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Abstract

Background: Natural language processing has long been applied in various applications for biomedical knowledge inference
and discovery. Enrichment analysis based on named entity recognition is a classic application for inferring enriched associations
in terms of specific biomedical entities such as gene, chemical, and mutation.

Objective: The aim of this study was to investigate the effect of pathway enrichment evaluation with respect to biomedical
text-mining results and to develop a novel metric to quantify the effect.

Methods: Four biomedical text mining methods were selected to represent natural language processing methods on drug-related
gene mining. Subsequently, a pathway enrichment experiment was performed by using the mined genes, and a series of inverse
pathway frequency (IPF) metrics was proposed accordingly to evaluate the effect of pathway enrichment. Thereafter, 7 IPF
metrics and traditional P value metrics were compared in simulation experiments to test the robustness of the proposed metrics.

Results: IPF metrics were evaluated in a case study of rapamycin-related gene set. By applying the best IPF metrics in a pathway
enrichment simulation test, a novel discovery of drug efficacy of rapamycin for breast cancer was replicated from the data chosen
prior to the year 2000. Our findings show the effectiveness of the best IPF metric in support of knowledge discovery in new drug
use. Further, the mechanism underlying the drug-disease association was visualized by Cytoscape.

Conclusions: The results of this study suggest the effectiveness of the proposed IPF metrics in pathway enrichment evaluation
as well as its application in drug use discovery.

(JMIR Med Inform 2021;9(6):e28247) doi: 10.2196/28247
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Introduction

The rising health issues worldwide and outbreaks of drug
resistance have drawn a great amount of attention to new drug
development [1]. However, drug development is expensive and
time-consuming, and an average of US $800 million [2] to US
$1.8 billion [3] and more than 10 years is invested in the
development of 1 drug [4]. Improving the efficiency of drug
discovery has long been one of the most important research

directions and goals of medical research. As per the data in the
2018 edition of the World Health Organization’s International
Classification of Diseases and related health problems, there
are 31,055 diseases [5]. Direct drug-disease pairing validation
will have 85,214,920 drug-disease treatment validations. This
highlights the importance of understanding the mechanisms of
disease pathology and the action mechanisms of the existing
drugs. According to the data released by the US National Food
and Drug Administration in 2018, 35,283 types of drugs and
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2744 types of effective ingredients have been approved [6].
Therefore, drug repositioning is recommended as a low-cost
drug discovery method based on the clinical use of the drug, by
which new indications of the marketed drug are discovered and
an old drug is repurposed [4,7]. The linking of drugs to diseases
via enriched gene sets is the basis of the drug use strategy under
pathway enrichment analysis, which has long been an
investigative way to unveil the functional interpretation of
known gene sets [8,9]. The enrichment analysis mainly relies
on the evaluation of the overexpressed gene set in a specific
pathway, thereby leading to functional interpretation [10].
Technically, for a given disease or drug, relevant pathway
information is publicly available in pathway databases [11]. For
humans, the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database [12] contains 38,680 Homo sapiens genes,
and the abundance of data makes the correlation of
disease-related genes or drug-related genes possible. In addition,
there are multiple ways to identify a relevant gene set for a given
disease [13]. While genome-wide association studies [14] or
mRNA analysis [15] is the typical method for drug-related
knowledge discovery, biomedical natural language processing
is an alternative [16]. However, evaluating pathway enrichment
in terms of a chosen gene set exclusively generated by a text
mining system is still an unsolved issue [17]. The text mining
system extracts the drug-related genes from drug-related
literature, and pathway enrichment is then subsequently
performed upon the text-mined genes. Although it is believed
that text mining takes advantage of the abundant information
from text resources [18], the diversity rooted from the various
text mining systems leads to diversified results and effects in
subsequent pathway enrichment. As representatives of the text
mining system, PubTator [19] in a co-occurrence manner and
the Turku Event Extraction System (TEES) [20] in a more
semantic and syntactic manner play an important role in the
biomedical named entity recognition and pathway enrichment.

The framework of this study was as follows. First, we used
various biomedical text mining strategies to investigate the
drug-related gene sets. Second, we designed novel metrics for
pathway enrichment of text-mined genes. Here, 7 novel inverse
pathway frequency (IPF) metrics were proposed and they were
compared with the traditional P values. Finally, we performed
a case study to show the effectiveness of the IPF metrics in

pathway enrichment as well as the promising application of the
text mining pipeline for new drug use discovery.

Methods

Collection of Rapamycin-Centric Resources
In this paradigm, a drug-centric text resource was obtained to
extract the related genes. We set the drug as rapamycin, also
known as sirolimus, as the target drug, which is used for the
treatment of renal cell carcinoma and malignant lymphoma.
Relevant texts and pathway data were collected targeting
rapamycin as follows:

1. Text resources: 31,118 abstracts reporting rapamycin were
downloaded from PubMed.

2. Rapamycin-related pathway data set: The drug pathway
was retrieved from the comparative toxicogenomic database
(CTD) [21], in which the KEGG pathway is enriched
significantly among genes that interact with the drug or its
downstream entity with a significant P value. In total, there
are 166 pathways that are related to rapamycin.

Pathway Enrichment Evaluation in Terms of
Text-Mined Genes
As shown in Figure 1, 4 text mining methods were applied to
extract the gene pairs in rapamycin-related PubMed texts. They
were (1) Method 1: ABSTRACT (co-occurrence in abstract) [19],
(2) Method 2: SENTENCE (co-occurrence in sentence), (3)
Method 3: DEPENDENCY (under consideration of dependency
tree structure) [22], and (4) Method 4: TEES (Turku Event
Extraction System) [20]. By taking co-occurrence or relation
from the above methods, genes were linked to form an
undirected pathway. We then proposed 7 types of novel pathway
enrichment metrics by introducing various weights to the mined
genes. Since the genes were extracted from 4 types of text
mining systems, metrics evaluation was compared with respect
to different text mining systems. For a given gene set, the
candidate pathway is derived from 329 pathways in KEGG.
Therefore, the sorted pathways based on P values in KEGG
enrichment are regarded as the ground truth of pathway
enrichment without using the text-mined knowledge.
Furthermore, the feasibility of the text mining system for drug
mechanism prediction was investigated.
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Figure 1. Text mining systems for gene extraction and pathway construction. TEES: Turku Event Extraction System.

State-of-the-art Text Mining Methods
To extract gene pairs from the abstracts of papers, PubTator
[19] and TEES [23] were selected as the 2 baseline text mining
tools, which contribute to the following 4 text mining systems
(Figure 2):

1. Method 1: ABSTRACT. Only abstracts containing the
specific drug name were collected. If more than 2 genes
showed up in one collected sentence, these genes were
extracted and regarded as drug-related genes.

2. Method 2: SENTENCE. Similar to the abstract-level
extraction rule, gene pairs were extracted based on a
sentence co-occurrence rule.

3. Method 3: DEPENDENCY. Being stricter than
sentence-level gene-pair extraction, the syntactic rule was
introduced to restrict the co-occurrence filtering rule. Here,
the Stanford parser was used to identity the gene subject or
the gene object in a sentence. The gene pair is maintained
only when the 2 genes act as sub or obj in the syntactic tree.

4. Method 4: TEES. TEES [20] is a sophisticated biomedical
relation extraction system, which has been trained over
400,000 linguistics features. TEES is used to extract the
genes that have interactions with other genes in drug-related
abstracts. Thus, the TEES method provides a set of genes,
which shows interaction information in drug-related
abstracts.
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Figure 2. Gene pair extraction rule for the text mining systems.

Traditional Metrics for Pathway Enrichment
Based on the drug-related abstract text file, 1 text mining tool
extracts 1 group of genes. This group of genes is considered to
be associated with the drug. For the sake of new drug use
discovery, a group of drug-related genes is obtained using a text
mining tool. Meanwhile, in the KEGG database, 1 pathway
contains a group of genes, which are related to the disease the
pathway correlates with. Thus, the matching degree between
the drug-related gene group and the disease-related pathway
represents the potential of the matching degree between the

drug and the disease. ClusterProfile [24] is a known pathway
enrichment tool, which applies the P value setting for the
significance test of the relevant pathway for a given gene set.

Assuming in total that there are N background genes related to
a specific pathway and there is a given gene set with k genes,
pathway enrichment is performed to evaluate the significance
for the given gene set to be relevant to the specific pathway.
The significance value is obtained via chance computation for
the given gene set in comparison to a randomly sampled gene
set. In random sampling, k genes are sampled and x out of k
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genes are related to the pathway. Then, the probability for this
instance is as follows:

The P value used to address the significance of the pathway for
the gene set is as follows:

The P value as a traditional enrichment metric reflects solid
statistical concern in terms of chance computation. It relies on
the hypothesis that the chance for each gene belonging to a
given gene set is equal. However, this prerequisite is in some
cases not met, for example, housekeeping genes have higher
chances to appear in any given pathway, while on the contrary,
certain specific genes only appear in a specific pathway.

Proposed Metrics for Pathway Enrichment

IPF for a Gene in a Given Pathway
The 4 text mining methods extracted 4 different sets of
drug-related genes. Through these gene-drug relations, a bridge
between the genes and the drug was established. The aim of
this study was to investigate how a drug is associated with its
indication through the gene. The next part was to establish the
bridge between these genes and the indication. Mature
gene-disease relations were easily accessed through KEGG in
the form of the KEGG pathway. The KEGG pathway is a
collection of manually drawn pathway maps representing the
knowledge on the molecular interaction, reactions, and relation
network. Thus, a bridge between the genes and the drug was
established via KEGG. The whole path in that mechanism was
addressed by finding a gene bridge between the drug and its
indication. The next step was to evaluate this strategy. We paid
attention to which text mining method is more suitable in this
strategy. We focused on the drug-related gene set extracted by
the text mining method in terms of the quantity and importance.
Thus, we needed to define the importance standard of the gene
to the indication. The standard of the gene to the indication in
this case is based on the KEGG pathway information. One gene
specifically shows up in a specific pathway, which means that
this pathway can be identified with this gene. In other words,
the less pathways a gene appears in, the more important it is to
its related pathway. To calculate this situation, we give a value
IPF.

Where P={p1,p2…..pM} refers to all KEGG pathways, where
M=#{P} is the number of pathways in the KEGG database.

{pm|genei ∈ pm} refers to a pathway that contains the i-th gene,
denoted as genei. Thus, every gene in the KEGG database
receives a basic score. Simply adding all the gene scores together
is unfair. Because all pathways show up in KEGG in the form
of a map, each map consists of a set of node boxes and severe
edges instead of genes and edges. Therefore, we need to figure
out how to calculate that score that one text mining method
receives from all node boxes in a specific pathway.

Enrichment of Text Mining–Based Gene Sets in a
Pathway in View of a Gene
Assume Tt is a gene set that contains all of the genes mined by
the t-th text mining method. In order to evaluate how Tt genes
are enriched in a specific pathway, Pm, we define

Where IPF_geneTt,Pm considers the number of genes that exist

in a pathway as well as the weight of each gene. The sum of the
IPFs can be used to evaluate the association of the group of
genes to a pathway. By doing this, cumulative associations
along with gene weights are represented.

Enrichment of Text Mining–Based Gene Sets in a
Pathway in View of a Node
In KEGG, a node box in some cases represents 1 set of
homologous genes, instead of 1 separate gene. Generally,
although there exists more than 1 gene, these genes play the
same role. Therefore, even the text mining method digs more
than one gene belonging to this pathway but they play the same
role in the same node box. We only applied the max gene score
to represent the score that this text mining method receives in
this node box in this pathway. If nodej is a single node,

where

If nodej has E subnodes,

Where gi ∈ {Nnodej ∩ Tt}, gi = gmax

For each genei, which belongs to gene set nodej as well as Tt,
the maximum IPFgenei is assigned, which means genei belongs
to gene set Nnodej.

It is noted that a node box sometimes represents 1 set of protein
complex genes that need to work together to play a role in the
pathway. Therefore, we applied the sum of all the gene scores
that the text mining method received in this node and multiplied
it with a coefficient to represent the score that this text mining
method receives in this node box in this pathway.

where ∣Nnodej∣ means the gene number of gene set Nnodej,

while ∣gi ∈ {nodej ∩ Tt}∣ means the gene number of the
union of gene set Nnodej and gene set Tt.

Enrichment of Text Mining-Based Gene Sets in a
Pathway in View of the Shortest Path
Besides the inclusion of genes in 1 node, the graph theory of
the node in the pathway should be taken into consideration. In
graph theory, the degree of a vertex is the number of edges
associated with the vertex. In a pathway graph, one node holding
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a high degree indicates that this node connects with more
vertices. In term of gene, this gene is associated with many
genes. Mutations and regulation of the gene affect more genes.
In 1 pathway, the more a node shows up in the shortest path
between the 2 genes, the more important this gene is in this
pathway.

First, assume SPnoder,nodes refers to the shortest path between 2

arbitrary nodes, that is, noder and nodes in pathway Pm, then,
we count the occurrence of nodej in SPnoder,nodes with respect to

Pm.

Countnodej,Pm = #{SPnoder,nodes|nodej ∈ SPnoder,nodes}

(9)

In addition, NShortPathnoder,nodej,nodek is a binary value, which

denotes whether or not nodej appears in the shortest path
between noder and nodek.

Thus, each node in the pathway holds a “count” score. To
compare the importance of a node among all the nodes in one
pathway, softmax function is applied to
NShortPathnoder,nodej,nodek. Here, the softmax function is the

gradient logarithmic normalization of the discrete probability
distribution of finite terms. The result of softmax is suitable for
describing the importance of 1 node in 1 pathway.

Then, we added all IPFnodej to represent the total score that the

text mining method receives in this pathway,

where

Based on the above discussion on IPF_gene (equation 4),
IPF_node (equation 8), and IPF_shortpath (equation 11), we
formulate a generalized formula for IPF_nodeTt,Pm.

Here, equation (13) summarizes all the above metric
considerations and proposes a generalized form of IPF metrics.
For instance, IPF_gene in equation (4) holds if 1 is assigned to
Weightnodej,Pm. Equation (12) is assigned to ScoreTt,nodej Score(Tt,

nodej) and equation (3) to Weightgenei. The full list of generalized

IPF metrics is shown in Table 1.

Table 1. The complete inverse pathway frequency metrics list.

WeightgeneiScoreTt,nodejWeightnodej,PmInverse pathway frequency (IPF) metrics

Equation (3)Equation (12)1IPF_gene

1Equations (5) and (7)1IPF_node

1Equation (12)Equation (10)IPF_shortpath

Equation (3)Equation (12)Equation (10)IPF_shortpath_gene

1Equations (5) and (7)Equation (10)IPF_shortpath_node

Equation (3)Equations (5) and (7)1IPF_gene_node

Equation (3)Equations (5) and (7)Equations (5), (7), and (10)IPF_gene_node_shortpath

Results

IPF Metric Comparison Under the Evaluation of
Relevance Gene Ranking
We evaluated the effectiveness of IPF metrics by observing the
rank counts of topic-related genes obtained from the 4 text
mining methods. First, the 4 baseline text mining methods, that
is, ABSTRACT, SENTENCE, DEPENDENCY, and TEES,
were used to filter the vital genes in rapamycin-related texts.
Afterwards, for each gene set obtained by the various text

mining methods, 7 IPF metrics and traditional P values were
used to map to obtain vital pathways and their pathway ranks.
We then evaluated the pathway ranks by counting the
occurrences of the key CTD pathways depicted in the Methods
section. As shown in Figure 3 and Table 2, the x-axis refers to
the rank of the enriched pathways and the y-axis refers to the
cumulative percentage (CumPer), which is the ratio of the vital
CTD pathway among the top i-th enriched pathways.
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Figure 3. Comparison of the pathway-enrichment metrics based on the rapamycin-related gene set. CumPer: cumulative percentage; IPF: inverse
pathway frequency; TEES: Turku Event Extraction System.

Table 2. Comparison of the areas under the cumulative percentage curve for the pathway-enriched methods based on the known rapamycin-related
pathway.

Turku Event Extraction SystemDEPENDENCYSENTENCEABSTRACTInverse pathway frequency metrics

0.5290.6280.6380.634IPF_gene

0.6250.6720.6480.647IPF_node

0.635a0.688a0.679a0.680aIPF_shortpath

0.6260.6820.6750.675IPF_shortpath_gene

0.6260.6820.6750.675IPF_shortpath_node

0.6260.6820.6750.675IPF_gene_node

0.6260.6810.6750.675IPF_gene_node_shortpath

.62.64.60.59P value

aIndicates that the area is significantly superior to this text mining method in terms of the pathway enrichment indicator.

The bars from 0 to 8 in the bar plot represent the P value and 7
IPF metrics in Table 1, respectively. The results show that genes
ranked with P values map to less vital pathways than genes
from IPF metrics. In detail, the cumulative percentage curves
of P values are given in the left 4 plots, and it is straightforward
to observe that the y obtained by the P value grades the lowest
in all the text mining cases. If computing the area under the
cumulative percentage curve, the areas are 0.634, 0.638, 0.625,
and 0.529 for P values for each case, which are as well the least
in all cases. In all, the consistency of the poor performance of
the P value positively shows the effectiveness of the IPF metric
in support of the key pathway enrichment. Furthermore, in all
the 7 IPF metrics, the black bar, which represents IPF_node,

performs the best with the highest value of area under the
cumulative percentage curve. It achieves 0.68, 0.679, 0.688,
and 0.635 in ABSTRACT, SENTENCE, DEPENDENCY, and
TEES, respectively.

Artificial Intelligence in Pathway Enrichment
Although the area values among IPF metrics do not differ
substantially from each other, the IPF_node prevails over the
rest of all in a consistent manner. The results show that the
IPF_node represents the best semantic feature from the view
of the natural language processing method and it is the most
supportive for vital pathway enrichment.
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Replication in the Discovery of Efficacy of Rapamycin
for Breast Cancer
The discovery of the efficacy of rapamycin was replicated via
a pathway enrichment experiment. PubReminer was used to
retrieve the research trend of rapamycin and breast cancer drugs.
A total of 1502 abstracts were obtained, and the starting time
was the year 2000. The experiment was designed to test if the
gene interaction of rapamycin could be excavated by the text
mining method from literature without reporting the relevance
of breast cancer and rapamycin. All the gene pairs in the
literature related to rapamycin from the years 1978 to 2000 were
excavated, the active genes of rapamycin were obtained, and
the enrichment analysis of the strategic gene pathway in this
study was carried out. After applying the IPF_node, 1640
abstracts of rapamycin prior to the year 2000 were obtained and
243 genes were obtained. Afterwards, a standard pathway
enrichment was obtained, and the top 0.5% of the pathways
under each enrichment path index was statistically analyzed.
As expected, the breast cancer pathway was listed in the
enrichment results, and the results indicated that the potential
activity of rapamycin can be obtained by enriching the gene
pathway by text mining interaction genes.

Visualization of the Pharmaceutical Mechanism
The text mining system was investigated to bridge the drug,
protein, and disease pathway in order to explore the
pharmaceutical mechanism of rapamycin. Starting from the
Literature Network application, the disease-related gene network
was constructed, and 480 genes obtained by rapamycin-centric
text mining were used to highlight the overlapping parts in the
breast cancer gene network. All the breast cancer–related genes
were collected from the STRING database. According to all the
existing databases and text information, each gene was sorted
for rapamycin correlation, and in this verification section, 100
breast cancer–related genes from STRING were selected. The
breast cancer gene network was constructed according to the
gene interaction mentioned in more than 40,000 papers, and the
network was constructed using the literature network application
program. After gene pathway enrichment analysis, the drug was
associated with the pathway and Cytoscape was used for
network visualization. In view of the relation between the
pathway information and the disease, the drug was further
associated with the disease. In order to further analyze the
relationship between drugs and diseases, the distribution of the
drug-active genes excavated in the disease gene network was
analyzed.

In order to construct a disease-specific gene network, the genetic
relationship of this network in nature was obtained from
disease-related abstracts. Since Cytoscape is a high-quality
visualization platform for network analysis, a literature network
application program based on Cytoscape was applied to address
the drug disease associations obtained after pathway enrichment.
Figure 4 highlights 38 vital genes plotted as yellow circles,
namely, STAT3, TP53, CDK4, CTLA4, AR, MYC, NOTCH1,
IL6, ERBB2, CXCL12, BECN1, IGF1R, CDK2, EGF, ERBB4,
MMP9, PIK3CA, CXCL8, ABCB1, EZH2, CDK6, SOX2, AKT1,
CDH1, SRC, MTOR, ABCG2, KDR, CCND1, VEGFA, EGFR,
ZEB1, ATM, PTEN, CXCR4, ERBB3, MDM2, and GATA3.
These 38 genes are based on the intersection of the breast cancer
text network and the drug rapamycin-active gene obtained in
this strategy. The size of the point in the graph represents the
degree of the point, the greater the degree, the larger the point,
and the degree in this network is the number of proteins that
interact with the protein. The edge thickness in the figure
represents the number of sentences that support the
protein-protein relationship. The edge color in the figure also
represents the number of sentences that support the
protein-protein relationship. It can be seen from the figure that
the yellow bright spot covers the vast majority of breast cancer
gene networks with moderately large spots. The 38 genes were
enriched by the P value pathway, and 16 of them, that is, EGFR,
IL6, TP53, CDK6, CDK4, PTEN, CDK2, KDR, AKT1, IGF1R,
CCND1, VEGFA, PIK3CA, MDM2, MTOR, and the MYC
signaling pathway belong to one of the MTOR signaling
pathways. Among them, MTOR is an important gene targeted
by rapamycin. The MTOR pathway plays an important role in
multiple activities of rapamycin and is therefore linked to breast
cancer. The reason that literature network is used to construct
breast cancer–related network is that the protein interaction
involved in constructing the network is obtained from the
literature related to breast cancer, and it is the programmed
realization of protein interaction based on sentence coexpression
in this study. It is convenient for users to quickly construct
interactive protein interaction networks based on text
relationships. In this study, the breast cancer–related genes
obtained from the STRING database were rearranged according
to the text information, and the protein interaction information
excavated from the text was reflected in the size of the protein
gene points. Thus, breast cancer genes were given different
weights. It is more convenient to give priority to the location
of the active genes under the active conditions defined by the
interaction. The overlap of disease and drug-active genes was
observed and the possible mechanism of action was speculated.
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Figure 4. Visualization of the extracted gene pairs from literature.

Discussion

In this study, all text resources were obtained from a
rapamycin-centric literature data set prior to the year 2000, and
all predicted drug efficacies for rapamycin were based on
knowledge ahead of this timeline. Therefore, it was interesting
to “replicate” and evaluate a novel pathway-discovery method
in our case study and to investigate the research paradigm based
on pathway enrichment. Several studies after the year 2000
provide evidences to show that the mined rapamycin-centric
pathway make sense. For example, after Liu et al [25] reported
the effect of rapamycin in effectively inhibiting the growth of
breast cancer in preclinical and clinical trials, the mechanism
of action of rapamycin was elucidated. Rapamycin controls the
growth, metabolism, and senescence of cells, as well as cells’
reactions to nutrients, energy levels, and growth factors. MTOR,
the target of rapamycin, is often upregulated in a variety of

cancers, while rapamycin is extremely selective in blocking
MTOR. Interestingly, our case study pinpointed MTOR correctly
and made our pathway enrichment method conceivable in the
study of breast cancer. Hopefully, the investigation of rapamycin
action in the treatment of breast cancer will be propelled by
further extensive and abundant text mining results in the future.

In conclusion, this research proposed a group of new pathway
enrichment metrics by combining protein-interaction
mechanisms, graph theories, information retrieval, and data
mining weighting technology and by providing a new idea on
pathway enrichment analysis. Moreover, the effectiveness of
the best new enrichment metric for rapamycin was analyzed
and the new activity of the drug shown by our method is
supported by evidence from the literature. This research strategy
sheds light on the investigation of the mechanism of action of
drugs on diseases by using text-mined genes that are enriched
in signaling pathways.
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