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Abstract

Background: With the development of biomedicine, the number of biomedical documents has increased rapidly bringing a
great challenge for researchers trying to retrieve the information they need. Information retrieval aims to meet this challenge by
searching relevant documents from abundant documents based on the given query. However, sometimes the relevance of search
results needs to be evaluated from multiple aspects in specific retrieval tasks, thereby increasing the difficulty of biomedical
information retrieval.

Objective: This study aimed to find a more systematic method for retrieving relevant scientific literature for a given patient.

Methods: In the initial retrieval stage, we supplemented query terms through query expansion strategies and applied query
boosting to obtain an initial ranking list of relevant documents. In the re-ranking phase, we employed a text classification model
and relevance matching model to evaluate documents from different dimensions and then combined the outputs through logistic
regression to re-rank all the documents from the initial ranking list.

Results: The proposed ensemble method contributed to the improvement of biomedical retrieval performance. Compared with
the existing deep learning–based methods, experimental results showed that our method achieved state-of-the-art performance
on the data collection provided by the Text Retrieval Conference 2019 Precision Medicine Track.

Conclusions: In this paper, we proposed a novel ensemble method based on deep learning. As shown in the experiments, the
strategies we used in the initial retrieval phase such as query expansion and query boosting are effective. The application of the
text classification model and relevance matching model better captured semantic context information and improved retrieval
performance.

(JMIR Med Inform 2021;9(6):e28272) doi: 10.2196/28272
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Introduction

In recent years, biomedical research has developed rapidly
leading to a great increase in the number of biomedical
publications. Biomedical development promotes the treatment
of intractable diseases; however, the huge number of biomedical
documents brings a great challenge for researchers in obtaining
the documents related to one topic. Biomedical information

retrieval (IR) is thus a hot research topic in the biomedical
domain.

Given a query, biomedical IR systems are designed to provide
users with all relevant documents in a ranked list, sorted
according to their relevance to the query. The relevance can be
evaluated by applying different IR models [1-4] based on either
the occurrence of query terms in the documents or probabilistic
measures. However, it is difficult to achieve an ideal retrieval
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performance when directly applying these IR models to
biomedical IR. One possible reason is that the IR models cannot
interpret the semantic information of the query and can only
use frequencies and other features of query terms appearing in
documents to determine the relevance. For example, when given
a query “How is melanoma treated?” the goal of the query is to
find relevant documents focusing on the treatment of melanoma.
Since some documents focusing on other aspects such as clinical
trials and pathology also contain many instances of the query
term melanoma, the model considers these documents related,
thus leading a poor retrieval performance. Moreover, biomedical
documents usually contain diversified concept expressions and
abundant professional vocabularies, and these vocabularies can
usually be replaced by their synonyms or abbreviations, which
increases the difficulty in relevance evaluation. In addition, in
some specific biomedical IR tasks, the relevance between query
and document needs to be evaluated from multiple aspects. For
example, in the precision medicine (PM) retrieval task, for
patients with certain diseases and genetic variants, researchers
need to connect patients with experimental treatments if existing
treatments have been ineffective; the retrieval goal is to find
the experimental treatments for which the patients are eligible.
The retrieval system must determine whether the patient meets
the experiment requirements from multiple aspects such as
disease, genetic variants, age, and so on, thereby increasing the
difficulty and cost of system design. All the above situations
bring domain-specific challenges for biomedical IR. Therefore,
it is necessary to explore an effective biomedical IR method.

To alleviate the above problems, in this paper we propose a
novel ensemble method based on deep learning for biomedical
IR. Given the patient’s disease, genetic variants, and
demographic information, our method aims to find documents
that provide information relevant to the treatment of the patient’s
disease. Therefore, our method needs to evaluate documents
from treatment, disease, and gene dimensions. In particular,
existing studies have proved that the IR task can be treated as
a relevance matching problem between query and document
[5,6]. Based on this, researchers have proposed a variety of
matching models from different perspectives. To refine the
retrieval performance in these approaches, after obtaining an
initial ranked list of relevant documents retrieved through a
search engine, a relevance matching model is deployed as a
re-ranker over the ranked list to re-rank all relevant documents.
Following other researchers, we also consider the relevance
matching model as a component of the re-ranker to re-rank
relevant documents. Specifically, our method can be divided
into two phases: initial retrieval and re-ranking. During the
initial retrieval phase, to alleviate the problem of diverse concept
expressions and abundant professional vocabularies with
synonyms in biomedical IR, we introduce external biomedical
resources to create a local database, and based on this, we design
effective query expansion strategies to reformulate the original
query by supplementing relevant terms to better describe the

retrieval need. We also design query boosting strategies to adjust
the weights of query terms. During the re-ranking phase, to
alleviate the problem of a retrieval model that cannot interpret
the query semantics, we employ a relevance matching model
based on deep learning to capture semantic signals between
query and document from the disease dimension. To make our
re-ranker evaluate articles from multiple dimensions, we built
an effective text classification model to determine whether a
document is treatment-focused. In particular, to combine the
two models effectively, we apply a logistic regression (LR)
model to output the final score for each document and reorder
our initial ranking list according to their scores. Experimental
results on the collections from the Text Retrieval Conference
(TREC) 2019 PM track demonstrate that the proposed method
can effectively improve the retrieval performance in biomedical
IR.

We summarize the contributions of our work as follows:

• We propose an ensemble method based on deep learning
to evaluate relevance between query and document from
multiple dimensions in biomedical IR.

• We introduce an effective relevance matching model and
text classification model to fully capture semantic
information from a query and refine the retrieval
performance in biomedical IR.

• We apply the LR method to combine the relevance matching
model and text classification model, and experimental
results show that it is more effective than the voting method.

The remainder of this paper is organized as follows. In section
2, we discuss some related work. In section 3, we describe our
method in detail. In section 4, we discuss the experiments
conducted to evaluate the effectiveness of the proposed method.
In section 5, we conclude the paper and provide suggestions for
future work.

Methods

Model Architecture
In this section, we illustrated the framework of our ensemble
method and provided detailed descriptions. Figure 1 describes
the overview of the architecture of our method, divided into
two phases: initial retrieval phase and re-ranking phase. In the
initial retrieval phase, we first supplemented query terms through
query expansion strategies we designed, then we used a search
engine named Elasticsearch to index documents, and finally,
we applied query boosting to obtain an initial ranked list of
relevant documents. In the re-ranking phase, we first employed
a text classification model and relevance matching model to
evaluate documents respectively from different dimensions,
then we combined their outputs through LR, and finally we
re-ranked all the documents from the initial ranking list
according to their relevance scores.
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Figure 1. Overview of the architecture of our method.

Initial Retrieval
Given a query Q = {q1, q2, ..., qM}, the goal of this phase is to
obtain an initial ranking list D = {d1, d2, …, dN}, where qi

represents the i-th term in the query, di represents a candidate
document related to query, M stands for the number of query
terms, and N stands for the number of candidate documents.
Specifically, we chose BM25 [7], a probabilistic retrieval model
commonly used in search engines, to calculate the relevance
score between query and document. To make our retrieval
process more efficient and convenient, after preprocessing the
whole document collection, we used Elasticsearch, an
open-source Lucene-based full-text search engine, to index all
documents and search relevant candidate documents.

Text Processing
The document collection is a snapshot of PubMed abstracts,
and XML and TXT versions are available. The XML versions
have the complete information for each abstract. We extracted
text information from fields that might be useful like
ArticleTitle, Abstract, ChemicalList, MeshHeadingList, and
OtherAbstract fields. The information was saved in JSON
format, which is convenient for index building.

Query Expansion
Considering that biomedical documents usually contain
abundant specialized words with synonyms and abbreviations,

we first built a local database to introduce external biomedical
resources to improve the recall rate of retrieval results. In the
database, we stored biomedical disease and gene entities, as
well as their entity IDs, synonyms, hypernyms, and acronyms.
In particular, the disease information is derived from the
Comparative Toxicogenomics Database [8], while the genetic
information is derived from the National Center for
Biotechnology Information gene database. Next, we
supplemented query terms with their synonyms and acronyms
to better describe the retrieval need. Since our method aims to
retrieve documents that focus on disease treatment, we
additionally introduced some treatment-related keywords into
the queries such as surgery, therapy, patient, resistance,
recurrence, therapeutic, prevent, prophylaxis, prophylactic,
prognosis, outcome, survival, treatment, and efficacy.

Query Boosting
To improve the retrieval performance in the initial retrieval
phase, we used query boosting to define different weights for
different query fields during the retrieval process. Specifically,
we compiled the query template provided by Elasticsearch to
boost some query fields. In our custom query template, there
were 4 query fields: disease, genetic variant, treatment keyword,
and demographic. Among them, disease and gene fields were
considered as the most important query fields, hence they had
higher weight values than other fields.
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Querying
For each original query Q, we reformulated their query terms
through query expansion and defined their weights by query
boosting. Then we used Elasticsearch based on BM25 to retrieve
candidate documents related to Q and rank them in descending
order according to their BM25 scores. Finally, we obtained our
initial ranking list D.

In this phase, the relevance scores of documents were calculated
based on the prominence of query terms appearing in documents,
and the semantic information was not considered. In the next
phase, all candidate documents in D were reevaluated from
multiple dimensions.

Re-Ranking
The goal of the re-ranking phase was to refine the retrieval
performance by re-ranking all documents obtained from the
previous phase. Given the initial ranking list D = {d1, d2, …,
dN}, our re-ranker reevaluated relevance between queries and
documents from multiple dimensions and reordered them in
descending order according to their new relevance scores.

During the re-ranking phase, for all documents in the initial
ranking list, a text classification model and relevance matching
model were employed to reevaluate these documents from
different dimensions. Then, an LR model was applied to

combine the two models and output final relevance scores.
Finally, according to the final scores, a heuristic rule was applied
to re-rank these documents.

Text Classification
In our method, a text classification model was used to determine
whether a document was treatment-focused. As a component
of the re-ranker, our text classification model is a binary
classification model.

When preprocessing the documents in initial ranking list D, for
each document, we connected its title and abstract with delimiter
SEP, and converted all letters to lowercase. Next, we replaced
all numbers that appeared in the document with token NUM.
Finally, we normalized it by defining the maximum document
length h: if the document is shorter than h, we used token PAD
filling it to h; otherwise, we truncated it to h directly.

When building the text classification model (bidirectional gated
recurrent unit– attention [BiGRU-Att]), we adopted a
bidirectional gated recurrent unit (GRU) [9] layer to encode the
input word sequence and capture the context information. Also,
an attention mechanism [10] was used to focus on relevant
words to each category so that our method accurately picked
out the corresponding documents to a query. We illustrate the
structure of our text classification model in Figure 2.

Figure 2. Structure of the text classification model.
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Given a document d = {w1, w2, …, wh}, where wi represents the
i-th word in it, the Embedding layer represented it to the word
embedding matrix M = {v1, v2, …, vh}, where vi represented the
embedding vector of the i-th word.

In the bidirectional GRU layer, given the input vt, the hidden
state ht was computed as follows:

where, rt is the reset gate, zt is the update gate, ht–1 is the
previous state, h ̃t is the candidate state at time t, vt is the
sequence vector at time t, σ(·) and tanh(·) is sigmoid and
hyperbolic tangent functions. bz, br, and bh are bias terms. The

operator denotes element-wise multiplication.

To generate the context feature matrix H, we concatenated the
matrixes Hforward and Hback, which are the output of the forward
and back GRU’s hidden layers respectively, namely, H =
[Hforward; Hback].

In the Attention layer, for the input xt, the attention weight αt
was calculated as follows:

where, d is the dimension of input vector, and q is the query
vector. Finally, the probability that the input document was
classified into each category was calculated through a softmax
layer.

Relevance Matching
In our method, a relevance matching model was applied to
reevaluate the relevance between query and document from
disease dimension.

When preprocessing the documents in initial ranking list D, for
each document, based on the text classification preprocessing,
we removed all stop words in the document and applied the
Porter Stemmer [11] to stem the remain words. Since the
biomedical documents usually contain abundant professional
words with synonyms, for all disease entities in the document,
if their synonyms appear in the same document, we replaced
them with the same entity ID. Simultaneously, we also used the
same entity ID to replace the disease entities that belonged to
the same concept in the query.

To consider the semantic information between the query and
the document when reevaluating the relevance, we adopted the
MatchPyramid [12] model as our relevance matching model.
Specifically, given the query q and the document d,
MatchPyramid takes the query-document pair (q, d) as input.
Then, a dot product operation as follows was employed to
generate a matching matrix S between query and document.

Where αi and βj are the i-th and the j-th word embedding vectors
from q and d, respectively. Finally, hierarchical convolutional
neural networks and multilayer perceptron were applied to
output the relevance score.

Logistic Regression
In our method, given the query q, each document d in the initial
ranking list was judged with a simple measure: definitely
relevant, partially relevant, and not relevant. Therefore, the goal
of employing the LR model was to determine the relevance
levels of documents by comprehensively considering the
evaluation results of all models.

When building our LR model, we transferred the problem of
relevance evaluation into a classification problem. Namely,
given the labels of definitely relevant, partially relevant, and
not relevant for each query, we used the LR model to determine
the label of each candidate document. Since ordinary LR can
only handle binary classification problems, we built 3 binary
classification models (LR1, LR2, and LR3) based on the LR
(ie, our LR model [LR] is composed of the 3 binary classifiers).
In LR1, definitely relevant documents were treated as positive
samples while other documents were treated as negative
samples. In LR2, partially relevant documents were treated as
positive samples while other documents were treated as negative
samples. In LR3, documents that were not relevant were treated
as positive samples while other documents were treated as
negative samples.

Specifically, for a document d from the initial ranking list, we

built 3 LR models with [v1, v2, v1
2, v2

2] as input and the sigmoid
function as the activation function. Cross entropy was used as
the loss function. v1 was the probability that measure d is
treatment-focused or not, and v2 was the relevance score. We
obtained the 2 values from the text classification model and the
relevance matching model. Then we computed their outputs
that represented probabilities on the 3 labels, respectively.
Finally, we chose the label that indicated the maximum
probability as the final output of the LR model.

Re-Ranking Rule
After determining the relevance level of each document through
the LR model, we used a heuristic rule to reorder the initial
ranking list. Specifically, we ranked the definitely relevant
documents over partially relevant documents, and the documents
that were not relevant were ranked last. For the documents
belonging to the same relevance level, we ranked them in
descending order according to their BM25 scores obtained
through Elasticsearch.

Results

Experiment Settings
TREC 2019 PM Track focused on an important use case in PM
for clinical decision support: providing useful PM-related
information to clinicians treating cancer patients. Participants
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of the track were challenged with retrieving (1) biomedical
articles in the form of article abstracts (largely from
MEDLINE/PubMed) addressing relevant treatments for the
given patient and (2) clinical trials (from ClinicalTrials.gov)
addressing relevant clinical trials for which the patient was
eligible. In particular, we mainly focused on the first task. The
first task aimed to retrieve relevant treatment information for
the given diseases from the scientific literature. This task
provided 40 topics consisting of the disease, genetic variants,
and demographic information about the patients. And for each
topic, the participating system needed to return up to 1000
related documents retrieved from the scientific literature. For
judging the relevance of documents, the organizer mainly
evaluated from 3 dimensions: treatment, disease, and gene. To
evaluate each retrieval result, precision at rank 10 (P@10),
R-precision (R-prec), and inferred normalized discounted
cumulative gain (infNDCG) are used as the evaluation metrics
[13].

Specifically, we used TREC-Eval, a tool provided by the TREC
organizer, to implement the evaluation of our experimental
results on the 3 metrics. To train the BiGRU-Att, we used the
gold standard of the TREC 2017 PM Track [14] as the data
source of the model. According to the annotation of the gold
standard, we first labeled all documents with 2 categories:
treatment-focused or not. Then, we randomly divided the whole
dataset into a training set, a development set, and a test set at a
ratio of 8:1:1. When training the model, we applied the Adam
algorithm [15] for parameter optimization and used the
development set to optimize the hyperparameters. Finally, we
applied the early stop mechanism to select the number of
training iterations. Table 1 lists the hyperparameters of the
BiGRU-Att. When the training was complete for each document
in the initial ranking list, we used BiGRU-Att to determine
whether it was treatment-focused.

To train the MatchPyramid, we also used the gold standard of
the TREC 2017 PM Track as the data source of the model. For
each document in the gold standard, according to its annotation
on the disease dimension, we adopted the following labeling
strategies: if the disease was exact, we labeled it with 2; if the
disease was more specific or more general, we labeled it with
1; and if the disease is not disease, we labeled it with 0. Then,
we randomly divided all data into a training set, development
set, and test set at a ratio of 8:1:1. To implement the model, we
used MatchZoo [16], an open source text matching tool, to build
the MatchPyramid. When training the model, we applied the
Adagrad algorithm [17] for parameter optimization and used
the development set to optimize the hyperparameters. Finally,
we applied the early stop mechanism to select the number of
training iterations. Table 1 lists the hyperparameters of the
MatchPyramid. When the training was complete for each
document in the initial ranking list, we used MatchPyramid to
determine its relevance level on the disease dimension.

To train the LR1, LR2, and LR3, the gold standard of the TREC
2017 PM was used as the data source of the models. According
to the relevance level annotated in the gold standard, we adopted
the following labeling strategies to construct a dataset for each
LR model: given a topic in LR1, we labeled definitely relevant
documents with 1 and others with 0; in LR2, we labeled partially
relevant documents with 1 and others with 0; and in LR3, we
labeled unrelated documents with 1 and others with 0. We then
randomly divided each dataset into a training set, development
set, and test set at a ratio of 8:1:1. When training these models,
we used scikit-learn [18], a machine learning library, to build
and select the 3 LR models, and we applied the early stop
mechanism to select the number of training iterations. When
the training was complete for each document in the initial
ranking list, we used the 3 LR models in turn to predict its
relevance level and re-ranked the initial ranked list according
to our heuristic rule.
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Table 1. The hyperparameters of BiGRU-Att and MatchPyramid.

ValueModel and parameter

BiGRU-Atta

256Document max length

200Word embedding dimension

200Hidden layer dimension

0.001Learning rate

128Batch size

MatchPyramid

30Query max length

200Document max length

200Word embedding dimension

400Number of convolution kernel

5Convolution kernel size

0.001Learning rate

64Batch size

aBiGRU-Att: bidirectional gated recurrent unit– attention.

Query Expansion Experiment
To explore the impact of query expansion on retrieval
performance, we conducted corresponding experiments with
different expansion strategies. As shown in Table 2, when
expanding the disease field, using synonym expansion achieved
better retrieval performance while using hypernym expansion
made the retrieval performance worse. The reason is that
hypernyms represent a more general concept, but the TREC
PM task requires retrieving the treatment information about a
specific disease. Therefore, the disease name itself should be
paid more attention during the retrieval process, which made
synonym expansion outperform hypernym expansion. When
expanding the gene field, synonym expansion greatly reduced
the search performance, and compared with not using query
expansion, acronym expansion had no obvious impact on
retrieval performance. By analyzing retrieval results, we found

that the treatment-focused articles usually did not mention
related genes. After synonym expansion for gene, the proportion
of gene keywords in query terms increased sharply, so when
we searched based on exact matching models such as BM25,
genetics-focused articles obtained a higher score, leading to a
poor performance. In addition, the gene entities were usually
expressed in abbreviation form, and their acronyms were rarely
used. Therefore, acronym expansion had little effect on search
results. Finally, it can be seen from Table 2 that, after treatment
keywords were added, the treatment-focused documents
achieved higher scores leading to improved retrieval
performance.

In subsequent experiments, we adopted the following query
expansion strategy: for the disease field, we used synonym
expansion, and for the gene field, we did not. In addition, we
added a treatment field to supplement treatment-related
keywords.
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Table 2. Experimental results of query expansion.

infNDCGcR-precbP@10aTreatmentGeneDisease

AcrofSynHypereSynd

0.45850.29340.5325—————g

0.47830.31130.5675————✓

0.45770.29420.5300———✓—

0.43240.28010.4550——✓——

0.45800.29330.5325—✓———

0.47320.31040.5425✓————

0.48820.32230.5700✓———✓

aP@10: precision at rank 10.
bR-prec: R-precision.
cinfNDCG: inferred normalized discounter cumulative gain.
dSyn: synonym.
eHyper: hypernym.
fAcro: acronym.
gNo expansion.
hCorresponding term is not applied for expansion.

Query Boosting Experiment
In our method, we used query boosting to optimize the weights
of different query fields. Our query template included query
clauses for disease, gene, treatment, and demographic
information about the patients, respectively, and they are
expressed as Qd, Qg, Qt, and Qp. To enhance the performance
during the initial retrieval phase, we conducted the
corresponding experiment by setting different weights for
different fields. The experimental results are shown in Table 3.
Among them, when we boost the weight of a field, the weights
of other fields are set to 1.0.

It can be seen from Table 3 that when we boosted the weights
of Qd and Qg, the retrieval performance improved, indicating
that disease and genetic variants are more important than other
clauses. When the weights of Qt and Qp are boosted, the retrieval
performance was not improved, indicating that the treatment
keywords and demographic of patients cannot provide more
specific information for retrieval.

In subsequent experiments, we adopted the following query
boosting strategy: Qd = 1.5, Qg = 1.5, Qt = 1.0 and Qp = 1.0.

Table 3. Experimental results of query boosting.

infNDCGcR-precbP@10aStrategy

0.48820.32230.5700No boosting

0.49230.32460.5750Qd = 1.5

0.49110.32380.5750Qg = 1.5

0.48930.32310.5700Qt = 1.5

0.48840.32250.5700Qp = 1.5

0.49810.32500.5800Qd = 1.5, Qg = 1.5

aP@10: precision at rank 10.
bR-prec: R-precision.
cinfNDCG: inferred normalized discounter cumulative gain.

Ensemble Experiment
To explore the impact of models applied in the re-ranking phase
on retrieval performance, we conducted the ensemble
experiment. Based on the initial retrieval phase, we combined
one model at a time to reorder the documents in the initial
ranking list. To explore the effectiveness of the LR on

integrating BiGRU-Att and MatchPyramid, we used a voting
algorithm for comparison. That is, for one document, if it was
predicted as treatment-focused and its relevance score was
greater than zero, then it was definitely relevant; if it was
predicted as not treatment-focused and its relevance score was
less than zero, then it was not relevant; otherwise, it was partially
relevant. The experimental results are shown in Table 4. Among
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them, the baseline is the performance of the initial retrieval
phase, and Ensemble-TC and Ensemble-RM denote adding
BiGRU-Att and MatchPyramid, respectively, ALL-Voting and
ALL-LR denote integrating all models with voting algorithm
and LR, respectively.

It can be seen from Table 4 that when integrating the
BiGRU-Att, P@10 is increased from 0.58 to 0.63. This is
because BiGRU-Att can determine whether a document is

treatment-focused, and rank these documents in a higher
position. When integrating the MatchPyramid, the retrieval
performance is also improved due to the ability of our deep
matching model on capturing semantic context information
between query and document. Also, when integrating by the
LR, the retrieval performance is better than the voting algorithm,
and this suggests that the application of LR to ensemble models
is more effective than the voting algorithm.

Table 4. Ensemble experiment results.

infNDCGcR-precbP@10aModel

0.49810.32500.5800Baseline

0.51420.33240.6300Ensemble-TCd

0.50490.33930.6075Ensemble-RMe

0.51430.33480.6375ALL-Votingf

0.52370.33910.6500ALL-LRg

aP@10: precision at rank 10.
bR-prec: R-precision.
cinfNDCG: inferred normalized discounter cumulative gain.
dEnsemble-TC: baseline + BiGRU-Att.
eEnsemble-RM: baseline + MatchPyramid.
fALL-Voting: all models integrated with voting algorithm.
gALL-LR: all models integrated with LR.

Performance Comparison Experiment
To explore the performance of the proposed method on the
biomedical IR task, we compared our method with other deep

learning–based systems participating in TREC 2019 PM task.
The experimental results are shown in Table 5.

Table 5. Performance comparison of various methods.

infNDCGcR-precbP@10aMethodTeam

0.49810.32500.5800baselineOurs

0.52370.33910.6500ALL-LRdOurs

0.53090.30660.6500SciBERTCCNLe

0.51080.32730.5975EnsembleDUTIRf

0.46720.27180.5675Doc2vecECUN_ICAg

aP@10: precision at rank 10.
bR-prec: R-precision.
cinfNDCG: inferred normalized discounter cumulative gain.
dALL-LR: all models integrated with LR.
eCCNL: team name.
fDUTIR: team name.
gECUN_ICA: team name.

Among these comparison systems based on deep learning,
CCNL treated the document re-ranking problem as a
two-category problem (ie, the documents definitely relevant
and partially relevant to given topics are considered positive
samples while unrelated documents are considered negative
samples). Team CCNL trained a SciBERT (Scientific
Bidirectional Encoder Representations from Transformers) [19]

to classify all documents. DUTIR is the system we submitted
in the task. In this system, we combined recurrent convolutional
neural networks for text classification [20], deep relevance
matching model for ad-hoc retrieval, and recurrent convolutional
neural networks for text classification [21] to evaluate candidate
documents from treatment, disease, and gene dimensions,
respectively. Moreover, ECNU_ICA trained a doc2vec model
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to encode both documents and queries into fixed-length vectors
and then used their cosine scores as similarity metrics.

As can be seen from Table 5, compared with other methods,
the R-prec of our method (ALL-LR) was the best (0.3391).
Additionally, our R-prec during the initial retrieval phase
reached 0.3250, which was better than most of the other
methods. This indicates that our query expansion and query
boosting strategies worked well on biomedical IR. After
integrating our re-ranker models, our R-prec further improved
from 0.3250 to 0.3391. Meanwhile, our P@10 improved from
0.58 to 0.65, which was the same as the best result of other
methods. Moreover, the result of infNDCG improved from
0.4981 to 0.5237. This shows that during the re-ranking phase,
the semantic context features between queries and documents
were better captured, thereby optimizing the initial retrieval
performance. However, although the result of infNDCG
improved, it was still lower than that of CCNL. One possible
reason is that our ensemble method inevitably introduced the
problem of error propagation because the accuracies of the
employed models were not 100% and the deviation of these
models led to some mistakes in determining the relevance level
of some documents.

Discussion

Principal Findings
In this paper, we proposed a novel ensemble method based on
deep learning for biomedical IR. The experimental results
showed that (1) the query expansion and query boosting
strategies we designed are effective, (2) the application of the
text classification model and relevance matching model fully
captured semantic context information and improved the
retrieval performance, (3) using LR to combine models was
more effective than the voting algorithm, and (4) our ensemble

method evaluated relevance between query and document from
multiple aspects in biomedical IR.

Limitations
However, there is still much room for performance
improvement. The problem of error propagation limits the
performance of the ensemble method, and using a joint model
to address the problem may be an effective solution. In addition,
domain feature engineering has been proven to effectively
improve retrieval performance, and, therefore, constructing the
domain features to enhance the retrieval performance is also
our future work.

Conclusion
In this work, we introduced the ensemble method for the
relevance evaluation from multiple aspects in biomedical IR.
Our method annotated the usefulness of query expansion and
query boosting by simultaneously applying them to obtain the
large number of documents related to the query. To evaluate
relevance from multiple dimensions and refine the retrieval
performance, we integrated the text classification model and
relevance matching model through LR modelling. Overall, we
attributed the improvement of the proposed method in
biomedical IR to two aspects: initial retrieval strategies and
re-ranking models. For the initial retrieval strategies, we
expanded the query terms with their synonyms and defined
different weights for different query fields, which improved the
accuracy and recall rate during the initial retrieval phase. For
the re-ranking models, we introduced the text classification
model and relevance matching model, which evaluated the
relevance of search results from multiple dimensions. These
aspects jointly contributed to improvement in retrieval
performance, and the proposed method showed the effectiveness
of evaluating relevance from multiple aspects.
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