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Abstract

Background: Statistical analysis, which has become an integral part of evidence-based medicine, relies heavily on data quality
that is of critical importance in modern clinical research. Input data are not only at risk of being falsified or fabricated, but also
at risk of being mishandled by investigators.

Objective: The urgent need to assure the highest data quality possible has led to the implementation of various auditing strategies
designed to monitor clinical trials and detect errors of different origin that frequently occur in the field. The objective of this study
was to describe a machine learning–based algorithm to detect anomalous patterns in data created as a consequence of carelessness,
systematic error, or intentionally by entering fabricated values.

Methods: A particular electronic data capture (EDC) system, which is used for data management in clinical registries, is presented
including its architecture and data structure. This EDC system features an algorithm based on machine learning designed to detect
anomalous patterns in quantitative data. The detection algorithm combines clustering with a series of 7 distance metrics that serve
to determine the strength of an anomaly. For the detection process, the thresholds and combinations of the metrics were used and
the detection performance was evaluated and validated in the experiments involving simulated anomalous data and real-world
data.

Results: Five different clinical registries related to neuroscience were presented—all of them running in the given EDC system.
Two of the registries were selected for the evaluation experiments and served also to validate the detection performance on an
independent data set. The best performing combination of the distance metrics was that of Canberra, Manhattan, and Mahalanobis,
whereas Cosine and Chebyshev metrics had been excluded from further analysis due to the lowest performance when used as
single distance metric–based classifiers.

Conclusions: The experimental results demonstrate that the algorithm is universal in nature, and as such may be implemented
in other EDC systems, and is capable of anomalous data detection with a sensitivity exceeding 85%.

(JMIR Med Inform 2021;9(5):e27172) doi: 10.2196/27172
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Introduction

Adherence to principles of evidence-based medicine has become
the norm in the present-day clinical practice. Such principles

include establishing proper guidelines built upon evidence
derived from the best available clinical research. Therefore,
high quality of input data is of utmost importance, because
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otherwise biased evidence may be generated, possibly resulting
in harmful health decisions.

Clinical registries, defined as a systematic collection of clearly
defined set of health and demographic data gathered from
patients with specific health characteristics, represent one of
many data sources available in health care [1]. The impact of
clinical registries on quality of patient care taking account of a
clinical research perspective is reviewed in [2], where
monitoring health care delivery patterns and compliance with
the evidence-based guidelines are also examined. The real-world
data (RWD) collected in these registries may, in the context of
postmarket research, provide much needed answers to questions
unaddressed by existing randomized controlled trials. As patient
populations participating in clinical trials are frequently low in
numbers and rather homogenous and highly specific, further
usage of such obtained data sets for the purpose of predicting
medical treatment outcomes or future performance in the
real-world, uncontrolled conditions has proved to be difficult
[3].

The efficiency of data analysis is heavily dependent on data
quality that has the potential to impact clinical research
outcomes in both controlled clinical trials and postmarket
surveillance practice represented mostly by noninterventional,
observational studies and clinical registries. Data quality–related
issues, such as high proportion of missing or inaccurate data,
bring uncertainty to the final analytics, slow workflows, generate
extra work, and thus increase research costs. A review and a
generic framework for data quality in medical registries are
given in [4], including some types and percentages of various
data errors in a case study. In another scoping review [5], which
focused on trauma registries, a call for standardization of
classification, measurement, and improvement of data quality
can be found. In order to mitigate data quality issues, various
auditing techniques and monitoring strategies have been put in
place (see the review in [6]). Besides extensive monitoring
approaches including on-site visits and exhaustive source data
verification, other effective risk-based monitoring methods have
recently been implemented in the field of data quality assurance.
These reduce monitoring costs by utilizing advanced statistical
tools capable of identifying medical centers or clinics with
atypical data patterns which might signify a quality problem
[7]. The statistical concepts underpinning the central statistical
monitoring (CSM) designed to detect fraud, that is, fabrication
or falsification of data, were proposed 2 decades ago. The
incidence of data fraud in clinical research is considered to be
relatively low, yet difficult to estimate accurately [8].

Conventional data collection in clinical research involves
recording data in paper case report forms (CRFs), followed by
a double entry in a relational database. Continuous technological
advancements in computer science, life sciences, and health
care have given rise to the electronic data capture (EDC)
systems, which have proved to be a more efficient [9] and also
a cheaper [10] alternative to the paper data capture. EDC
systems enable investigators to enter data directly into electronic
CRFs (eCRFs) and study coordinators to oversee and control
them in real time [11-13] even in multicenter research studies.
EDC systems have become predominant because they are not
only time- and cost-effective, but also contribute to quality

assurance, as they allow data access to be controlled and all
changes made to them using audit trail features to be traced.
Moreover, they perform automatic edit checks designed to
prevent invalid data from being entered [14] into a clinical
registry, which is, however, hardly possible to be ruled out
completely. When multiple variables need to be constrained by
edit checks, the validation procedures, designed by data
managers, may become too complicated and prone to error. The
alert messages resulting from such complex edit checks may
be unintelligible to clinical investigators, who still need to
understand their factual content, as the validation procedures
form an integral part of the eCRF.

Thus, there is still great potential for further improvements in
ensuring high quality of data with the use of EDC systems.
Integration with the aforementioned risk-based monitoring tools,
such as CSM employing various outlier detection techniques,
represents another automated approach to quality control. The
review in [15] divides the outlier detection techniques, which
have been used for data assurance in health care databases, into
several categories: statistical, clustering, classification, nearest
neighbor, and mixture models. It reveals that the statistical
techniques are used frequently, whereas the other ones
associated with data science and data mining are still little used
in this context.

The viewpoint presented in [16] questions the benefits of a
particular CSM technique which classified clinical sites as
outlying based on the data inconsistency score calculated from
thousands of statistical tests in a particular multicenter,
postmarketing trial, and therefore dismissed the idea that trials
could be conducted at lower costs.

This paper describes an algorithm based on machine learning
designed to detect anomalous patterns in data created as a
consequence of carelessness, systematic error, or intentionally
by entering fabricated values. It focuses on the main concepts
defining the anomaly detection algorithm and presents a
particular EDC system demonstrating its successful
implementation. The data sets collected by this system have
been used in a number of clinical registries and serve here for
pilot testing and calculations of anomaly detection rates. It is
important to note that by anomalous data or an anomaly we
understand an observation that does not conform to normally
gathered data, where an observation refers to a single patient
data record entering the detection algorithm.

Methods

In order to fully implement an anomaly detection algorithm,
which is data structure dependent, having an EDC system in
place is essential. A thorough description representing such a
system, including its architecture and data structure, is presented
in this section.

EDC System and Its Data Structure
The EDC system utilized in this study referred to as the Clade-IS
(Clinical Data Warehousing Information System) is a robust,
modular, web-based software for data management and clinical
trial management. It contains a huge amount of RWD from
many clinical specialties, including neurology and psychiatry,
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that are readily available to be used for experimentation. The
authors of this paper are engineers, data scientists, computer
scientists, and data managers affiliated with the contract research
institution where this EDC system has been developed and so
they have a very good understanding of its data structures.

The system is composed of 5 mutually communicating
components: proxy, server, adminer, designer, and reporter; see
the architecture in Figure 1. The proxy, representing the user
interface, propagates the user’s activity, defined by requests
made through a REST API (representational state transfer

application interface) to the server, where the requests are
processed. The server also stores and accesses registry data in
a relational database and maintains data integrity. For example,
the consistency and accuracy of data must be ensured throughout
the transition between the components, as the format of the data
varies according to its intended use, from its input, through
storage, to extraction and reporting. It also ensures compliance
with data access rules, which can be configured via users,
groups, roles, and form statuses in the adminer. The next
component, called the designer, represents a comprehensive
form builder used by data managers to design eCRFs.

Figure 1. Architecture of the Clinical Data Warehousing Information System (Clade-IS) components and databases. The Server provides a representational
state transfer application interface (REST API) for most operations including data storage. The Proxy represents a forwarded interface that transfers the
user’s activity to the Server. The Proxy can be optionally decentralized into a hospital or to another research facility. The Adminer and the Designer
are used for configuring registry-specific permissions, designing electronic case report forms (eCRFs) and also for building and generating forms that
are accessible to authenticated and authorized users. The Reporter is based on extract–transform–load (ETL) processes and serves for analytical and
reporting purposes.

Finally, the reporter, serving as a toolkit for data analysts and
data scientists, is a component based on the ETL
(extract–transform–load) processes that facilitate data export
and business intelligence. Besides the master database, which
primarily serves for data storage operations, there are 4 other
databases that the aforesaid components use for the following
purposes: (1) the slave database is a logical replica of the master
one performing all data extraction operations; (2) the proxy
auxiliary database stores personal data gathered in research
projects and studies outside the central repository in case that
the centralized deployment of the Clade-IS is no longer possible
under the General Data Protection Regulation (GDPR) on digital
data; (3) the reporter-ad database serves for data export
purposes; and (4) the reporter-bi database is used for business
intelligence reporting.

The primary databases (master and slave) integrated into the
Clade-IS are based on the entity–attribute–value (EAV) model,

also known as the vertical database model, which is able to
efficiently encode entities with sparse features. Such a
functionality is directly applicable to clinical registries, as they
typically contain plenty of available attributes describing an
entity, but the number of attributes with assigned values is, once
the data has been entered, rather low. The following data
structures are used to build an eCRF: arm–phase–form–question
group–question–answer, where a question–answer pair
represents an attribute–value pair, respectively. The other
structures represent entities in the EAV data model. Figure 2
serves to explain the meaning of the entities. The eCRF data
are stored in JSON format; for instance, a single-answer question
(Q10, Patient’s age at diagnosis) is represented as
“Q10”:{“value”:63,“state”:“done”} and stored in a single
cell in the database; see Multimedia Appendices 1 and 2 for
data examples. The other database schemas differ depending
on their specific purpose.
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Figure 2. An example illustrating a structure of entities (arms, phases, forms, question groups) and attributes (questions) used for structuring electronic
case report forms (eCRFs) in the Clinical Data Warehousing Information System (Clade-IS). Questions are logically grouped into question groups (eg,
Demography question group, Comorbidities question group, etc), a form is composed of question groups (eg, Diagnosis form, Treatment form, etc),
forms are grouped into phases (eg, Hospitalization forms phase, Follow-up forms phase, Quality of life forms phase, etc), and phases are grouped into
arms which may represent different sub-populations of subjects in a study or a registry (eg, subjects diagnosed with affective disorders, schizophrenia,
schizoaffective disorders and control subjects).

Anomaly Detection Algorithm
Anomalous data are identified by a scheduled script, built in
the reporter component, that connects to the reporter-ad
database, where it stores and accesses data in its own auxiliary
tables. The main steps defining the detection algorithm are
described in Figure 3.

The multidimensional nature of the detection algorithm requires
that all eCRF questions be merged into 1 flat-wide table, where
the rows represent the patients and the columns represent the
individual variables (attributes) collected from all forms across
the eCRF structure. In order for a single flat-wide table to be
considered an appropriate analytical data set, each patient would
need to be linked to any of the forms in a 1:1 relationship. In
most registries, however, a patient is linked to his/her forms in
a 1:N relationship, where N usually differs between patients.
For instance, patient A records may comprise 1 patient form, 1
hospitalization form, 2 follow-up forms but, say, no
quality-of-life investigation form, whereas patient B records
may comprise 1 patient form, 1 hospitalization form, 3 follow-up
forms, and 2 quality-of-life investigation forms. Merging all
forms into a flat-wide table would result in misalignment of
variables in columns. Even eCRFs with an extremely rigid
structure and predefined number of form instances per patient
may still produce meaningless column combinations in terms
of temporal context of a patient’s condition. To help overcome
this problem, a concept of semiflattened tables is introduced
here (Figure 4). The semiflattened tables consist of a “prefix”
table, which is created by serializing all forms, allowing only

a single instance to be run and 1 merged form that can be
instantiated multiple times. This explains how Nsw semiflattened
tables are created, where Nsw is the total number of all forms
allowing multiple instances per patient. Therefore, the detection
algorithm has to be run Nsw +1 times for the prefix table and for
each semiflattened table independently. The rows in both the
prefix and the semiflattened table contain variables of the
following data types: string, text, integer, float, date, datetime,
time, Boolean, and categorical variables. Because only
numerical data are subjected to further analysis, data tables need
to be preprocessed. There are 4 preprocessing steps in the
algorithm: dropping, imputation, recoding, and normalization.
First, variables for which the amount of missing data exceeds
a preset percentage are dropped (excluded) from the table.
Besides, all variables of string and text data types are dropped,
as they represent only unimportant notes and comments
irrelevant for this study. The remaining variables, which still
have some missing values, are imputed using median that is
calculated for each variable separately. In the next step, the
non-numerical variables are recoded to numerical ones. The
variables of date, time, and datetime data types are recoded to
numerical values representing the number of seconds since
1.1.1600 00:00:01. The Boolean variables and the categorical
variables are recoded in a way that each unique data item
represents a different integer value (eg, “Female” 1 and “Male”
0). The ascending integer values are assigned according to a
frequency of occurrence of unique data. The numerical variables
holding integer and float data types do not require any recoding.
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Figure 3. A scheme illustrating the anomaly detection algorithm and its links to the electronic data capture (EDC) system. The algorithm transforms
registry raw data into semi-flattened tables which contain only meaningful combinations of variables in rows. The tables are preprocessed in four
consecutive steps resulting in feature vectors from which one single centroid is computed. The distance between all data objects (feature vectors) and
the centroid is measured using seven different distance metrics. The number of threshold-exceeding distances shows the strength of evidence of an
anomaly. All anomalies are then subjected to post-hoc univariate tests to identify potentially problematic variables in the description of automatically
generated electronic queries intended to be processed by data managers.
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Figure 4. The concept of semi-flattened tables demonstrated on two patients‘ data. Two semi-flattened tables (Nsw=2) result here from two different
repeating forms: Follow-up and Quality of Life. The other two forms: Subject and Hospitalization exist only in one single instance per patient, and thus
all their variables (Q1, Q2,…,Q30) put together a prefix table. Multiple existence of the semi-flattened tables occurs with electronic case report forms
(eCRFs) that allow multiple forms creation. Each instance of a repeating form is appended to the prefix table. This concept with semi-flattened tables
assures that all values aligned in a column are related to the same variable.

In the last preprocessing step, the data must be normalized
because the variables may vary in orders of magnitude or units
of measurement. At the very end of the preprocessing phase,
the data table looks as follows: each row represents an
observation with columns representing variables with acceptable
proportion of missing data that are recoded to their numerical

representations and subsequently (min–max) normalized to
produce values between 0 and 1; see the example data before
and after preprocessing in Table 1.

Once the fully automatic preprocessing phase is complete, the
anomalous data are classified similarly to how it is done in
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[15,17] using well-known clustering-based outlier detection
techniques that also regard outliers as data objects not located
in clusters of a data set. Here, only 1 cluster containing all data
objects is created. Each object is described by a feature vector
that takes the form of a row obtained from the preprocessed
data table. The distance between a potential outlier and the
cluster centroid is measured using 7 different distance metrics:
Canberra (CAN), Chebyshev (CHEB), cosine (COS), Euclidean
(EUC), Manhattan (MAN), Mahalanobis (MAH), and
Minkowski (MINK). The aim of the proposed algorithm is not
to perform a cluster analysis as the well-known k-means
algorithm normally does. Instead, it seeks to find all data objects
whose distance from a centroid is greater than a threshold
differentiating anomalous records from the normal ones. The
distance thresholds are calculated individually for each metric
in 2 ways: (1) with a predefined percentile and (2) using the
IQR rule, which sets the upper bound of the IQR multiplied by

1.5 and added to the third quartile. Data objects are identified
as anomalous when at least one distance metric exceeds the
minimum of both thresholds. With the predefined percentile, if
the value is lower than the threshold specified by the IQR rule,
the detection sensitivity can be increased, but usually at the
expense of specificity. The strength of evidence of an anomaly
is determined by the number of threshold-exceeding distance
metrics.

The algorithm produces a table containing all detected anomalies
represented by a patient identifier, the strength of evidence, and
a list of potentially problematic variables identified using
post-hoc univariate tests, which are different for normally and
non-normally distributed variables. Afterward, a scheduled
handler operating inside the reporter generates automatic queries
which are of great concern to data managers, who are usually
responsible for addressing them over the course of a study or a
registry monitoring process.

Table 1. Example data before and after preprocessing. The index in rows represents a unique patient identifier. The column headings represent unique
question identifiers—variable names encoding location in the study structure. The variables with a missing data rate of more than 20% were dropped.
The other variables, which have an acceptable proportion of missing data, were imputed with median values. The data were subsequently recoded

depending on the variable data type, and normalized to produce values in the interval [0, 1].a

A1.P1.F3.G3.Q6A1.P1.F7.G35.Q1443A1.P1.F7.G44.Q672A0.P0.F2.G2.Q3A0.P0.F2.G2.Q1Index

Before preprocessing

644YesFemale1947-01-230001437

644YesFemale1947-01-230001437

644YesFemale1947-01-230001437

682YesFemale1941-06-240001333

682YesFemale1941-06-240001333

572NoneMale1948-11-030001479

591YesMale1950-03-260001513

After preprocessing

0.6571431010.3404320001437

0.6571431010.3404320001437

0.6571431010.3404320001437

0.7142860.5010.2588070001333

0.7142860.5010.2588070001333

0.5571430.5100.3664530001479

0.5857140.25000.3664530001513

aA: study arm; P: study phase, where the related form is located at; F: form, where the question is located at; G: question group; Q: question.

Simulation of Data Anomalies and Performance
Evaluation
In the context of this study, evaluation refers to an exploratory
analysis designed to establish quantitative characteristics of
anomaly detection performance of the algorithm built into the
aforementioned EDC system. The performance evaluation is
carried out using simulated anomalous data, which need to be
artificially generated inside an anomaly-free data set, in order
to obtain the ground-truth knowledge.

The simulated anomalies, that are generated in a wide format
table, are subsequently preprocessed by dropping, imputation,
and recoding, but not by normalization. First, a small percentage
(1% by default) of all cells in the table being preprocessed is
set as the number of values Nc intended to be changed. Second,
a random number of patients is set as the number of anomalous
data objects Ns intended to be generated. The ratio Nv = Nc/Ns

gives an approximate number of variables whose values need
to be changed in order to transform a normal data object into
an anomalous one. These changes are performed only on
variables of the following data types: integer, float, date, time,
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and datetime. The values of normally distributed variables are
transformed to a mean (6σ), whereas the values of non-normally
distributed variables are transformed to random numbers from
an interval formed by rather unusual values having a frequency
of occurrence lower than 10% in a particular variable.
Afterward, the Shapiro–Wilk test, able to discriminate between
normal and non-normal distributions, is run. Every time an
anomaly occurs, the automatic edit checks built into a given
registry are triggered, assuring that the newly generated,
anomalous data undergo the same validation procedures as if
having been entered by a human investigator. At the end of the
simulation, all the generated anomalous data objects are
identified in terms of their position in the data table, either as
original or as changed values.

Performance evaluation of the detection algorithm is carried
out in 2 phases: (1) setting the best thresholds for each distance
metric and (2) finding the best combination of the distance
metrics. In the first phase, the receiver operating characteristic
(ROC) curves are calculated for each individual distance metric
by varying the threshold percentile value. The best threshold is
then selected based on the C1 criterion, which maximizes overall
accuracy and Youden index [18], whereas the distance of the
corresponding point on the ROC curve from the upper left corner
ULC_dist is minimized:

C1 = normalized (accuracy)2 + normalized (Youden index)2 –

normalized (ULC_dist)2 (1)

where all 3 members of (1) are normalized to the interval (0,
1). All possible combinations of the distance metrics with the
set threshold are then tested and the best one is determined by
the C2 criterion which is based on balanced accuracy but favors
sensitivity over specificity:

C2 = balanced_accuracy + sensitivity = (TPR+TNR)/2 + TPR
= (3TPR+TNR)/2 (2)

where TPR and TNR stand for true positive rate and true
negative rate, respectively.

Validation
In this study, validation refers primarily to repeatability
verification which is performed as follows: all data from 2
different registries were subjected to expert review. As no
problems were reported, these data sets could be used for
evaluation and validation purposes. Once the detection algorithm
is fully specified by the thresholds and the best combination of
the distance metrics is identified by applying the 2-stage
evaluation process to the first registry data, an independent data
set from the second registry is used to validate the detection
performance.

Results

EDC System Deployment
To date, the Clade-IS has been implemented in hundreds of
clinical centers where it serves numerous research studies,
mostly clinical registries and other RWD projects. Therefore,
this EDC system contains millions of authentic records of
different origin. Such a huge set of RWD made it possible to
carry out anomaly detection using the designed detection
algorithm whose performance was subsequently validated.

Five neuroscience-related registries were utilized here to
investigate the possibility of deploying and using the
aforementioned algorithm for automatic detection of anomalous
data. The registries significantly differed in scope, that is, in
research objectives, complexity of the eCRFs, duration, and
also the number of patients involved (Table 2). While 2 out of
5 registries are sponsored by Masaryk University, 3 remaining
registries belong to the neuromuscular section of the Czech
Neurological Society, which did not allow their identification.
For the sake of consistency, the names of all 5 registries are
anonymized here.

Registry number 1 collects data on patients with myasthenia
gravis, a rare, autoimmune disease affecting neuromuscular
transmission. The registry serves to gather comprehensive
information from as many patients as possible, covering the
whole course of the disease and the response to treatment, in
order to enhance development of new therapies and improve
patient care. Registry number 2 collects data on patients
diagnosed with any of the following neuromuscular diseases:
Duchenne and Becker muscular dystrophy, spinal muscular
atrophy, myotonic dystrophy, and facioscapulohumeral muscular
dystrophy. The aim of the registry is to gather comprehensive
information from as many patients with causal genetic defects
as possible and thus to contribute to development of new
treatments. Registry number 3 collects data on patients with
spastic paresis caused by acquired brain injuries including a
craniocerebral trauma, cerebral palsy, and central stroke. The
aim of the registry is to develop visual analytics over the
collected data to enhance decision-making processes related to
physical and medical therapy at an individual patient level.
Registry number 4 represents a longitudinal monitoring of
patients with a cognitive impairment in the depressive phase of
various affective disorders. The aim of the registry is to evaluate
the diagnostic and prognostic potential of changes produced in
brain morphology and function in patients with cognitive
impairments and to investigate their impact on quality of a
patient’s life and social functioning. Registry number 5
represents a 5-year, noninterventional, prospective follow-up
study involving patients in the first episode of schizophrenia.
The study aims to evaluate patients’ psychosocial needs in the
early stages of the disease and also examine the effects of
psychosocial interventions.
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Table 2. Summary data presenting 5 neuroscience-related clinical registries powered by the Clade-ISa utilized to investigate the possibility of performing
automatic detection of anomalous data.

Registry number 5Registry number 4Registry number 3Registry number 2Registry number 1Quantitative characteristic ×
registry characteristic

6721413,71193724763Forms

293340516491150Patients

819156326Investigators

111149Sites

54195Years of study

aClade-IS: Clinical Data Warehousing Information System

Anomaly Detection Algorithm—Evaluation and
Validation
The performance of the detection algorithm was evaluated using
the data set extracted from Registry number 3 and then validated
using the data set extracted from Registry number 5. The
simulated anomalies were generated for each data set separately
using the procedure described in the next section. The default
number of cells to be changed was set to 1%, that is, 22 normal
data objects were transformed to anomalous in the evaluation
data set (Registry number 3) and 7 normal data objects were
transformed to anomalous in the independent data set (Registry
number 5).

Figure 5 shows the ROC curves calculated for single-distance
metric–based classifiers whose function was to find the optimal
thresholds. The worst detection performances achieved by
individual metrics were those of the Chebyshev and cosine
metrics. The results were consistent for both data sets (see the
lowest values of C1 in Table 3). These 2 distance metrics were,
therefore, excluded from the subsequent ensemble classification.
While a detailed ROC analysis was performed on the evaluation
data set in order to find the best thresholds among 81 sampled
and tested percentiles, in the case of the independent data set
the performance characteristics were calculated only for 1
distance threshold setting.
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Figure 5. ROC curves generated for single distance metric-based classifiers. The curves were created by connecting 81 points showing the true positive
rate (sensitivity) and the false positive rate (1-specificity) calculated at various threshold settings ranging from 5th percentile distance to 95th percentile
distance. The highlighted points indicate the thresholds with the best achieved detection performance as determined by the criterion C1.

Once the thresholds were set, the best combination of the 5
remaining distance metrics was searched for. All possible
ensembles were generated, first employing the distance
metric–based classifiers individually, then combining 2, 3, 4 of
them and, finally, all 5 classifiers were combined in 3 different
scenarios: (1) the thresholds were set using the evaluation data
set and so was the best combination of metrics (Table 4); (2)
the thresholds were set using the evaluation data set whereas
the combination of metrics was searched for using the
independent data set (Table 5); (3) the thresholds and the
combination of metrics were searched for using the independent
data set only (Table 6).

The second scenario proved best in mimicking the real use of
the detection algorithm, which would be required to detect
anomalies in yet unseen data. Specifically, the best detection
performance was achieved using the combination of
Mahalanobis, Manhattan, and Canberra distance metrics,
resulting in sensitivity of 85.7%, specificity of 72.7%, and
balanced accuracy of 79.2%.

As anticipated, higher performance rates were achieved when
the data sets were used separately for threshold setting and for
searching the best combination of the distance metrics—as
indicated in scenarios (1) and (2).
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Table 3. The characteristics of detection performance achieved by individual single-distance metric–based classifiers using the evaluation data set and

the independent data set.a

C1ULC_distYouden indexAccuracy (%)Specificity (%)Sensitivity (%)Percentile
threshold

Distance metric

Evaluation data set (Registry number 3)

1.4810.2630.62880.9980.9481.8277.5Canberra

1.3840.3240.67669.3867.62100.0064.0Chebyshev

1.3950.3210.67969.6367.89100.0095.0Cosine

1.7600.2220.69086.9187.2181.8286.0Euclidean

1.4230.3750.54589.3890.8663.6488.0Mahalanobis

1.8820.2080.71689.3889.8281.8286.0Manhattan

1.7600.2220.69086.9187.2181.8283.5Minkowski

Independent data set (Registry number 5)

1.1770.4500.43579.3186.3657.1477.5Canberra

–0.5950.872–0.21444.8350.0028.5764.0Chebyshev

–0.5170.8640.13634.4813.64100.0095.0Cosine

0.9160.5790.33879.3190.9142.8686.0Euclidean

0.4650.7200.19575.8690.9128.5788.0Mahalanobis

1.0840.5730.38382.7695.4642.8686.0Manhattan

0.9160.5790.33879.3190.9142.8683.5Minkowski

aThe distance metrics with the lowest performance as determined by the criterion C1 (highlighted in bold) were excluded from the subsequent classification.

Table 4. The characteristics of detection performance achieved by various ensembles of distance metric–based classifiers using the evaluation data set

only. Ten combinations with the highest performance as determined by the criterion C2 are displayed.a

C2Precision (%)Error (%)Balanced accuracy (%)Specificity (%)Sensitivity (%)Combination of distance metrics

1.84423.8616.7988.9882.5195.46MANb , CANc

1.84223.3317.2888.7281.9895.46MAHd, CAN

1.82921.0019.7587.4179.3795.46EUCe, CAN

1.82921.0019.7587.4179.3795.46MINKf, CAN

1.82921.0019.7587.4179.3795.46EUC, MINK, CAN

1.82620.5920.2587.1578.8595.46EUC, MAN, CAN

1.82620.5920.2587.1578.8595.46MAN, MINK, CAN

1.82620.5920.2587.1578.8595.46EUC, MAN, MINK, CAN

1.81418.9222.4785.9876.5095.46MAH, MAN, CAN

1.80317.5024.6984.8074.1595.46EUC, MAH, CAN

aThe best performing combination of the distance metrics is highlighted in bold.
bMAN: Manhattan.
cCAN: Canberra.
dMAH: Mahalanobis.
eEUC: Euclidean.
fMINK: Minkowski.
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Table 5. The characteristics of detection performance achieved by various ensembles of distance metric–based classifiers using the evaluation data set

and the independent data set. Ten combinations with the highest performance as determined by the criterion C2 are displayed.a

C2Precision
(%)

Error (%)Balanced accuracy
(%)

Accuracy (%)Specificity
(%)

Sensitivity
(%)

Combination of distance metrics

1.64950.0024.1479.2275.8672.7385.71MAHb , MANc , CANd

1.62746.1527.5976.9572.4168.1885.71CAN, EUCe, MAH, MAN, MINKf

1.62746.1527.5976.9572.4168.1885.71EUC, MAH, CAN

1.62746.1527.5976.9572.4168.1885.71MAH, MINK, CAN

1.62746.1527.5976.9572.4168.1885.71EUC, MAH, MAN, CAN

1.62746.1527.5976.9572.4168.1885.71EUC, MAH, MINK, CAN

1.62746.1527.5976.9572.4168.1885.71MAH, MAN, MINK, CAN

1.50362.5017.2478.9082.7686.3671.43MAH, MAN

1.48155.5620.6976.6279.3181.8271.43EUC, MAH

1.48155.5620.6976.6279.3181.8271.43MAH, MINK

aThe best performing combination of the distance metrics is highlighted in bold.
bMAH: Mahalanobis.
cMAN: Manhattan.
dCAN: Canberra.
eEUC: Euclidean.
fMINK: Minkowski.

Table 6. The characteristics of detection performance achieved by various ensembles of distance metric–based classifiers using the independent data

set only. Ten combinations with the highest performance as determined by the criterion C2 are displayed.a

C2Precision
(%)

Error (%)Balanced accuracy
(%)

Accuracy (%)Specificity
(%)

Sensitivity
(%)

Combination of distance metrics

1.71866.6713.7986.0486.2186.3685.71CANb

1.69560.0017.2483.7782.7681.8285.71MANc, CAN

1.67254.5520.6981.4979.3177.2785.71EUCd, CAN

1.67254.5520.6981.4979.3177.2785.71MINKe, CAN

1.67254.5520.6981.4979.3177.2785.71EUC, MAN, CAN

1.67254.5520.6981.4979.3177.2785.71EUC, MINK, CAN

1.67254.5520.6981.4979.3177.2785.71MAN, MINK, CAN

1.67254.5520.6981.4979.3177.2785.71EUC, MAN, MINK, CAN

1.62746.1527.5976.9572.4168.1885.71MAHf, CAN

1.60442.8631.0374.6868.9763.6485.71MAH, MAN, CAN

aThe best performing combination of the distance metrics is highlighted in bold.
bCAN: Canberra.
cMAN: Manhattan.
dEUC: Euclidean.
eMINK: Minkowski.
fMAH: Mahalanobis.

Discussion

Anomaly Detection Context and Experiment Summary
In the era of EDC, it has become particularly difficult to process
ever increasing data volumes in clinical registries. Data amount

together with structural complexity of these databases make the
task of anomaly detection, that may have a direct impact on the
health care system, very demanding. Anomaly detection is an
integral part of data analysis involving careful study of the
identified anomalies and determination of their origin (data
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fraud, typing error, etc.), because it can significantly improve
or negatively impact the subsequent analysis [19]. Even though
anomalies tend to be misleading, they may carry valuable
information [15,19]. For example, particular patient data may
indicate that the patient has a different diagnosis than he/she is
treated for, another anomalous pattern may indicate a new
disease or reveal that investigators may have misinterpreted
some questions. Therefore, detected anomalies need to be
subjected to a careful assessment to mitigate the risk of losing
valuable data by taking account of the unsuspicious ones, which
may compromise the results and, as a consequence, lead to
erroneous adjustments to clinical guidelines altering the current
health care standards.

In this study, anomalous data were simulated and then detected.
These operations were performed by a detection algorithm,
whose detection performance was subsequently validated. The
algorithm, running in a particular EDC system (Clade-IS), ends
when automatic queries, whose function is to notify data
managers and trial monitors of potentially anomalous data, have
been generated. There are 2 key requirements which need to be
met to implement such a detection algorithm in any EDC system
successfully: (1) the ability of the system to create custom data
views in the database and (2) the API able to react to data quality
issues by its response (eg, a query generator). In the given
settings, the accuracy was preferred over the algorithm execution
time, so there was no need to optimize the algorithm for online
use. A rapid online response is required when, for example, an
intrusion activity is detected. This section presents a thorough
description of (1) the detection algorithm running in the given
EDC system and of (2) the actual validation experiments
employing this algorithm together with the results interpretation.
The findings are discussed here in terms of their validity and
applicability (repeatability). The section is concluded with (3)
a relevant literature review.

The tables loaded with raw data from 2 clinical registries were
fed into the algorithm and a series of preprocessing steps, that
is, dropping, imputation, recoding, and normalization, resulting
in feature vectors were taken. These operations preceded the
data simulation and the algorithm training. In the process, it
was necessary to take account of data types which are supposed
to be dropped as the given algorithm has not been devised to
process all of them. Thus, some variables (texts, strings, and
some raw JSON data) were excluded from further analysis.
Although such an operation entails a significant information
loss, it also represents a possible solution to the issues related
to the “curse of dimensionality” (data reduction). One of the
most difficult tasks was to handle the multiple instance forms
supported by the Clade-IS. It means that the system allows not
only forms limited to 1 instance per patient to be created, but
also forms allowing more than 1 instance per patient. To tackle
the problem of multiple forms filled in for a patient, the
semiflattened tables have been introduced here. These tables
aid in performing meaningful analysis and keep input data for
each patient consistent, that is, with no blank attributes in places
where data are expected. However, this approach has 2
limitations. First, the anomaly detection cannot be computed at
the same time on all data available per patient. Instead, it is run
separately on several semiflattened tables, each including data

from 1 form structure instantiated multiple times. That said,
anomalies resulting from a combination of forms with distinct
form structures—the ones allowing multiple instances—could
remain undetected. Second, information concerning data
continuity (progression in time) that could possibly be filled in
multiple forms created in a logical order was not investigated.

Principal Results
The anomaly analysis was performed by calculating the distance
between a centroid and data points using several distance
metrics. There were 2 aspects assessed and recorded: (1) the
Boolean identifier able to identify whether a patient is
anomalous or not, and (2) the strength of anomaly evidence as
determined by the number of distance metrics that labeled a
patient as anomalous. The presented procedure could be
potentially further improved using the medoid instead of the
centroid. Medoids are robust cluster members that tend to be
less sensitive to distant observations than averaged centroids
are. When an anomaly is detected, the patient is labeled using
automatically generated queries, which enable a person in charge
to check this anomaly directly in a web application. Thus, the
individual query may serve as an opportunity to implement
appropriate corrective and preventive actions enhancing data
integrity on the part of data managers and may also notify trial
monitors of incorrect data entry in the initial phases of the study.
Here, 2 neuroscience-related data sets were used for the
algorithm validation; the first one served for training, thus
setting the appropriate values for the algorithm parameters
(distance metric thresholds); the second data set was used to
validate the algorithm detection capability. It means that the
preset detection algorithm was applied to the test data and its
repeatability and applicability were investigated in practice.
The percentile-based threshold could be set in 2 ways: (1) based
on expert knowledge in the field and (2) setting the thresholds
based on data. When percentage is defined by an expert, the
number of expected anomalies to be detected is rather
predictable and as such assists project managers in budget and
staffing allocations, making the anomaly checks procedure more
effective. The second, from our perspective a more sophisticated
approach, was proposed and carried out in this study.
Specifically, each distance metric threshold was identified using
a combination of overall accuracy (the ratio between correctly
classified anomalies and normal data) and measurements based
on ROC curves (Youden index and curve distance from the
upper-left corner). The optimal percentile threshold defined for
each metric then varied from 77.5% to 95.0%. Therefore, the
optimal number of patients to be investigated ranges between
5.0% and 22.5%, in order to uncover as many potential
anomalies as possible while no time is wasted on checking
normal data.

The experiment was performed on data set number 3, where the
optimal thresholds were found, and data set number 5, which
served for set up testing. The best result for data set number 3
employing a single distance metric was achieved by the
Manhattan metric that labeled 14.0% (57/405) of patients as
suspected to be anomalous: C1 (1.882), with sensitivity (81.8%)
and specificity (89.8%) greater than 80.0%. When the thresholds
(for each metric separately) were applied to the testing data set
(number 5), the Canberra distance metric yielded the best results
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but sensitivity was very low compared with specificity: C1 of
1.177, sensitivity of 57.1%, and specificity of 86.4%. This
suggests that, despite the high number of patients labeled as
suspected to be anomalous (meeting the low percentile threshold,
77.5% in the case of Canberra), it is still not guaranteed that
anomalous data will be detected. The other metrics had
sensitivity or specificity below 50.0% and so we conclude that
a single metric is insufficient to detect an anomaly.

Significantly better results were obtained when the distance
metrics were combined. In this scenario, a patient, whose data
were labeled as anomalous by at least one metric, was
considered as suspected to be anomalous. This suggests that the
proposed method reveals more suspicious data than methods
based on single metrics. Sensitivity results for data set number
3 (shown in Table 5) were better than those obtained by any
single metric alone (shown in Table 3). These results further
suggest that combining 2 metrics can significantly outperform
sensitivity of any single metric. Because none of the single
metrics had sensitivity greater than 82.0%, it also suggests that
the distance metrics complement each other when combined
because they label different patients as anomalous. As the best
results achieved by combining the metrics yielded the same
sensitivity (95.5%), specificity had the decisive power when
assessing the results. The best combination observed was that
of the Manhattan distance metric and the Canberra distance
metric, with specificity of 82.5%, accuracy of 83.2%, and C2

of 1.844. Combination of more than 2 metrics did not prove to
be more efficient. In the case of validation data set number 5,
the combination of 3 metrics (Mahalanobis, Manhattan, and
Canberra) yielded the best results—sensitivity improved by
almost 30% (85.7%), but specificity (approximately –14%;
72.7%) and overall accuracy (approximately –4%; 79.2%) were
lower compared with the best single-metric performance
(Canberra). These results also show that the threshold for the
anomaly detection algorithm (method parameter), which has
been set for 1 data set with a higher sample size (N), is possible
to be applied to another data set, still producing satisfying results
(Tables 4 and 5).

Limitations
It needs to be noted that the proposed algorithm for anomaly
detection is limited by the following: (1) clinical registries are
frequently incomplete, with large amounts of missing data (the
data sets studied here are not an exception). Because a
significant number of incomplete variables were removed in
the data preprocessing phase (method parameter set by data
manager), some valuable information could have been lost; (2)
only quantitative data (or recoded qualitative data) can be further
analyzed by the algorithm; (3) the detection algorithm is still
computationally intensive and requires long detection times
despite the fact that a large number of unfilled and unanalyzable
variables had been removed, together with 2 distance metrics
(Chebyshev and cosine). The most time-consuming part of the
algorithm run is data preprocessing which lasts tens of minutes.
The detection itself then takes less than 10 seconds per tested
registry. The preprocessing and analysis are run at regular
intervals and are not directly linked to the data entry action. The
time required to detect an outlier since its onset is dependent

on the interval, which is implementation dependent and usually
set to 24 hours; and (4) the algorithm was validated on
artificially simulated anomalies. Had the anomalous data been
generated by field experts, such an approach could have proved
effective in terms of expert-provided knowledge that would
have ensured authenticity of the anomalies, making the
validation more natural.

Comparison With Prior Work
There have been several research papers published on medical
anomaly detection–related topics, as outlier detection has been
widely applied in medical informatics for addressing different
issues. According to the reviews, there are several detection
techniques used in the field of medicine that can be divided into
the following categories, listed in descending percentage order
[15]: statistical (55.4%), clustering (15.2%), classification
(12.5%), and nearest neighbor (ie, distance based, 8.9%), etc.
As the numbers imply, statistic-based techniques tend to be
used most frequently; however, it is well-known that the
statistical assessment is not applicable to small sample sizes
[20], therefore anomaly detection performed in small-scale
studies or sites involving too few patients often leads to
increasing the false-positive rate. For more reviews on anomaly
detection in general, see [21] and for statistical monitoring
process suggestions, we recommend [20]. That paper involved
a multidisciplinary team of clinicians, statisticians, and data
managers, who created a study-specific algorithm to flag the
patients and sites with potentially fabricated data, which turned
out to be fabricated and implanted in 7 sites, totaling 43 patients
in 4 studies. Their algorithm for identifying sites with fabricated
data achieved slightly lower results—except for 1 study,
sensitivity and specificity were greater than 70%. In another
research work [22], the authors combined k-means and isolation
forest techniques, because the isolation forest–based methods
are capable of finding anomalous patients that are not situated
on the edge of a feature space. They, however, did not use ROC
curves to define thresholds, but instead [23] split their data set
into 2 subsets—first one consisted of only categorical variables
and the second one of only continuous variables. This approach
enabled them to work with each subset separately, searching
(1) for infrequent category combinations in the subset with the
categorical variables and (2) for distant objects defined by the
cosine distance from the global mean in the subset with
continuous variables. Then, they defined an anomaly score for
each data object in both subsets. Adopting this approach, that
is, splitting the data set into 2 subsets, could potentially improve
our results. However, there would be many other parameters to
be defined, such as the number of category combinations, that
would complicate the setting of our anomaly detection
algorithm. Estiri et al [24] used a different approach focusing
on implausible rather than outlier data. The authors proposed a
hierarchical k-means method to detect implausible observations,
regardless of their values, that flag sparse clusters as anomalous,
assuming no systematic errors. They also demonstrated that
their clustering approach outperformed the conventional
anomaly detection one that uses the standard deviation and
Mahalanobis distance for identifying implausible laboratory
data in the electronic health record. Although the authors
consider the Mahalanobis distance to be standard, it did not
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work so well for us, especially in comparison with the other
distance metrics (Table 3). To our knowledge, no paper
presenting an EDC system with a built-in anomaly detection
algorithm has been published to date.

Conclusions
We have proposed and described an algorithm for detection of
anomalous data in clinical registries, which has been
implemented in a particular EDC system. The algorithm has
proved to be capable of detecting anomalous data with

sensitivity greater than 85%. Besides, the detection results were
satisfactory for preset parameter settings derived from a different
data set which enabled the algorithm to be applied in practice.
In future work, we will inspect queries in real-world settings in
order to assess precision and usefulness of the proposed anomaly
detector from the viewpoint of data managers and also users
with other roles, such as site monitors and clinical investigators.
Other ideas for further research include an investigation into
expert-generated anomalies and finding ways to speed up the
detection algorithm.
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