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Abstract

Background: The American Academy of Sleep Medicine guidelines suggest that clinical prediction algorithms can be used in
patients with obstructive sleep apnea (OSA) without replacing polysomnography, which is the gold standard.

Objective: This study aims to develop a clinical decision support system for OSA diagnosis according to its standard definition
(apnea-hypopnea index plus symptoms), identifying individuals with high pretest probability based on risk and diagnostic factors.

Methods: A total of 47 predictive variables were extracted from a cohort of patients who underwent polysomnography. A total
of 14 variables that were univariately significant were then used to compute the distance between patients with OSA, defining a
hierarchical clustering structure from which patient phenotypes were derived and described. Affinity from individuals at risk of
OSA phenotypes was later computed, and cluster membership was used as an additional predictor in a Bayesian network classifier
(model B).

Results: A total of 318 patients at risk were included, of whom 207 (65.1%) individuals were diagnosed with OSA (111, 53.6%
with mild; 50, 24.2% with moderate; and 46, 22.2% with severe). On the basis of predictive variables, 3 phenotypes were defined
(74/207, 35.7% low; 104/207, 50.2% medium; and 29/207, 14.1% high), with an increasing prevalence of symptoms and
comorbidities, the latter describing older and obese patients, and a substantial increase in some comorbidities, suggesting their
beneficial use as combined predictors (median apnea-hypopnea indices of 10, 14, and 31, respectively). Cross-validation results
demonstrated that the inclusion of OSA phenotypes as an adjusting predictor in a Bayesian classifier improved screening specificity
(26%, 95% CI 24-29, to 38%, 95% CI 35-40) while maintaining a high sensitivity (93%, 95% CI 91-95), with model B doubling
the diagnostic model effectiveness (diagnostic odds ratio of 8.14).

Conclusions: Defined OSA phenotypes are a sensitive tool that enhances our understanding of the disease and allows the
derivation of a predictive algorithm that can clearly outperform symptom-based guideline recommendations as a rule-out approach
for screening.

(JMIR Med Inform 2021;9(6):e25124) doi: 10.2196/25124
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Introduction

Background
Obstructive sleep apnea (OSA) is a common sleep-related
breathing disorder characterized by clinical symptoms (eg,
daytime sleepiness) and at least five events per hour of
narrowing (apnea or hypopnea) of the upper airway that impairs
normal ventilation during sleep [1]. An apnea consists of a
cessation of airflow higher than 90% of the baseline, a hypopnea
is a reduction in airflow along with a decreased saturation of
3% from pre-event baseline and/or associated with an arousal,
and the apnea-hypopnea index (AHI) is the number of such
events per hour of sleep. OSA prevalence has been
underestimated, with studies varying significantly, both in the
population being studied and in OSA definition. A study using
a simpler hypopnea definition (4% desaturation) estimated a
prevalence of 14% in men and 5% in women [2]. In 2 other
studies, the prevalence was substantially higher but was
estimated for specific populations, such as patients being
evaluated for bariatric surgery [3] or patients who have had a
transient ischemic attack or stroke [4], reaching values of 70%
and 72%, respectively. The latest study by Benjafield et al [5]
estimated that 936 million adults have OSA; in Portugal, it
represents 17%, and approximately 74% have moderate to severe
OSA. Overall, this disease is largely unrecognized and
undiagnosed, representing a significant burden to the health
care system [6], especially for patients who remain untreated
or at an increased risk of developing cardiovascular disease,
metabolic dysregulation, or diabetes [1,7-11]. The failure to
clinically recognize OSA leads to significant morbidity and
mortality, making it essential to anticipate its recognition,
diagnosis, and treatment [1]. OSA diagnosis, for which a
comprehensive sleep evaluation (sleep history and physical
examination) plus polysomnography (PSG) is the gold standard
[1], can effectively decrease health care utilization and costs,
whereas timely treatment can improve quality of life, lower the
rates of motor vehicle crashes, and reduce the risk of chronic
health consequences [12].

In 2017, a new clinical practice guideline for diagnostic testing
for adults with OSA was issued by the American Academy of
Sleep Medicine (AASM) [1], updating 2 previous AASM
guidelines from 2005 [8] and 2007 [13]. Of the 9 PICO (patient,
population or problem, intervention, comparison, and outcome)
questions raised in this new guideline, the task force reported
insufficient evidence to directly address the first one: “In adult
patients with suspected OSA, do clinical prediction algorithms
accurately identify patients with a high pretest probability for
OSA compared to history and physical exam?,” as no studies
comparing the efficacy of clinical prediction algorithms with
clinical history and physical examination were identified.
Therefore, they compared the efficacy of clinical prediction
algorithms with PSG, crafting recommendation 1: “We
recommend that clinical tools, questionnaires and prediction
algorithms not to be used to diagnose OSA in adults, in the
absence of PSG,” affirming that clinical prediction algorithms
can, however, be used in patients with suspected OSA, as long
as not to establish the need for PSG or to become a substitute
for PSG. Rather, these tools can be more helpful, in specialties

other than sleep-oriented ones, to identify patients with an
increased risk for OSA.

Objective
In this study, we aim to establish a new clinical prediction
algorithm to allow OSA screening (high pretest probability for
OSA) based on demographics, physical examination, clinical
history, and comorbidities, using standard OSA definition (AHI
≥5 plus symptoms), extending traditional approaches that assess
only preestablished symptoms, such as snoring, witnessed
apneas, and excessive daytime sleepiness.

Methods

Overview
Using retrospective data from a cohort of patients who
underwent PSG, after proper referral by a physician, significant
predictive variables were selected and used to compute distances
among patients with OSA, which supported a clustering
algorithm to derive patient phenotypes from resulting clusters,
with missing data being analyzed and imputed as needed. To
assess the consistency of our phenotypes, each healthy individual
was also tested against the clustering structure, and the resulting
phenotyping was analyzed. Then, to assess the benefit of this
phenotyping strategy, cluster membership was used as an
additional predictive variable and included in a Bayesian
network classifier, with validity compared with an equivalent
classifier without phenotype information, following the 2015
STARD (Standards for Reporting Diagnostic Accuracy Studies)
guideline.

Patients
Data from patients referred to undergo PSG at Vila Nova de
Gaia and Espinho Hospital Center Sleep Laboratory were
retrospectively collected. Patients who underwent PSG between
January and May 2015 were included if they were aged >18
years and were suspected of having OSA. Nonetheless,
exclusion criteria included patients already diagnosed
(performing positive airway pressure therapies), patients
suspected of having another sleep disease, patients with severe
lungs or neurological conditions, and pregnant women. In case
of multiple examinations of the same patient, the one with the
best sleep efficiency was selected. This study was approved by
the Ethics Commission of Vila Nova de Gaia and Espinho
Hospital Center, in accordance with the Declaration of Helsinki.

Predictive Variables
An author-performed literature review on PubMed (April 19,
2015) supported the definition of the relevant variables to be
collected from medical and/or sleep laboratory records in which
the presence or absence of each information was assessed by a
physician, resulting in a total of 47 predictive variables, all in
accordance with the current and previous OSA guidelines. The
search contained “risk factors,” “sleep apnea, obstructive,” and
“diagnosis” as MeSH terms, obtaining 1397 articles, of which
47 were used for variable definition (full review description and
references used in this phase are not shown for space purposes
but can be provided on request). Selected variables included
basic demographic data (gender and age), physical examination
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(BMI, neck and abdominal circumferences, modified Mallampati
classification, and craniofacial and upper airway abnormalities),
clinical history (daytime sleepiness, snoring, witnessed apneas,
gasping and/or choking, sleep fragmentation, nonrepairing sleep,
behavior changes, decreased concentration, morning headaches,
decreased libido, sleeping body position, sleep efficiency,
participation in vehicle crashes, truck driver activity, driving
sleepiness, nocturia, alcohol consumption, smoking, coffee
intake, use of sedatives before sleep, family history or genetic
evidence, and Epworth Sleepiness Scale), and comorbidities
and cointerventions (stroke, myocardial infarction, pulmonary
infarction, arterial or pulmonary hypertension, congestive heart
failure, arrhythmias, respiratory changes, diabetes, dyslipidemia,
renal failure, hypothyroidism, gastroesophageal reflux, anxiety
and/or depression, insomnia, glaucoma, pacemaker or
implantable cardioverter-defibrillator, and bariatric surgery).

Data Set Description
Clinical data from each patient (47 predictive variables plus the
outcome) were extracted from the central clinical data registry
(all records were fulfilled by a physician) along with sleep
laboratory data and adequately anonymized to ensure patient
privacy. Original files included structured demographic data,
structured PSG reports, and unstructured textual annotations
from the medical records, with many abbreviations and
short-form text. The outcome measure was obtained from the
AHI, categorized as mild (AHI between 5 and 14), moderate
(AHI between 15 and 29), and severe (AHI >30). Given the
categorical characteristic of our modeling strategies, all
continuous variables were discretized, and the following
common cutoffs were extracted from the literature: (1) age

(20-44 years, 45-64 years, and 65-90 years), (2) BMI (<25 kg/m2

as normal weight, 25-30 kg/m2 as overweight, and ≥30 kg/m2

as obese), (3) female neck circumference (≤37 cm as normal
and >38 cm as increased), (4) male neck circumference (≤41
cm as normal and >42 cm as increased), (5) female abdominal
circumference (≤80 cm as normal and >81 cm as increased),
(6) male abdominal circumference (≤94 cm as normal and >95
cm as increased), (7) Epworth Sleepiness Scale (0-10 as normal
and 11-24 as excessive daytime sleepiness), and (8) AHI (0-4
as normal, 5-14 as mild, 15-29 as moderate, and ≥30 as severe).

Missing Data Imputation
Although we had all the electronic clinical records from the
included patients, after screening all unstructured text reports,
some predictive variables were not fully present or described,
as physicians normally do not mention the absence of a disease
or it could only be noted in paper records (missing data
proportions ranged from 0% for gender to 97% for bariatric
surgery). In our previous study [14], we studied the impact of
missing data imputation, using nearest neighbor (NN) strategies,
on the structure learning of Bayesian network classifiers for
OSA diagnosis, concluding that it can expand the body of
evidence for modeling without compromising validity. In this
study, we followed the same strategy: (1) variables with more
than 80% missing values were removed from the analysis (ie,
behavior changes, decreased libido, decreased concentration,
pulmonary infarction, glaucoma, and bariatric surgery); (2)
remaining variables were ranked by the proportion of missing

values; (3) data imputation started using only complete and
outcome-wise statistically significant variables (P<.20),
imputing incomplete likewise significant variables; and (4)
remaining incomplete variables were then imputed stepwise by
increasing the proportion of missing values per variable. All
imputations were performed using majority voting from the 10
NNs/patients.

Clinical Prediction Algorithm
Aspiring to a more personalized approach to evaluate patients
with OSA and targeting to recognize high pretest probability
for OSA, cluster analysis (a statistical approach for studying
the relationship present among groups of patients or variables
[7]) was applied to distinguish whether there are different
subgroups of patients with different clinical presentations, that
is phenotypes. Clustering has been widely used in health
research, particularly in the analysis of gene expression [15],
asthma [16], chronic obstructive pulmonary disease [17],
fibromyalgia [18], Parkinson disease [19], and sleep apnea
[20-22]. The aim is to identify clusters of patients who are
similar among themselves, although significantly different from
patients of other clusters [7]. As expected, different clusters
created from predictive variables express different disease risks,
hence defining risk-aligned phenotypes.

Connectivity-Based Clustering
In this study, we applied a hierarchical clustering algorithm to
obtain a hierarchy of possible solutions, ranging from one single
group with all patients to having every single patient separated
from each other. This process, where a cluster hierarchy is
created, is based on the distance between data observations (ie,
patients), giving as output a dendrogram (a tree diagram that
presents different clustering definitions for all possible numbers
of clusters, from which the user might choose the desired
number of clusters after inspecting the intracluster and
intercluster distances of each possible cut point). Therefore, the
definition of the distance function is a crucial step in the
application of this technique, especially in categorical data, as
an incorrect distance can easily lead to biased results with
potentially serious consequences to the conclusions drawn.

In this study, we computed the distance measure between 2
patients, a and b, based only on significant variables (univariate
significant association with the outcome, for a 20% significance
level in both the original and imputed data sets, using chi-square
and Fisher exact tests), and each variable was weighted
according to the corresponding crude odds ratio for the severe
level, as follows:

This distance encoded the similarity between patients weighted
by the contribution of each variable toward the outcome,
regularized for significant variables only, and was subsequently
used in hierarchical clustering with Ward linkage, leading to a
complete dendrogram. Afterward, the obtained OSA clusters
were defined by inspecting the outcome proportion by cluster
and the corresponding 95% CIs.
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Phenotypes Consistency
To assess whether predetermined phenotypes would also help
in segmenting healthy patients, each healthy patient was
assigned to the closest phenotype using the aforementioned
distance measure and the same significant variables, determining
the distance between each healthy patient and obtained OSA
cluster. The resulting clustering definition was then described
and analyzed, as was done for the cohort of patients with OSA.

Phenotypes Predictive Value
To assess whether the phenotypes could encode any predictive
value, Bayesian network classifiers were built with and without
cluster information as a predictive variable. First, a naïve
Bayesian network classifier was induced using the selected
variables. Then, assigned cluster was also included in the model
as a parent node of all independent variables. Validity was then
assessed and compared using leave-one-out and 10 times
twofold cross-validation strategies, comparing validity measures,
such as sensitivity, specificity, accuracy, predictive values, area
under the receiver operating characteristic (ROC) curve,
likelihood ratios, posttest odds and posttest probabilities, and
diagnostic odds ratio.

Statistical Software
R 3.2.2 (R Development Core Team) software [23] was used
on every statistical step of this work: discretization of continuous
variables (package car [24]), descriptive and comparative
analyses (packages gmodels [25] and epitools [26]), missing
data analysis (package summarytools [27]), missing data
imputation (package DMwR [28]), hierarchical clustering
(package stats [23]), Bayesian network inference (packages
bnlearn [29] and gRain [30]), and ROC curve analysis (package
pROC [31]). Bayesian networks were visually inspected using
SamIam software (developed by the University of California,
Los Angeles) [32].

Results

Baseline Characteristics
Of the 318 patients included, 207 (65.1%) had OSA. Of these
207 patients, 111 (53.6%) were classified as mild, 50 (24.2%)
as moderate, and 46 (22.2%) as severe. Baseline characteristics
of patients with OSA and the proportion of missing values for
each predictive variable are described below in Table 1 (original
data) and in Multimedia Appendix 1 (for the curated data, after
missing data imputation).

Patients with OSA had a mean age of 61 (SD 11) years, being
slightly older in the moderate subgroup (24/50, 48%; aged >65
years), whereas the proportion of males was higher in the
moderate (40/50, 80%) and severe (35/46, 76%) subgroups.
Beyond these 2 variables, only sleep efficiency was found to
be complete (no missing data), and no differences were found
across OSA levels (P=.65). For the remaining variables,
distributions were computed before and after data imputation.

The presence of witnessed apneas (109/169, 64.5%),
nonrepairing sleep (93/183, 50.8%), nocturia (99/136, 72.8%),
stroke (23/44, 52%), arterial hypertension (136/159, 85.5%),
diabetes (62/99, 63%), and dyslipidemia (125/148, 84.5%) were
more prevalent in patients with OSA than in healthy patients,
whereas the opposite was observed in family history (14/77,
18%), pulmonary hypertension (15/117, 12.8%), congestive
heart failure (26/138, 18.8%), arrhythmias (17/99, 17%),
pacemaker or implantable cardioverter-defibrillator (10/91,
11%), and respiratory changes (81/185, 43.8%). After data
imputation, the same variables remained different across OSA
levels, except for family history. Only variables significantly
associated with the outcome (P<.20) on both the original and
curated data sets were further considered for the clustering
process.
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Table 1. Descriptive analysis of patients with obstructive sleep apnea (absolute and relative frequencies are presented, and P values are the results of
chi-square tests unless otherwise specified).

Missing, n
(%)

P valueTotal (N=207), n (%)Severe (n=46), n
(%)

Moderate (n=50), n
(%)

Mild (n=111), n (%)Characteristic

207 (0.0).10 a147 (71.0)35 (76.1)40 (80.0)72 (64.9)Gender (male)

207 (0.0).18 bAge (years)

18 (8.7)6 (13.0)5 (10.0)7 (6.3)20-44

112 (54.1)24 (52.2)21 (42.0)67 (60.4)45-64

77 (37.2)16 (34.8)24 (48.0)37 (33.3)65-90

169 (18.4).05 bBMI (kg/m2)

16 (9.5)1 (2.5)1 (2.6)14 (15.6)Normal weight

71 (42.0)16 (40.0)21 (53.8)34 (37.8)Overweight

82 (48.5)23 (57.5)17 (43.6)42 (46.7)Obesity

139 (32.9).8292 (66.2)19 (70.4)23 (67.6)50 (64.1)Increased neck circumference

100 (51.7).22b92 (92.0)21 (100.0)23 (95.8)48 (87.3)Increased abdominal circumfer-
ence

142 (31.4).44Modified Mallampati

27 (19.0)5 (16.7)3 (10.0)19 (23.2)Class I

53 (37.3)9 (30.0)15 (50.0)29 (35.4)Class II

50 (35.2)12 (40.0)9 (30.0)29 (35.4)Class III

12 (8.5)4 (13.3)3 (10.0)5 (6.1)Class IV

77 (62.8).49b63 (81.8)6 (66.7)15 (83.3)42 (84.0)Craniofacial and upper airway
abnormalities

197 (4.8).64109 (55.3)21 (50.0)27 (60.0)61 (55.5)Daytime sleepiness

201 (2.9)>.99b187 (93.0)41 (93.2)43 (93.5)103 (92.8)Snoring

169 (18.4).12109 (64.5)24 (66.7)30 (76.9)55 (58.5)Witnessed apneas

154 (25.6).6567 (43.5)16 (45.7)12 (36.4)39 (45.3)Gasping and/or choking

133 (35.7).8896 (72.2)19 (73.1)22 (68.8)55 (73.3)Sleep fragmentation

183 (11.6).2093 (50.8)19 (46.3)27 (62.8)47 (47.5)Nonrepairing sleep

134 (35.3).8365 (48.5)17 (53.1)14 (48.3)34 (46.6)Morning headaches

201 (2.9).36bBody position

6 (3.0)1 (2.3)0 (0.0)5 (4.5)Decubitus

36 (17.9)8 (18.2)8 (17.0)20 (18.2)Left lateral

94 (46.8)16 (36.4)22 (46.8)56 (50.9)Right lateral

65 (32.3)19 (43.2)17 (36.2)29 (26.4)Supine

207 (0.0).65126 (60.9)30 (65.2)28 (56.0)68 (61.3)Bad sleep efficiency

61 (70.5).28b10 (16.4)3 (20.0)0 (0.0)7 (20.6)Vehicle crashes

197 (4.8).32b14 (7.1)4 (9.5)5 (10.4)5 (4.7)Truck driver

101 (51.2).38b13 (12.9)4 (18.2)4 (17.4)5 (8.9)Driving sleepiness

136 (34.3).00599 (72.8)32 (94.1)20 (69.0)47 (64.4)Nocturia

172 (16.9).64119 (69.2)29 (74.4)29 (70.7)61 (66.3)Alcohol consumption

204 (1.4).74Smoking

23 (10.9)5 (10.9)7 (14.6)11 (10.0)Yes

75 (36.8)17 (37.0)20 (41.7)38 (34.5)Ex-smoker
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Missing, n
(%)

P valueTotal (N=207), n (%)Severe (n=46), n
(%)

Moderate (n=50), n
(%)

Mild (n=111), n (%)Characteristic

153 (26.1).85b132 (86.3)25 (86.2)30 (83.3)77 (87.5)Coffee intake

188 (9.2).3443 (22.9)7 (16.3)13 (29.5)23 (22.8)Use of sedatives

77 (62.8).18 b14 (18.2)5 (31.2)1 (5.9)8 (18.2)Family history

160 (22.7).4160 (37.5)10 (29.4)17 (44.7)33 (37.5)Epworth Sleepiness Scale

44 (78.7).08 b23 (52.3)6 (60.0)8 (80.0)9 (37.5)Stroke

132 (36.2).52b18 (13.6)6 (20.0)3 (9.7)9 (12.7)Myocardial infarction

159 (23.2).09136 (85.5)37 (92.5)32 (91.4)67 (79.8)Arterial hypertension

117 (43.5).08 b15 (12.8)7 (25.9)3 (10.0)5 (8.3)Pulmonary hypertension

138 (33.3).00226 (18.8)13 (39.4)6 (17.6)7 (9.9)Congestive heart failure

99 (52.2).06 b17 (17.2)8 (32.0)4 (16.7)5 (10.0)Arrhythmias

91 (56.0).09 b10 (11.0)5 (23.8)2 (9.5)3 (6.1)Pacemaker and/or cardioverter

185 (10.6).0581 (43.8)23 (59.0)15 (32.6)43 (43.0)Respiratory changes

99 (52.2).00862 (62.6)22 (88.0)12 (60.0)28 (51.9)Diabetes

148 (28.5).11125 (84.5)34 (91.9)28 (90.3)63 (78.8)Dyslipidemia

68 (67.1).3323 (33.8)7 (36.8)6 (50.0)10 (27.0)Renal failure

80 (61.4).5824 (30.0)6 (35.3)6 (37.5)12 (25.5)Hypothyroidism

72 (65.2).3439 (54.2)7 (53.8)10 (71.4)22 (48.9)Gastroesophageal reflux

99 (52.2).31b81 (81.8)17 (77.3)23 (92.0)41 (78.8)Anxiety and/or depression

59 (71.5).48b45 (76.3)10 (90.9)10 (76.9)25 (71.4)Insomnia

aP<.20 are italicized.
bFisher exact test.

OSA Clusters
Using the 14 variables significantly associated with the outcome,
a hierarchical clustering structure was derived, where, given
the resulting clustering structure, a 10-cluster cutoff point was
chosen (following the hierarchical structure of the clustering in
the dendrogram). The resulting clusters had median AHI values
of 8, 10 (4 clusters), 12, 13, 14, 31, and 34. As 10 clusters are
difficult to interpret in a medical context, we chose to aggregate

the 10 created clusters into 3 clusters according to their median
values: (1) clusters with median 8 and 10, (2) clusters with
median 12, 13, and 14, and (3) clusters with median 31 and 34.

The OSA cluster characteristics of the 14 predictive variables
are described below and listed in Table 2. The witnessed apneas
variable was also statistically significant in both the original
and the curated data but was not considered for the cluster
hierarchy, as it depends on third-party reporting, which might
create a strong bias in the analysis.
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Table 2. Clinical characteristics of the obstructive sleep apnea cohort by the defined clusters (P values are the results of chi-square tests unless otherwise
specified).

P valueCluster 3 (n=29)Cluster 2 (n=104)Cluster 1 (n=74)Characteristics

95% CIPatient, n (%)95% CIPatient, n (%)95% CIPatient, n (%)

.3264-9324 (82.8)60-7872 (69.2)57-7951 (68.9)Gender (male)

<.001aAge (years)

0-150 (0.0)6-2012 (11.5)3-176 (8.1)20-44

11-447 (24.1)47-6659 (56.7)50-7346 (62.2)45-64

56-8922 (75.9)23-4233 (31.7)20-4222 (29.7)65-90

<.001aBMI (kg/m2)

0-150 (0.0)1-93 (2.9)10-2913 (17.6)Normal weight

16-519 (31.0)38-5850 (48.1)12-3215 (20.3)Overweight

49-8420 (69.0)39-5951 (49.0)50-7346 (62.2)Obesity

.1319-5410 (34.5)45-6557 (54.8)34-5834 (45.9)Nonrepairing sleep

<.00185-10029 (100.0)96-100104 (100.0)11-3014 (18.9)Nocturia

<.00176-9927 (93.1)76-9188 (84.6)34-5834 (45.9)Stroke

<.001a85-10029 (100.0)85-9696 (92.3)61-8254 (73.0)Arterial hypertension

.002a9-406 (20.7)0-82 (1.9)6-229 (12.2)Pulmonary hypertension

<.001a60-9123 (79.3)0-61 (1.0)2-144 (5.4)Congestive heart failure

<.001a24-6112 (41.4)0-61 (1.0)2-144 (5.4)Arrhythmias

<.001a9-406 (20.7)1-104 (3.8)0-60 (0.0)Pacemaker and/or cardioverter

.00142-7918 (62.1)19-3728 (26.9)36-5935 (47.3)Respiratory changes

<.00185-10029 (100.0)56-7569 (66.3)39-6137 (50.0)Diabetes

.003a85-10029 (100.0)83-9594 (90.4)66-8657 (77.0)Dyslipidemia

<.001Apnea-hypopnea index

9-406 (20.7)42-6254 (51.9)57-7951 (68.9)Mild

13-488 (27.6)16-3324 (23.1)15-3618 (24.3)Moderate

33-7015 (51.7)17-3526 (25.0)3-165 (6.8)Severe

aFisher exact test.

As shown in Table 2, 68.9% (51/74) of the patients in cluster
1 (74/207, 35.7%) were male, 62.2% (46/74) were aged between
45 and 64 years, and 62.2% (46/74) were obese. Nonrepairing
sleep was reported in almost half of the patients, and only 18.9%
(14/74) reported nocturia. The occurrence of stroke (34/74,
45.9%) did not reach half of the patients, whereas arterial
hypertension (54/74, 73.0%) and dyslipidemia (57/74, 77.0%)
surpassed it. Pulmonary hypertension, congestive heart failure,
arrhythmias, and pacemaker or implantable
cardioverter-defibrillator had percentages lower than 15%. The
median AHI was 10 (range 7-17), the lowest AHI value, with
69.8% (44/169) reporting witnessed apneas.

Cluster 2 (104/207, 50.2%) had 69.2% (72/104) of males (the
same as cluster 1), and only 2.9% (3/104) had normal weight.
In contrast to cluster 1, 100.0% (104/104) of patients reported
nocturia, 84.6% (88/104) reported stroke, 92.3% (96/104)
reported arterial hypertension, and 90.4% (94/104) reported

dyslipidemia. Similar to cluster 1, pulmonary hypertension,
congestive heart failure, arrhythmias, and pacemaker or
implantable cardioverter-defibrillator had percentages lower
than 15%. Respiratory changes were reported in 26.9% (28/104)
of the patients, and diabetes was reported in 66.3% (69/104) of
the patients, compared with cluster 1. Regarding the clinical
outcome, this cluster had a median AHI of 14 (range 8-30).
Concerning witnessed apneas, cluster 2 had a percentage of
57.8% (52/169), the lowest value of all 3 clusters.

Cluster 3 (29/207, 14.0%) included the highest percentage of
men (24/29, 82.8%). None of the patients were aged between
20 and 44 years or had normal weight. This cluster had the
lowest proportion of patients aged between 45 and 64 years;
nevertheless, it reached the highest proportion of all clusters in
patients aged between 65 and 90 years. Although it had one of
the lowest proportions of overweight patients, this cluster had
the highest percentage (20/29, 69.0%) of patients with obesity.
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In contrast to cluster 1, but in concordance with cluster 2,
nocturia was described in all patients in cluster 3. In addition,
arterial hypertension, diabetes, and dyslipidemia were observed
in all the patients. The median AHI was 31 (range 21-60);
therefore, it was the highest in all 3 clusters. Witnessed apneas
were found with the highest proportion of all clusters (13/169,
81.2%).

Age strata and BMI were found to be different among clusters
(P<.001). Comorbidities, such as stroke, arterial hypertension,
diabetes (P<.001), and dyslipidemia (P=.003), were increasingly
more prevalent from cluster 1 to clusters 2 and 3. Only male
sex (P=.32) and nonrepairing sleep (P=.13) were not found to
be significantly different.

On the basis of the description of clusters mentioned earlier,
the OSA phenotypes can be defined. We classified patients into
low (cluster 1), medium (cluster 2), and high (cluster 3) severity
phenotypes, as their median AHI corresponded to mild,
moderate, and severe levels respectively, defined in PSG for
OSA diagnosis. The low severity phenotype includes age >45
years, a fair distribution in normal and overweight patients,
accentuating obesity, and low prevalence of symptoms and
comorbidities, except for dyslipidemia and arterial hypertension.
The medium severity phenotype has almost the same distribution
in age as the low severity phenotype, but less normal-weight
patients and more overweight patients. Symptoms and
comorbidities were higher, with stroke, arterial hypertension,
dyslipidemia, and nocturia appearing in more than 85% of the
patients with this phenotype. The high severity phenotype
presents older and obese patients, with additional comorbidities
(congestive heart failure and diabetes) beyond those present in
the medium severity phenotype. The foremost difference
between our phenotypes and AHI alone is that we considered
the risk and diagnostic factors associated with the patient and
not only a single value or a counting of events.

Affinity Between Healthy Patients and OSA
Phenotypes
Given that our data set included patients who are healthy and
with OSA (a total of 318 individuals), we focused our attention
on exploring whether the determined OSA phenotypes could
also help to segment healthy patients. To do so, we computed
the aforementioned distance measure between 2 individuals
using the same 14 significant variables. Table 3 describes the
baseline characteristics of healthy patients for each OSA
phenotype.

As expected, a high severity phenotype was less common in
healthy patients (7/111, 6.3%), including older (P<.001), females
(P=.49), and obese individuals (P=.50), with a lower proportion
of individuals reporting nonrepairing sleep (P=.36). This
phenotype also presented the highest proportion of reported
nocturia, stroke, arterial hypertension, congestive heart failure,
and diabetes (P<.001); pulmonary hypertension and arrhythmias
(P=.01); and respiratory changes (P=.11). The medium severity
phenotype had the highest proportion of overweight males aged
between 45 and 64 years. Although comorbidities such as
pulmonary hypertension, congestive heart failure, arrhythmias,
and pacemaker or implantable cardioverter-defibrillator do not
reach proportions higher than 1%, others such as stroke, arterial
hypertension, diabetes, and dyslipidemia present proportions
higher than 70%. The low severity phenotype is similar to the
medium severity phenotype in terms of the proportion of
overweight males, but individuals are younger. Nocturia,
pulmonary hypertension, congestive heart failure, arrhythmias,
pacemaker or implantable cardioverter-defibrillator, and diabetes
have not been reported in this phenotype. Dyslipidemia was the
most common comorbidity (16/25, 64%), followed by arterial
hypertension (14/25, 56%) and respiratory changes (7/25, 28%).
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Table 3. Clinical characteristics of the healthy cohort by the predefined obstructive sleep apnea phenotypes (P values are the result of chi-square test,
unless otherwise specified).

P valuebHigh OSA (n=7)Medium OSA (n=79)Low OSAa (n=25)Characteristics

95% CIPatient, n (%)95% CIPatient, n (%)95% CIPatient, n (%)

.495-702 (29)38-6139 (49)22-6110 (40)Gender (male)

<.001Age (years)

0-440 (0)11-3015 (19)43-8116 (64)20-44

5-702 (29)48-7047 (59)13-507 (28)45-64

30-955 (71)13-3217 (22)1-282 (8)65-90

.50BMI

1-581 (14)3-166 (8)5-374 (16)Normal weight

5-702 (29)39-6240 (51)25-6511 (44)Overweight

20-884 (57)31-5333 (42)22-6110 (40)Obesity

.3612-803 (43)53-7551 (65)50-8718 (72)Nonrepairing sleep

<.00142-996 (86)57-7854 (68)0-170 (0)Nocturia

<.00142-996 (86)73-9166 (84)0-221 (4)Stroke

<.00156-1007 (100)92-10078 (99)35-7514 (56)Arterial hypertension

.015-702 (29)0-81 (1)0-170 (0)Pulmonary hypertension

<.00156-1007 (100)0-60 (0)0-170 (0)Congestive heart failure

.015-702 (29)0-81 (1)0-170 (0)Arrhythmias

>.990-440 (0)0-81 (1)0-170 (0)Pacemaker and/or cardioverter

.1130-955 (71)32-5534 (43)13-507 (28)Respiratory changes

<.00156-1007 (100)58-7955 (70)0-170 (0)Diabetes

.00142-996 (86)87-9875 (95)43-8116 (64)Dyslipidemia

aOSA: obstructive sleep apnea.
bFisher exact test.

Beyond OSA Phenotypes
OSA is a systemic disorder that remains underdiagnosed.
Physicians, particularly nonspecialists in sleep disorders,
urgently need a simple yet complete tool that allows them to
identify a high pretest probability for OSA. This ability, which
could enhance current screening, could lead to personalized
treatment by additionally improving the understanding of OSA
mechanisms and the risk for adverse events.

Our clinical prediction algorithm, that is, previously described
OSA phenotypes, is a new way to screen patients, extending
traditional approaches. To implement this new strategy, we need
a simple, understandable, and updatable tool that can be used
daily and that takes into account the knowledge of experts, the
literature evidence, and the clinical data.

Belief or Bayesian networks [33] are probabilistic graphical
models used to represent knowledge about an uncertain domain;
each node represents a random variable, whereas directed edges
between the nodes represent probabilistic dependencies among
the corresponding variables. Bayesian networks are both
mathematically rigorous and intuitively understandable, as they
reflect a simple conditional independence statement, that is,
each variable is independent of its nondescendants in the graph,

given the state of its parents. The Bayesian network thus consists
of both a qualitative model (which shows the relationship among
variables) and a quantitative model (the joint probability
distribution is expressed as conditional probabilities).

Initially, we created the simplest Bayesian classifier (naïve
Bayes; Figure 1, Model A), which assumes independence among
predictive variables and conditional independence, given the
outcome. Subsequently, we extended the model (Figure 2, Model
B), adding the defined phenotypes as a parent node of all
predictors, thereby adjusting the model by capturing possible
interactions among them, expressed by the corresponding
phenotype associated with the tested individual. To evaluate
the benefits of including OSA phenotypes in the clinical risk
assessment tool, it was necessary to estimate the overall
performance of each model. The ROC curves of each model
(for both leave-one-out and cross-validation estimates) are
presented in Figure 3, assessing the discriminative power of
both models. As shown in Table 4, the derivation sample (area
under the curve [AUC]) improved from 72% (95% CI 66-78)
for model A to 84% (95% CI 80-89) for model B. The validity
assessment confirmed the improvement achieved by the
inclusion of OSA phenotypes, with leave-one-out estimates of
68% to 78%, respectively, from model A to model B and with
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10 times twofold cross-validation averaging 67% and 77%,
respectively. In addition, the diagnostic odds ratio, as a measure

of the effectiveness of a diagnostic test, was 3.55 for model A
and 2 times more for model B

Figure 1. Naïve Bayesian network representation of the relationships between the outcome (obstructive sleep apnea) and each of the 14 significant
predictive variables. The bars within each variable represent the prior marginal probabilities for the category of each variable. CDI: implantable
cardioverter-defibrillator; CHF: congestive heart failure; OSA: obstructive sleep apnea.

Figure 2. Naïve Bayesian network representation with additional node obtained from predefined obstructive sleep apnea phenotypes. The bars within
each variable represent the prior marginal probabilities for the category of each variable. CDI: implantable cardioverter-defibrillator; CHF: congestive
heart failure; OSA: obstructive sleep apnea.
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Figure 3. Receiver operating characteristic analyses and AUCs for models A (top) and B (bottom) as well for the internal validation procedures. AUC:
area under the curve.
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Table 4. Validity assessment estimated from 10 times twofold cross-validation.

Obstructive sleep apneaVariables

Model BModel A

2230Cutoff point

74 (72-75)69 (67-70)Accuracy, % (95% CI)

93 (91-95)91 (89-94)Sensitivity, % (95% CI)

38 (35-40)26 (24-29)Specificity, % (95% CI)

73 (73-74)70 (69-70)Positive predictive value, % (95% CI)

75 (70-80)64 (58-70)Negative predictive value, % (95% CI)

77 (76-78)67 (67-70)Area under the curve, % (95% CI)

1.63 (1.39-1.91)1.32 (1.17-1.49)Positive likelihood ratio (95% CI)

0.12 (0.06-0.22)0.17 (0.09-0.34)Negative likelihood ratio (95% CI)

3.02 (2.43-3.78)2.45 (2.02-3.01)Positive odds posttest (95% CI)

0.22 (0.12-0.38)0.32 (0.19-0.56)Negative odds posttest (95% CI)

75 (70-80)71 (66-76)Posttest probability (95% CI)

Aiming at a 95% sensitivity target (screening strategies look
for rule-out approaches), cutoff points were defined based on
the derivation sample ROC curve, and the corresponding validity
assessment results for cross-validation are displayed in Table
4, presenting an increase of specificity (26%-38%) for the
desired level of sensitivity and presenting a posttest odds of 3
to 1 for the positive result and almost 1 to 5 for the negative
result.

On the basis of the model with OSA phenotypes, OSA
probabilities >22% were considered a positive result. The

application of this cutoff resulted in a sensitivity value of 93%
(95% CI 91-95) and 73% (95% CI 73-74) of positive predictive
value, managing to provide a sensitive tool that prevents 1 out
of 5 healthy individuals from unnecessarily undergoing PSG.

In our sample, the pretest probability was 65%, whereas the
posttest probability increased to 75% using model B, with a
posttest negative probability of 18%, as shown in Figure 4.
These results highlight the value of using defined OSA
phenotypes as predictors of OSA risk in referred individuals.

Figure 4. Fagan nomogram for model B. The blue and red lines represent the positive and negative posttest probability, respectively.
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Discussion

Principal Findings
Understanding OSA patterns is important, particularly in the
diagnosis of OSA. The AASM task force affirmed that the
evaluation with clinical tools, such as clinical prediction
algorithms, was less burdensome to the patient and physicians
when compared with PSG. However, their low levels of
accuracy and the likelihood of misdiagnosis must be weighted.
Therefore, they proposed a clinical algorithm for the
implementation of clinical practice guidelines for OSA. In the
second step of this algorithm, the increased risk of moderate to
severe OSA is measured by the presence of excessive daytime
sleepiness and at least two of the following 3 criteria: habitual
loud snoring, witnessed apnea or gasping or choking, or
diagnosed hypertension. When we applied this moderate to
severe risk in our data set (n=318), we found a sensitivity of
29%, a specificity of 68%, a positive predictive value of 50%,
and a positive likelihood ratio of 0.875, showing possible
benefits for a rule-out approach. However, considering the target
of moderate to severe OSA identification, this approach revealed
a very low level of sensitivity for a rule-in approach, which
would be expected in this case.

To the best of our knowledge, this study is the first attempt to
explore different clinical phenotypes of patients with OSA using
categorical cluster analysis combined with Bayesian networks.
We applied a hierarchical clustering procedure using Ward
linkage on 14 significant predictive variables (out of the tested
47) that were grouped into 3 clusters: low, medium, and high
severity phenotypes. These phenotypes were then used to expand
a clinical prediction algorithm based on Bayesian networks,
creating a simple but complete and updatable tool for OSA
screening that can deal with missing information, based only
on clinical and demographic variables, which have the main
advantage of being easily available and quickly acquired by
physicians.

Cluster analysis has been used in many medical conditions
aiming to identify clinical phenotypes, as in the case of patients
with asthma [16], where 5 clinical phenotypes illustrated the
heterogeneity of the disease and relevant differences in
treatment. Regarding OSA, clustering had been discussed as a
possible helpful tool back in 1992, where the work of Tsuchiya
et al [34] tried to apply cluster analysis in patients with OSA to
overcome the stated overemphasis regarding obesity, which
may have caused some physicians to overlook other potential
factors that predispose this condition. They considered the apnea
index (the standard at the time) and applied hierarchical
clustering with average linkage, resulting in 2 clusters. The
authors highlighted the controversy on the number of clusters,
stating that “it should be essential to determine the number of
clusters in a realistic way, and also to interpret the structures of
clusters from a biologic standpoint.” Ye et al [35] collected
demographic and survey data about sleep-related health issues
(using numeric predictive variables) identifying 3 clusters:
cluster 1 as disturbed sleep group, cluster 2 as minimally
symptomatic group, and cluster 3 as excessive daytime sleepiness
group. Although we have studied predictive variables related

to daytime sleepiness, none were considered statistically
significant; therefore, it is difficult to compare the results of the
study by Ye et al [35] with the results of this study. Lacedonia
et al [7] developed the work of Ye et al [35], enhancing the
results using instrumental data, such as blood gas analysis and
spirometry parameters (unavailable to us), to identify clinical
presentations of patients with OSA. The authors used 2
approaches: a first one with hierarchical clustering revealing 3
clusters and the second one expanding it to 8 clusters with local
optimization through principal component analysis.

Other studies are recently being developed, namely, the broad
one in sleep apnea from the Sleep Apnea Network or European
Sleep Apnea Database (ESADA) group. In 2016, Saaresranta
et al [22] hypothesized that distinct OSA phenotypes should be
present when discussing comorbidities and adherence to nasal
continuous positive airway pressure (CPAP) therapy. This study
has 3 main differences from ours: the ESADA database accepted
PSG and cardiorespiratory polygraphy, whereas we only
accepted PSG results; they accepted CPAP therapy and divided
their patients into categories based only on subjective daytime
sleepiness and nocturnal complaints. Regarding this last aspect,
in our study, both subjective excessive daytime sleepiness and
Epworth Sleepiness Scale were not considered in the cluster
analysis. In 2020, a study by Bailly et al [21] applied latent class
analysis to identify OSA phenotypes while reflecting
geographical variations, resulting in 8 distinct clusters that were
divided into 2 main categories: gender-based phenotypes
(clusters 2 and 6 with only men and clusters 7 and 8 with only
women) and men with various combinations (clusters 1, 3, 4,
and 5), with which we can compare results. Cluster 3 of the
study by Bailly et al [21] is described as obese comorbid
patients, being the most similar to our low severity OSA cluster,
presenting almost the same percentage of males (69% vs 73%)
and higher levels of metabolic comorbidities.

Our results suggest 3 OSA phenotypes that can help in the
screening, diagnosis, and later treatment of patients with OSA,
capturing the full OSA spectrum of patients, focusing our
attention on a detailed description of patients with OSA and not
on a stereotypical one, where only a few typical symptoms such
as snoring or daytime sleepiness are analyzed. To augment
awareness of this prevalent disease, we even analyzed healthy
patients to determine whether we could use the created
phenotypes as identifiers of precursors of OSA.

Strengths and Limitations
This study had a modest number of patients, mainly because of
the short period for data collection, which was performed in a
small district hospital. Nevertheless, we believe that the
procedure and the results are relevant. We also acknowledge
that our phenotypes are not fully in accordance with the clinical
phenotyping experience, particularly those regarding upper
airway morphology. We suppose that the inclusion of other
relevant outcome data could create a more robust analysis of
the determined phenotypes. The inclusion of more patients and
even dissociating variables, such as craniofacial upper airway
abnormalities, could benefit future research.

The major strengths of this study are the study of a clinical
cohort representing patients with OSA with all levels of severity
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and the inclusion of a comprehensive number of risk and
diagnostic factors that enhance our understanding of OSA
diagnosis, with an overall cross-validated discriminative power
of AUC of 77%, improving the specificity of a (designed) 95%
sensitivity rule-out clinical prediction algorithm (3 to 1 odds
for a positive result and 1 to 5 odds for a negative result). In
addition, a diagnostic odds ratio higher than 1 was observed for
models A and B, supporting the effectiveness of both models,
with model B (inclusion of the disease phenotypes) doubling
the diagnostic model performance. To assess the validity of our
approach, we evaluated a logistic regression model in the
derivation cohort, with and without predefined clusters, which
highlighted the added discrimination value of using OSA
phenotypes as a predictive variable (81% vs 83%). Moreover,
we are aware that several clinical questionnaires (Berlin,
STOP-BANG [snoring, tiredness, observed apnea, blood
pressure, body mass index, age, neck circumference and gender],
and NoSAS [neck, obesity, snoring, age, sex]) are helpful in
identifying patients who are at risk of OSA. The Berlin
questionnaire, when applied to the general population, reaches
values of 37% for sensitivity and 84% for specificity, whereas

when applied to primary care patients, the values are 86% and
77% [36], respectively. If we look at the STOP-BANG
questionnaire, validation was performed in preoperative patients;
the sensitivity and specificity values are 84% and 39%,
respectively, for OSA diagnosis [37]. Finally, the NoSAS score
was validated for the general population; the sensitivity values
varied between 79% and 85%, the specificity varied between
69% and 77%, and AUC varied between 74% and 81% [38].
Comparing these results with our results, we can see that our
sensitivity has the highest value, as we aim to establish a rule-out
approach. On the other hand, our values for specificity and AUC
were lower, only comparable with the value obtained for
STOP-BANG.

Conclusions
We can affirm that using OSA phenotypes as predictors allows
the creation of sensitive tools, with the defined phenotypes being
a reflection of the early expression and the natural history of
OSA. Nevertheless, OSA and individual responses are not static
and evolve with time, creating the need for further studies on
evaluating the phenotyping fluctuations and determining their
long-term diagnosis implications.
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Descriptive analysis of patients with obstructive sleep apnea after missing data imputation (absolute and relative frequencies are
presented, and <italic>P</italic> values are the result of chi-square tests unless otherwise specified). Footnote a:
<italic>P</italic><.20; these values are italicized. Footnote b: Fisher exact test. Footnote c: the odds ratio was calculated for
moderate and severe levels combined because of the absence of patients with normal abdominal circumference at the severe level.
[PNG File , 240 KB-Multimedia Appendix 1]

References

1. Kapur VK, Auckley DH, Chowdhuri S, Kuhlmann DC, Mehra R, Ramar K, et al. Clinical practice guideline for diagnostic
testing for adult obstructive sleep apnea: an American Academy of Sleep Medicine Clinical Practice guideline. J Clin Sleep
Med 2017 Mar 15;13(3):479-504 [FREE Full text] [doi: 10.5664/jcsm.6506] [Medline: 28162150]

2. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in
adults. Am J Epidemiol 2013 May 01;177(9):1006-1014 [FREE Full text] [doi: 10.1093/aje/kws342] [Medline: 23589584]

3. Ravesloot MJ, van Maanen JP, Hilgevoord AA, van Wagensveld BA, de Vries N. Obstructive sleep apnea is underrecognized
and underdiagnosed in patients undergoing bariatric surgery. Eur Arch Otorhinolaryngol 2012 Jul 5;269(7):1865-1871
[FREE Full text] [doi: 10.1007/s00405-012-1948-0] [Medline: 22310840]

4. Johnson KG, Johnson DC. Frequency of sleep apnea in stroke and TIA patients: a meta-analysis. J Clin Sleep Med 2010
Apr 15;06(02):131-137. [doi: 10.5664/jcsm.27760]

5. Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip MS, Morrell MJ, et al. Estimation of the global prevalence and
burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med 2019 Aug;7(8):687-698. [doi:
10.1016/s2213-2600(19)30198-5]

JMIR Med Inform 2021 | vol. 9 | iss. 6 | e25124 | p. 14https://medinform.jmir.org/2021/6/e25124
(page number not for citation purposes)

Ferreira-Santos & RodriguesJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=medinform_v9i6e25124_app1.png&filename=347c8eb0d8a508a75c787c5fcb9cfa59.png
https://jmir.org/api/download?alt_name=medinform_v9i6e25124_app1.png&filename=347c8eb0d8a508a75c787c5fcb9cfa59.png
https://doi.org/10.5664/jcsm.6506
http://dx.doi.org/10.5664/jcsm.6506
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28162150&dopt=Abstract
http://europepmc.org/abstract/MED/23589584
http://dx.doi.org/10.1093/aje/kws342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23589584&dopt=Abstract
http://europepmc.org/abstract/MED/22310840
http://dx.doi.org/10.1007/s00405-012-1948-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22310840&dopt=Abstract
http://dx.doi.org/10.5664/jcsm.27760
http://dx.doi.org/10.1016/s2213-2600(19)30198-5
http://www.w3.org/Style/XSL
http://www.renderx.com/


6. Kapur V, Blough D, Sandblom R, Hert R, de Maine JB, Sullivan SD, et al. The medical cost of undiagnosed sleep apnea.
Sleep 1999 Sep 15;22(6):749-755. [doi: 10.1093/sleep/22.6.749] [Medline: 10505820]

7. Lacedonia D, Carpagnano GE, Sabato R, Storto MM, Palmiotti GA, Capozzi V, et al. Characterization of obstructive sleep
apnea-hypopnea syndrome (OSA) population by means of cluster analysis. J Sleep Res 2016 May 18;25(6):724-730. [doi:
10.1111/jsr.12429] [Medline: 27191534]

8. Kushida CA, Littner M, Morgenthaler T, Alessi CA, Bailey D, Coleman J, et al. Practice parameters for the indications for
polysomnography and related procedures: an update for 2005. Sleep 2005 Apr;28(4):499-521. [doi: 10.1093/sleep/28.4.499]
[Medline: 16171294]

9. Campos-Rodriguez F, Martinez-Garcia MA, Cruz-Moron I, Almeida-Gonzales C, Catalan-Serra P, Montserrat JM.
Cardiovascular mortality in women with obstructive sleep apnea with or without continuous positive airway pressure
treatment. Ann Intern Med 2012 Jun 05;156(2):115-122. [doi: 10.7326/0003-4819-156-2-201201170-00006] [Medline:
22250142]

10. Shi Q, Rodrigues P. Monitoring the effectiveness of clinical guidelines: is the recommendation still valid? In: Proceedings
of the IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS). 2018 Jun Presented at: IEEE
31st International Symposium on Computer-Based Medical Systems (CBMS); June 18-21, 2018; Karlstad, Sweden p.
304-309 URL: https://www.computer.org/csdl/proceedings-article/cbms/2018/606001a304/12OmNxGAKWQ [doi:
10.1109/cbms.2018.00060]

11. Kent BD, Grote L, Ryan S, Pépin J, Bonsignore MR, Tkacova R, et al. Diabetes mellitus prevalence and control in
sleep-disordered breathing. Chest 2014 Oct;146(4):982-990. [doi: 10.1378/chest.13-2403] [Medline: 24831859]

12. Kakkar RK, Berry RB. Positive airway pressure treatment for obstructive sleep apnea. Chest 2007 Sep;132(3):1057-1072.
[doi: 10.1378/chest.06-2432] [Medline: 17873201]

13. Nickerson J, Lee E, Nedelman M, Aurora RN, Krieger A, Horowitz CR. Feasibility of portable sleep monitors to detect
obstructive sleep apnea (OSA) in a vulnerable urban population. J Am Board Fam Med 2015 Mar 06;28(2):257-264 [FREE
Full text] [doi: 10.3122/jabfm.2015.02.140273] [Medline: 25748767]

14. Ferreira-Santos D, Monteiro-Soares M, Rodrigues PP. Impact of imputing missing data in Bayesian network structure
learning for obstructive sleep apnea diagnosis. Stud Health Technol Inform 2018;247:126-130 [FREE Full text] [doi:
10.3233/978-1-61499-852-5-126] [Medline: 29677936]

15. Gallo C, Capozzi V. Clustering techniques for revealing gene expression patterns. In: Encyclopedia of Information Science
and Technology, Third Edition. Hershey, PA: IGI Global; 2015:438-447.

16. Moore WC, Meyers D, Wenzel S, Teague WG, Li H, Li X, National Heart‚ Lung‚Blood Institute's Severe Asthma Research
Program. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir
Crit Care Med 2010 Feb 15;181(4):315-323 [FREE Full text] [doi: 10.1164/rccm.200906-0896OC] [Medline: 19892860]

17. Garcia-Aymerich J, Gomez FP, Benet M, Farrero E, Basagana X, Gayete A, PAC-COPD Study Group. Identification and
prospective validation of clinically relevant chronic obstructive pulmonary disease (COPD) subtypes. Thorax 2011
May;66(5):430-437. [doi: 10.1136/thx.2010.154484] [Medline: 21177668]

18. Docampo E, Collado A, Escaramís G, Carbonell J, Rivera J, Vidal J, et al. Cluster analysis of clinical data identifies
fibromyalgia subgroups. PLoS One 2013 Sep 30;8(9):e74873 [FREE Full text] [doi: 10.1371/journal.pone.0074873]
[Medline: 24098674]

19. Erro R, Vitale C, Amboni M, Picillo M, Moccia M, Longo K, et al. The heterogeneity of early Parkinson's disease: a cluster
analysis on newly diagnosed untreated patients. PLoS One 2013 Aug 1;8(8):e70244 [FREE Full text] [doi:
10.1371/journal.pone.0070244] [Medline: 23936396]

20. Topîrceanu A, Udrescu L, Udrescu M, Mihaicuta S. Gender phenotyping of patients with obstructive sleep apnea syndrome
using a network science approach. J Clin Med 2020 Dec 12;9(12):4025 [FREE Full text] [doi: 10.3390/jcm9124025]
[Medline: 33322816]

21. Bailly S, Grote L, Hedner J, Schiza S, McNicholas WT, Basoglu OK, ESADA Study Group. Clusters of sleep apnoea
phenotypes: a large pan‐European study from the European Sleep Apnoea Database (ESADA). Respirology 2021
Apr;26(4):378-387. [doi: 10.1111/resp.13969] [Medline: 33140467]

22. Saaresranta T, Hedner J, Bonsignore MR, Riha RL, McNicholas WT, Penzel T, ESADA Study Group. Clinical phenotypes
and comorbidity in European sleep apnoea patients. PLoS One 2016 Oct 4;11(10):e0163439 [FREE Full text] [doi:
10.1371/journal.pone.0163439] [Medline: 27701416]

23. Core R Team. R: a language and environment for statistical computing. In: R Foundation for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing; 2017.

24. Weisberg S, Fox J. An R Companion to Applied Regression. Thousand Oaks, California: SAGE Publications; 2011:1-472.
25. Warnes GR, Bolker B, Lumley T. gmodels: various R programming tools for model fitting. In: R Foundation for Statistical

Computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.
26. Aragon TJ. epitools: epidemiology tools. In: R Foundation for Statistical Computing. Vienna, Austria: R Foundation for

Statistical Computing; 2017.
27. Comtois D. summarytools: tools to quickly and neatly summarize data. In: R Foundation for Statistical Computing. Vienna,

Austria: R Foundation for Statistical Computing; 2019.

JMIR Med Inform 2021 | vol. 9 | iss. 6 | e25124 | p. 15https://medinform.jmir.org/2021/6/e25124
(page number not for citation purposes)

Ferreira-Santos & RodriguesJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.1093/sleep/22.6.749
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10505820&dopt=Abstract
http://dx.doi.org/10.1111/jsr.12429
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27191534&dopt=Abstract
http://dx.doi.org/10.1093/sleep/28.4.499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16171294&dopt=Abstract
http://dx.doi.org/10.7326/0003-4819-156-2-201201170-00006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22250142&dopt=Abstract
https://www.computer.org/csdl/proceedings-article/cbms/2018/606001a304/12OmNxGAKWQ
http://dx.doi.org/10.1109/cbms.2018.00060
http://dx.doi.org/10.1378/chest.13-2403
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24831859&dopt=Abstract
http://dx.doi.org/10.1378/chest.06-2432
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17873201&dopt=Abstract
http://www.jabfm.org/cgi/pmidlookup?view=long&pmid=25748767
http://www.jabfm.org/cgi/pmidlookup?view=long&pmid=25748767
http://dx.doi.org/10.3122/jabfm.2015.02.140273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25748767&dopt=Abstract
https://www.semanticscholar.org/paper/Impact-of-Imputing-Missing-Data-in-Bayesian-Network-Santos-Monteiro-Soares/4bd7a783932571a4163b32c98af3e5b0fad1b9f5
http://dx.doi.org/10.3233/978-1-61499-852-5-126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29677936&dopt=Abstract
http://europepmc.org/abstract/MED/19892860
http://dx.doi.org/10.1164/rccm.200906-0896OC
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19892860&dopt=Abstract
http://dx.doi.org/10.1136/thx.2010.154484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21177668&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0074873
http://dx.doi.org/10.1371/journal.pone.0074873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24098674&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0070244
http://dx.doi.org/10.1371/journal.pone.0070244
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23936396&dopt=Abstract
https://www.mdpi.com/resolver?pii=jcm9124025
http://dx.doi.org/10.3390/jcm9124025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33322816&dopt=Abstract
http://dx.doi.org/10.1111/resp.13969
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33140467&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0163439
http://dx.doi.org/10.1371/journal.pone.0163439
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27701416&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


28. Torgo L. Data mining with R - learning with case studies. Minneapolis, USA: Chapman and Hall/CRC; Jun 20, 2020.
29. Scutari M. Learning Bayesian networks with the package. J Stat Soft 2010;35(3):1-22. [doi: 10.18637/jss.v035.i03]
30. Højsgaard S. Graphical independence networks with the grain package for R. J Stat Soft 2012 Feb 28;46(10):12031 [FREE

Full text] [doi: 10.18637/jss.v046.i10]
31. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J, et al. pROC: an open-source package for R and S+ to

analyze and compare ROC curves. BMC Bioinformatics 2011 Mar 17;12:77 [FREE Full text] [doi: 10.1186/1471-2105-12-77]
[Medline: 21414208]

32. Darwiche A. Modeling and Reasoning with Bayesian Networks. California, Los Angeles: Cambridge University Press;
2009.

33. Darwiche A. Bayesian networks. Commun ACM 2010 Dec;53(12):80-90 [FREE Full text] [doi: 10.1145/1859204.1859227]
34. Tsuchiya M, Lowe AA, Pae E, Fleetham JA. Obstructive sleep apnea subtypes by cluster analysis. Am J Orthod Dentofac

Orthop 1992 Jun;101(6):533-542. [doi: 10.1016/0889-5406(92)70128-w] [Medline: 1598893]
35. Ye L, Pien GW, Ratcliffe SJ, Björnsdottir E, Arnardottir ES, Pack AI, et al. The different clinical faces of obstructive sleep

apnoea: a cluster analysis. Eur Respir J 2014 Sep 03;44(6):1600-1607. [doi: 10.1183/09031936.00032314] [Medline:
25186268]

36. Netzer NC, Stoohs RA, Netzer CM, Clark K, Strohl KP. Using the Berlin Questionnaire to identify patients at risk for the
sleep apnea syndrome. Ann Intern Med 1999 Oct 05;131(7):485-491. [doi: 10.7326/0003-4819-131-7-199910050-00002]
[Medline: 10507956]

37. Chung F, Yang Y, Brown R, Liao P. Alternative scoring models of STOP-bang questionnaire improve specificity to detect
undiagnosed obstructive sleep apnea. J Clin Sleep Med 2014 Sep 15;10(9):951-958 [FREE Full text] [doi: 10.5664/jcsm.4022]
[Medline: 25142767]

38. Marti-Soler H, Hirotsu C, Marques-Vidal P, Vollenweider P, Waeber G, Preisig M, et al. The NoSAS score for screening
of sleep-disordered breathing: a derivation and validation study. Lancet Respir Med 2016 Sep;4(9):742-748. [doi:
10.1016/s2213-2600(16)30075-3] [Medline: 27321086]

Abbreviations
AASM: American Academy of Sleep Medicine
AHI: apnea-hypopnea index
AUC: area under the curve
CPAP: continuous positive airway pressure
ESADA: European Sleep Apnea Database
NN: nearest neighbor
NoSAS: neck, obesity, snoring, age, sex
OSA: obstructive sleep apnea
PSG: polysomnography
ROC: receiver operating characteristic
STOP-BANG: snoring, tiredness, observed apnea, blood pressure, body mass index, age, neck circumference
and gender

Edited by R Kukafka; submitted 20.10.20; peer-reviewed by T Penzel, B Sébastien; comments to author 23.12.20; revised version
received 22.01.21; accepted 16.03.21; published 22.06.21

Please cite as:
Ferreira-Santos D, Rodrigues PP
Enhancing Obstructive Sleep Apnea Diagnosis With Screening Through Disease Phenotypes: Algorithm Development and Validation
JMIR Med Inform 2021;9(6):e25124
URL: https://medinform.jmir.org/2021/6/e25124
doi: 10.2196/25124
PMID:

©Daniela Ferreira-Santos, Pedro Pereira Rodrigues. Originally published in JMIR Medical Informatics (https://medinform.jmir.org),
22.06.2021. This is an open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information,
a link to the original publication on https://medinform.jmir.org/, as well as this copyright and license information must be included.

JMIR Med Inform 2021 | vol. 9 | iss. 6 | e25124 | p. 16https://medinform.jmir.org/2021/6/e25124
(page number not for citation purposes)

Ferreira-Santos & RodriguesJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.18637/jss.v035.i03
https://www.jstatsoft.org/article/view/v046i10
https://www.jstatsoft.org/article/view/v046i10
http://dx.doi.org/10.18637/jss.v046.i10
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-77
http://dx.doi.org/10.1186/1471-2105-12-77
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21414208&dopt=Abstract
https://dl.acm.org/doi/10.1145/1859204.1859227
http://dx.doi.org/10.1145/1859204.1859227
http://dx.doi.org/10.1016/0889-5406(92)70128-w
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=1598893&dopt=Abstract
http://dx.doi.org/10.1183/09031936.00032314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25186268&dopt=Abstract
http://dx.doi.org/10.7326/0003-4819-131-7-199910050-00002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10507956&dopt=Abstract
https://doi.org/10.5664/jcsm.4022
http://dx.doi.org/10.5664/jcsm.4022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25142767&dopt=Abstract
http://dx.doi.org/10.1016/s2213-2600(16)30075-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27321086&dopt=Abstract
https://medinform.jmir.org/2021/6/e25124
http://dx.doi.org/10.2196/25124
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

