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Abstract

Background: Improving the understandability of health information can significantly increase the cost-effectiveness and
efficiency of health education programs for vulnerable populations. There is a pressing need to develop clinically informed
computerized tools to enable rapid, reliable assessment of the linguistic understandability of specialized health and medical
education resources. This paper fillsacritical gap in current patient-oriented heal th resource development, which requiresreliable
and accurate eval uation instruments to increase the efficiency and cost-effectiveness of health education resource evaluation.

Objective:  We aimed to trandate internationally endorsed clinical guidelines to machine learning algorithms to facilitate the
evaluation of the understandability of health resources for international students at Australian universities.

Methods: Based on international patient health resource assessment guidelines, we developed machine learning algorithms to
predict the lingui stic understandability of health textsfor Australian college students (aged 25-30 years) from non-English speaking
backgrounds. We compared extreme gradient boosting, random forest, neural networks, and C5.0 decision tree for automated
health information understandability evaluation. The 5 machine learning models achieved statistically better results compared to
the basealine logistic regression model. We also evaluated the impact of each linguistic feature on the performance of each of the
5 models.

Results:  We found that information evidentness, relevance to educational purposes, and logical sequence were consistently
more important than numeracy skills and medical knowledge when assessing the linguistic understandability of health education
resources for international tertiary students with adequate English skills (International English Language Testing System mean
score 6.5) and high health literacy (mean 16.5 in the Short Assessment of Health Literacy-English test). Our results challenge
the traditional views that lack of medical knowledge and numerical skills constituted the barriers to the understanding of health
educational materials.

Conclusions: Machine learning algorithms were developed to predict health information understandability for international
college students aged 25-30 years. Thirteen natural language features and 5 eval uation dimensions were identified and compared
intermsof their impact on the performance of the models. Health informati on understandability varies according to the demographic
profiles of the target readers, and for international tertiary students, improving health information evidentness, relevance, and
logiciscritical.
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Introduction

Background

The World Health Organi zation recommends aset of principles
for effective health communication, including accessibility,
actionability, credibility, relevance, timeliness, and
understandability [1]. Health information understandability can
be achieved by using familiar language and good writing
practicethat highlights health information directness, clearness
of the desired health outcome, easy-to-follow informational
organization, and discourse explicitness, that is, clear
explanation of health and medical knowledge using simple,
plain, and purposeful language [2-5]. Approaches to health
information evaluation can be divided into 2 large categories,
that is, expert-led qualitative evaluation based on clinical
experiences [6-9] and automated health information analyzers
using medical readability formulas or natural language
processing tools [10-13]. The strengths and limitations of both
approaches are well-known [14-16]. Expert-led health material
evaluation draws upon the domain knowledge of medical and
health professionals, which areinsightful and clinically reliable.
This approach, however, is costly and requires much longer
eva uation timeframes when compared to automated eval uations.
They have important limitations with the evaluation of health
materials in large quantities or in situations that require more
regular, instant evaluation such as health information updates
in health emergencies. Further, this approach is not flexible
with user-oriented health information evaluation that requires
the evaluation criteria adjust with flexibility to align with the
actual reading abilities of the patient education resource users
[17,18]. For example, the same piece of health information can
be of varying understandability for userswith different education
levels, hedlth literacy, or existing knowledge of specific health
topics. By contrast, the computerized approach of evaluating
health information based on natural language featuresisgaining
importance in health informatics [19-22].

Developing health resources of adeguate understandability can
have important impact on the trust, acceptance, and voluntary
adherence to the health advice and recommendations delivered
in the health texts [23-26]. Information simplification is an
effective strategy to increase the understandability of health
materials. However, with specialized hedth texts,
oversimplification can result in critical information loss and
reduced believability and persuasiveness of health information
for educated readers with higher health information appraisal
abilitiesand health risk assessment autonomies. How to maintain
abalance between the understandability and the informativeness
of health materials holds the key to optima hedth
communications. This paper leverages machine learning
techniques to devel op automated health information evaluation
toolsof English health materialsfor aspecific group of readers,
that is, studentsin tertiary education from non-English speaking
backgrounds with intermediate English reading skills (they
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achieved an average 6.5 score in the International English
Language Testing System test). The stress of living away from
home and the adjustment difficulties among international
students is known as the “foreign student syndrome” [27,28].
Previousresearch with studentsin Australiaand internationally
showed that international students were less likely to seek for
help from health organizationsthan from residents[29]. English
health materials available on the websites of health authorities
thus provide important sources of information for international
students. Whether and how health information from health
authorities developed for native English readers is
understandable to international students with intermediate
English skills and limited health literacy remains unknown. In
this study, new machine learning algorithms were devel oped
to predict the linguistic readability of original English health
information for international students. Our study illustrates the
training and validation of machinelearning algorithmsto predict
the understandability of health education materials on infectious
diseasesfor thisgroup of English health information users. The
strength of machine learning algorithms, that is, adaptiveness
and flexibility can significantly improve the cost-effectiveness
and efficiency of automated health educational resource
evaluation for specific user groups.

The contributions of our study arethree-fold: first, wetrand ated
clinica health education material evaluation guidelines to
machine algorithms to enable the quantitative evaluation of
understandability of health materials. Thishas, for thefirst time,
meaterialized the automation of health resource understandability
assessment with specific reader groups, which represents a
significant advance in user-oriented health information
evaluation. Second, the results of the machine learning—based
evaluation identified important new dimensionsin information
readability assessment, which are heath information
purposefulness and the logical structure of health texts. These
new findings challenged traditional views that lack of health
text readability was caused by morphological complexity and
domain-specific terminology. Such viewslargely smplified the
complex issue of the cognitive processing of health information
by populations of varying education and health literacy levels
and language and cultural backgrounds. Our study shows that
for nonnative English readers with tertiary education and high
health literacy levels, health information evidentness, logical
seguence, and relevance for educational purposes weigh more
than health domain knowledge and numeracy demands when
assessing the understandability of health texts for readers from
similar backgrounds. Lastly, our study identified textual
linguistic features having large impact on the performance of
machinelearning algorithms. For information evidentness, these
were words describing mental actions and processes (X2),
general/abstract terms (A1), and for relevance to educational
purposes, these were words of anatomy, physiology (B1),
medicines, and medical treatment (B3). For logical sequence,
these were grammatical words (Z5), negative (Z6), and
conditional expressions (Z7). Different from statistics, machine
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learning cannot compute the regression coefficients of these
variables within different models, but the large impact of these
features on hedlth text readability suggests that linguistic
interventions to these features of health texts can significantly
improve the performance of machine learning algorithms as
automated health text readability evaluation applications.

Data Sets and Feature Selection

Data Collection and Classification

The health educational resources were collected from diverse
sources, including governmental heath agencies and
not-for-profit health organizationsin Australia. Health education
resource genres are highly diverse, which may beclassifiedinto
fact sheets, health topics, patient guidelines, clinical guidelines,
administrative guidelines, manuals, reports, booklets, brochures,
posters, leaflets, checklists, and flipcharts. In this study, we
purposely selected health education resources from fact shests,
health topics, and patient guidelines, which are some of the
most used health resource varieties. The main sources of credible
health information werethe Australian Federal and State Health
departments and not-for-profit organizations: Arthritis Australia,
Australian Food Safety Information Council, Australian
Melanoma Research Foundation, Australian Rotary Health,
Breast Cancer Network Australia, Cancer Council Australia,
Diabetes Austrdia, National Breast Cancer Foundation, National
Heart Foundation of Australia, and National LGBTI Health
Alliance. The total corpus contained 1000 full-length health
educational texts (running tokens of over 500,000 words). Five
international studentsintertiary education enrolled in Australian
universities classified the collected health texts independently
into easy versus hard-to-understand categories (Cohen kappa
0.705). They were aged 25-30 years with advanced English
skills (International English Language Testing System test score
6.5 or above). Their mean health literacy level (16.5[SD 1.69],
QR 13-18) was measured using the Short Assessment of Health
Literacy-English [30,31], and their mean level was 87.5% over
the threshold 14 of low health literacy.

Jietd

Textual Features as Health I nformation
Understandability Predictors

In order to develop automated health resource evaluation
algorithms, we identified a set of key linguistic features as
relevant to the understandability of written health resources.
Table 1 lists some of the evaluation criteria in the Patient
Education Materials Assessment Tool (PEMAT) devel oped by
the Agency for Healthcare Research and Quality, United States
Department of Health and Human Services[32]. Theseinclude
the evaluation of health content, word choice and style, use of
numbers, and textual organization. Each evaluation criterion
was then mapped onto one or multiple semantic classes of the
UCREL English Semantic Analysis System (USAS) devel oped
by the University of Lancaster, United Kingdom [33]. We used
USASto annotate the raw English corpustexts collected. USAS
is one of the most used English semantic annotation systems.
It has a multi-tier structure with 21 major discourse fields
covering (A) general and abstract terms, (B) the body and the
individual, (C) arts and crafts, (D) emotion, (E) food and
farming, (G) government and public, (H) housing and home,
(1) money and commerce, (K) sports and games, (L) live and
living things, (M) movement and transport, (N) numbers and
measurement, (O) substances, materials, objects, and equipment,
(P) education, (Q) language and communication, (S) social
actions, states, and processes, (T) time, (W) world and
environment, (X) psychological actions, states and processes,
(Y) science and technology, and (Z) names and grammars.
Within each large semantic category (A-Z), there are
subcategories providing fine-grained classification of the word
semantics. For example, the A category contains A1 general
and abstract terms, A2 affect, A3 being, A4 classification, A5
evaluation, A6 comparison, A7 probability, A8 seem, A9
possession, and so on. These natural language features were
then mapped onto the PEMAT evaluation criteria as shown in
Table 1.

Table 1. Natural language features relevant to Patient Education Materials Assessment Tool guidelines.

Evaluation criteriain the Patient Education Materials Assessment Tool Language features Machine learning evaluation
Content

The material makes its purpose completely evident. Al, X1, X2, X7 Information evidentness

The material does not include information that distracts from its purpose. B1, B3 Relevanceto education purpose
Word choice and style

Medical terms are used only to familiarize audience with the terms. B2 Domain knowledge
Use of numbers

The material does not expect the user to perform calculations. N1, N2, N3 Numeracy demand
Organization

The material presentsinformation in alogica sequence. Z5,76, 27 Logical sequence

To quantify the PEMAT guideline item “the material makesits
purpose completely evident,” 4 USAS classes were used as
quantitative measures, that is, Al: general and abstract terms;
X1: psychological actions, states, and processes; X2: mental
actions and processes (such asthink, analyze, study, ook over,
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go over); and X7: wanting, planning, choosing (such as aim,
objective, goa, target, intention, purpose, plan, idea, point). To
quantify the PEMAT guideline item “the material does not
include information or content that distracts from its purpose,’
2 USAS classeswere used as quantitative measures, that is, B1.:
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anatomy and physiology and B3: medicines and medical
treatment. Typical examples of content distraction include
excessive detail about the equipment used for a procedure that
distracts from the material’s purpose or excessive detail about
other procedures or treatments that are not related to the
material’s purpose. To quantify the PEMAT guideline item
“medical terms are used only to familiarize audience with the
terms,” the USAS class B2: health and disease termswere used
as the main quantitative measure. To quantify the PEMAT
guidelineitem “the material does not expect the user to perform
calculations,” 3 USAS classes were selected from the USAS
semantic tag set as relevant quantitative measures. To quantify
the PEMAT guideline item “the material presents information
in a logical sequence” 3 USAS classes were identified as
relevant to the logical structure of health materials, that is, Z5:
grammatical bin, Z6: negative, and Z7: if (conditional). Intotal,
13 semantic annotation classes were selected from the extensive
tag set of USAS. Information evidentness of written health texts
is measured by Al, X1, X2, X7; information relevance to
educational purposes by B1 and B3; health domain knowledge
by B2; health numeracy demand by N1, N2, and N3; and lastly,
text logical sequence by grammatical and functional features
75,76, and Z7.
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Analysisof the Differences Between Easy and Difficult
Texts

Table 2 shows the statistical results of the differences between
easy and difficult health educational texts for international
college students. All the predictor variables were continuous
variables, and the P values were derived using Mann-Whitney
U test. Theresult showsthat statistically significant differences
(P<.05) exist in most of the semantic features. Easy and difficult
health texts, however, did not differ significantly in the semantic
classes of Bl (anatomy, physiology), N1 (numbers), N2
(mathematics), and N3 (measurement). The mean values of the
7 semantic classes of easy health textswere significantly higher
than those of difficult health texts. Interms of health information
purposefulness, 4 semantic features contributed to the linguistic
understandability of health resources, that is, Al (14.09 easy
vs 10.10 difficult), X1 (0.42 easy vs 0.18 difficult), X2 (10.41
easy vs 6.57 difficult), and X7 (3.24 easy vs 1.79 difficult). This
suggests that the increased use of words describing the
psychological and mental actions, states, and processes can help
the target readers to understand the textual information. Alis
defined as general and abstract words.

Table 2. Differences between easy and difficult medical texts derived by the Mann-Whitney U test.

Variables Easy texts, mean (SD) score Difficult texts, mean (SD) score Mann-Whitney U P vaue
Al 14.09 (14.52) 10.10 (13.13) 97905.00 <.001
X1 0.42 (3.89) 0.18 (1.49) 120325.50 .02
X2 10.41 (11.26) 6.57 (9.14) 89487.50 <.001
X7 3.24 (5.41) 1.79(3.12) 103350.50 <.001
B1 17.10 (31.14) 15.69 (21.78) 117882.50 12
B2 15.04 (21.53) 24.68 (34.04) 99536.50 <.001
B3 9.25 (14.30) 12.80 (18.02) 103338.00 <.001
N1 5.74 (8.54) 5.42 (6.51) 123009.00 66
N2 0.21 (0.70) 0.21 (0.70) 123284.50 52
N3 5.73(9.38) 4.77 (5.60) 120978.50 38
Z5 133.63 (118.93) 122.77 (119.05) 108744.00 <.001
Z6 4.13(5.28) 3.01 (5.01) 100719.00 <.001
z7 4.22(4.62) 2.10 (4.03) 81063.50 <.001

Table 3 shows some of the words annotated as Al in atypical
health text classified as difficult. These general and abstract
words were not typical medical and health terms. They were
classified and tagged in the corpus study as general English
terms. However, the statistically significant P value attributed
to this word category as shown in Table 2 indicated that they
can be used as a discriminating feature to separate easy versus
difficult health educational materials for international students
in tertiary education. Regarding health domain knowledge, the
result shows that the mean of B2 (health and disease) of easy
health texts (15.04) was significantly lower than that of difficult
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texts (24.68). In terms of numeracy demand, the 2 sets of health
texts did not different significantly, suggesting that for
international studentsin tertiary education, the use of numbers
and quantitative measures in health educational texts did not
represent an important barrier. Lastly, the logical sequence of
English health texts can be improved using functiona words
(Z5, 26, Z7), as the mean scores of these 3 linguistic features
in easy health educational resources proved to be significantly
higher than those of difficult texts: Z5 (133.63 easy, 122.77
difficult), 26 (4.13 easy, 3.01 difficult) and Z7 (4.22 easy, 2.10
difficult).
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Table 3. Alindifficult texts.
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Al Keyword concordances
limited to infectionsin humans are limited to one case of Tai Forest Ebolavirus
strains There are five strains that have been identified: Zaire, Sudan, Bundibugyo, Tai Forest, and Reston.
containment Previous outbreaks had been limited to remote areas allowing initial containment efforts to be more effective.
combined This outbreak was unprecedented in scale, being larger than all other outbreaks combined.
spread The virus spread across multiple international boundaries.
boundaries The virus spread across multiple international boundaries.
isolated Seven other countries had minor outbreaks with nonsustained transmission or isolated cases.
events This article aims to summarize the events by country in chronological order.
Methods complex data set. The value ranges between 0 and infinite. In

Machine L earning Algorithms

The 5 machinelearning methods used in this study were extreme
gradient boosting (XGBoost) tree, random forest, deep neural
networks, and C5.0 decision tree. Logistic regression was used
as the baseline model for the evaluation of the performance of
the 5 machine learning models. Both XGBoost and random
forest are ensemble learning techniques that can be used for
both classification and regression issues. Ensemble learning
can boost the predictive performance of a single learning
algorithm, whichismerely better than random guesses. Random
forest uses bagging or bootstrap to combine base learners to
significantly improve the prediction of the model. XGBoost
uses gradient boosting to combine decision trees as base
learners. The C5.0 decision treeisatypical tree-based machine
learning algorithm. X GBoost, random forest, and C5.0 can be
used to learn any patterns underlying the training data without
implicit assumptions of the data profiles, such as distribution
normality, nonlinearity, multi-linearity, or higher order
interactions between the variables. Thetype of neural networks
used in this study is multilayer perceptron, which is a class of
feedforward artificial neural network. This technique has been
used to provide a nonlinear mapping between the input vector
and the output vector. Between theinput and output layers, there
could be an arbitrary number of hidden layers, which perform
complex computations. The strength of multilayer perceptron
is to map nonlinear relations between input features and
outcomes. The major uses of multilayer perceptron are pattern
classification, recognition, prediction, and approximation. The
research work of this paper can be seen as atext classification
task. Random forest is suitable for analyzing data of high
dimensions, as the agorithm builds separate trees and uses
bootstrapping to combine these tree-based single learnerstrained
on random subsets of input features. Like random forest,
gradient boosting treeisatype of supervised learning algorithm
known for its high prediction accuracy.

Hyperparameter s of Machine L earning Algorithms

In this study, hyperparameter tuning of XGBoost involved the
following steps. The maximum tree depth for base learners
(max_depth) controlsthe depth of thetree. Thelarger the depth,
the more complex isthe model, and the higher are the chances
of model overfitting. Thereisno standard value for max_depth.
Larger data sets require deep trees to learn the rules from a
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the cross-validation process, we set max_depth to the default
value 8. The number of estimators or boosted trees was set to
the default value 20. The minimum sum of instance weight
needed in a child node (min_child weight) is another effective
overfitting prevention method. It is calculated by second-order
partial derivatives and ranges between 0 and infinite. Thelarger
the value, the more conservative the algorithm is. This was set
to the default value of 1 in this study. The maximum delta step
(max_delta_step) specifies the maximum step size that a leaf
node can take. It ranges between 0 and infinite. Increasing the
positive value will make the update step more conservative.
The learning objective was set to binary logistic regression, as
thetarget variable has 2 outcome categories, that is, easy versus
difficult health education texts. Subsample refers to the
subsample ratio of the training instance. For example, setting
asubsample to 0.5 means that the algorithm randomly collects
half of the entire data set to build the tree model. The value of
the subsample was set to the default value 1. Etarefers to the
machine learning rate at which the algorithm learns the latent
patterns and structuresin thetraining data set. Smaller etaleads
to slower computation and thus prevents overfitting. Smaller
etas can be compensated by increasing the number of boosted
trees or estimators; 0.6 was set as the value in this study. The
hyperparameter colsample_bytree controls the number of
features or variables supplied to a tree model. It was set to 1.
Lastly, apha and lambda values, which control L1 and L2
regularization, respectively, were set to 1 and 0 to prevent
overfitting. Random forest is another powerful ensemble
learning technique that outperforms single learning algorithms
in machine learning model development. In random forest,
decision trees are used as the base learner and bootstrapping
aggregation combines these decision trees together to achieve
high prediction accuracy. The minimum number of samples
and training data required to be a a leaf node
(min_samples_|eaf) was set to 1. The maximum depth was set
to 10. The number of featuresto usefor splitting was set to auto.
In the model construction process, the ensemble learning
methods selected to increase the prediction accuracy included
bootstrapping, bagging, and extremely randomized trees. Inthe
process of hyperparameter optimization, on each iteration, the
algorithm will choose a different combination of the features.
The maximum number of iterations was set to 1000, and the
maximum eva uations were set to 300. The neura networks
model used in this study is multilayer perceptron. Only one
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hidden layer was configured, which contained 13 nodes as the
input features (Table 1). The overfitting prevention rate was set

to 30%.

Results

Predictive Perfor mance Evaluation

The predictive performance of the 5 machinelearning agorithms
isshownin Figure 1 and Table 4, and the results of the pairwise

mean scores and their standard deviations of area under the
receiver operating characteristic curve (AUC), sensitivity,
specificity, and accuracy were obtained through five-fold
cross-validation. The cross-validation divided the entire data
setinto 5folds of equal size. In each iteration, 5 foldswere used
as the training data and the remaining fold as the testing data.
Asaresult, on completion of thefive-fold cross-validation, each
fold was used as the testing data exactly once. We used the
pairwise corrected resampled t test to counteract the issue of

corrected resampled two-tailed t test are shown in Table 5. The  multiple comparisons. The significance level was adjusted to

.005 using Bonferroni correction.

Figure 1. Mean receiver operating characteristic curve for the 5 machine learning algorithms. C5: C5 decision tree; LR: logistic regression; MLP.
multilayer perceptron; ROC: receiver operating characteristic; RF: random forest; X GB: extreme gradient boosting.
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Table4. Performance of the 5 machinelearning models on predicting language understandability of the health textsfor international studentsin tertiary

Accuracy, mean (SD)

education.
Algorithm Areaunder the receiver operating Sensitivity, mean (SD)  Specificity, mean (SD)
characteristic curve, mean (SD)
Extreme gradient boosting 0.979 (0.006) 0.947 (0.011) 0.944 (0.011) 0.945 (0.01)
Random forest 0.967 (0.033) 0.924 (0.034) 0.885 (0.094) 0.904 (0.064)
Multilayer perceptron 0.946 (0.006) 0.897 (0.006) 0.893 (0.014) 0.895 (0.008)
C5.0 decision tree 0.981 (0.005) 0.95 (0.009) 0.941 (0.023) 0.945 (0.014)
0.804 (0.002) 0.837 (0.009) 0.627 (0.016) 0.732 (0.004)

Logistic regression

The 5 machine learning models (ie, XGBoost, random forest,
multilayer perceptron, and C5.0 decision tree) achieved
significantly higher AUCs than the linear logistic regression
algorithm: XGBoost (P<.001), random forest (P<.001), C5.0
(P<.001), multilayer perceptron (P<.001) (Table 4). To be more
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specific, C5.0 decision tree had a mean score of 0.981 interms
of AUC, followed by XGBoost (0.979), random forest (0.967),
neural networks (0.946), and logistic regression (0.804).
XGBoost and C5.0 had significantly higher AUC (Table5) than
multilayer perceptron (XGBoost vs MLP, P<.001; MLP vs
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C5.0, P=.001), whereas no significant differences were found
between the mean AUCs of XGBoost, random forest, and C5.0
decisiontree (XGBoost vs RF, P=.44; X GBoost vs C5.0, P=.66;
RFvsC5.0, P=.34). Similarly, all 5 machinelearning algorithms
had significantly higher mean sensitivity scoresthan the baseline
logistic regression (P=.005). C5.0 had the highest mean
sensitivity score (0.95) followed by X GBoost (0.947), random
forest (0.924), neural networks (0.897), and logistic regression
(0.837). XGBoost and C5.0 achieved significantly higher
sengitivity scoresthan multilayer perceptron (XGBoost vsMLP,
P<.001; MLP vs C5.0, P<.001), whereas no significant
differences were found between the mean sensitivity scores of
XGBoogt, C5.0 decision tree, and random forest (XGBoost vs
C5.0, P=.40; RF vs C5.0, P=.15; XGBoost vs RF, P=.21). With
regards to specificity, that is, the ability of the models to
accurately identify health texts classified as easy health
education resources, the 5 machine learning models
outperformed logistic regression (XGBoost vsLR, P<.001; RF

Jietd

vs LR, P=.003; MLP vs LR, P<.001; C5.0 vs LR, P<.001).
Again, the mean specificity score of multilayer perceptron was
significantly lower than that of XGBoost tree (XGBoost vs
MLP, P=.001), but not significantly lower than C5.0 (MLP vs
C5.0, P=.01) and random forest (RF vs MLP, P=.86) at the
adjusted .005 significance level using Bonferroni correction.
Lastly, intermsof overall accuracy, XGBoost and C5.0 achieved
the highest mean scores of 0.945, followed by random forest
(0.904) and neural networks (0.895). These scores were
significantly higher than the mean overall accuracy of logistic
regression (0.732) (XGBoost vsLR, P<.001; RFvsLR, P=.003;
MLP vs LR, P<.001; C5.0 vs LR, P<.001). Again, the
differences in the model accuracy were insignificant among
XGBoogt, C5.0, and random forest (XGBoost vs C5.0, P>.99;
XGBoost vs RF, P=.21; RF vs C5.0, P=.17), but significant
between the 2 best performing models (XGBoost vs MLP,
P<.001; MLPvs C5.0, P=.002).

Table5. Results of the pairwise comparison of the model predictive performance by two-tailed t test.

Pair number ~ Comparison AUC2 difference Sensitivity difference Specificity difference Accuracy difference
Mean (SD) Pvalue Mean (SD) Pvalue Mean (SD) Pvaue Mean (SD) P value
Pair 1 xGBPysRES ~ 0.013(0.034) .44 0.023(0.034) .21 0.059 (0.089) .21 0.041(0.062) .21
Pair 2 XGB vs MLPY 0.034 (0.007) <0018 0.049(0.009) <0018 0.051(0.013) 0018 0.050 (0.010) <.0018
Pair 3 XGBvsC50  -0.001(0.006) .66 -0.003 (0.008) .40 0.003(0.022) .76 0.000 (0.015)  >.99
Pair 4 XGB vsLRf 0.175(0.004) <ppre 0.109(0.006) <qpre 0.317(0.021) qgpie 0.213(0.012) < qgpi©
Pair 5 RFvsMLP 0.021(0.036) .27 0.026 (0.037) .19 -0.008 (0.095) .86 0.009 (0.066) .77
Pair 6 RF vs C5.0 -0.014 (0.029) .34 -0.026 (0.032) .15 -0.056 (0.076) .18 -0.041(0.054) .17
Pair 7 RFVsLR 0163(0.033) g€ 0086(0.034) ot 0.258(0.090)  goge  0.172(0.062)  gogze
Pair 8 MLP vs C5.0 -0.035(0.008) e -0.052(0.011) g -0.048(0.023) .01 -0.050 (0.016) e
Pair 9 MLPVSLR 0.142(0.005) .ggie 0.060(0.007) g 0.266(0.015) . ggie  0.163(0.008) < qp1e
Pair 10 C5.0vsLR 0.177(0.004) g€ 0.112(0010) g  0.314(0.020) .o 0.213(0.014) < gp1®

8AUC: area under the receiver operating characteristic curve.

bX GB: extreme gradient boosting.

°RF: random forest.

dMLP; multilayer perceptron.
Significant at the adjusted .005 significance level using Bonferroni correction.
LR: logistic regression.

Variable Ranking

To have a deeper understanding of the 5 machine learning
algorithms, including the baseline logistic regression, weranked
the impact of the 13 predictor variables on the mean AUCs of
the 5 agorithms. This was achieved through the successive

https://medinform.jmir.org/2021/5/€28413

permutation of the values of the input linguistic features. To
ensure the stability and reliability of the experimental models,
five-fold cross-validation was repeated with each permutation
exercise. As a result, we obtained the mean decease (in
percentage) in the AUCs of the 5 machine learning algorithms
asshown in Table 6 and Figure 2.
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Table 6. Mean decrease in the area under the receiver operating characteristic curve of the 5 machine learning algorithms.

Jeta

Feature Predictor Extreme gradient  Randomforest (%) Deep neurd C5.0 decision  Logistic re-
variable boosting (%) networks (%)  tree (%) gression (%)

General and abstract terms Al 0.62 217 0.35 175 147
Psychological actions, states, processes X1 0.45 131 0.32 0.92 0.17
Mental actions and processes X2 1.09 291 142 1.65 207
Wanting, planning, and X7 0.19 1.94 0.49 0.79 0.13
choosing

Anatomy and physiology B1 0.75 297 1.15 119 0.50
Health and disease B2 0.99 3.16 1.19 1.39 1.23
Medicines and medical B3 0.69 1.87 1.92 2.79 0.93
treatment

Numbers N1 112 0.47 0.62 1.89 0.00
Mathematics N2 0.39 4.14 0.09 0.55 0.33

M easurement N3 0.15 127 0.89 212 0.10
Grammatica bin Z5 0.65 3.37 1.85 112 147
Negative Z6 0.35 181 1.32 195 0.77

If z7 0.82 2.27 2.32 2.65 3.93

Figure 2. Theimpact of different linguistic features on the machine learning algorithms. AUC: area under the receiver operating characteristic curve;
C5: C5decisiontree; LR: logistic regression; NN: neural networks; RF: random forest; X GB: extreme gradient boosting. A1: general and abstract terms;
X1: psychologica actions, states, and processes; X2: mental actions and processes; X 7: wanting, planning, and choosing; B1: anatomy and physiology;
B2: health and disease; B3: medicines and medical treatment; N1: numbers; N2: mathematics; N3: measurement; Z5: grammatical bin; Z6: negative;

Z7:if.
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The results showed that for the best performing algorithm, that
isthe XGBoost tree, linguistic features that had relatively larger
impact on the mean model AUC were N1 (numbers, 1.12%),
X2 (mental actions and processes, 1.09%), B2 (health and
disease, 0.99%), and Z7 (if, conditional, 0.82%). Textual
features that had relatively large impact on C5.0 decision tree
were B3 (medicines and medical treatment, 2.79%), Z7 (if,
conditional, 2.65%), N3 (measurements, 2.12%), Z6 (negative,
1.95%), N1 (numbers, 1.89%), A1 (general and abstract terms,
1.75%), X2 (mental actions and processes, 1.65%), B2 (health
and disease, 1.39%), B1 (anatomy and physiology, 1.19%), and
Z5 (grammatical bin, 1.12%). For random forest, most linguistic
variables had impact on the decrease of the mean AUC larger
than 1% and the only exception was N1 (numbers), which
reduced the AUC by 0.47%. For the baselinelogistic regression,
5linguistic featuresreduced the model AUC by more than 1.0%:
Z7 (if, conditional, 3.93%), X2 (mental actions/processes,
2.07%), Al (general and abstract terms, 1.47%), Z5
(grammatical bin, 1.47%), and B2 (health and disease, 1.23%).

AUC Impact of Individual Textual Features

It is worth noting that the AUC impact of these linguistic
features on each of the 5 machine learning algorithms did not
correlate with their significance to discriminate between easy
and difficult health texts. For example, Table 2 showsthat there
were no statistically significant differences between easy and
difficult health texts in their means of B1 (anatomy and
physiology, P=.12), N1 (numbers, P=.66), N2 (mathematics,
P=.52), and N3 (measurement, P=.38). Asaresult, thesefeatures
had limited impact on the mean AUC of logistic regression. By
contrast, B1 had large impact on the mean AUC of random
forest (2.97% AUC decrease), C5.0 (1.19% AUC decrease),
and neural networks (1.15% AUC decrease); N1 had large
impact on the AUC of XGBoost (1.12% AUC decrease) and
C5.0 (1.89% AUC decrease); N2 had large impact on random
forest (4.14% AUC decrease) and N3 had large impact on
random forest (1.27% AUC decrease) and C5.0 (2.12% AUC
decrease). It became clear that XGBoost was the most
parsimonious model that achieved the highest mean AUC with
lesstextual features aslarge predictor variables. The 4 linguistic

Jietd

features with large impact on the AUC of XGBoost, N1, X2,
B2, Z7 suggest that 5 eval uation dimensionswere critical to the
guantitative analysis of the understandability of health education
resources.

Impact of the 5 Evaluation Dimensions on the
Algorithm Performance (AUCs)

As shown in Table 7, for XGBoogt, the evaluation dimension
that had the largest impact on the AUC of the algorithm was
information evidentness (2.35%), followed by information in
logical sequence (1.82%), numeracy skills (1.66%), and the
relevance of hedlth information for educational purposes
(1.44%). Medical domain knowledge was ranked as the
dimension with theleast AUC impact (0.99%). Similar patterns
were found with random forest. Health information evidentness
(8.33%) was ranked as the most impactful dimension, followed
by textual logical sequence (7.45%), numeracy skills (5.88%),
and the relevance of health information for educational purposes
(4.84%). Again, medical knowledge (3.16%) had the smallest
impact on the AUC of random forest. C5.0 decision tree differs
from X GBoost tree and random forest in that logical sequence
(5.72%) replaced information evidentness (5.11%) as the
dimension with the largest impact on the C5.0 tree model.
Neural networksidentified logical sequence (5.49%), relevance
to health educationa purposes (3.07%), and information
evidentness (3.07%) as the 3 evaluation dimensions with the
largest impact on themodel performance, followed by numeracy
skills (1.6%) and domain knowledge (1.19%). Similar to the
first 4 machine learning algorithms, logistic regression also
identified logical sequence (6.17%) as the most impactful
dimension on the model performance, followed by information
evidentness (3.84%), educational relevance (1.43%), domain
knowledge (1.23%), and numeracy skills (0.43%). It is useful
to note that for all models, logical sequence, information
evidentness, and educational purpose relevance were identified
as the most important dimensions with the largest impact on
the model prediction accuracy, whereas medica domain
knowledge was ranked as the dimension with the least impact
on the algorithm performance.

Table 7. Impact of the different dimensions on the area under the curves of the algorithms.

Evaluationdi-  Understandability Predictor vari-  Extremegradient Random forest Deep neural C5.0 decision Logistic re-
mensions aple boosting (%) (%) networks (%)  tree (%) gression (%)
Dimension 1 Information evidentness A1, X1, X2, X7 2.35 8.33 2.58 511 384
Dimension 2 Relevanceto education  B1, B3 1.44 4.84 3.07 3.98 143
purpose
Dimension 3 Domain knowledge B2 0.99 3.16 119 1.39 1.23
Dimension 4 Numeracy demand N1, N2, N3 1.66 5.88 1.60 4.56 0.43
Dimension 5 Logical sequence 75,726,727 1.82 7.45 5.49 5.72 6.17
Discussion Flesch-Kincaid Grade Level Readability [34], Coleman-Liau

Principal Findings
The study of the readability of health educational resources has,

for long, relied on medical readability cal culators among which
the Flesch Reading Ease Score [34], Gunning Fog [35],

https://medinform.jmir.org/2021/5/€28413

Index [36], Simple Measure of Gobbledygook Index [37],
Automated Readability Index [38], and Lensear Write Formula
[39] are some of the most influential and widely used ones.
However, this medical formula—based approach to linguistic
readability evaluation, despite being convenient and fast, has
known limitations, including interformula inconsistency and
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reported lack of flexibility and adaptability with populations
with diverse language, cultural backgrounds, aswell as cognitive
abilities. Furthermore, these evaluation tools were originally
designed for readersfrom native English-speaking backgrounds,
assuming the health educators who developed the health
resources and the target readers have similar knowledge and
understanding of the general English vocabulary, logical
organization of health materials, and communication of the
intentions and purposes of health educational materials. These
assumptions, which underlined the design of existing medical
readability formula, were increasingly challenged by
applications of these tools with diverse populations and
communities with limited exposure to the health care systems
of English-speaking countries [40-42]. The limitation of the
existing medical readability toolsalso reflectsin their exclusive
focus on the morphological, syntactic complexity, using
low-frequency polysyllabic words, medical terminology, and
sentence lengths as the main textual complexity measures.

The more recent patient-oriented health resource evaluation
guidelines such asPEMAT hasgreatly enriched the dimensions
of readability evaluation, expanding the evaluation criteriafrom
medica domain knowledge (using familiar, everyday language)
to encompass dimensions such as heal th information relevance,
purposefulness to the target readers (information classified as
distractor or key information), numeracy demand, and thelogical
sequence of health texts. Despite the wide adoption of these
more comprehensive and user-adaptive evaluation guidelines,
no quantitative tools have been developed to implement the
multidimensional evaluation in acost-effective, instant manner.
Thisrepresentsacritical research gap in current health material
evaluation, as there are growing demands from both clinical
and research settings for automated evaluation tools of the
understandability of written health materials. Advances in
computational methods such as machine learning agorithms
can help addresstheincreasing gap between the practical needs
for more cost-effective, integrated quantitative tools that are
able to deal with health textsin large quantities and the known
limitations of medical readability formulas and expert-led
evaluation guidelines, which are slow and time-consuming to
implement and update.

Our study devel oped the first quantitative tool for the evaluation
of written health education materials based on the PEMAT
guidelines. We developed and compared 5 machine learning
algorithms by using logistic regression as the baseline model.
The results showed that all 5 models (XGBoost, C5.0, random
forest, multilayer perceptron) outperformed logistic regression
in terms of AUC, sensitivity, specificity, and overall accuracy.

Jietd

We found that in the evaluation of health information
understandability, information evidentness, educational
relevance, and logical sequence were ranked consistently more
important than numeracy skills and medical domain knowledge.
This ranking of the importance of these evaluation dimensions
may be explained by the demographical profiles of the target
readership: international students in tertiary education with
adequate English skills (International English Language Testing
System mean score 6.5) and high health literacy (mean score
16.5 in the Short Assessment of Health Literacy-English test).
Theseresults challenged the traditional view that lack of medical
knowledge and numeracy skills caused the lack of health
information understandability. Improving the writing style and
health information organization can significantly improve the
understandability of health information for non-English
speakers, especially for those of higher educational attainment
and health literacy levelsand with distinct language and cultural
backgrounds.

Limitations and Future Research

The textual linguistic features used in the model devel opment
were limited. In future research, we will increase the features
to be studied in the evaluation of health materia
understandability, by adding, for example, syntactic and
morphological features of texts. The underlying evaluation
framework we used was PEMAT. There are, however, other
studies that explored health information accessibility from
cognitive and psychological experiments. These studies may
help expand the current scope of PEMAT, which is intended
for the evaluation of written health resources for readers with
average cognitive skills, rather than those with cognitive
impairments caused by physical or mental health issues. The
new quantitative tools have the potential to be further adapted
for different readerships as well as written health materialsin
languages other than English.

Conclusions

An important contribution of this paper lies in its efforts to
bridge the gap between the 2 distinct approaches to health
information evaluation. This was achieved via the trandation
of clinically developed patient health education materials
assessment guidelines to quantitative evaluation models, that
is, machine learning algorithms by using a limited number of
semantic features to accurately predict the readability (binary
outcome) of health educational resources for international
studentsin tertiary education with adequate English proficiency
and health literacy but distinct language and cultural
backgrounds.
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