted as “Raw.”

Experiment Results
As shown in Figure 3a and Figure 3b, the proposed framework
PRD outperformed all baselines. In terms of the receiver
operator characteristic curve, PRD outperformed Tiresias by
6.69%, TransR by 7.13%, and MDDP and TransE by 12%;
meanwhile, SCNN had a relatively low predictive ability.
According to the precision-recall curve, PRD learned 14.2%
better than did Tiresias (which was at the top among the 3 DDI
prediction baselines), 16.8% better than TransR, 21.57% better
than MDDP, 25.33% better than TransE, and 37.89% better
than SCNN.

Table 2 shows the evaluation results for rich DDI relation
predictions according to the different evaluation metrics for
both the raw and filter tests.

Figure 3. ROC and PR results of binary drug-drug interaction-type predictions. MDDP: multitask dyadic drug-drug interaction (DDI) prediction; ROC:
receiver operator characteristic; PR: precision-recall.

Table 2. Evaluation results for multiple drug-drug interaction relation predictions (×100 for Hits@k).

FilterRawFramework

MeanRankHits@10Hits@5Hits@1MeanRankbHits@10Hits@5Hits@1a

17.9352.9445.2919.2121.8950.6133.1814.23Tiresias

37.0640.7827.0316.8237.9139.0226.3112.19SCNNc

7.8584.1268.5743.1913.5379.4858.6620.95MDDPd

7.0287.2779.9957.888.0183.9770.2326.61TransE

6.2589.0184.0169.586.8987.6375.8031.33TransR

5.4592.8588.6075.116.1191.0185.5745.11PRDe

aHits@x: accuracy of real values contained in the top x rank.
bMeanRank: the average rank of all correct relations.
cSCNN: Syntax Convolutional Neural Network.
dMDDP: multitask dyadic drug-drug interaction prediction.
ePRD: Predicting Rich Drug-Drug Interaction.
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Case Study
To further demonstrate PRD’s ability for rich DDI predictions,
we selected the drug acetylsalicylic acid (aspirin) as a test case.
The DDI predictions and rich labels relations are shown in Table
3. According to the usefulness and diversity of the predicted
labels, a professional pharmacist evaluated and annotated the
practical useful predictions (labels in italics in Table 3). Observe
that both TransR and PRD were able to recommend reasonable
DDI labels for the drug interactions, representative of detailed
DDI information. However, TransR sometimes recommended
similar labels for a specific drug because it is based on a
similarity method. Conversely, PRD was able to recommend
discriminative labels because it uses a decoder.

We also present a case study to visualize the effectiveness of
binary DDI types of prediction on a DDI network sample. We
constructed drug-drug networks to indicate whether any 2 drugs
would result in a binary DDI. A node in the network denotes a
drug. An edge between 2 nodes denotes the existence of a DDI.
Intuitively, the more drugs interact, the more risk there is. In
the network, the size of the node specifies the degree of risk of
a drug. We classified the degree of risk into various levels using
different colors (ie, high risk is shown in dark green, and low
risk is shown in light green). The red nodes denote forecasting
errors of DDI drugs. As shown in Figure 4a to Figure 4f, PRD
predicts DDIs mostly accurately. The ID of the drug with a high
risk is shown on the node.

Table 3. Rich drug-drug interaction predictions for acetylsalicylic acid.

PRDbTransRaInteracted drug

enhance, toxic, bleeding, platelet, antiplateletenhancecadverse, toxic, risk, bleedingIbritumomab

enhance, toxic, bleeding, thrombolytic, adverseenhance, increase, adverse, toxic, effectAlteplase

enhance, anticoagulant, antiplatelet, thrombolytic, agentsenhance, effect, thrombolytic, agents, anticoagulantAnistreplase

diminish, antihypertensive, inhibitor, doses, affectdiminish, antihypertensive, effect, treatment, affectRamipril

aTransR: a knowledge graph embedding model, which performs translation in the corresponding relation space.
bPRD: Predicting Rich Drug-Drug Interaction.
cLabels in italics indicate those annotated by a professional pharmacist.

Figure 4. Case visualization of the binary drug-drug interaction-type prediction on a drug-drug interaction network sample. MDDP: multitask dyadic
drug-drug interaction prediction; PRD: Predicting Rich Drug-Drug Interaction; SCNN: Syntax Convolutional Neural Network.
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Discussion

Principal Findings
PRD achieved a significant improvement over all baselines.
Specifically, PRD outperformed MDDP by around 10%. MDDP
is currently considered to be the best DDI prediction baseline
for multiple DDI type predictions. Tiresias and SCNN performed
poorly because they neglect various types of semantic
information concerning DDIs. These results demonstrate the
effectiveness of PRD to predict rich DDI relations among drug
entities.

Compared to TransR and TransE, PRD also performed better,
as it incorporates binary DDI types into the relation
representation learning and also models multiple DDI labels of
a DDI relation simultaneously. This accounts for its promising
results in rich DDI prediction.

Conclusions
PRD is unlike other existing models. Using rich DDI
information, it can competently predict multiple labels for a
pair of drugs across numerous domains, ranging from
pharmacological mechanisms to side effects. To the best of our
knowledge, this framework is the first to provide a joint
translation-based embedding model that learns DDIs by
integrating drug KGs and biomedical text simultaneously in a
common low-dimensional space. The model also predicts DDIs
using multilabels, rather than single or binary labels. Extensive
experiments were conducted on real-world data sets to
demonstrate the effectiveness and efficiency of the model. The
results show PRD outperforms several state-of-the-art baselines.
In future work, we intend to incorporate a convolutional neural
network to encode the rich DDI text to improve the performance
of the embedding model. Another direction for our research is
to have the embedding model consider subgraph features
composed in the generated drug KG during learning. This may
make it possible to predict DDIs among 3 or more drugs.
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