
Viewpoint

A Roadmap for Automating Lineage Tracing to Aid Automatically
Explaining Machine Learning Predictions for Clinical Decision
Support

Gang Luo, DPhil
Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, United States

Corresponding Author:
Gang Luo, DPhil
Department of Biomedical Informatics and Medical Education
University of Washington
UW Medicine South Lake Union
850 Republican Street, Building C, Box 358047
Seattle, WA, 98195
United States
Phone: 1 206 221 4596
Fax: 1 206 221 2671
Email: gangluo@cs.wisc.edu

Abstract

Using machine learning predictive models for clinical decision support has great potential in improving patient outcomes and
reducing health care costs. However, most machine learning models are black boxes that do not explain their predictions, thereby
forming a barrier to clinical adoption. To overcome this barrier, an automated method was recently developed to provide rule-style
explanations of any machine learning model’s predictions on tabular data and to suggest customized interventions. Each explanation
delineates the association between a feature value pattern and an outcome value. Although the association and intervention
information is useful, the user of the automated explaining function often requires more detailed information to better understand
the patient’s situation and to aid in decision making. More specifically, consider a feature value in the explanation that is computed
by an aggregation function on the raw data, such as the number of emergency department visits related to asthma that the patient
had in the prior 12 months. The user often wants to rapidly drill through to see certain parts of the related raw data that produce
the feature value. This task is frequently difficult and time-consuming because the few pieces of related raw data are submerged
by many pieces of raw data of the patient that are unrelated to the feature value. To address this issue, this paper outlines an
automated lineage tracing approach, which adds automated drill-through capability to the automated explaining function, and
provides a roadmap for future research.

(JMIR Med Inform 2021;9(5):e27778) doi: 10.2196/27778

KEYWORDS

clinical decision support; database management systems; forecasting; machine learning; electronic medical records

Introduction

Machine learning has won almost all data science competitions
[1] and is a hot topic these days. It is about computer algorithms
that automatically learn from data, such as extreme gradient
boosting, support vector machine, and random forest [2]. Using
machine learning predictive models for clinical decision support
has great potential in improving patient outcomes and reducing
health care costs [3-10]. However, most machine learning
models are black boxes that do not explain their predictions.
This creates a barrier to clinical adoption. To overcome this
barrier, we recently developed an automated method to offer

rule-style explanations of any machine learning model’s
predictions on tabular data and to suggest customized
interventions without reducing the model’s performance
measures [11-14]. Each rule-style explanation delineates the
association between a feature value pattern and an outcome
value. A feature is also called an independent variable. For the
prediction of future emergency department (ED) visits or
inpatient stays for asthma for a patient with asthma, one example
of the explanation is as follows:

• The patient had 2 ED visits related to asthma in the prior
12 months

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e27778 | p. 1https://medinform.jmir.org/2021/5/e27778
(page number not for citation purposes)

LuoJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:gangluo@cs.wisc.edu
http://dx.doi.org/10.2196/27778
http://www.w3.org/Style/XSL
http://www.renderx.com/

AND the patient’s average respiratory rate recorded in the
prior 12 months is >25 and ≤28 breaths per minute
→the patient will likely have at least 1 ED visit or inpatient
stay for asthma in the next 12 months [13,14].

An ED visit is related to asthma if the ED visit has an asthma
diagnosis code. For the item in the explanation showing that
the patient had 2 ED visits related to asthma in the prior 12
months, 1 intervention suggested by the automatic explanation
method [12-14] is to apply control procedures that decrease the
likelihood that the patient will need emergency care.

The association and intervention information provided by the
automatic explanation method for machine learning predictions
is useful. However, the user of the automated explaining
function often requires more detailed information to better
understand the patient’s situation and to aid in decision making.
More specifically, consider a feature value on the left-hand side
of a rule-style explanation that is computed by an aggregation
function on the raw data. The user often wants to rapidly drill

through to see certain parts of the related raw data producing
the feature value. In the context of a relational database, these
parts refer to the most relevant attributes of the most essential
source tuples producing the feature value. Which attributes are
most relevant and which source tuples are most essential depend
on both the concrete feature type and the clinical decision
support application’s need and are illustrated by several
examples throughout this paper. The patterns embedded in these
parts could provide additional information on the patient that
was lost during the aggregation process to compute the feature
value. This drill-through task is frequently difficult and
time-consuming because the few pieces of related raw data are
submerged by many pieces of raw data of the patient that are
unrelated to the feature value. For example, as Table 1 shows,
the list of encounters of a patient with asthma displayed on the
standard interface of an electronic medical record system
includes much information that is irrelevant to the feature value
“2 of the number of ED visits related to asthma that the patient
had in the prior 12 months.”

Table 1. An example list of encounters of a patient with asthma displayed on the standard interface of an electronic medical record system.a

FacilityProviderDepartmentVisit typePrimary diagnosisbVisit date

HMCJohn SmithHMCc family medicine clinicOutpatientCough (R05)Dec 20, 2020

HMCDavid WongHMC family medicine clinicOutpatientDysphagia, unspecified (R13.10)Dec 18, 2020

………………

UWMCLeslie HurdleUWMCd 8SEInpatientCystitis, unspecified without hematuria
(N30.90)

Oct 15, 2020

HMCPatricia SwardHMC HEDUCC fEmergencyViral infection, unspecified (B34.9)Oct 12, 2020 e

HMCEve JohnsonHMC family medicine clinicOutpatientDizziness and giddiness (R42)Oct 09, 2020

………………

HMCAmy JiangHMC psychotherapy clinicOutpatientPosttraumatic stress disorder, unspeci-
fied (F43.10)

Feb 11, 2020

HMCPeter ShavlikHMC HEDUCCEmergencySyncope and collapse (R55)Feb 08, 2020

HMCJude LakeHMC family medicine clinicOutpatientHeadache, unspecified (R51.9)Feb 03, 2020

………………

aThis example list is made based on a similar list seen in real electronic medical record data at the University of Washington Medicine.
bThis column does not show up on the standard interface. This column is included because it will be discussed in this paper.
cHMC: Harborview Medical Center.
dUWMC: University of Washington Medical Center.
eFor the feature value “2 of the number of emergency department visits related to asthma that the patient had in the prior 12 months,” the related rows
in the list producing the feature value are marked in italics.
fHEDUCC: Harborview Emergency Department Urgent Care Center.

For instance, in the rule-style explanation shown above, the first
item on the left-hand side is the feature value “2 of the number
of ED visits related to asthma that the patient had in the prior
12 months.” Asthma may or may not be the primary diagnosis
of either of these 2 visits. For this feature value, the user of the
automated explaining function wants to see the relevant parts
of these 2 visits (visit date, primary diagnosis, department
handling the visit, admitting provider, facility where the visit
occurred) in the reverse chronological order (see Table 2), like
the way encounters are displayed on the standard interface of

an electronic medical record system. The patterns embedded in
these parts give additional information on the patient not shown
by the feature value, such as the time between these 2 visits,
how long ago these 2 visits occurred, the primary diagnoses in
these 2 visits, and whether these 2 visits occurred at the same
facility. However, finding these parts is nontrivial. As seen in
real electronic medical record data at the University of
Washington Medicine, Intermountain Healthcare, and Kaiser
Permanente Southern California, the patient could have had
over 100 encounters in the prior 12 months. Only a few of these

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e27778 | p. 2https://medinform.jmir.org/2021/5/e27778
(page number not for citation purposes)

LuoJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

encounters are ED visits, and even fewer of them are ED visits
related to asthma. To find the ED visits of the patient in the
prior 12 months, the user would need some manual effort even
if aided by the search function for the electronic medical record

system. To figure out which of these visits are related to asthma,
a task with which the search function often cannot provide much
help, the user would need much more manual effort.

Table 2. An example of the parts of the related raw data that should be displayed for a feature value.a

FacilityProviderDepartmentPrimary diagnosisVisit date

HMCPatricia SwardHMCb HEDUCCcViral infection, unspecified (B34.9)Oct 12, 2020

HMCPeter ShavlikHMC HEDUCCSyncope and collapse (R55)Feb 08, 2020

aFor the example list shown in Table 1 and the feature value “2 of the number of emergency department visits related to asthma that the patient had in
the prior 12 months,” the parts that the user of the automated explaining function wants to see are in the related raw data producing the feature value.
bHMC: Harborview Medical Center.
cHEDUCC: Harborview Emergency Department Urgent Care Center.

In practice, numerous possible features computed by various
aggregation functions on all kinds of longitudinal attributes in
the electronic medical records could be used for predictive
modeling and automatic explanation. Examples of such features
include whether the most recent asthma diagnosis of the patient
is a primary diagnosis, the patient’s average respiratory rate
recorded in the prior 12 months, the total number of distinct
asthma medications ordered for the patient in the prior 12
months, the total number of units of asthma relievers that were
ordered for the patient in the prior 12 months and were neither
systemic corticosteroids nor short-acting beta-2 agonists, the
number of distinct asthma medication prescribers of the patient
in the prior 12 months, and the number of no-shows by the
patient in the prior 12 months [13,14]. Most of the possible
features are unanticipated by the developers of the search
function for the electronic medical record system beforehand.
The search function supports only a few fixed types of search.
For only a small portion of possible features, the search function
can aid drilling through the raw data that produce a given feature
value.

This creates a problem for the widespread adoption of the
automatic explanation method for machine learning predictions.
Frequently, this method gives multiple rule-style explanations
for a patient predicted to be at high risk of incurring a poor
outcome [11,12]. The user of the automated explaining function
is typically a busy clinician having no time to do laborious
manual drill-through regularly. However, to better understand
the patient’s situation and to make better clinical decisions, the
user often wants to drill through multiple feature values of the
patient appearing in the explanations. If done manually, this is
a challenging task. A patient often has extensive records with
numerous variables and hundreds of pages of content
accumulated over a long period of time [15]. Further, the
relevant raw data producing the feature values are frequently
scattered in several places in the electronic medical record
system.

This study makes 2 contributions toward solving this problem:

1. We articulate this problem for the first time in the literature.
This is done in the “Introduction” section.

2. To address this problem, an automated lineage tracing
approach is outlined to add automated drill-through
capability to the automated explaining function. This is

done in the “Outline of the proposed automated lineage
tracing approach” section. Further, a roadmap for future
research is provided in the “Directions for future research”
section.

The automated drill-through capability is intended to be offered
to help the user of the automated explaining function save time,
better understand the patient’s situation, and make better clinical
decisions. The discussion in this paper focuses on structured
electronic medical record data, a specific method commonly
used to build clinical machine learning predictive models, and
the automatic explanation method for machine learning
predictions [11,12]. Nevertheless, the automated lineage tracing
approach is not limited to them. Instead, when automatically
explaining machine learning predictions and after appropriate
extension, the principle of this approach can be applied to
facilitate drilling through any feature value computed by an
aggregation function on longitudinal structured data, regardless
of whether the data came from electronic medical records,
whether the feature is specified by a human expert or
semiautomatically extracted from longitudinal data using the
method outlined in the prior paper [16], which method is used
to build the machine learning predictive model, or which
automatic explanation method is used.

Running Example

To illustrate this approach, a running example is used throughout
this paper: automatically explaining the predictions of future
ED visits or inpatient stays for individual patients with asthma.
Our prior papers [12-14,17-19] detail this use case and the
features used to make predictions in it.

Base Tables
Below are the schemas of 5 tables in a relational database used
in the running example:

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e27778 | p. 3https://medinform.jmir.org/2021/5/e27778
(page number not for citation purposes)

LuoJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

The underlined fields mark the key to each table. The encounter
table includes 1 row per encounter listing its information. The
diagnosis table includes 1 row per diagnosis code of an
encounter. Primary diagnoses are signified by
dx_sequence_number=1. The diagnosis_code_master table
includes 1 row per unique diagnosis code giving its description.
The ordered_medication table includes 1 row per medication
appearing in a medication order. The medication_master table
includes 1 row per unique medication listing its information.

Intermediate Result Tables
Besides the above 5 base tables, 4 intermediate result tables
computed on the new data are also used in the running example:
enc_features_1, enc_features_2, enc_features_3, and
med_features_1. The trained machine learning predictive model
is applied to the new data to make predictions on individual
patients.

The intermediate result table enc_features_1 contains 3 temporal
features on encounters: the number of ED visits, the number of
inpatient stays, and the number of outpatient visits that the
patient had in the prior 12 months. Let today_date denote
today’s date. enc_features_1 is computed from the encounter
base table using the following structured query language (SQL)
query.

The intermediate result table enc_features_2 contains 1 temporal
feature on encounters: the number of outpatient visits with a
primary diagnosis of asthma that the patient had in the prior 12
months. Recall that the International Classification of Diseases,
Tenth Revision diagnosis codes of asthma are J45.x.
enc_features_2 is computed by joining the encounter and
diagnosis base tables using the following SQL query.

The intermediate result table enc_features_3 contains 2 temporal
features on encounters: the number of ED visits related to
asthma and the number of inpatient stays related to asthma that
the patient had in the prior 12 months. enc_features_3 is
computed by joining the encounter and diagnosis base tables
using the following SQL query.

The intermediate result table med_features_1 contains 2
temporal features on medications: the total number of
medications and the total number of distinct medications ordered
for the patient in the prior 12 months. med_features_1 is
computed from the ordered_medication base table using the
following SQL query.

Relational Algebra Operators
This paper uses the following relational algebra operators with

the bag semantics unless otherwise specified: join , left

semijoin , selection σ, projection π, duplicate elimination

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e27778 | p. 4https://medinform.jmir.org/2021/5/e27778
(page number not for citation purposes)

LuoJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

δ, and grouping γ [20]. Commercial database management
systems implement relations using the bag semantics.

Review of a Typical Method to Build a
Clinical Machine Learning Predictive
Model and Our Automated Method to
Explain the Model’s Predictions

In this section, a typical method to build a machine learning
predictive model on structured electronic medical record data
as well as the automated method to explain the model’s
predictions [11-14] are reviewed. In the next section, the
automated lineage tracing approach based on these 2 methods
is outlined.

A health care system usually has an enterprise data warehouse.
It stores in a relational database a copy of the structured
electronic medical record data of the health care system, often
after some transformations such as pivoting [21,22] and
denormalization to facilitate data analysis. For predictive
modeling with automated explanation, the overall workflow is
to execute database SQL queries to extract features from the
electronic medical record data, to build a machine learning
predictive model on the training data, to apply the model on
new data to make predictions on individual patients, and then
to use the automated method to explain the predictions. In the
following sections, each of these steps is described sequentially.

Extracting Features From the Electronic Medical
Record Data and Building the Clinical Machine
Learning Predictive Model
The structured electronic medical record data contain both static
attributes (eg, gender) and longitudinal attributes (eg,
encounters, diagnoses). Most attributes are longitudinal. As
Figure 1 shows, the following operations are performed on the
training data:

1. The static features are computed from the static attribute
values. The results are stored in 1 or more intermediate
result tables. Typically, each of these intermediate result
tables is computed by running a select-project-join SQL
query on 1 or more base tables.

2. By aggregating longitudinal attribute values and sometimes
also using some static attribute values, the patient cohort
of interest in the training data is computed. The result is
stored in 1 intermediate result table. This is typically done
by running a complex SQL query on several base tables.
An example patient cohort is the set of all patients with
asthma who visited any of the facilities of the health care
system during a specific time period.

3. By aggregating longitudinal attribute values, temporal
features and the outcome variable are computed and stored
in 1 or more intermediate result tables. Typically, each of
these intermediate result tables is computed by running a
select-project-join-aggregate SQL query on 1 or more base
tables. For example, 1 intermediate result table is similar
to enc_features_1 and contains multiple temporal features
on encounters computed from the encounter base table. A
second intermediate result table is similar to enc_features_2
and contains multiple temporal features on encounters
computed by joining the encounter and diagnosis base
tables. A third intermediate result table contains multiple
temporal features on medications computed by joining the
ordered_medication and medication_master base tables,
such as the total number of distinct asthma medications and
the total number of units of asthma medications ordered
for the patient in the prior 12 months. The logical query
plan for a select-project-join-aggregate query includes 1 or
more select-project-join-aggregate segments [23]. Each
segment has a grouping or duplicate elimination operator
at its end following a bunch of join, selection, and projection
operators.

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e27778 | p. 5https://medinform.jmir.org/2021/5/e27778
(page number not for citation purposes)

LuoJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 1. The flow chart for building a clinical machine learning predictive model on the training data, making predictions on the new data, and using
our automated method to explain the model’s predictions.

Figure 2 shows the logical query plan for a
select-project-join-aggregate query. By joining the intermediate
result tables containing the patient cohort of interest, the static
and temporal features, and the outcome variable in the training
data, a table containing the unified training data frame is

obtained. For the patient cohort of interest, this table includes
1 column for the outcome variable and a separate column for
each feature. Then a machine learning predictive model is
trained on this table.

Figure 2. A logical query plan for the select-project-join-aggregate query Q3 given in the “Intermediate result tables” section.

Applying the Machine Learning Predictive Model to
New Data to Make Predictions on Individual Patients
As Figure 3 shows, similar to the procedure mentioned above,
the patient cohort of interest and the static and temporal features
in the new data are computed. The results are stored in several

intermediate result tables. By joining these tables, a table
containing the unified data frame for the new data is obtained.
For the patient cohort of interest, this table includes a separate
column for each feature. We then apply the machine learning
predictive model to this table to make predictions on individual
patients.

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e27778 | p. 6https://medinform.jmir.org/2021/5/e27778
(page number not for citation purposes)

LuoJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 3. The high-level logical query plan for computing the unified data frame that contains all the features of the new data. SQL: structured query
language.

Automatically Explaining the Machine Learning
Model’s Predictions
At the same time of building the clinical machine learning
predictive model, the training data are used to create the
knowledge base of the automated explaining function. We do
automated discretization [24,25] to convert continuous features
to categorical features. Then class-based association rules
[24,26] are mined from the unified training data frame. Each
rule delineates the association between a feature value pattern
and a poor outcome value c and is of the form

i1 AND i2 AND … AND it→c.

This rule shows that a patient satisfying i1, i2, …, and it tends
to have an outcome value c. The values of t and c can change
across rules. Each item ik (1≤k≤t) is a (feature, value) pair
showing that a feature has a specific value or a value within a
specific range. One example item of the former is that the patient
had 2 ED visits related to asthma in the prior 12 months. One
example item of the latter is that the patient’s average respiratory
rate recorded in the prior 12 months is >25 and ≤28 breaths per
minute. An example rule containing both items is given in the
Introduction.

For each (feature, value) pair item used to create association
rules, 0 or more interventions are precompiled. The interventions
precompiled for any item on a rule’s left-hand side are
automatically linked to the rule.

At prediction time, to avoid reducing the machine learning
predictive model’s performance measures, the model’s
predictions are used with no change. The mined association
rules are used to explain these predictions rather than to make
predictions. More specifically, for each patient whom the model
predicts to have a poor outcome value, we find and display the
rules that have this value on their right-hand sides and whose
left-hand sides are fulfilled by the patient. Each rule offers 1
explanation for the prediction. The interventions linked to the
rule are displayed next to it as the suggested candidate
interventions.

Our automatic explanation method for machine learning
predictions has been successfully applied to multiple clinical
predictive modeling problems [11,12,27,28]. It has several
advantages. Among all the automatic explanation methods for
machine learning predictions in the literature [29,30], our
method is the only one that can automatically suggest
customized interventions. The rule-style explanations given by
our method are easier to comprehend than the non–rule-style
explanations given by many other methods. Unlike many other
automatic explanation methods that either lower the machine
learning predictive model’s performance measures or work for
only a specific machine learning algorithm, our automatic
explanation method works for any machine learning algorithm
on tabular data without lowering the model’s performance
measures. Unlike several other methods that use rules computed
at prediction time to offer explanations [31,32], our method
uses rules mined before prediction time to offer explanations.
This is essential for our method to automatically suggest
customized interventions at prediction time.

Review of the Existing Automated
Lineage Tracing Techniques

In this section, the existing automated lineage tracing techniques
are reviewed. An overview of such techniques developed in
various fields is provided. Then, a specific set of automated
lineage tracing techniques most closely related to this work is
reviewed.

Overview of the Existing Automated Lineage Tracing
Techniques
The lineage or provenance of a given data item i refers to the
source data items producing i and how i was derived [33]. The
former is called where-lineage. The latter is called how-lineage.
Each type of lineage can be at either the schema level or the
instance level. An example of where-lineage at the schema level
is the set of base tables producing a specific materialized view.
An example of where-lineage at the instance level is the set of
tuples in the base tables producing a given temporal feature

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e27778 | p. 7https://medinform.jmir.org/2021/5/e27778
(page number not for citation purposes)

LuoJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

value in a materialized view. Lineage information can be
computed in either an eager way or a lazy way. In the former
case, lineage information is computed and stored at the same
time of producing the output data. In the latter case, lineage
information is computed when needed. This paper focuses on
where-lineage that is at the instance level and computed in a
lazy way.

Ikeda et al surveyed existing lineage tracing techniques in
databases [33,34], e-science [35], and scientific data processing
[36]. Among all of the lineage tracing techniques in the
literature, the techniques Cui et al [23,37] developed are the
most closely related to this work. These techniques are used to
trace the lineage of a tuple in a materialized view [38] defined
by a select-project-join-aggregate query in a relational database.
Cui et al [39,40] described lineage tracing techniques for
warehouse data computed via a directed acyclic graph of
transformations, some of which could involve complex
procedural code. Zhang et al [41] described lineage tracing
techniques for data computed by arbitrary functions. In general,
the more flexibility is allowed on the transformations or
functions, the less efficiently lineage can be traced [39].

In big data systems, Ikeda et al [42,43] described lineage tracing
techniques for data computed via a directed acyclic graph of
map and reduce functions [44]. Amsterdamer et al [45] described
lineage tracing techniques for data computed by using Pig Latin
[46].

In scientific data processing, lineage tracing is often done on
curated databases, which contain scientific data copied from
other databases [36,47].

Schelter et al [48] described a method to trace the schema-level
lineage of the data sets, features, models, and predictions
produced in machine learning experiments.

Review of Cui et al’s Automated Lineage Tracing
Techniques for Relational Databases
To automatically trace the lineage of a tuple t in a materialized
view [38] defined by a select-project-join-aggregate query, Cui
et al [23,37] proceeded as follows. First, the materialized view’s
definition query is transformed into a canonical form of the
logical query plan. As Figure 2 shows, the canonical form
includes 1 or more select-project-join-aggregate segments. Each
segment has 0 or 1 join operator, 0 or 1 selection operator, 0 or
1 projection operator, and a grouping or duplicate elimination
operator in this particular order. Second, a separate intermediate
materialized view is created for each intermediate

select-project-join-aggregate segment of the canonical form.
The root node of such a segment is not the root node of the
canonical form. Third, we recursively trace through the
hierarchy of intermediate materialized views in a top-down way.
At each level of the hierarchy, the lineage tracing query for a
1-level select-project-join-aggregate materialized view is used
to compute the current traced tuples’ lineage with respect to
each base table and each materialized view at the next lower
level. For a 1-level select-project-join-aggregate materialized

view MV = γ(πA(σC(R1 R2 … Rn))), the lineage of a
tuple set T⊆MV with respect to the base table or the materialized

view Ri (1≤i≤n) is πRi(σC(R1 R2 … Rn) T). Here, the
projection operator π on Ri has the set semantics, making each
selected tuple in Ri appear only once. Further, all attributes of
Ri appear in the projection operator and subsequently in the
lineage traced on Ri. The final traced lineage of tuple t includes
the lineage traced on every base table appearing in the canonical
form.

We use an example to illustrate Cui et al’s [23,37] automated
lineage tracing techniques. If “create table enc_features_3” is
replaced by “create materialized view enc_features_3_view”
in query Q3 given in the “Intermediate result tables” section, a
query Q3_v defining a materialized view enc_features_3_view
is obtained. To trace the lineage of a tuple t in
enc_features_3_view whose patient_id is asthma_patient_id,
one proceeds as follows.

First, the canonical form of the logical query plan for query
Q3_v is obtained. The canonical form is the same as the logical
query plan for query Q3 shown in Figure 2.

Second, an intermediate materialized view asthma_encounter_id
is created for the intermediate select-project-join-aggregate
segment e_id shown in Figure 2. This is done using the
following SQL query.

Figure 4 shows the resulting hierarchy of intermediate
materialized views, with the materialized view
enc_features_3_view at the top and the encounter and diagnosis
base tables at the bottom.

Figure 4. The hierarchy of intermediate materialized views matching the canonical form of the logical query plan for the definition query of the
materialized view enc_features_3_view.

Third, at the top level of the hierarchy of intermediate
materialized views, the lineage of tuple t with respect to the

encounter base table is computed using the following SQL
query.

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e27778 | p. 8https://medinform.jmir.org/2021/5/e27778
(page number not for citation purposes)

LuoJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

The following SQL query is used to compute the lineage of
tuple t with respect to the intermediate materialized view
asthma_encounter_id and to store the results in a temporary
table temp.

Fourth, at the second level of the hierarchy of intermediate
materialized views, the lineage of the tuples in the temporary
table temp with respect to the diagnosis base table is computed
using the following SQL query.

The final traced lineage of tuple t includes both the results of
query Q6 and the results of query Q8.

Outline of the Proposed Automated
Lineage Tracing Approach

In this section, an automated lineage tracing approach is outlined
to add automated drill-through capability to the automated
explaining function. Our presentation includes 4 subsections.
In the first subsection, an overview of the lineage tracing
component of the automated explaining function is provided.
In the second subsection, the unique requirements on automated
lineage tracing are shown for automatically explaining machine
learning predictions for clinical decision support. In the third
subsection, the proposed automated lineage tracing techniques

fulfilling these requirements is outlined. In the fourth subsection,
some considerations are presented for future computer coding
implementation of the proposed lineage tracing approach.

Overview of the Lineage Tracing Component
At association rule mining time, all (feature, value) pair items
used to create association rules are known. Which items involve
temporal features computed by aggregation functions on the
raw data is also known. For each item that is related to a
temporal feature of a patient and on the left-hand side of a rule,
a hyperlink is added to the item in the rule. In addition, a
parameterized stored procedure is written for the item in the
database to retrieve lineage information. The stored procedure
typically has 2 parameters: the patient_id of the patient being
examined and the endpoint of the temporal aggregation period,
such as today. When the stored procedure is run for the first
time, an execution plan is generated. All subsequent runs will
use the same execution plan to avoid runtime query optimization
overhead.

At automatic explanation time, the user of the automated
explaining function is allowed to do lineage tracing for any item
that is on the left-hand side of a rule-style explanation and
related to a temporal feature value. When the user clicks the
item’s hyperlink, the stored procedure prewritten for the item
is invoked to retrieve some prespecified parts of the related raw
data producing the feature value. Except for the cases with 2
specific aggregation functions described later in the paper, the
retrieved data instances are always displayed on a page in the
reverse chronological order like that in the electronic medical
records.

Unique Requirements for Automated Lineage Tracing
Typically, the user of the automated explaining function is a
clinician. To fit the user’s busy schedule and to aid timely
decision making, the user wants the lineage tracing process for
a temporal feature value to be finished quickly, preferably within
1 second. This goal is partially fulfilled by the existing lineage
tracing techniques [23,37], whereas the realized lineage tracing
speed can be further improved. In addition, the retrieved lineage
information should be easy to scan and include the most
essential content needed to facilitate decision making. This
enables the user to quickly gain useful insights from the
information, ideally within 1 or a few seconds. As summarized
in Table 3, that goal translates to 5 unique requirements on
automated lineage tracing that are unmet by the existing lineage
tracing techniques.

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e27778 | p. 9https://medinform.jmir.org/2021/5/e27778
(page number not for citation purposes)

LuoJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Table 3. The 5 unique requirements of automated lineage tracing for automatically explaining machine learning predictions for clinical decision support.

Reason for posing the requirementRequirement

To prevent the user from being overwhelmed by many nonessential
or irrelevant attributes

Retrieving only a small set of attributes

To make the retrieved lineage information include the most essen-
tial content

Adding some essential attributes that do not directly produce the feature value

To make the retrieved lineage information easy to scanSorting the retrieved lineage information in an appropriate order

To avoid including irrelevant or nonessential source tuples in the

retrieved lineage information

Computing the lineage information based on the semantic meaning of the feature

To avoid including irrelevant data in the retrieved lineage informa-
tion

Performing no lineage tracing for any health care system feature value computed
by an aggregation function

Requirement 1: Retrieving Only a Small Set of Attributes
When tracing the lineage of a temporal feature value, one should
retrieve from the base tables only a small set of attributes
specific to the temporal feature rather than the many attributes
involved in deriving all of the features used for automated
explanation. This requirement is posed to prevent the user of
the automated explaining function from being overwhelmed by
many nonessential or irrelevant attributes.

To aid automatic explanation, we want to allow tracing the
lineage of a temporal feature value in the form of a small set of
attributes specific to the temporal feature (see Table 2 for an
example). This cannot be well done using Cui et al’s lineage
tracing techniques [23,37]. These techniques were developed
to trace the lineage of a tuple including all of its attribute values
in a select-project-join-aggregate materialized view in a
relational database. If the retrieved lineage information ever
touches a tuple in a base table, all attribute values of the tuple
are included in this information. For automatic explanation,
both factors would cause the retrieved lineage information to
have an excessive volume, overwhelming the user of the
automated explaining function.

To see this, the process of making predictions with automatic
explanations is reviewed. Usually, many features are used to
make predictions and to automatically explain them. All of the
items on the left-hand side of a rule-style explanation come
from the same tuple in the unified data frame, which contains
all features of the new data. As Figure 3 shows, this unified data
frame is obtained by joining many intermediate result tables.
Each of them falls into 1 of the 3 categories: (1) a table
containing the patient cohort of interest in the new data, (2) a
table containing 1 or more static features, and (3) a table
containing 1 or more temporal features. Each hyperlinked item
on the left-hand side of a rule-style explanation comes from
exactly 1 intermediate result table in the third category.

When the user of the automated explaining function clicks the
hyperlink for an item on the left-hand side of a rule-style
explanation, one could use Cui et al’s techniques [23,37] to
trace the lineage of the tuple in the unified data frame, from
which the item comes. For each intermediate result table
mentioned above and each base table used to create it, the
retrieved lineage information contains some tuples from the
base table including all of their attribute values. Most of the

retrieved lineage information is unnecessary for automatic
explanation for 3 reasons.

Reason 1

The retrieved lineage information often includes thousands of
tuples from several dozen base tables. Most of these base tables
are used to compute the other feature values in the tuple in the
unified data frame that are unrelated to the item, and include
no information that can help the user of the automated
explaining function gain useful insights related to the item. In
fact, to obtain the lineage information of the item essential for
automatic explanation, we need to only trace through the
intermediate result table related to the item solely for the item
and to examine the base tables used to create this table. The
features in this table that are unrelated to the item can be
ignored. There is also no need to trace through the intermediate
result tables containing the features unrelated to the item.
Moreover, at automatic explanation time, we know the
patient_id of the patient linked to the item. The user usually
does not need to know why this patient is in the patient cohort
of interest in the new data. Thus, there is no need to trace
through the intermediate result table showing the patient cohort.

Reason 2

A base table often has many attributes, only a few of which are
essential for the user of the automated explaining function to
gain useful insights related to the item. For instance, the
encounter table often has >100 attributes. The lineage
information shown in Table 2 covers only 4 of them: admit_time
transformed to the date format, department, admitting_provider,
and facility.

Reason 3

Certain items are each computed using several base tables and
intermediate query results. For the user of the automated
explaining function to gain useful insights related to the item,
only the attributes and tuples of some of these base tables are
essential. Alternatively, none or only some of these intermediate
query results need to be traced through.

For example, in query Q2 given in the “Intermediate result
tables” section, both the encounter and diagnosis base tables
are used to compute the feature “the number of outpatient visits
with a primary diagnosis of asthma that the patient had in the
prior 12 months.” For a value of this feature, we need to use
the information in the diagnosis table to find the related tuples
in the encounter table. Nevertheless, the user would expect each

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e27778 | p. 10https://medinform.jmir.org/2021/5/e27778
(page number not for citation purposes)

LuoJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

encounter shown in the retrieved lineage information to be an
outpatient visit with a primary diagnosis of asthma. Thus, there
is no need to include any attribute or tuple from the diagnosis
table in the retrieved lineage information, for example, to give
the primary diagnosis of each encounter included in that
information.

As a second example, in query Q3 given in the “Intermediate
result tables” section, both the encounter base table and the
intermediate query result e_id are used to compute the feature
“the number of ED visits related to asthma that the patient had
in the prior 12 months.” For a value of this feature, the user of
the automated explaining function would expect each encounter
shown in the retrieved lineage information to be an ED visit
related to asthma, like that shown in Table 2. Thus, there is no
need to trace through e_id and to obtain the corresponding tuples
in the diagnosis table showing that each encounter included in
the retrieved lineage information has an asthma diagnosis code.

Requirement 2: Adding Some Essential Attributes That
Do Not Directly Produce the Feature Value
For certain temporal features, when acquiring the lineage of a
feature value, one should not use only the related raw data that
directly produce the feature value. Instead, one needs to add to
them some related attributes in the base tables, which are
specific to the temporal feature and do not directly produce the
feature value. We pose this requirement to make the retrieved
lineage information include the most essential content needed
to facilitate decision making. For example, as query Q1 given
in the “Intermediate result tables” section shows, the feature
“the number of ED visits that the patient had in the prior 12
months” is computed solely from the encounter base table. For
a value of this feature, we want the retrieved lineage information
to be similar to that shown in Table 2 and include a primary
diagnosis column. This column is computed using the diagnosis
and diagnosis_code_master base tables unused in Q1 and is
formed by concatenating the diagnosis_code and
dx_code_description columns of the diagnosis_code_master
base table. The cases for many other temporal features on
encounters are similar.

Requirement 3: Sorting the Retrieved Lineage
Information in an Appropriate Order
When presenting the lineage information, the related raw data
retrieved for a temporal feature value should be sorted in an
order specific to the temporal feature. This requirement is posed
to make the retrieved lineage information easy to scan. Usually,
we want the data instances in the retrieved lineage information
to be displayed in the reverse chronological order like that in
the electronic medical records. However, there are 2 exceptions.
First, when the temporal feature is the maximum value of an
attribute of a given patient, we want the related raw data
retrieved for a feature value to be displayed in the descending
order of the attribute value. For example, for the feature “the
highest systolic blood pressure of the patient in the prior 12
months,” we want the lineage information retrieved for a feature
value to contain the systolic blood pressure of the patient in the
prior 12 months sorted in the descending order. Second, when
the temporal feature is the minimum value of an attribute of a

given patient, we want the related raw data retrieved for a feature
value to be displayed in the ascending order of the attribute
value. In either of the 2 cases, a resort button could be added to
the retrieved lineage information on display. If the user of the
automated explaining function clicks this button, the data
instances in the retrieved lineage information are rearranged in
the reverse chronological order for display.

Requirement 4: Computing the Lineage Information
Based on the Semantic Meaning of the Feature
The lineage information of a temporal feature value should be
computed based on the semantic meaning of the feature rather
than solely on the literal writing of the SQL query used to
compute the feature. We pose this requirement to avoid
including irrelevant or nonessential source tuples in the retrieved
lineage information. For a select-project-join-aggregate
materialized view containing 1 or more temporal features, Cui
et al [23,37] compute the lineage of a tuple in it based solely
on the literal SQL query used to define it. In certain cases, this
literal approach is suboptimal for automatic explanation. Instead,
we should consider the semantic meanings of the temporal
features during lineage tracing. In the following, 2 such cases
are described. Each case is presented as a subrequirement.

Subrequirement 4.1

When the temporal feature is the sum of a variable computed
by a case statement in SQL including multiple conditions and
some of them return 0, only the lineage information related to
the other conditions should be retrieved. In SQL, such a
temporal feature is written in the form of

As an example of this subrequirement, for the feature “the
number of ED visits that the patient had in the prior 12 months,”
the lineage information retrieved for a value of the feature
should be the ED visits that the patient had in the prior 12
months, regardless of whether the feature is computed using
SQL query Q9 or Q10 below.

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e27778 | p. 11https://medinform.jmir.org/2021/5/e27778
(page number not for citation purposes)

LuoJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

The differences between Q9 and Q10 are highlighted in italics
in Q10. If the feature is computed using Q9, Cui et al’s techniques
[23,37] would retrieve all the encounters of the patient in the
prior 12 months as the lineage information. This could easily
overwhelm the user of the automated explaining function, as
usually most of these encounters are not ED visits.

Subrequirement 4.2

When the temporal feature is the total number of distinct items,
the retrieved lineage information should include only 1
representative data instance for each distinct item. For example,
query Q4 given in the “Intermediate result tables” section
computes the feature “the total number of distinct medications
ordered for the patient in the prior 12 months.” For a value of
this feature, Cui et al’s techniques [23,37] would retrieve all
medications ordered for the patient in the prior 12 months as
the lineage information. This information is often overwhelming
and not succinct enough for the user of the automated explaining
function to quickly find the distinct medications ordered for the
patient in the prior 12 months, as the same medication could be
ordered for the patient multiple times in a year. To avoid this
problem, one could retrieve only the most recent order of each
distinct medication ordered for the patient in the prior 12 months
as the lineage information. For the user, these distinct
medications typically provide enough insight into the patient’s
status related to the feature value.

Requirement 5: Performing No Lineage Tracing for Any
Health Care System Feature Value Computed by an
Aggregation Function
We do not trace the lineage of any health care system feature
value computed by an aggregation function. We pose this
requirement to avoid including irrelevant data in the retrieved
lineage information. Like temporal features of a patient, certain
health care system features [17-19] such as the number of
patients with asthma of the primary care provider of a patient
are computed by aggregation functions. These health care system
features are each computed using multiple patients’ information
rather than solely the information of the patient being examined.
Since other patients’detailed information does not help the user
of the automated explaining function understand this patient’s
situation, we do not trace the lineage of any value of this feature,
even if it appears on the left-hand side of a rule-style
explanation.

Outline of the Proposed Techniques to Form the
Lineage Tracing Query That Computes the Lineage
Information
To perform automated lineage tracing for explaining machine
learning predictions for clinical decision support, Cui et al’s
lineage tracing techniques [23,37] are modified to fulfill the
requirements mentioned above. Even without giving any detail
on the computer coding implementation and the performance
evaluation results, Cui et al [37] already used 49 pages to
describe the details of their automated lineage tracing algorithm.
The case described in this paper is more complex than Cui et
al’s case [37]. In the case described in this paper, which
attributes are most relevant and which source tuples are most
essential for inclusion in the retrieved lineage information

depend on both the concrete feature type and the clinical
decision support application’s need. In comparison, no such
dependency exists in Cui et al’s case [37]. Thus, it is expected
that, once fully worked out, the proposed automated lineage
tracing algorithm would be more sophisticated than Cui et al’s
algorithm [37]. In this viewpoint paper, the goal is not to
enumerate all possible feature types and to provide a detailed
design or any computer coding implementation of the proposed
automated lineage tracing approach. Rather, the goal is to
describe the design approach for the proposed automated lineage
tracing module and to provide a roadmap for future research.
We achieve this goal by outlining the main steps of forming the
lineage tracing query, giving 4 example temporal features, and
illustrating at a high level how to form the lineage tracing query
for each of these 4 features.

Overview of the Lineage Tracing Query Formation
Process
Usually, each intermediate result table shown in Figure 3 has
a patient_id column. It is used as the join column in the join
operation to produce the unified data frame containing all
features of the new data. As explained in “Reason 1” of the
“Requirement 1” section, to obtain the lineage information of
a temporal feature value, we need to only trace through the
intermediate result table containing this value solely for this
value. This intermediate result table is usually computed from
some base tables by using a select-project-join-aggregate SQL
query S0. To form the lineage tracing query for a temporal
feature value of a patient in the intermediate result table, one
proceeds in 4 steps. First, the other temporal features, if any,
are removed from S0 to obtain a simplified query S1. Second,
if applicable, S1 is transformed to query S2 to fulfill
subrequirement 4.1. Third, Cui et al’s techniques [23,37] are
modified to address Reasons 2 and 3 given in the “Requirement
1” section. The modified techniques are used to form a
preliminary lineage tracing query S3 based on S2 and the
patient’s patient_id. Fourth, to obtain the final lineage tracing
query, S3 is transformed to fulfill Requirements 2 and 3 and
subrequirement 4.2.

In the following, 4 examples are used to illustrate at a high level
how to form the lineage tracing query. In each example, the
user of the automated explaining function is examining a patient
with asthma whose identifier is asthma_patient_id and wants
to drill through a temporal feature value of this patient. We
outline the main steps of forming the lineage tracing query for
the feature value without giving the detailed algorithm.

Example 1: The Number of ED Visits That the Patient
Had in the Prior 12 Months
As defined by query Q1 in the “Intermediate result tables”
section, the intermediate result table enc_features_1 contains
3 temporal features. One of them is the number of ED visits
that the patient had in the prior 12 months. To form the lineage
tracing query for a value of this feature, one proceeds as follows.

First, the other 2 features are removed from query Q1 to obtain
query Q9 given in the “Subrequirement 4.1” section.

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e27778 | p. 12https://medinform.jmir.org/2021/5/e27778
(page number not for citation purposes)

LuoJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Second, to fulfill subrequirement 4.1 on handling the sum of a
variable computed by a case statement, query Q9 is transformed
to query Q10 given in the “Subrequirement 4.1” section.

Third, Cui et al’s lineage tracing techniques [23,37] are used to
form a draft lineage tracing query Q11 based on Q10 and
asthma_patient_id.

The differences between Q10 and Q11 are highlighted in italics
in Q11. To address Reason 2 given in the “Requirement 1”
section and retrieve from the encounter table only its attributes
essential for automatic explanation, Q11 is transformed to the
following preliminary lineage tracing query.

The differences between Q11 and Q12 are highlighted in italics
in Q12.

Fourth, to fulfill Requirement 2, a primary diagnosis column
needs to be added to the raw data that are retrieved by query
Q12 and that directly produce the feature value being examined.
To fulfill Requirement 3, the retrieved raw data need to be sorted
in the reverse chronological order. To meet both demands, Q12

is transformed to the following final lineage tracing query.

The differences between Q12 and Q13 are highlighted in italics
in Q13. || is the string concatenation operator in SQL.

Example 2: The Number of Outpatient Visits With a
Primary Diagnosis of Asthma That the Patient Had in
the Prior 12 Months
As defined by query Q2 in the “Intermediate result tables”
section, the intermediate result table enc_features_2 contains
the temporal feature “the number of outpatient visits with a
primary diagnosis of asthma that the patient had in the prior 12
months.” To form the lineage tracing query for a value of this
feature, one proceeds as follows.

First, to address Reason 2 given in the “Requirement 1” section,
only the attributes essential for automatic explanation should
be included from the encounter table. To address Reason 3
given in the “Requirement 1” section, no attribute or tuple from
the diagnosis table should be included in the retrieved lineage
information. A preliminary lineage tracing query Q14 is formed
based on query Q2 and asthma_patient_id by using a modified
version of Cui et al’s lineage tracing techniques [23,37] that
meets both demands.

The differences between Q2 and Q14 are highlighted in italics
in Q14.

Second, to fulfill Requirement 3 of sorting the related raw data
retrieved for the feature value in the reverse chronological order,
query Q14 is transformed to the following final lineage tracing
query.

The differences between Q14 and Q15 are highlighted in italics
in Q15.

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e27778 | p. 13https://medinform.jmir.org/2021/5/e27778
(page number not for citation purposes)

LuoJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Example 3: The Number of ED Visits Related to Asthma
That the Patient Had in the Prior 12 Months
As defined by query Q3 in the “Intermediate result tables”
section, the intermediate result table enc_features_3 contains
2 temporal features. One of them is the number of ED visits
related to asthma that the patient had in the prior 12 months.
To form the lineage tracing query for a value of this feature,
one proceeds as follows.

First, the other feature is removed from query Q3 to obtain the
following simplified query.

Second, to fulfill subrequirement 4.1 on handling the sum of a
variable computed by a case statement, query Q16 is transformed
to the following query.

The differences between Q16 and Q17 are highlighted in italics
in Q17.

Third, to address Reason 2 given in the “Requirement 1” section,
only the attributes essential for automatic explanation should
be included from the encounter table. To address Reason 3
given in the “Requirement 1” section, the intermediate query
result e_id should not be traced through to include any
corresponding tuple in the diagnosis table in the retrieved
lineage information. A preliminary lineage tracing query Q18

is formed based on query Q17 and asthma_patient_id by using
a modified version of Cui et al’s lineage tracing techniques
[23,37] that meets both demands.

The differences between Q17 and Q18 are highlighted in italics
in Q18.

Cui et al’s lineage tracing techniques [23,37,49] are applied to
query Q3 to create a materialized view asthma_encounter_id,
which is defined by query Q5 in the “Review of Cui et al’s
automated lineage tracing techniques for relational databases”
section. The asthma_encounter_id is used to rewrite the
preliminary lineage tracing query Q18 as follows.

The differences between Q18 and Q19 are highlighted in italics
in Q19.

Fourth, to fulfill Requirement 2, a primary diagnosis column
needs to be added to the raw data that are retrieved by query
Q19 and that directly produce the feature value being examined.
To fulfill Requirement 3, the retrieved raw data need to be sorted
in the reverse chronological order. To meet both demands, Q19

is transformed to the following final lineage tracing query.

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e27778 | p. 14https://medinform.jmir.org/2021/5/e27778
(page number not for citation purposes)

LuoJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

The differences between Q19 and Q20 are highlighted in italics
in Q20.

Example 4: The Total Number of Distinct Medications
Ordered for the Patient in the Prior 12 Months
As defined by query Q4 in the “Intermediate result tables”
section, the intermediate result table med_features_1 contains
2 temporal features. One of them is the total number of distinct
medications ordered for the patient in the prior 12 months. To
form the lineage tracing query for a value of this feature, one
proceeds as follows.

First, the other feature is removed from query Q4 to obtain the
following simplified query.

Second, to address Reason 2 given in the “Requirement 1”
section, only the attributes essential for automatic explanation
should be included from the ordered_medication table. A
preliminary lineage tracing query Q22 is formed based on query
Q21 and asthma_patient_id by using a modified version of Cui
et al’s lineage tracing techniques [23,37] that meets this demand.

The differences between Q21 and Q22 are highlighted in italics
in Q22.

Third, to fulfill subrequirement 4.2, one could retrieve only the
most recent order of each distinct medication ordered for the
patient in the prior 12 months as the lineage information. This
is done by transforming query Q22 to the following query.

The differences between Q22 and Q23 are highlighted in italics
in Q23.

Fourth, to fulfill requirement 2, a medication name column is
added to the raw data that are retrieved by query Q23 and directly
produce the feature value being examined. To fulfill
Requirement 3, the retrieved raw data are sorted in the reverse
chronological order. Q23 is transformed to the following final
lineage tracing query to meet both demands.

The differences between Q23 and Q24 are highlighted in italics
in Q24.

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e27778 | p. 15https://medinform.jmir.org/2021/5/e27778
(page number not for citation purposes)

LuoJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Considerations for Future Computer Coding
Implementation of the Proposed Automated Lineage
Tracing Approach

Maximizing the Automation Degree of the Lineage
Tracing Query Formation Process
For a select-project-join-aggregate materialized view, Cui et al
[23,37] used a fully automated approach to analyze its definition
query to derive a lineage tracing query for a tuple in it. In the
case of automatically explaining machine learning predictions,
all temporal features used for making predictions and automatic
explanation are known at machine learning model building time.
In general, for each temporal feature, we can form a lineage
tracing query either manually or semiautomatically, but often
not fully automatically, beforehand. Nevertheless, once the
query is formed and put into the knowledge base of the
automated explaining function, we can use the query to
automatically retrieve the lineage information of a value of the
feature at prediction time.

As mentioned before, automatic explanation poses several
unique requirements on automated lineage tracing. Two of them
make it difficult to fully automate the lineage tracing query
formation process. First, Requirement 1 says that the lineage
information retrieved for a temporal feature value should include
only a small set of relevant attributes specific to the temporal
feature. Almost infinite attributes and temporal features could
possibly be used for clinical machine learning. Thus, it is
infeasible to precompile the set of relevant attributes for every
possible temporal feature. Second, Requirement 2 says that
when acquiring the lineage of a value for certain temporal
features, we need to include some attributes that are specific to
the temporal feature and do not directly produce the feature
value. For a reason similar to the above, it is infeasible to
precompile the set of such attributes for every possible such
temporal feature.

Although the lineage tracing query formation process cannot
be fully automated in the most general case, 2 methods can still
be used to maximize the process’ automation degree and to
reduce the workload of the developers of the automated
explaining function. First, for a temporal feature, an approach
similar to that of Cui et al [23,37] can be used to automatically
form a draft lineage tracing query. The developers of the
automated explaining function revise this query as needed to
obtain the final lineage tracing query. Second, the same temporal
feature is often used for multiple predictive modeling tasks.
One can create a library of lineage tracing queries for temporal
features to facilitate query reuse across various predictive
modeling tasks. This library is formed for a data set in the
Observational Medical Outcomes Partnership common data
model format [50] using its linked standardized terminologies
[51]. This format standardizes administrative and clinical
variables from ≥10 large US health care systems [52,53]. For
any data set that is put into this format, we can use this library
to obtain lineage tracing queries.

Improving the Lineage Tracing Speed
As mentioned before, the user of the automated explaining
function wants the lineage tracing process for a temporal feature

value to be finished quickly, preferably within 1 second. To
expedite tracing the lineage of a tuple in a materialized view
defined by a select-project-join-aggregate query S, Cui et al
[23,37,49] advocated creating a materialized view for each
intermediate select-project-join-aggregate segment of the
canonical form of the logical query plan for S. While this boosts
the lineage tracing speed, the resulting speed is still not fast
enough to reach a subsecond response time [23,39]. To further
improve the lineage tracing speed, we can build indices [39,42]
on the selection and join attributes of both the base tables and
the materialized views created for the intermediate
select-project-join-aggregate segments. For instance, in Example
3, we can build 1 index on the encounter_id column of the
materialized view asthma_encounter_id and another index on
the patient_id column of the encounter base table. We can create
indices either manually or by using an automated index design
tool provided by a commercial relational database system
[54-56]. Typically, each intermediate result table containing 1
or more temporal features is computed on 1 or a few base tables
using no more than a small number of join operations. The
lineage tracing query for a temporal feature value falls into a
similar case. Thus, with appropriate indices, we would expect
the lineage tracing query to finish execution quickly. For base
tables of moderate sizes and simple materialized views, Cui and
Widom [39] showed that lineage tracing can be done within 1
second when indices exist on the keys of the base tables. For
large base tables and temporal features computed through more
complex procedures, we would expect that more indices are
needed to reach a subsecond response time.

The above discussion focuses on the case that the electronic
medical record data are stored in a relational database and
features are extracted using SQL queries. When the electronic
medical record data are stored in a big data system and features
are extracted using map and reduce functions [44] or Pig Latin
[46], we can modify the corresponding existing lineage tracing
techniques [42,43,45] in a similar way to enable lineage tracing
to aid automatically explaining machine learning predictions
for clinical decision support.

Discussion

Directions for Future Research
The above discussion describes the high-level design approach
for the proposed automated lineage tracing module. To complete
the detailed design of the proposed automated lineage tracing
approach, implement the module in computer code, and test the
module’s performance, much research is needed along the
following directions:

1. We need to compile a list of attributes and temporal feature
types most commonly used in building clinical machine
learning predictive models. For these attributes and temporal
feature types, we need to complete the detailed design and
the computer coding implementation of the proposed
automated lineage tracing approach.

2. We need to come up with an automated approach to design
indices needed for improving the lineage tracing speed. The
database research community has developed several
automated index design approaches [54-56]. We can modify

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e27778 | p. 16https://medinform.jmir.org/2021/5/e27778
(page number not for citation purposes)

LuoJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

these approaches to fit the database querying workload
posed by automated lineage tracing.

3. We plan to assess the execution speed of the proposed
automated lineage tracing approach after implementing it
in computer code.

4. As shown by prior work on automated lineage tracing
shown in the “Overview of the existing automated lineage
tracing techniques” section, the database research
community takes it for granted that automated lineage
tracing could help users better understand the data and save
time in doing data analysis. To the best of our knowledge,
no formal study to date has been published on measuring
the impact of automated lineage tracing on users’ data
analysis and decision-making process. After implementing
the proposed automated lineage tracing module, we plan
to choose several clinical predictive modeling tasks and
assess for each task, the impact of offering the module on
the data analysis and decision-making process of the users
of the automated explaining function. In particular, we plan
to evaluate whether the addition of the module benefits the
user and improves outcomes, for example, by saving the
user’s time, making it easier for the user to understand the
predictions given by the machine learning predictive model
and helping the user better understand the patient’s situation
and make better clinical decisions.

Limitations of the Proposed Approach
The proposed automated lineage tracing approach has several
limitations:

1. To build clinical machine learning predictive models, we
usually use temporal features that are computed by SQL
queries of low or moderate complexities. It is possible that
some temporal features used to build certain predictive
models are computed by rather complex SQL queries. We
may not be able to finish the lineage tracing process for a
value of such a temporal feature quickly, regardless of how
many indices are built to expedite this process. For example,
this could happen if the SQL query uses complex procedural
code, which has no property that can be used to simplify
the lineage tracing process [39]. Having a long lineage
tracing time could make the user of the automated
explaining function become impatient. Nevertheless, it is
still faster and more convenient to do lineage tracing using
the automated approach than to let the user do manual
drill-through.

2. The proposed automated lineage tracing approach works
for any feature values computed by the standard aggregation
functions in SQL on longitudinal structured data. For certain
deep learning predictive models built on longitudinal

structured data, the previously proposed method [16] could
be used to semiautomatically extract comprehensible and
predictive temporal features from the models and the
longitudinal structured data, and then apply the automated
approach to trace the lineage of the values of these features.
For any other deep learning predictive model that is built
directly on longitudinal structured data and that uses
incomprehensible features hidden in the neurons of the deep
neural network, the proposed automated approach can no
longer be used to trace the lineage of the values of these
features.

3. Almost infinite attributes and temporal features could
possibly be used for clinical machine learning. Further,
some attributes are not covered by the Observational
Medical Outcomes Partnership common data model. For
the reasons given in the “Maximizing the automation degree
of the lineage tracing query formation process” section, we
could maximize the automation degree of the lineage tracing
query formation process for only certain types of temporal
features formed on certain attributes. For any other temporal
feature, the developers of the automated explaining function
could still need a nontrivial amount of time to create the
corresponding lineage tracing query.

Conclusions
Automatically explaining machine learning predictions is critical
to overcome the model interpretability barrier to using machine
learning predictive models in clinical practice. Our previously
developed automatic explanation method for machine learning
predictions can be used to address this barrier, but a gap remains
to fulfill the need of rapidly drilling through a feature value in
an explanation that is computed by an aggregation function on
the raw data. This paper articulates this gap, outlines an
automated lineage tracing approach to close the gap, and
provides a roadmap for future research. The automated
drill-through capability is intended to be offered to help the user
of the automated explaining function save time, better
understand the patient’s situation, and make better clinical
decisions. It would take several people multiple years to work
out the detailed design and the computer coding implementation
of the proposed automated lineage tracing approach. We hope
this paper will make some researchers become interested in and
join the research endeavor on this topic. Only after the detailed
design and the computer coding implementation of the proposed
automated lineage tracing approach are fully worked out, one
could deploy the automated lineage tracing module in clinical
practice and measure the module’s impact on clinicians’
decision-making process. The principle of the automated lineage
tracing approach generalizes to nonmedical data and other
automated methods to explain machine learning predictions.

Acknowledgments
We thank Xiaoyi Zhang and Brian Kelly for the useful discussions. GL was partially supported by the National Heart, Lung, and
Blood Institute of the National Institutes of Health under award number R01HL142503. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Conflicts of Interest
None declared.

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e27778 | p. 17https://medinform.jmir.org/2021/5/e27778
(page number not for citation purposes)

LuoJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

References

1. Kaggle. URL: https://www.kaggle.com [accessed 2021-04-30]
2. Steyerberg EW. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating, 2nd ed. New

York, USA: Springer; 2019.
3. Lee G, Wang S, Dipuro F, Hou J, Grover P, Low LL, et al. Leveraging on predictive analytics to manage clinic no show

and improve accessibility of care. 2017 Presented at: Proceedings of 2017 IEEE International Conference on Data Science
and Advanced Analytics; October 19-21, 2017; Tokyo, Japan p. 429-438. [doi: 10.1109/dsaa.2017.25]

4. Dean NC, Jones BE, Jones JP, Ferraro JP, Post HB, Aronsky D, et al. Impact of an electronic clinical decision support tool
for emergency department patients with pneumonia. Ann Emerg Med 2015;66(5):511-520. [doi:
10.1016/j.annemergmed.2015.02.003] [Medline: 25725592]

5. Hsu JC, Chen YF, Chung WS, Tan TH, Chen T, Chiang JY. Clinical verification of a clinical decision support system for
ventilator weaning. Biomed Eng Online 2013;12 Suppl 1:S4 [FREE Full text] [doi: 10.1186/1475-925X-12-S1-S4] [Medline:
24565021]

6. Barbieri C, Molina M, Ponce P, Tothova M, Cattinelli I, Ion Titapiccolo J, et al. An international observational study
suggests that artificial intelligence for clinical decision support optimizes anemia management in hemodialysis patients.
Kidney Int 2016;90(2):422-429 [FREE Full text] [doi: 10.1016/j.kint.2016.03.036] [Medline: 27262365]

7. Brier ME, Gaweda AE, Dailey A, Aronoff GR, Jacobs AA. Randomized trial of model predictive control for improved
anemia management. Clin J Am Soc Nephrol 2010 May;5(5):814-820 [FREE Full text] [doi: 10.2215/CJN.07181009]
[Medline: 20185598]

8. Gaweda AE, Aronoff GR, Jacobs AA, Rai SN, Brier ME. Individualized anemia management reduces hemoglobin variability
in hemodialysis patients. J Am Soc Nephrol 2014 Jan;25(1):159-166 [FREE Full text] [doi: 10.1681/ASN.2013010089]
[Medline: 24029429]

9. Gaweda AE, Jacobs AA, Aronoff GR, Brier ME. Model predictive control of erythropoietin administration in the anemia
of ESRD. Am J Kidney Dis 2008 Jan;51(1):71-79. [doi: 10.1053/j.ajkd.2007.10.003] [Medline: 18155535]

10. Hamlet KS, Hobgood A, Hamar GB, Dobbs AC, Rula EY, Pope JE. Impact of predictive model-directed end-of-life
counseling for Medicare beneficiaries. Am J Manag Care 2010 May;16(5):379-384 [FREE Full text] [Medline: 20469958]

11. Luo G. Automatically explaining machine learning prediction results: a demonstration on type 2 diabetes risk prediction.
Health Inf Sci Syst 2016;4:2 [FREE Full text] [doi: 10.1186/s13755-016-0015-4] [Medline: 26958341]

12. Luo G, Johnson MD, Nkoy FL, He S, Stone BL. Automatically explaining machine learning prediction results on asthma
hospital visits in asthmatic patients: secondary analysis. JMIR Med Inform 2020 Dec 31;8(12):e21965 [FREE Full text]
[doi: 10.2196/21965] [Medline: 33382379]

13. Tong Y, Messinger AI, Luo G. Testing the generalizability of an automated method for explaining machine learning
predictions on asthma patients' asthma hospital visits to an academic health care system. IEEE Access 2020;8:195971-195979
[FREE Full text] [doi: 10.1109/access.2020.3032683] [Medline: 33240737]

14. Luo G, Nau CL, Crawford WW, Schatz M, Zeiger RS, Koebnick C. Generalizability of an automatic explanation method
for machine learning prediction results on asthma-related hospital visits in patients with asthma: quantitative analysis. J
Med Internet Res 2021 Apr 15;23(4):e24153 [FREE Full text] [doi: 10.2196/24153] [Medline: 33856359]

15. Halamka JD. Early experiences with big data at an academic medical center. Health Aff (Millwood) 2014 Jul;33(7):1132-1138.
[doi: 10.1377/hlthaff.2014.0031] [Medline: 25006138]

16. Luo G. A roadmap for semi-automatically extracting predictive and clinically meaningful temporal features from medical
data for predictive modeling. Glob Transit 2019;1:61-82 [FREE Full text] [doi: 10.1016/j.glt.2018.11.001] [Medline:
31032483]

17. Luo G, Nau CL, Crawford WW, Schatz M, Zeiger RS, Rozema E, et al. Developing a predictive model for asthma-related
hospital encounters in patients with asthma in a large, integrated health care system: secondary analysis. JMIR Med Inform
2020 Nov 09;8(11):e22689 [FREE Full text] [doi: 10.2196/22689] [Medline: 33164906]

18. Tong Y, Messinger AI, Wilcox AB, Mooney SD, Davidson GH, Suri P, et al. Forecasting future asthma hospital encounters
of patients with asthma in an academic health care system: predictive model development and secondary analysis study. J
Med Internet Res 2021 Apr 16;23(4):e22796 [FREE Full text] [doi: 10.2196/22796] [Medline: 33861206]

19. Luo G, He S, Stone BL, Nkoy FL, Johnson MD. Developing a model to predict hospital encounters for asthma in asthmatic
patients: secondary analysis. JMIR Med Inform 2020 Jan 21;8(1):e16080 [FREE Full text] [doi: 10.2196/16080] [Medline:
31961332]

20. Garcia-Molina H, Ullman JD, Widom J. Database Systems: the Complete Book, 2nd ed. Upper Saddle River, NJ: Pearson;
2008.

21. Cunningham C, Graefe G, Galindo-Legaria CA. PIVOT and UNPIVOT: optimization and execution strategies in an RDBMS.
2004 Presented at: Proceedings of the 30th International Conference on Very Large Data Bases; August 31-September 3,
2004; Toronto, Canada p. 998-1009. [doi: 10.1016/b978-012088469-8.50087-5]

22. Lyman JA, Scully K, Harrison JHJ. The development of health care data warehouses to support data mining. Clin Lab Med
2008 Mar;28(1):55-71. [doi: 10.1016/j.cll.2007.10.003] [Medline: 18194718]

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e27778 | p. 18https://medinform.jmir.org/2021/5/e27778
(page number not for citation purposes)

LuoJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://www.kaggle.com
http://dx.doi.org/10.1109/dsaa.2017.25
http://dx.doi.org/10.1016/j.annemergmed.2015.02.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25725592&dopt=Abstract
https://www.biomedcentral.com/1475-925X/12/S1/S4
http://dx.doi.org/10.1186/1475-925X-12-S1-S4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24565021&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0085-2538(16)30132-6
http://dx.doi.org/10.1016/j.kint.2016.03.036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27262365&dopt=Abstract
https://cjasn.asnjournals.org/cgi/pmidlookup?view=long&pmid=20185598
http://dx.doi.org/10.2215/CJN.07181009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20185598&dopt=Abstract
https://jasn.asnjournals.org/cgi/pmidlookup?view=long&pmid=24029429
http://dx.doi.org/10.1681/ASN.2013010089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24029429&dopt=Abstract
http://dx.doi.org/10.1053/j.ajkd.2007.10.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18155535&dopt=Abstract
https://www.ajmc.com/pubMed.php?pii=12641
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20469958&dopt=Abstract
http://europepmc.org/abstract/MED/26958341
http://dx.doi.org/10.1186/s13755-016-0015-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26958341&dopt=Abstract
https://medinform.jmir.org/2020/12/e21965/
http://dx.doi.org/10.2196/21965
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33382379&dopt=Abstract
http://europepmc.org/abstract/MED/33240737
http://dx.doi.org/10.1109/access.2020.3032683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33240737&dopt=Abstract
https://www.jmir.org/2021/4/e24153/
http://dx.doi.org/10.2196/24153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33856359&dopt=Abstract
http://dx.doi.org/10.1377/hlthaff.2014.0031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25006138&dopt=Abstract
http://europepmc.org/abstract/MED/31032483
http://dx.doi.org/10.1016/j.glt.2018.11.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31032483&dopt=Abstract
https://medinform.jmir.org/2020/11/e22689/
http://dx.doi.org/10.2196/22689
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33164906&dopt=Abstract
https://www.jmir.org/2021/4/e22796/
http://dx.doi.org/10.2196/22796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33861206&dopt=Abstract
https://medinform.jmir.org/2020/1/e16080/
http://dx.doi.org/10.2196/16080
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31961332&dopt=Abstract
http://dx.doi.org/10.1016/b978-012088469-8.50087-5
http://dx.doi.org/10.1016/j.cll.2007.10.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18194718&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

23. Cui Y, Widom J. Practical lineage tracing in data warehouses. 2000 Presented at: Proceedings of the 16th International
Conference on Data Engineering; February 28-March 3, 2000; San Diego, CA p. 367-378. [doi: 10.1109/icde.2000.839437]

24. Liu B, Hsu W, Ma Y. Integrating classification and association rule mining. 1998 Presented at: Proceedings of the 4th
International Conference on Knowledge Discovery and Data Mining; August 27-31, 1998; New York City, USA p. 80-86.

25. Fayyad UM, Irani KB. Multi-interval discretization of continuous-valued attributes for classification learning. 1993 Presented
at: Proceedings of the 13th International Joint Conference on Artificial Intelligence; August 28-September 3, 1993; Chambéry,
France p. 1022-1029.

26. Thabtah FA. A review of associative classification mining. The Knowledge Engineering Review 2007 Mar 01;22(1):37-65.
[doi: 10.1017/s0269888907001026]

27. Alaa AM, van der Schaar M. Prognostication and risk factors for cystic fibrosis via automated machine learning. Sci Rep
2018 Jul 26;8(1):11242 [FREE Full text] [doi: 10.1038/s41598-018-29523-2] [Medline: 30050169]

28. Alaa AM, van der Schaar M. AutoPrognosis: automated clinical prognostic modeling via Bayesian optimization with
structured kernel learning. 2018 Presented at: Proceedings of 35th International Conference on Machine Learning; July
10-15, 2018; Stockholm, Sweden p. 139-148.

29. Molnar C. Interpretable Machine Learning. Morrisville, NC: lulu.com; 2020.
30. Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, Pedreschi D. A survey of methods for explaining black box

models. ACM Comput Surv 2019 Jan 23;51(5):93. [doi: 10.1145/3236009]
31. Rudin C, Shaposhnik Y. Globally-consistent rule-based summary-explanations for machine learning models: application

to credit-risk evaluation. 2019 Presented at: Proceedings of INFORMS 11th Conference on Information Systems and
Technology; October 19-20, 2019; Seattle, WA p. 1-19. [doi: 10.2139/ssrn.3395422]

32. Ribeiro MT, Singh S, Guestrin C. Anchors: high-precision model-agnostic explanations. 2018 Presented at: Proceedings
of the 32nd AAAI Conference on Artificial Intelligence; February 2-7, 2018; New Orleans, LA p. 1527-1535.

33. Ikeda R, Widom J. Data lineage: a survey. Stanford University Technical Report. URL: http://ilpubs.stanford.edu:8090/
918/1/lin_final.pdf [accessed 2021-04-30]

34. Cheney J, Chiticariu L, Tan WC. Provenance in Databases: Why, How, and Where. Found Trends Databases
2009;1(4):379-474. [doi: 10.1561/1900000006]

35. Simmhan Y, Plale B, Gannon D. A survey of data provenance in e-science. SIGMOD Rec 2005 Sep;34(3):31-36. [doi:
10.1145/1084805.1084812]

36. Bose R, Frew J. Lineage retrieval for scientific data processing: a survey. ACM Comput Surv 2005 Mar;37(1):1-28. [doi:
10.1145/1057977.1057978]

37. Cui Y, Widom J, Wiener JL. Tracing the lineage of view data in a warehousing environment. ACM Trans Database Syst
2000 Jun;25(2):179-227. [doi: 10.1145/357775.357777]

38. Gupta A, Mumick IS. Materialized Views: Techniques, Implementations, and Applications. Cambridge, MA: The MIT
Press; 1999.

39. Cui Y, Widom J. Lineage tracing for general data warehouse transformations. The VLDB Journal The International Journal
on Very Large Data Bases 2003 May 1;12(1):41-58. [doi: 10.1007/s00778-002-0083-8]

40. Ikeda R, Sarma AD, Widom J. Logical provenance in data-oriented workflows. 2013 Presented at: Proceedings of the 29th
IEEE International Conference on Data Engineering; April 8-12, 2013; Brisbane, Australia p. 877-888. [doi:
10.1109/icde.2013.6544882]

41. Zhang M, Zhang X, Prabhakar S. Tracing lineage beyond relational operators. 2007 Presented at: Proceedings of the 33rd
International Conference on Very Large Data Bases; September 23-27, 2007; Vienna, Austria p. 1116-1127.

42. Ikeda R, Park H, Widom J. Provenance for generalized map and reduce workflows. 2011 Presented at: Proceedings of the
5th Biennial Conference on Innovative Data Systems Research; January 9-12, 2011; Asilomar, CA p. 273-283.

43. Park H, Ikeda R, Widom J. RAMP: a system for capturing and tracing provenance in MapReduce workflows. Proc VLDB
Endow 2011 Aug;4(12):1351-1354. [doi: 10.14778/3402755.3402768]

44. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. 2004 Presented at: Proceedings of the 6th
Symposium on Operating System Design and Implementation; December 6-8, 2004; San Francisco, CA p. 137-150.

45. Amsterdamer Y, Davidson SB, Deutch D, Milo T, Stoyanovich J, Tannen V. Putting Lipstick on Pig: enabling database-style
workflow provenance. Proc VLDB Endow 2011 Dec;5(4):346-357. [doi: 10.14778/2095686.2095693]

46. Olston C, Reed B, Srivastava U, Kumar R, Tomkins A. Pig Latin: a not-so-foreign language for data processing. 2008
Presented at: Proceedings of the ACM SIGMOD International Conference on Management of Data; June 10-12, 2008;
Vancouver, BC, Canada p. 1099-1110. [doi: 10.1145/1376616.1376726]

47. Buneman P, Chapman A, Cheney J. Provenance management in curated databases. 2006 Presented at: Proceedings of the
ACM SIGMOD International Conference on Management of Data; June 27-29, 2006; Chicago, IL p. 539-550. [doi:
10.1145/1142473.1142534]

48. Schelter S, Böse J, Kirschnick J, Klein T, Seufert S. Automatically tracking metadata and provenance of machine learning
experiments. 2017 Presented at: Proceedings of the ML Systems Workshop at NIPS 2017; December 8, 2017; Long Beach,
CA p. 1-8.

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e27778 | p. 19https://medinform.jmir.org/2021/5/e27778
(page number not for citation purposes)

LuoJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.1109/icde.2000.839437
http://dx.doi.org/10.1017/s0269888907001026
https://doi.org/10.1038/s41598-018-29523-2
http://dx.doi.org/10.1038/s41598-018-29523-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30050169&dopt=Abstract
http://dx.doi.org/10.1145/3236009
http://dx.doi.org/10.2139/ssrn.3395422
http://ilpubs.stanford.edu:8090/918/1/lin_final.pdf
http://ilpubs.stanford.edu:8090/918/1/lin_final.pdf
http://dx.doi.org/10.1561/1900000006
http://dx.doi.org/10.1145/1084805.1084812
http://dx.doi.org/10.1145/1057977.1057978
http://dx.doi.org/10.1145/357775.357777
http://dx.doi.org/10.1007/s00778-002-0083-8
http://dx.doi.org/10.1109/icde.2013.6544882
http://dx.doi.org/10.14778/3402755.3402768
http://dx.doi.org/10.14778/2095686.2095693
http://dx.doi.org/10.1145/1376616.1376726
http://dx.doi.org/10.1145/1142473.1142534
http://www.w3.org/Style/XSL
http://www.renderx.com/

49. Cui Y, Widom J. Storing auxiliary data for efficient maintenance and lineage tracing of complex views. 2000 Presented
at: Proceedings of the Second Intl Workshop on Design and Management of Data Warehouses; June 5-6, 2000; Stockholm,
Sweden p. 1-19.

50. Data standardization. Observational Health Data Sciences and Informatics. URL: https://www.ohdsi.org/data-standardization
[accessed 2021-04-30]

51. Standardized vocabularies. Observational Health Data Sciences and Informatics. URL: https://www.ohdsi.org/web/wiki/
doku.php?id=documentation:vocabulary:sidebar [accessed 2021-04-30]

52. Hripcsak G, Duke JD, Shah NH, Reich CG, Huser V, Schuemie MJ, et al. Observational Health Data Sciences and Informatics
(OHDSI): Opportunities for Observational Researchers. Stud Health Technol Inform 2015;216:574-578 [FREE Full text]
[Medline: 26262116]

53. Overhage JM, Ryan PB, Reich CG, Hartzema AG, Stang PE. Validation of a common data model for active safety surveillance
research. J Am Med Inform Assoc 2012;19(1):54-60 [FREE Full text] [doi: 10.1136/amiajnl-2011-000376] [Medline:
22037893]

54. Das S, Grbic M, Ilic I, Jovandic I, Jovanovic A, Narasayya VR, et al. Automatically indexing millions of databases in
Microsoft Azure SQL database. 2019 Presented at: Proceedings of the ACM SIGMOD International Conference on
Management of Data; June 30-July 5, 2019; Amsterdam, Netherlands p. 666-679. [doi: 10.1145/3299869.3314035]

55. Dageville B, Das D, Dias K, Yagoub K, Zaït M, Ziauddin M. Automatic SQL tuning in Oracle 10g. 2004 Presented at:
Proceedings of the 30th International Conference on Very Large Data Bases; August 31-September 3, 2004; Toronto,
Canada p. 1098-1109. [doi: 10.1016/b978-012088469-8.50096-6]

56. Zilio DC, Rao J, Lightstone S, Lohman GM, Storm AJ, Garcia-Arellano C, et al. DB2 Design Advisor: integrated automatic
physical database design. 2004 Presented at: Proceedings of the 30th International Conference on Very Large Data Bases;
August 31-September 3, 2004; Toronto, Canada p. 1087-1097. [doi: 10.1016/b978-012088469-8.50095-4]

Abbreviations
ED: emergency department
SQL: structured query language

Edited by C Lovis; submitted 06.02.21; peer-reviewed by V Rajan; comments to author 21.03.21; revised version received 25.03.21;
accepted 14.04.21; published 27.05.21

Please cite as:
Luo G
A Roadmap for Automating Lineage Tracing to Aid Automatically Explaining Machine Learning Predictions for Clinical Decision
Support
JMIR Med Inform 2021;9(5):e27778
URL: https://medinform.jmir.org/2021/5/e27778
doi: 10.2196/27778
PMID:

©Gang Luo. Originally published in JMIR Medical Informatics (https://medinform.jmir.org), 27.05.2021. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR
Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on
https://medinform.jmir.org/, as well as this copyright and license information must be included.

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e27778 | p. 20https://medinform.jmir.org/2021/5/e27778
(page number not for citation purposes)

LuoJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://www.ohdsi.org/data-standardization
https://www.ohdsi.org/web/wiki/doku.php?id=documentation:vocabulary:sidebar
https://www.ohdsi.org/web/wiki/doku.php?id=documentation:vocabulary:sidebar
http://europepmc.org/abstract/MED/26262116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26262116&dopt=Abstract
http://europepmc.org/abstract/MED/22037893
http://dx.doi.org/10.1136/amiajnl-2011-000376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22037893&dopt=Abstract
http://dx.doi.org/10.1145/3299869.3314035
http://dx.doi.org/10.1016/b978-012088469-8.50096-6
http://dx.doi.org/10.1016/b978-012088469-8.50095-4
https://medinform.jmir.org/2021/5/e27778
http://dx.doi.org/10.2196/27778
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

