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Abstract

Background: There is an unmet need for noninvasive imaging markers that can help identify the aggressive subtype(s) of
pancreatic ductal adenocarcinoma (PDAC) at diagnosis and at an earlier time point, and evaluate the efficacy of therapy prior to
tumor reduction. In the past few years, there have been two major developments with potential for a significant impact in
establishing imaging biomarkers for PDAC and pancreatic cancer premalignancy: (1) hyperpolarized metabolic (HP)-magnetic
resonance (MR), which increases the sensitivity of conventional MR by over 10,000-fold, enabling real-time metabolic
measurements; and (2) applications of artificial intelligence (AI).

Objective: Our objective of this review was to discuss these two exciting but independent developments (HP-MR and AI) in
the realm of PDAC imaging and detection from the available literature to date.

Methods: A systematic review following the PRISMA extension for Scoping Reviews (PRISMA-ScR) guidelines was performed.
Studies addressing the utilization of HP-MR and/or AI for early detection, assessment of aggressiveness, and interrogating the
early efficacy of therapy in patients with PDAC cited in recent clinical guidelines were extracted from the PubMed and Google
Scholar databases. The studies were reviewed following predefined exclusion and inclusion criteria, and grouped based on the
utilization of HP-MR and/or AI in PDAC diagnosis.

Results: Part of the goal of this review was to highlight the knowledge gap of early detection in pancreatic cancer by any imaging
modality, and to emphasize how AI and HP-MR can address this critical gap. We reviewed every paper published on HP-MR
applications in PDAC, including six preclinical studies and one clinical trial. We also reviewed several HP-MR–related articles
describing new probes with many functional applications in PDAC. On the AI side, we reviewed all existing papers that met our
inclusion criteria on AI applications for evaluating computed tomography (CT) and MR images in PDAC. With the emergence
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of AI and its unique capability to learn across multimodal data, along with sensitive metabolic imaging using HP-MR, this
knowledge gap in PDAC can be adequately addressed. CT is an accessible and widespread imaging modality worldwide as it is
affordable; because of this reason alone, most of the data discussed are based on CT imaging datasets. Although there were
relatively few MR-related papers included in this review, we believe that with rapid adoption of MR imaging and HP-MR, more
clinical data on pancreatic cancer imaging will be available in the near future.

Conclusions: Integration of AI, HP-MR, and multimodal imaging information in pancreatic cancer may lead to the development
of real-time biomarkers of early detection, assessing aggressiveness, and interrogating early efficacy of therapy in PDAC.

(JMIR Med Inform 2021;9(6):e26601) doi: 10.2196/26601
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Introduction

There is an unmet need for noninvasive surrogate markers that
can help to identify the aggressive subtype(s) in a pancreatic
lesion at an early time point [1]. In contrast to the declines in
cancer-related deaths from other malignancies, progress in the
management of pancreatic ductal adenocarcinoma (PDAC) has
been slow, and the incidence of cancer-related deaths due to
PDAC continues to rise [2]. PDAC develops relatively
symptom-free, and is one of the leading causes of cancer-related
deaths in the United States. In 2020 alone, it was estimated that
approximately 57,600 people (30,400 men and 27,200 women)
would be diagnosed with PDAC, and approximately 47,050
people (24,640 men and 22,410 women) were projected to die
of the disease [3]. Early detection of PDAC is unusual and
typically incidental, with the majority (~85%) presenting with
locally advanced or metastatic disease when surgery, the only
curative modality, is not an option. Overall, PDAC is associated
with a dire prognosis and a 5-year survival rate of only 8% [3].
The absence of early symptoms and lack of a reliable screening
test have created a critical need for identifying and developing
new noninvasive biomarkers for the early detection of PDAC
[1].

Hyperpolarization (HP)-based magnetic resonance (MR) has
become a major new imaging modality by providing valuable
information on previously inaccessible aspects of biological
processes owing to its ability for detecting endogenous, nontoxic
13C-labeled probes that can monitor enzymatic conversions
through key biochemical pathways [4-6]. Clinical trials with
this modality are ongoing at several centers worldwide [7].
HP-MR provides an exciting opportunity to identify and
understand early metabolic aberrations, enabling the detection
of advanced pancreatic preneoplastic lesions and PDAC at the
smallest size for which no methods of detection currently exist.
In general, cancer, and PDAC in particular, is considered a
paradigm of genetically defined metabolic abnormalities.
Genetic mutations can trigger specific signaling pathways that
are associated with metabolic transformations, which can
potentially be detected by HP methods with a high degree of
sensitivity.

In conventional MR, the signal measured is generated from the
abundance of hydrogen in the body, specifically water [8].

Organic molecules at high concentration in the body with a high
abundance of hydrogens such as choline, lipids, and lactate can

also be measured using MR. Other nuclei such 13C and 15N can
also be measured using MR, but their utility in living systems
is low due to their low abundance in nature (the natural

abundance of 13C is 1%) and their smaller gyromagnetic ratio
compared to that of hydrogen [9]. HP enables these nuclei to
be observed in vivo.

HP allows for >10,000-fold sensitivity enhancement relative to
conventional MR, and is a nontoxic, nonradioactive method for
assessing tissue metabolism and other physiological properties
[10-13]. There are four established methods for producing HP
probes: (i) dynamic nuclear polarization (DNP) [10,13], (ii)
optical pumping of noble gases [14], (iii) the brute force
approach [15], and (iv) parahydrogen-induced polarization [16].
The detailed physics of these HP methods can be found
elsewhere [17]. The most common and widely used method for
HP is DNP, in which magnetization is transferred from the
unpaired electrons (usually from added radicals) to the
isotopically labeled probe [17]. This transfer of magnetization
occurs under microwave irradiation at a low temperature of 1.5
K and a high magnetic field of 3 T. Development of the
dissolution DNP technique in 2003 [4] opened a new avenue
to monitor in vivo metabolism, enabling the detection and
tracking of the fate of metabolites containing low-abundance

nuclei such as 13C [18]. The routine dissolution DNP instrument
employed, which carries out HP in the preclinical setting, is
HyperSense (Oxford Instruments, UK), as shown in Figure S1
in Multimedia Appendix 1. A clinical polarizer is available for
performing real-time metabolic profiling in humans (SPINLab,
GE Healthcare) and over 20 such polarizers have been installed
worldwide [19].

The most commonly used HP probes to track the pathways of

interest are 13C-enriched probes, which are either uniformly or

selectively enriched. The other reason to employ 13C-enriched
molecules is the comparatively longer longitudinal relaxation

time (T1) of the 13C nucleus compared to that of other nuclei.

The high 13C signal of HP probes and the fact that an HP signal
is carried over in the products of biochemical transformation
allow investigators to interrogate biochemical reactions in real
time. These probes are usually part of essential biochemical
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reactions such as glycolysis (glucose and pyruvate) and the
tricarboxylic acid (TCA) cycle (succinate, fumarate, and
glutamine).

HP-MR experiments have been performed mostly in preclinical
models to date, and HP-MR is not currently routinely used in
clinical settings. However, several clinical trials have been
performed or are ongoing [5]. HP-MR in the preclinical setting
involves injecting the HP probe dissolved in a biocompatible
solvent into the tail vein of rodents. The probe diffuses through
the blood to populate in well-perfused body tissues. After
entering the extracellular fluid, the molecule is taken up into
the cells with the help of endogenous transporters. All of these
processes must occur before the HP signal decays, which is
determined by the decay time (ie, T1) of the HP probe. For most
probes, T1 ranges from 15-20 seconds to approximately 1
minute. Hence, it is important to dissolve the probe in the solvent
immediately and inject into the animals quickly to avoid loss
of the HP signal due to relaxation. A specially designed proton

volume coil and 13C surface coil are used to receive the signal

from the enriched HP 13C probe in vivo.

The utility of HP-MR is not only simply tracking the probe
diffusing inside the body but also its ability to visualize
downstream metabolic products of injected probes converted
by endogenous enzymes [5]. HP-MR can be used to quantify
in vivo metabolic flux in real time. However, all processes must
be completed within the time frame of T1 of the HP probe.

Therefore, only relatively fast biochemical reactions can be
visualized.

Glycolysis (the breakdown of glucose) is a multistep process
that eventually yields pyruvate in the cytosol. Pyruvate is the
final breakdown product of glucose in glycolysis and is
preferably converted to lactate. The high dependence of cancer
cells on glucose and glycolysis is often referred to as the
Warburg effect after the initial discovery of this dependence by

Dr. Otto Warburg [20]. Therefore, HP [1-13C]-pyruvate is the
most common HP probe for determining glycolytic flux in
cancer. Another key point is that pyruvate is taken up rapidly
by monocarboxylate transporters [21]. In the cytosol, the HP
pyruvate has four important fates [22]: (i) conversion to lactate;
(ii) conversion to alanine; (iii) transport into the mitochondria
and conversion to carbon dioxide; and (iv) conversion to
acetyl-coenzyme A to be utilized in the TCA cycle, which can
be tracked by labeling the first carbon of pyruvate (Figure 1a).
When HP-pyruvate is injected into an animal, the signal is
recorded from an anatomical imaging slice placed in the tissue
of interest. An example of a metabolic HP-MR spectrum is
shown in Figure 1b. The flux from pyruvate to a downstream
metabolite can be visualized and evaluated using either TopSpin
(Bruker BioSpin GmbH) or MestReNova (Mestrelab Research)
in either of the two following ways: by measuring the ratio of
signals integrated over time (eg, lactate-to-pyruvate ratio,
alanine-to-lactate ratio) [23] or by calculating the Kp value
(according to the Bolch equation): KPL (pyruvate to lactate) and
KPA (pyruvate to alanine) [24].

Figure 1. (a) Schematic showing pyruvate metabolism inside a cell. The [1-13C] pyruvate can be converted to 13C-lactate, 13C-alanine, and
13C-bicarbonate in the presence of enzymes lactate dehydrogenase-A (LDHA), alanine transferase (ALT), and pyruvate decarboxylase, respectively.
(b) Downstream products of pyruvate metabolism such as lactate and alanine can be imaged using hyperpolarized magnetic resonance. A 3D, real-time
readout of the signals, as shown here, can be created using standard software such as Chenomx.

In summary, HP-MR provides a unique opportunity to measure
real-time metabolic signals arising in the tissue of interest with
over 10,000-fold sensitivity enhancement that cannot be
interrogated by other imaging techniques. The provided outcome
is the spectroscopic signatures of the metabolites of interest that
are recorded as resonances at different and unique chemical
shifts (Figure 1b). The HP-pyruvate signal undergoes decay
once it is hyperpolarized with a characteristic decay constant
(T1 ~50 seconds) as well as the downstream products of the

metabolism (eg, alanine and lactate). Overall, there is a time
window of 3×T1 (~150 seconds) to accomplish this real-time
metabolic imaging, and this short time frame is a major
limitation of HP-MR. Fast MR sequence design along with
powerful and rapid imaging gradients can help in acquiring
more sensitive and informative spectra in the future to mitigate
this limitation. Several MR imaging (MRI) companies such as
GE Healthcare, Siemens, and Bruker have devoted considerable
research investment on this matter.
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Artificial intelligence (AI) is a fast-developing research field
in which machines are utilized to learn from observations to
mimic human intelligence. Kaplan et al [25] define AI as a
system’s ability to correctly interpret external data, to learn
from such data, and to use those learnings to achieve specific
goals and tasks through flexible adaptation. Over the last decade,
deep learning has dramatically reshaped AI research. With the
development of deep learning, a subfield of AI, and recognition
of its potential in feature extraction and flexibility, it has
increasingly been applied to numerous medical scenarios such
as diagnosis, health care delivery optimization, genomics, and
drug discovery [26-31]. Machine learning has been utilized for
online health care management [32], disease prevention [33],
clinical note processing [34], and management of chronic
diseases [35]. AI has been leveraged for diagnosis and
localization of regions of interest (ROIs) using a vast array of
medical images such as optical images, MRI, X-rays, and
computed tomography (CT) [36-41]. As a result, there is a great
opportunity to utilize AI for the early detection of cancer such
as PDAC.

Deep-learning algorithms rely on neural networks, which mimic
the process of information transformation by neurons in the
biological brain [42]. Neural networks adaptively learn features
from observations during training and translate the input data
to high-dimensional representations suitable for classification
or regression tasks. The success of deep-learning algorithms is
rooted in their multiple stacked layers and efficient feature
extraction, often explained as a powerful representation learning

method. Each layer consists of multiple neurons transforming
the information nonlinearly by an activation function. This
architecture allows for high-level interactions between
transformed features coming from the previous layers to
contribute to the output. Hence, deep-learning algorithms could
automatically optimize the parameters and learn a high-level
representation of input data aligned with the target task.

As shown in Figure 2, we believe that the knowledge gap of
“early diagnosis of pancreatic cancer with noninvasive imaging”
is an elephant in the dark that cannot be accomplished with a
single modality. Pancreatic cancer at the very early stages is
completely asymptomatic. Conventional anatomical imaging
cannot detect any of these early stages of premalignancy of this
deadly disease when therapeutic or early surgical interventions
can be most effective. Conventional MRI can detect intraductal
papillary mucinous neoplasms (IPMNs) where epithelial
pancreatic cystic tumors of mucin-producing cells arise from
the pancreatic ducts [43]. Although IPMNs are benign tumors,
they can progress to pancreatic cancer in some cases [43].
However, MRI as well other imaging modalities fail to detect
any other premalignant lesions such as pancreatic intraepithelial
neoplasia (PanIN), which is a more commonly accepted
mechanistic pathway of the tumorigenesis of PDAC [44]. It is
important to recognize that an individual with even stage I
(localized) pancreatic cancer has a 5-year survival rate of only
39% [45]. This emphasizes the point that early detection in
pancreatic cancer must occur at stages earlier than clinical stage
I.

Figure 2. Cartoon showing the challenges of imaging pancreatic cancer at early stages and how artificial intelligence can interface with hyperpolarized
magnetic resonance (HP-MR), anatomical magnetic resonance imaging (MRI), and pathology data toward developing biomarkers of pancreatic cancer
premalignancy. This approach may become the standard of care in the clinic of the future. CT: computed tomography.

HP-MR can detect metabolic changes at very early stages of
lesion formation in the pancreas; however, this is more of an
MR spectroscopic technique than an MRI modality. Moreover,
the signal from HP compounds lasts no more than a few minutes

that allow for a rapid acquisition of dynamic metabolic flux
measurements in the organ of interest. This review will focus
on the introduction of AI approaches to CT and MRI datasets,
and the applications of HP-MR in pancreatic cancer. In the
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Results section, we summarize the strengths and weaknesses
of each technique, and discuss our solution to leverage the
unique strengths of AI to learn biomarkers from both HP-MR
and MRI modalities, in addition to the available pathology and
immunohistochemistry data to bridge this crucial knowledge
gap. Our laboratories are currently pursuing an AI approach
using an HP-MR dataset as applied to PDAC, the results of
which will be published in the near future. In addition, we
discuss the broad range of HP probes used to interrogate
physiological functions such as metabolism and pH, which may
expand the scope of applying AI to the functional imaging of
PDAC.

Methods

A systematic review was performed following the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) extension for scoping reviews (PRISMA-ScR)
guidelines. Studies addressing the utilization of HP-MR and/or
AI for early detection, assessment of aggressiveness, and

interrogation of the early efficacy of therapy in patients with
PDAC cited in recent clinical guidelines were extracted from
the PubMed and Google Scholar databases. The studies were
reviewed following predefined exclusion and inclusion criteria,
which were grouped based on the utilization of HP-MR and AI
in PDAC diagnosis.

Application of the HP-MR technique in pancreatic cancer is
still nascent. We have reviewed every paper published in this
broad area up to November 2020. Taken together, we have
summarized our review in two tables. Table 1 summarizes all
13C-labeled HP probes employed in interrogating different
metabolic pathways in pancreatic cancer systems, and Table 2
summarizes all published applications of HP-MR in preclinical
models of PDAC. In all, we have classified all of the
physiological applications of HP-MR in pancreatic cancer under
seven categories. The details of the deep-learning methods and
HP-MR in different PDAC applications are discussed in the
Introduction section above and in the relevant subsections of
the Results.
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Table 1. Review of 13C-labeled probes employed in interrogating different metabolic pathways in pancreatic cancer systems.

ReferencesBiological significanceQuantificationT1
b of HP probe (seconds)Biochemical reactionHPa probe

Viale et al
[17], Rao et
al [22], Hal-
brook and
Lyssiotis
[49], Dutta
et al [50]

Increased pyruvate-to-
lactate flux is an indica-
tor of the Warburg effect;
total flux from pyruvate
to (lactate+alanine) could
be a measure of anaero-
bic glucose metabolism

Rate constant of pyru-
vate to lactate (or ala-
nine) or time-integrated
ratio of lactate (or ala-
nine)-to-pyruvate sig-
nals

44-67Pyruvate to lactate (cat-

alyzed by LDHc); pyruvate
to alanine (catalyzed by

ALTd)

[1-13C] Pyruvate

Son et al
[51]

Indicator of glutamine
addiction as a characteris-
tic of certain cancers; al-
so a measure of α-ketog-
lutarate metabolism (glu-
tamate converts to α- ke-
toglutarate and can feed

the TCAe cycle).

Time-integrated ratio of
glutamate-to-glutamine
signals

16-30Glutamine to glutamate
(catalyzed by glutaminase)

[5-13C] or

[5-13C-4-2H2] glu-
tamine

Cruz-Mon-
serrate et al
[52], Gal-
lagher et al
[53]

The bicarbonate buffer
system controls tissue
pH; greater acidity of the
tumor microenvironment
has been linked to treat-
ment resistance

Using the relative con-
centrations of bicarbon-
ate and carbon dioxide,
apply the Henderson-
Hasselbalch equation to
calculate the tissue pH

10-20Bicarbonate to carbon diox-
ide

[H13CO3
–] bicarbon-

ate

Rao et al
[21]

This is an organic moiety
with no significant biolog-
ical importance

Chemical shift differ-
ence based on pH mea-
surement

43-51N/Af[1,5-13C2] zymonic
acid

Silvers et al
[54], Lee et
al [55]

Fumarase (FH) enzyme
is present in the cytosol
and mitochondria of vi-
able cells. Since cells
cannot uptake fumarate,
any HP malate produc-
tion is a direct result of
injected HP fumarate in-
teracting with FH in the
extracellular space,
which has leaked out of
necrotic cells; thus, it can
be used to differentiate
necrotic from viable cells

Malate signal is propor-
tional to the amount of
cell death

~30Fumarate to malate (cytoso-
lic washout after cell necro-
sis)

[1,4-13C2] fumarate

Lai et al
[56], Sala-
manca-Car-
dona et al
[57], Keshari
et al [58-60]

Greater flux from DHA
to ascorbate indicates
less redox stress inside
the cell; this is also an
indirect measure of the
GSSG-to-GSH ratio and
NADPH metabolism

Ratio of time-integrated
ascorbate-to-DHA sig-
nal

>50DHA/ascorbate cycle,

GSHg/GSSGh cycle, and

NAPDHi to NADP+

[1-13C] dehydroascor-
bate (DHA)

Wilson et al
[61]

Indicator of BCAT level,
which is upregulated in
certain cancers

Ratio of time-integrated
leucine-to-α-KIC sig-
nals

100α-KIC to leucine (catalyzed

by BCATj)
[1-13C] α-keto iso-
caproate (α-KIC)

aHP: hyperpolarization.
bT1: longitudinal relaxation time.
cLDH: lactate dehydrogenase.
dALT: alanine transaminase.
eTCA: tricarboxylic acid cycle.
fN/A: not applicable.
gGSH: reduced glutathione.
hGSSG: glutathione disulfide.
iNAPDH: nicotinamide adenine dinucleotide phosphate.
JBCAT: branched-chain aminotransferase.
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Table 2. Review of published applications of hyperpolarized magnetic resonance (HP-MR) in preclinical pancreatic ductal adenocarcinoma (PDAC)
models.

ReferenceImplications for HP-MRResultsHP-MR probe and
downstream reaction

Mouse model/cell line/site
of injection

Purpose of study

Düwel et al [22], Dutta
et al [50]

Clinical potential for ear-
ly detection of advanced
pancreatic preneoplasia

I. The alanine-to-
lactate signal ratio
decreases progres-

[1-13C] pyruvate

Pyruvate to lactate
and pyruvate to ala-
nine

I. For early-onset PDAC:
GEM (K-Ras and p53 muta-
tions); cell line

II. For late-onset PDAC:
GEM (only K-Ras muta-
tion); cell line

III. Wild-type mice; pancre-
atitis induced using
caerulein injection

To investigate
whether pancreatic
preneoplasia can be
detected prior to the
development of inva-

sive cancers in GEMa

models of PDAC us-
ing HP-MR.

in high-risk patients us-
ing the alanine-to-lactate
signal ratio as a biomark-
er. Diseased areas can be
monitored over time. Ki-
netic rate constants
(kPA and kPL) can be

sively from the
normal pancreas to
pancreatitis to low-

grade PanINb to
high-grade PanIN
to PDAC, using
HP-MR

II. Holds true for
individual mice

used as metabolic imag-
ing biomarkers of pancre-
atic premalignant lesionswith time as well

as upon comparing
the three groups,
considering their
genetic proximity
to PDAC (I>II>III)

III. Caused by in-

creasing LDHc ac-
tivity and decreas-

ing ALTd activity

Stødkilde-Jørgensen et
al [63]

HP-MR can be used to
predict treatment re-
sponse to hypoxia-activat-

I. Higher lactate-
to-pyruvate ratio
observed in Hs766t

[1-13C] Pyruvate

Pyruvate to lactate

I. In female SCID mice: (i)
highly sensitive to TH-302:

SCe injection of the PDXf

I. To determine if HP-
MR can inform the
sensitivity of pancreat-
ic tumors to the hypox- ed prodrugs, and thusand MIAPaCaHs766t; (ii) moderately sen-
ia-activated prodrug
TH-302

II. To test whether an
adjuvant injection of

provide a prognostic
biomarker

groups; lower lac-
tate-to-pyruvate ra-
tio in SU.86.86
group

II. Treatment with
only TH-302: re-

sitive to TH-302: SC injec-
tion of the PDX MIAPaCa-
2; (iii) resistant to TH-302:
SC injection of the PDX
SU.86.86

II. Treatment groups: (i)
Control, (ii) TH-302, (iii)
TH-302+pyruvate

pyruvate would en-
hance TH-302 effica-
cy sponse of Hs766t

(highly sensitive)>
MIAPaCa-2>
SU.86.86 (resis-
tant). Treatment
with TH-
302+pyruvate:
Hs766t and MIA-
PaCa-2 respond to
a greater extent;
SU.86.86 still resis-
tant

III. Exogenous
pyruvate would be
a successful adju-
vant to enhance
TH-302 efficacy
because it stimu-
lates oxygen con-
sumption in gly-
colytic cells and
decreases tumor
pO2 transiently
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ReferenceImplications for HP-MRResultsHP-MR probe and
downstream reaction

Mouse model/cell line/site
of injection

Purpose of study

Wojtkowiak et al [64]I. HP-MR can be used to
confirm the desired effect
of metabolic therapies in
tumors in early stages of
drug development

II. The lactate-to-pyru-
vate ratio can serve as a
biomarker for response
to metabolic therapies
early in the treatment
regimen

I. Mice injected
with mutant TP53
PDAC responded
to FX11; those in-
jected with wild-
type TP53 did not
respond to FX11
by the end of 4
weeks

II. The TP53 target
gene TIGAR was
responsible for the
lack of response in
wild-type TP53
PDAC. TIGAR
lowers glycolytic
flux and diverts
glucose-6-phos-
phate into the

PPPg, reducing the
dependence on
glucose.

III. Prior to FX11
treatment, the lac-
tate-to-pyruvate ra-
tio was increased
in wild-type TP53
PDAC; following
FX11 treatment,
the lactate-to-pyru-
vate ratio de-
creased in mutant
TP53 PDAC

[1-13C] Pyruvate

Pyruvate to lactate

I. In male nu/nu athymic
mice: SC injection of PDX
of PDAC with (i) wild-type
TP53 or (ii) mutant TP53

II. Treatment groups: (i)
Control, (ii) FX11

I. To determine a ge-
netic biomarker of the
response to the LDH-
A inhibitor FX11

II. To test the re-
sponse of HP-MR
output to FX11 in
PDAC murine models

Rajeshkumar et al [65]HP-MR can noninvasive-
ly detect the metabolic
response of β-lapachone-
treated cells. Thus, it can
be used as a direct read-
out of treatment efficacy
in PDAC patients with
NQ01 upregulation

HP [1-13C] pyru-
vate conversion to
lactate was lower
in cells treated
with β-lapachone,
suggesting that the
activity of LDH is
compromised from
treatment

[1-13C] Pyruvate

Pyruvate to lactate

I. In vitro model: MIA-
PaCa2 (NQO1+) pancreatic
cancer cells (sensitive to β-
lapachone)

II. Treatment groups: (i) β-
lapachone, (ii) no treatment

To determine if treat-
ing a PDAC cell line
with β-lapachone, a
chemotherapeutic
agent activated by the
enzyme NQ01 (upreg-
ulated in PDAC), will
lead to the breakdown
of energetic metabolic
pathways such as gly-
colysis and the tricar-
boxylic acid cycle
(due to depletion of
NAD+ and ATP).
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ReferenceImplications for HP-MRResultsHP-MR probe and
downstream reaction

Mouse model/cell line/site
of injection

Purpose of study

Silvers et al [54]I. Diffusion and conver-
sion of HP pyruvate can
provide information
about the lactate efflux
using the ADClac-to-
ADCpyr ratio, which is
linked to the relative dis-
tribution of lactate in the
intra- and extracellular
compartments

II. Diffusion MR and
conversion of HP fu-
marate can inform necro-
sis; the rationale is that
intracellular ADC<extra-
cellular ADC due to re-
stricted diffusion inside
the cell

III. Together, the cell’s
viability can be assessed.
This may be used (1) to
localize necrotic areas
and (2) to assess the ther-
apeutic response, espe-
cially for antiangiogenic
agents such as bevacizum-
ab

I. The ADClac-to-
ADCpyr ratio is
significantly
greater in PDAC
cells compared to
that in MCF-7 cells

II. This is corrobo-
rated by greater
extracellular con-
centrations from
the PDAC line

III. Fumarate to
malate conversion
is detectable only
in necrotic cells
lysed with Triton
X-100; no lactate
formation was ob-
served due to dilu-
tion of LDH and

NADHh.

Mixture of [1-13C]
pyruvic acid and

[1,4-13C2] fumarate

Pyruvate to lactate

Fumarate to malate

In vitro model: (i) human
breast cancer cell line MCF-
7 (do not upregulate MCT1
or MCT4 under hypoxic
conditions); (ii) mouse
PDAC cell line 8932

To determine whether
measurement of the
apparent diffusion co-
efficient (ADC) and
conversion of injected

copolarized 13C-la-
beled pyruvic acid and
fumaric acid can de-
tect changes in lactate
export and necrosis,
respectively

Karlsson et al [66]Radical-D2O and HP-MR
can be used to selectively
visualize H2O in the
peritoneal cavity of mice
and hence detect peri-
toneal metastasis early;
this may then also be
used to evaluate drug effi-
cacy

The image intensi-
ty correlated posi-
tively with the
density of malig-
nant ascites in the
peritoneum

Free radical (Oxo
63, CmP, nitroxyl)-
D2O probe

BALB/cA nu/nu mice: (i)
peritoneal metastasis; (ii)
intraperitoneal injection of
human pancreatic carcinoma
(SUIT-2) cells

To determine whether
mice injected with
cancer cells (transfect-
ed with luciferase) in
the peritoneum could
be imaged using HP-
MR and D2O radicals

aGEM: genetically engineered mouse.
bPanIN: pancreatic intraepithelial neoplasia.
cLDH: lactate dehydrogenase.
dALT: alanine transaminase.
eSC: subcutaneous.
fPDX: pancreatic ductal adenocarcinoma xenograft.
gPPP: pentose phosphate pathway.
hNADH: nicotinamide adenine dinucleotide hydrogen.

Results

Characteristics of Retrieved Articles
For AI applications in pancreatic cancer, we retrieved 112
articles from the two sources, including 87 articles from PubMed
and 25 articles from Google Scholar. An article was included
if it satisfied our inclusion criteria: (1) written in English; (2)
utilized AI/machine learning/deep learning for prediction,

diagnosis, or classification; and (3) proposed a novel method
of employing AI for PDAC (Figure 3). Review, evaluation, and
comparison papers were therefore not included. Among the
retrieved papers, a total of 17 met the inclusion criteria (Figure
3, Table 2, and Table S1 in Multimedia Appendix 1). The
selected papers were grouped into six categories based on how
AI was utilized in the context of PDAC to recognize the gaps
in the previous studies and to discuss the novel approaches that
fill the current gaps in detecting PDAC by imaging modalities.
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Figure 3. PRISMA flow chart showing the selection criteria of the publications to include in this review. AI: artificial intelligence; PDAC: pancreatic
ductal adenocarcinoma.

For HP-MR, we retrieved and reviewed all papers published in
this broad area up to November 2020, which included six
preclinical studies and one clinical study. We also reviewed
several HP-MR–related articles (52 articles) that described new
probes that can be applied in many functional future applications
in PDAC. These references are not included in the PRISMA
flow chart in Figure 3, as they have not yet been demonstrated
in PDAC imaging and spectroscopic applications.

HP Metabolic Imaging Applications in PDAC

Context for Application of HP-MR in Pancreatic Cancer
PDAC tumors can be removed by surgery if detected early [23].
There is unequivocal evidence that diagnosis of PDAC at earlier,
resectable stages has a profoundly favorable impact on prognosis
[1]. The 5-year survival of patients with resected PDAC can
reach up to ~25%-30% in major treatment centers, increasing
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to 30%-60% for tumors <2 cm, and as high as 75% for minute
lesions under 10 mm in size [46,47]. Unfortunately, most tumors
are diagnosed at a late stage, once advanced into the local blood
vessels and other body organs, and can no longer be excised.
Thus, there is an urgent call to develop noninvasive imaging
modalities for the early detection of PDAC, especially in
high-risk patients (eg, those with a familial predisposition,
long-standing diabetes, or chronic pancreatitis) [48]. Unlike
other cancers such as breast or prostate cancer that have close
to 100% survival if detected at early stages, PDAC is associated
with a survival rate of only 39% even when detected at stage I
[45]. Therefore, there is an urgency to develop novel methods
for the detection of preneoplastic lesions in the pancreas.

Grading of PDAC
The type of treatment administered is often dependent on the
tumor grade; therefore, there is a need for noninvasive methods
to determine tumor grade. HP-MR uses metabolic changes to
determine a grade [49]. Inside a PDAC tumor, the malignant
cells become dependent on glycolysis for energy generation
(Warburg effect). Dutta et al [50] recently reported that the
aggressiveness of PDAC is directly correlated to
pyruvate-to-lactate conversion measured using HP-MR (Table

1) and ex vivo 1H nuclear magnetic resonance (NMR)
spectroscopy in a panel of well-annotated patient-derived PDAC

xenograft (PDX) mouse models. The ex vivo 1H NMR
spectroscopy results were also in good agreement with in vivo
pyruvate-to-lactate conversion, showing a higher abundance of
lactate in aggressive tumors. The expression levels of lactate
dehydrogenase (LDH)-A and hypoxia-inducing factor-1α were
also found to be elevated in aggressive tumors compared to
those in less aggressive tumors in PDX mouse tumors. This
study demonstrated that the aggressiveness of PDAC could be

interrogated noninvasively by employing [1-13C] pyruvate with
HP-MR [50] to track cellular metabolic activity.

An interesting work by Serrao et al [23] (summarized in Table
2) demonstrated a method for the early detection of PDAC in
murine models when the disease is in the early PanIN precursor

stage employing HP [1-13C] pyruvate. They used genetically
engineered mice with K-Ras and p53 mutations or with K-Ras
mutation only, which developed PanIN spontaneously. In
addition, wild-type mice treated with caerulein injections to
induce acute pancreatitis that developed into PanIN over time

were included. The mice were imaged using HP [1-13C] pyruvate
at different stages of development from PanIN to PDAC

precursor lesions, and the metabolic fluxes from [1-13C]
pyruvate to lactate and alanine were measured [23]. The results
from individual mice showed a decreasing alanine-to-lactate
ratio with disease progression from normal tissue to pancreatitis
to low-grade PanIN to high-grade PanIN and finally to PDAC.
Mice from all three groups followed this disease progression
course, although with disparate timelines. The observed
metabolic flux pattern correlated with increasing LDH activity
and decreasing alanine transaminase activity. The metabolic
flux from pyruvate to lactate and alanine is minimal in normal
pancreatic tissue and progressively increases with disease
progression. This technique can be used to create 3D metabolic

maps of the pancreas to identify the extent of cancerous growth.
This work was extended by Dutta et al [62] to demonstrate that
real-time conversion kinetic rate constants (kPA and kPL) can be
used as metabolic imaging biomarkers of premalignant
pancreatic lesions. However, the translational potential of this
approach can only be ascertained through clinical trials, which
is feasible as this emerging technology can be translated to the
clinic for the detection of premalignant pancreatic lesions in
high-risk populations. Recently, a pilot study reported the

feasibility of HP [1-13C] pyruvate MRI in PDAC patients, and
no adverse effect was observed after bolus injection of pyruvate
[63]. These studies reveal the potential for the conversion of
HP-pyruvate to lactate in the early detection of PDAC.

In addition, the HP pyruvate-to-lactate ratio may be used for
staging tumors in the context of their aggression, although how
this paradigm would fit in with the existing standards of staging
is debatable (stage I or II: surgically resectable; stage III: locally
advanced, unresectable; stage IV: metastatic) [48]. A very
promising use of pyruvate-to-lactate flux is to identify PDAC
advancing toward stage IV (metastasis) because these tumors
show higher pyruvate-to-lactate conversion compared to that
of less aggressive pancreatic cancer [50].

Early Assessment of Treatment Response
One of the promising utilities of HP-MR is its ability to assess
treatment response early during the regimen; this has been
established for solid tumors characterized by “aggression
correlated with increased glycolysis.” This technique can thus
complement the standard fluorodeoxyglucose-positron emission
tomography imaging, which can only detect changes in tumor
size (rather than intracellular metabolic changes) once it shrinks
in response to a long-term regimen of chemotherapy or radiation
therapy. Table 2 summarizes four published studies that show
how HP-MR can be employed to predict responders (prognostic
biomarkers) or assess treatment response early in PDAC tumors
or cells [54,63-65]. The treatment efficacy of drugs
(hypoxia-activated prodrugs, β-lapachone, and LDH-A

inhibitors) evaluated using HP [1-13C] pyruvate has only been
studied in preclinical models to date; however, the preclinical
data illustrate the ability of HP-MR to assist clinical trials by
providing a framework for personalized medicine. HP-MR can
provide information about the efficacy of drugs at an early stage
that can lead to changes in clinical management, enabling the
clinician to change the drug for a nonresponding patient to a
more effective drug at an early stage.

Wojtkowiak et al [64] (Table 2) screened a hypoxia-activated
prodrug (TH-302) as a monotherapy and in combination with

pyruvate (not to be confused with the HP probe, [1-13C]
pyruvate) on three subcutaneous (Hs766t, MIAPaCa-2, and
SU.86.86 cells) patient-derived xenografts of PDAC in mice.

HP-MR using [1-13C] pyruvate was employed to evaluate the
metabolic phenotypes of Hs766t, MIAPaCa-2, and SU.86.86
PDAC cell line xenografts. The Hs766t and MIAPaCa-2
xenografts showed higher lactate-to-pyruvate ratios and more
hypoxia. However, the SU.86.86 xenograft was resistant to the
TH302 hypoxic prodrug because it was less hypoxic. The mice
were treated for 2 weeks at a rate of five times a week and tumor
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sizes were measured at regular intervals with calipers to
determine the treatment efficacy. The Hs766t and MIAPaCa-2
groups showed an excellent response with TH302 compared to
the SU.86.86 group [64].

Rajeshkumar et al [65] (Table 2) tested the treatment efficacy
of the drug FX11, which inhibits LDH-A, on 15 patient-derived
PDAC mouse models [65]. LDH-A converts pyruvate to lactate
in the presence of its cofactor nicotinamide adenine dinucleotide
hydrogen (NADH). Inhibition of LDH-A is a metabolic
vulnerability that can be exploited for cancer treatment, and
hence FX11 was evaluated in PDAC animal models. The drug
was injected once daily for 4 weeks using PDX mouse models
with tumors in their flank. The drug efficacy was tested using

HP [1-13C] pyruvate, which was injected into the mice prior to
the start of treatment and 7 days after treatment, prior to any
changes in tumor volume. Mice responding to the treatment
showed a decreased lactate-to-pyruvate ratio after FX11
administration, whereas nonresponders showed an increased
HP lactate-to-pyruvate ratio after the treatment. This result
demonstrates the strength of the noninvasive HP-MR modality
to predict treatment efficacy prior to tumor size reduction.

The β-lapachone chemotherapeutic drug acts on the quinone
oxidoreductase 1 (NQO1)-mediated redox cycle, resulting in
elevated superoxide and peroxide formation and in turn
nicotinamide adenine dinucleotide (NAD+) depletion due to
DNA damage and hyperactivation of poly(ADP-ribose)
polymerase. Silvers et al [54] (Table 2) screened β-lapachone
on patient-derived MIAPaCa2 cells (which were NQO1+, and
hence sensitive to β-lapachone) in vitro to understand the effects
of the drug on energy metabolism due to NAD+ depletion. Using
metabolic imaging with HP pyruvate, this study showed a
decrease in glycolytic flux upon treatment, thus validating the
use of HP-MR as a direct readout of the treatment efficacy of
β-lapachone in patients with PDAC with upregulated NQO1
expression.

Feuerecker et al [67] (Table 2) took an interesting in vitro
approach to understand cancer tumor characteristics such as
necrosis and lactate export, which are important parameters to
determine cancer aggressiveness. They injected copolarized
pyruvate and fumarate to measure the lactate export and necrosis
in PDAC and MCF-7 breast carcinoma cells. Increased lactate
export and cell necrosis are indicators of tumor aggressiveness,
which can be determined using pyruvate-to-lactate flux and
fumarate-to-malate flux, respectively. This study measured the
apparent diffusion coefficient (ADC) and used HP-MR to
examine the necrosis grade. The ADC of intracellular
metabolites depends on the intactness of the plasma membrane.
A greater ADClactate-to-ADCpyruvate ratio was observed in viable
PDAC compared to MCF-7 breast carcinoma cells. The ADC
measurements of metabolites could complement the HP
lactate-to-pyruvate and HP fumarate-to-malate ratios to
determine cell necrosis. This technique can be extended to in
vivo measurements to determine the necrotic areas and evaluate
the therapeutic response in PDAC patients.

Response to Radiation Therapy
Several studies have shown that early responses to radiation
therapy can be assessed using molecular imaging. Ionizing
radiation generates reactive oxygen species in tumor tissues
[68]. Determining oxidative stress noninvasively could measure
the extent of oxidative damage. HP pyruvate-to-lactate
conversion predicted the response of solid tumors to radiation
therapy in animal models [56]. This is an indirect approach and
exploits the fact that pyruvate-to-lactate conversion requires
reducing equivalents [56]. More direct measurement of redox
stress inside cells is provided by HP dehydroascorbate–based
MR, as summarized in Table 1 [57-61].

Collateral Lethality
Collateral lethality is a novel therapeutic approach that exploits
the deletion of passenger genes alongside neighboring (deleted)
tumor suppressor genes, thus conferring cancer-specific
vulnerabilities [69]. One such instance is the deletion of both
copies of malic enzyme 2 (ME2) with homozygous deletion of
the neighboring SMAD4 in many cases of PDAC. This makes
ME3 inhibition a useful drug target because ME2 and ME3 are
paralogous isoforms involved in NADPH regeneration and thus
redox balance. The downstream effect of ME3 inhibition entails
a reduction in the levels of branched-chain amino acid
aminotransferase (BCAT) (encoded by BCAT2) via
AMP-activated protein kinase–mediated mechanisms [69]. An
HP α-keto isocaproate probe (Table 1), which can detect BCAT
levels in vivo, could potentially be used for prognosis in the
near future [66].

Imaging Peritoneal Metastasis
An interesting investigation by Eto et al [70] (Table 2) illustrates
a method for the selective imaging of malignant ascites in a
mouse model of peritoneal metastasis using HP-MR and
bioluminescence studies [70]. In vivo HP images obtained using
H2O and D2O as a radical in SUIT-2 peritoneal metastasis mice
showed increasing intensity with time (0, 7, 14, and 21 days
after tumor cell administration). This correlated with the
increased density of bioluminescence as the density of PDAC
ascites increased, thus providing the capability to monitor
peritoneal metastasis as well as to evaluate the efficacy of
antimetastatic drugs using these two techniques.

Metabolic Imaging Employing HP 13C Glutamine
Another possible approach for the early detection of PDAC is

using HP 13C glutamine. Son et al [51] described a noncanonical
metabolic pathway for glutamine observed in PDAC cells.
Normal cells convert glutamine-derived glutamate to
α-ketoglutarate, which then feeds into the TCA cycle, whereas
PDAC cells convert glutamine-derived glutamate into aspartate
inside the mitochondria. This aspartate migrates to the cytosol
and undergoes further biochemical reactions, which ultimately
contribute to redox balance. This study also stated that the
pathway is dispensable in normal cells (inhibiting the enzymes
of this pathway is easily tolerated by normal cells), but is crucial
to the survival of PDAC cells. However, it is not clear whether
the pathway of glutamine to aspartate via glutamate is more
pronounced in PDAC as compared to the normal tissue. If the
glutamine to aspartate via glutamate pathway is upregulated by
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several fold compared to that in normal cells, this metabolic
pathway can be exploited to diagnose and grade PDAC tumors

employing HP-MR with HP [13C] glutamine. The feasibility of
this approach depends on several factors. First, the decay time

for HP 13C glutamine must be considerably longer than the
uptake of glutamine by PDAC cells, and the time of conversion
to glutamate and then to aspartate. Additionally, there needs to
be preferential uptake in PDAC cells compared to the cells of
the normal pancreas. HP glutamine has already been used to
study cancer cells from other tumor types [71] (Table 1).

Interstitial pH Mapping
Pancreatitis (inflammation of the pancreas) and PDAC are
characterized by acidic microenvironments. The interstitial pH
of the pancreas is reduced in patients with chronic pancreatitis
[72-74]. The use of pH imaging to differentiate the acidic
microenvironment of pancreatic tumors from that of PanIN
lesions in mice has been elucidated by Cruz-Monserrate et al
[52]. Several HP probes such as bicarbonate and zymonic acid
can be potentially employed to image extracellular pH in tissue,
which are summarized in Table 1 [22,53,55,67,75].

AI Applications in PDAC

Overview of AI and Deep Learning for PDAC
Deep learning has shown robust and extraordinary performance
in medical image analysis. Many previous studies have explored
the applications of AI, especially deep learning, for diagnosing
and detecting various diseases, including pancreatic cancer,
from different imaging modalities [76,77]. Leveraging HP-MR
with deep learning is a promising approach to interrogate the
early diagnosis and early efficacy of therapy for pancreatic
cancer.

Most of the innovative applications of deep learning in
biomedical imaging were triggered by convolutional neural
networks (CNNs) [78], a powerful method for representation
learning in images and structured data. As discussed above,
neural networks, inspired by information transformation in the
biological brain, require connections of all nodes of one layer
to the next, which is insufficient for image analysis and fails to
make use of spatial information. To overcome these issues,
CNN introduces convolutional layers and pooling operations.

In addition, many innovative modifications have been proposed
to boost the performance of CNN, including dropout [79], batch
normalization [80], and residual learning [81]. Essentially, the
input to CNN is in a grid structure to preserve the spatial
information, and then multiple convolutional layers and
activation layers, interspersed with pooling layers, are utilized
to process the data and learn structure in each level.
Furthermore, a fully connected layer computes the final outputs
for image analysis tasks.

A convolutional layer includes a set of filters with learnable
parameters. Each filter is slid across the width and height of the
input, and the dot product of the filter and input at every special
position is calculated and goes through an activation function.
A nonlinear activation function, typically rectified linear units
(ReLUs), expands the potential in approximation of any
nonlinear function [82]. The output of a convolution layer is a
stack of activation maps of all filters. For pooling layers, it takes
small regions in the feature map and produces a single number
as the output to extract the most significant information learned
from convolutional layers.

Several variants of CNNs with innovative architectures have
been proposed to achieve better performance on specific tasks
or types of data. VGG [83] introduced smaller filter kernels and
constructed a deeper network compared with AlexNet [84],
which first utilized ReLUs, dropout, and GPU accelerations.
ResNet [81] proposed residual learning by using skip
connections, which not only reduces the number of parameters
but also makes the network deeper at up to 152 layers without
a vanishing gradient. For biomedical images, U-Net [85]
constructed downstreaming and upstreaming paths for
biomedical images processing, connected by a skip connection,
which concatenates features to the upstreaming path. V-Net
[86] extended U-Net to 3D datasets using 3D convolutional
layers and achieved extraordinary performance.

To review the previous studies on using AI for PDAC, we
grouped the 17 selected papers (Table 3 and Table S1 in
Multimedia Appendix 1) meeting our inclusion criteria into six
categories based on how AI was utilized in the context of PDAC
to help recognize the gaps in the previous studies and to discuss
the novel approaches that can fill the current gaps in detecting
PDAC by imaging modalities.
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Table 3. Review of published applications of artificial intelligence for pancreatic ductal adenocarcinoma (PDAC).

PerformanceDatasetMethodTaskReference

The ASDe between the predicted
tumor and the reference tumor was

Average ICVF difference (AICVFD)
of tumor surface and tumor relative
volume difference (RVD) on six pa-

A coupled PDEc system
to develop a reaction-dif-
fusion model enabling

A patient-specific tu-
mor growth model
based on longitudinal
multimodal imaging

Liu et al [87]

2.4 mm (SD 0.5), the RMSDf was
4.3% (SD 0.4), the AICVFD was

tients with pathologically confirmed
pancreatic neuroendocrine tumors

the incorporation of the
cell metabolic rate and

calculate ICVFd

data, including dual-

phase CTa and FDG-

PETb

2.6% (SD 0.6), and the RVD was
7.7% (SD 1.3)

76.36% DSCgCT images from the General Surgery
Department of Peking Union Medical

Proposed model includes
13 convolutional layers

CT pancreas segmen-
tation (edge detection)

Fu et al [88]

College Hospital; 59 patients, includ-and 4 pooling layers; in-
ing 15 with nonpancreas diseases and
44 with pancreas-related diseases

troduced multilayer up-
sampling structure

DSC of 78% for the pancreas, 90%
for the stomach, and 76% for the
esophagus

Two publicly available datasets: 43
subjects from the Cancer Imaging
Archive Pancreas CT dataset with
pancreas segmentations and 47 sub-

Modified V-net proposed
by replacing the convolu-
tional layers in the en-
coder path by DenseNet

Multiorgan segmenta-
tion on abdominal CT

Gibson et al [89]

jects from the Beyond the Cranialconsisting of stacks of
Vault segmentation challenge withdense blocks combined
segmentations of all organs except
the duodenum

with bilinear upsampling
in the decoder path

AUCj of 0.81CT images of 93 patients from Sun
Yat-Sen University and 19 patients

The proposed 3D CNNi

composed of 1 CNN lay-

Preoperative predic-
tion of pancreatic
neuroendocrine neo-

Luo et al [90]

from The Cancer Center of Sun Yat-er with 1 rectifier linear
plasms (pNENs) grad-

ing by CECTh
Sen University with pathologically
confirmed pNENs

unit layer, a max pooling
layer, 12 IdentityBlock,
4 ConvBlock, 1 global
average pooling layer,
and 1 fully connected
layer

AUC of 0.966084 enhanced CT horizontal images
from 338 pancreatic cancer patients

Pretrained VGG16 serves
as a feature extraction
network, and Faster R-

Diagnosis of pancreat-
ic cancer using CNN

Liu et al [91]

CNN is used for diagno-
sis

DSC of 78.1% (SD 8.7)Public dataset (Gibson et al [89]),
which contains 90 late venous-phase
abdominal CT images

U-net model was
changed by adding one
interactive layer that
takes feedback from the

Segmentation of the
pancreas

Boers et al [92]

annotator while freezing
other layers to do retrain-
ing

Mean absolute error between CT
and synthetic CT of 56.89 (SD

Thirty patients previously treated with

pancreas SBRTl at Emory University

A self-attention cycle
generative adversarial
network (cycleGAN) was

Cone-beam CT
(CBCT) quality and

HUk accuracy im-
provement

Liu et al [93]

13.84) HU and 1.06 (SD 15.86)
HU between CT and the raw
CBCT

used to generate CBCT
from synthetic CT

Mean DSC of 89.4% and mean
surface distance of 1.29 mm

From 575 participants, a total of 1150
CT images

Two U-Net models were
linked by an organ-atten-
tion module

CT data collection for
deep learning

Park et al [94]

DSC of 91% (SD 3), 89% (SD 6),
86% (SD 6), 95% (SD 2), 95%

100 patients with CT simulation
scanned

3D U‐Net with an atten-
tion strategy is proposed

Multiorgan segmenta-
tion for pancreatic CT

Liu et al [95]

(SD 2), 96% (SD 1), 87% (SD 5),
and 93% (SD 3) for the large
bowel, small bowel, duodenum,
left kidney, right kidney, liver,
spinal cord, and stomach, respec-
tively.
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PerformanceDatasetMethodTaskReference

AUC of 0.89A group of 513 patients underwent
pancreaticoenteric anastomosis after

PDm at three institutions between
2006 and 2019

One convblock, 8 residu-
al blocks, and one fully
connected layer

Prediction of clinical-
ly relevant postopera-
tive pancreatic fistula
using CECT

Mu et al [96]

Accuracy of 87.8% (SD 3.1)Dual-phase CT from 575 control
subjects and 750 patients with PDAC
from 2005 to 2017

Three networks with dif-
ferent voxel sizes. Each
network follows an en-
coder-decoder topology
and includes a series of
CNN layers max pooling
and deconvolutional lay-
ers

Deep-learning models
for abdominal organs
segmentation using
CT

Chu et al [77]

DSC of 63% (SD 15)347 CECT scans based on a statement
of a negative or unremarkable pan-
creas in the original radiologist’s re-
port

NVIDIA 3D Slicer seg-
mentation module

Deep-learning models
for pancreas segmenta-
tion using CT

Suman et al [97]

Accuracy of 82.06%, 79.06%, and
78.80% on plain phase, arterial
phase, and venous phase

3494 CT images from 222 patients
with pathologically confirmed pancre-
atic cancer and 3751 CT images from
190 patients with normal pancreas
from June 2017 to June 2018

The model consisted of
three convolutional lay-
ers and a fully connected
layer

Pancreatic cancer diag-
nosis using CT

Ma et al [98]

AUC of 0.94552890 CT images from Qingdao Uni-
versity

Feature pyramid net-
works with Faster R-
CNN

Tumor detection
framework for pancre-
atic cancer via CECT

Zhang et al [99]

AUC of 0.77171 patients, 39 MRIs with no pancre-
atic lesions served, and 132 confirmed
IPMN

Integration of CNN and

SVMo
Intraductal papillary
mucinous neoplasms
(IPMN) classification

using MRIn

Corral et al [100]

Accuracy of 84.22%171 MRIs for 38 subjects

with normal pancreas, and the remain-
ing 133 from subjects diagnosed with
IPMN

VGG network and SVMIPMN classification
using MRI

Hussein et al [101]

DSC of 86%MRIs from four patients with locally
advanced pancreatic cancer

SVM with recursively
retraining samples

MRI pancreas segmen-
tation

Liang et al [102]

DSC of 73.88%20 patients with PDAC2D UnetMRI pancreas segmen-
tation

Zheng et al [103]

aCT: computed tomography.
bFDG-PET: fluorodeoxyglucose-positron emission tomography.
cPDE: partial differential equation.
dICVF: intracellular volume fraction.
eASD: average surface distance.
fRMSD: root mean square deviation.
gDSC: Dice similarity coefficient.
hCECT: contrast-enhanced computed tomography.
iCNN: convolutional neural network.
jAUC: area under the receiver operating characteristic curve.
kHU: Hounsfield unit.
lSBRT: stereotactic body radiotherapy.
mPD: pancreatoduodenectomy.
nMRI: magnetic resonance imaging.
oSVM: support vector machine.

Tumor Growth Model
Tumor growth, especially for pancreatic neuroendocrine tumors,
is related to cancer cell properties and relies on the dynamic

interaction between cells and the microenvironment. Swanson
et al [104] proposed a reaction-diffusion model by assuming
infiltrative growth of the tumor cells but did not consider the
cell metabolic rate. Liu et al [87] introduced dual-phase
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CT-measured intracellular volume fraction (ICVF) to the
reaction-diffusion model. Cell metabolic rate was considered
in the prediction of pancreatic neuroendocrine tumor growth.
They evaluated the model by comparing predictions with
sequential observations regarding average surface distance, root
mean square deviation (RMSD) of the ICVF map, and average
ICVF difference in six patients with pancreatic neuroendocrine
tumors. Although the RMSD was around 4.3%, the limited
number of patients involved might have undermined the final
findings.

Organ/Multiorgan Segmentation and Edge Detection in
Medical Images
Fu et al [88] discussed the application of a CNN consisting of
13 convolution layers and 4 pooling layers with a multilayer
upsampling structure in pancreas segmentation from CT images.
The proposed model was evaluated using real PDAC CT images
from a dataset created by the General Surgery Department of
Peking Union Medical College Hospital. The 59 patients
consisted of 15 patients with nonpancreas diseases and 44
patients with pancreas-related diseases. A Dice similarity
coefficient (DSC) of 76.36% was achieved. The introduced
fusion layer provided good visualization for decision-making
and multilayer upsampling improved the performance. However,
due to the limited number of CT images for training and
validation, its performance suffered from the risk of overfitting
as the reported SD from precision 5-fold cross-validation was
very high (mean SD of 18.08 across all classes). Moreover, the
reported precision and recall for the healthy cohort (80.95 and
86.53, respectively) was much higher than that for the IPMN
(75.39 and 67.37) or pancreatic neuroendocrine tumor (70.44
and 74.86) cohort.

Alternatively, to implement multiorgan segmentation, especially
on abdominal CT in the pancreas, Gibson et al [89] modified
V-net by replacing the convolutional layers in the encoder path
by DenseNet consisting of stacks of dense blocks combined
with bilinear upsampling in the decoder path. They applied this
on two public datasets: one including 43 subjects from the
Cancer Imaging Archive Pancreas CT data with pancreas
segmentation, and the other including 47 subjects from the
Beyond the Cranial Vault segmentation challenge with
segmentations of all organs except the duodenum. They achieved
a DSC of 78%. The introduced dense feature stack considerably
reduced the number of parameters for medical image
classification tasks. However, this approach is only appropriate
for relatively small datasets because of overfitting issues.

As another example of an attempt to improve pancreas
segmentation performance in CT scans, Boers et al [92]
developed an interactive version of U-net (iUnet) by adding one
interactive layer after the last fully connected layer takes
feedback from annotators while freezing other layers to do the
retraining. This was applied to a public CT dataset used in
Gibson et al [89], which contains 90 late venous-phase
abdominal CT images and a respective reference segmentation.
A DSC of 78.1% (SD 8.7%) was achieved from the interactive
version of iUnet, which outperformed previous methods using
the same dataset. However, this approach may also suffer from

overfitting issues since interactive processes may introduce
external information, which limits its scalability.

Liu et al [93] presented a deep-attention U-net approach to solve
multiorgan segmentation for pancreatic cancer CT images. This
method achieved state-of-the-art performance, but its
performance in pancreas segmentation is unclear.

Besides CT images, investigators using T1-MRI proposed
several innovative approaches to segment the pancreas. Liang
et al [102] introduced a top-down and bottom-up approach. In
the top-down path, the initial planning contours derived from
simulation MR images are transferred to daily images, and in
the bottom-up path, the probabilistic support vector machine
(SVM) is used with recursively retraining samples. The final
result is obtained by fusing both paths and the final reported
DSC was 86%. Zheng et al [103] proposed a 2D U-Net approach
with shadow sets for MRI and CT pancreas segmentation. The
usage of shadow sets reduced uncertainty and achieved a DSC
of 84.37% on the NIH-CT-82 public dataset [105] and 73.88%
on an MRI dataset collected from Changhai Hospital, including
20 patients with PDAC.

Prediction of PDAC and Risk Evaluation
To implement preoperative prediction of pancreatic
neuroendocrine neoplasms (pNENs) grading by CT, Luo et al
[90] applied a CNN model with identity blocks and convolution
blocks to a CT imaging dataset consisting of 93 patients from
the hospital. An arterial model employed for the pathological
grading of pNENs achieved an area under the receiver operating
characteristic curve (AUC) of 0.81. Due to the limitations of
the dataset, simple deep-learning models may undermine the
feature extraction ability and lead to suboptimal performance.
In addition, the limited observations may lead to a lack of an
independent evaluation dataset and invalidation of n-fold
cross-validation, which constrains the scalability and
generalizability of the proposed model.

For the prediction of clinically relevant postoperative pancreatic
fistula using CT images, Mu et al [96] utilized a Resnet18 model
with fewer filters on 513 patients imaged between 2006 and
2019. All patients underwent pancreatico-enteric anastomosis
after the diagnosis of pancreas disease at three institutions.
Compared to the commonly used Fistula Risk Score (FRS), the
proposed model improved the prediction AUC from 0.73 to
0.89. This study illustrated that deep learning might overcome
intermediate risk score issues in FRS with greater predictability.

Hussein et al [101] utilized clustering and SVM with initial
label estimation for risk stratification of pancreatic tumors. The
model outperformed other unsupervised methods, achieving
58% accuracy out of 171 scans, of which 38 subjects were
normal and the remaining 133 were diagnosed with IPMNs. In
addition, Corral et al [100] performed similar experiments using
MRI with CNN and SVM as the final classifier, and achieved
sensitivity and specificity of 0.92 and 0.52, respectively, for the
detection of dysplasia. In this task, the deep-learning protocol
barely outperformed radiologists due to unbalanced data issues
and the complexity of IPMN.
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Diagnosis of PDAC
To implement diagnosis of PDAC from CT images, Liu et al
[91] utilized a pretrained VGG16 model as a feature extraction
network in conjunction with a faster recurrent CNN (R-CNN)
as a decision-maker. Their CT dataset consisted of 6084
enhanced CT horizontal images from the abdomen of 338 PDAC
patients. This achieved an AUC of 0.9632 for the prediction of
PDAC. R-CNN usage for sequential information extraction
greatly improved the diagnostic performance, and its dynamic
feature extraction provided model interpretability and scalability.

Ma et al [98] utilized a regular CNN with four hidden layers on
3494 CT images from 222 patients with pathologically
confirmed PDAC and 3751 CT images from 190 patients with
a normal pancreas as controls from the First Affiliated Hospital,
Zhejiang University School of Medicine. The overall diagnostic
accuracy of trained binary classifiers was over 95%. However,
it failed to beat human performance. With a similar data size,
Liu et al [91] achieved better performance using a more
complicated, faster R-CNN, implying the complexity of
pancreatic cancer detection and its need for an appropriate model
architecture design and parameter fine-tuning.

Zhang et al [99] proposed a tumor detection framework for
PDAC using CT. The framework utilized feature pyramid
networks with the faster R-CNN model. The Affiliated Hospital
of Qingdao University provided a dataset containing 2890 CT
images, and a classification AUC of 0.9455 was achieved. This
framework outperformed the state-of-the-art methods, but still
suffered from input uncertainty inherent in closed-source
datasets. The comparison would be more effective if a public
dataset was used in the experiment.

Improvement of Image Quality
Stereotactic body radiotherapy (SBRT) has shown more success
in patients with locally advanced pancreatic cancer compared
to conventional radiotherapy. To overcome interference due to
motion in the breathing cycle and patient weight loss [106],
cone-beam CT (CBCT) is commonly used for target position
verification and setup displacement correction to avoid
suboptimal target coverage and excessive doses to organs at
risk. However, raw CBCT data cannot be used for SBRT dosage
calculation due to considerable artifacts such as streaking and
shading [107-109] caused by scatter contamination, resulting
in different Hounsfield unit (HU) values from CT scans [110].
To improve the HU fidelity of CBCT, Liu et al [95] utilized
self-attention cycleGan-based CBCT to synthetic CT (sCT)
models on a dataset consisting of 30 patients previously treated
with pancreas SBRT at Emory University. The mean absolute
error of the proposed framework between CT and sCT was
56.89 (SD 13.84) HU compared to 81.06 (SD 15.86) HU
between CT and the raw CBCT.

Criteria to Evaluate Annotation Accuracy in Medical
Images
To test the CT data collection quality, Park et al [94] proposed
two U-net–linked networks, linked by an organ-attention
module, to test the performance of a well-annotated dataset,

including a total of 575 participants and 1150 CT images. After
appropriate management of the annotation process, an average
DSC of 89.4% was achieved. This study innovatively employed
a deep-learning model to test CT image annotation performance,
and improved the annotation quality for further analysis and
research. However, this approach still suffers from uncertainty
introduced by model training and simulation.

Suman et al [97] used CNNs to train technologists in labeling
pancreas segmentation CT datasets. DSC was improved through
interactions between model output and expert correction, which
implied that annotation quality was enhanced.

Discussion

In this review, we have discussed how two different techniques,
HP-MR and AI, are revealing exciting information about PDAC
and PanINs that was not accessible by diagnostic imaging even
a few years ago. Deep-learning models eliminate the requirement
of domain knowledge for feature engineering that is necessary
for conventional machine learning models by learning from raw
data. Deep-learning models are capable of learning features
from the raw data and apply nonlinear transformations to map
the input data to high-dimensional representations trivializing
classification or regression. These models are uniquely able to
transform multiple modalities into common latent space to
synthesize features across all modalities to improve classification
performance. However, there is no free lunch, and the flexibility
and high accuracy resulting from millions of parameters comes
with a requirement of a huge training dataset in comparison
with other machine-learning techniques. Moreover, these models
suffer from lack of interpretability and uncertainty measurement.
In machine-learning algorithms, there is a tradeoff between
interpretability and accuracy. When the prediction accuracy
grows with more complex (increase in the number of trainable
parameters) deep-learning models, the interpretability decreases.

For instance, ResNet contains 5×107 parameters requiring 1010

floating point operations for a single classification task, making
it almost impossible to be traced or explained by humans
[81,111]. Lastly, deep-learning models do not provide any
uncertainty measurement to measure how certain the model is
with its prediction. These models are blindly used with the
assumption of “good accuracy,” whereas previous experience
has shown that these models are susceptible to overconfident
decision-making, especially when the new data are far from the
training data distribution (corner case). The lack of
interpretability and uncertainty estimation is even more serious
in clinical decision-making tasks since it is needed for building
trust in the model’s prediction.

Studies on HP-MR have demonstrated that this modality can
detect metabolic changes at very early stages of lesion formation
in the pancreas (eg, PanIN 1 and 2); however, this is more of a
spectroscopic technique than an imaging modality. Furthermore,
the signal from HP compounds lasts no more than a few minutes
depending on the T1 that allows for rapid acquisition of dynamic
metabolic flux in the organ of interest. Table 4 summarizes the
strengths and weaknesses of AI, MRI, and HP-MR.
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Table 4. Strengths and weaknesses of artificial intelligence (AI), magnetic resonance imaging (MRI), and hyperpolarized magnetic resonance (HP-MR).

WeaknessesStrengthsTechnique

Poor signal-to-noise ratio and contrast-to-noise
ratio.

Cannot detect pancreatic cancer at early stages.

Rapid acquisition of anatomical images.

Well-established and widely distributed imaging
modality.

MRI

Short time window of imaging (~2 minutes).

Expensive initial investment in the infrastructure.

Slow adoption in the clinical setting.

Real-time metabolic flux measurements at the
organ of interest.

Can detect premalignant stages of pancreatic
cancer.

HP-MR

Intensive data requirement.

High uncertainty on corner cases.

Lack of interpretability.

No feature engineering, ability to learn features
from raw data.

Ability to learn features from and across multiple
modalities.

High accuracy result.

AI

To take advantage of the strengths of AI, MRI, and HP-MR,
and mitigate their weaknesses, we propose the following pipeline
as illustrated in Figure 4. Our pipeline leverages the unique
capability of AI to learn features from each and across both
HP-MR and MRI as complementary modalities to investigate
the early detection of PDAC by overlaying the anatomical

imaging for localized spectroscopic information of real-time
metabolic flux in the pancreas. Additionally, we utilize
Grad-CAM [112,113] and concrete dropout to provide a visual
explanation, and introduce Bayesian inference to estimate
uncertainty in the model’s decision.

Figure 4. Schematic illustrating the concept of leveraging anatomical magnetic resonance imaging (MRI), hyperpolarized magnetic resonance (HP-MR),
and artificial intelligence as complementary modalities toward developing actionable biomarkers of pancreatic ductal adenocarcinoma. CNNs: convolutional
neural networks; EHR: electronic health record.

The training process of our pipeline is as follows: axial, sagittal,
and coronal MR images in the T1 and T2 modalities are
annotated to highlight the pancreas area by radiologists to train
a deep-learning semantic segmentation network developed by
our team. We extract the ROIs from MR images (ie, the
pancreas). The extracted ROIs with metabolic information from
HP-MR are the inputs for our multimodal deep-learning model
to predict pancreatic cancer status. The appropriate combination
of MRI and HP-MR as complementary modalities improves the
classification performance. Therefore, the ground truth for our
second deep-learning model is the presence of early stages of

PDAC established by pathology reports and electronic health
records of the patients. The training path is shown with the
dashed lines and the inference path is shown with the solid lines
in Figure 4. It has been estimated that there is a window of
opportunity of ~10 years from the moment in which a pancreatic
epithelial cell undergoes an oncogenic hit and the time of
diagnosis of, often fatal, pancreatic cancer [46,114]. Together,
AI, HP-MR, and conventional MRI as complementary
modalities can address this knowledge gap in diagnostic imaging
within this crucial time window of opportunity to save lives.
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Leveraging AI and HP-MR applications together may lead to
the development of real-time actionable biomarkers of early
detection, assessing aggressiveness, and interrogating the early
efficacy of therapy in PDAC. For example, multimodal AI can
learn features from both HP-MR, as well as anatomical MRI
and CT imaging modalities, to yield “hybrid biomarkers” and
reduce the time required to detect PDAC evolution in three key

areas of tumor progression: initial development of the tumor,
its regression following therapy, and the eventual recurrence of
the tumor. This innovative synthesis of these techniques may
result in a more sensitive readout of tumor progression that can
be readily translated and significantly impact how PDAC
patients, as well as patients at high risk of developing this deadly
disease, are currently managed in the clinic.
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PDX: patient-derived xenograft
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Reviews
R-CNN: recurrent convolutional neural network
ReLU: rectified linear unit
ROI: region of interest
SBRT: stereotactic body radiation therapy
sCT: synthetic computed tomography
SVM: support vector machine
T1: longitudinal relaxation time
TCA: tricarboxylic acid

Edited by C Lovis; submitted 18.12.20; peer-reviewed by 哲 張, Z Su, H Zhang; comments to author 12.01.21; revised version received
24.02.21; accepted 03.04.21; published 17.06.21

Please cite as:
Enriquez JS, Chu Y, Pudakalakatti S, Hsieh KL, Salmon D, Dutta P, Millward NZ, Lurie E, Millward S, McAllister F, Maitra A, Sen
S, Killary A, Zhang J, Jiang X, Bhattacharya PK, Shams S
Hyperpolarized Magnetic Resonance and Artificial Intelligence: Frontiers of Imaging in Pancreatic Cancer
JMIR Med Inform 2021;9(6):e26601
URL: https://medinform.jmir.org/2021/6/e26601
doi: 10.2196/26601
PMID:

©José S Enriquez, Yan Chu, Shivanand Pudakalakatti, Kang Lin Hsieh, Duncan Salmon, Prasanta Dutta, Niki Zacharias Millward,
Eugene Lurie, Steven Millward, Florencia McAllister, Anirban Maitra, Subrata Sen, Ann Killary, Jian Zhang, Xiaoqian Jiang,
Pratip K Bhattacharya, Shayan Shams. Originally published in JMIR Medical Informatics (https://medinform.jmir.org), 17.06.2021.
This is an open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information,
a link to the original publication on https://medinform.jmir.org/, as well as this copyright and license information must be included.

JMIR Med Inform 2021 | vol. 9 | iss. 6 | e26601 | p. 25https://medinform.jmir.org/2021/6/e26601
(page number not for citation purposes)

Enriquez et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://medinform.jmir.org/2021/6/e26601
http://dx.doi.org/10.2196/26601
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

