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Abstract

Background: Federated learning is a decentralized approach to machine learning; it is a training strategy that overcomes medical
data privacy regulations and generalizes deep learning algorithms. Federated learning mitigates many systemic privacy risks by
sharing only the model and parameters for training, without the need to export existing medical data sets. In this study, we
performed ultrasound image analysis using federated learning to predict whether thyroid nodules were benign or malignant.

Objective: The goal of this study was to evaluate whether the performance of federated learning was comparable with that of
conventional deep learning.

Methods: A total of 8457 (5375 malignant, 3082 benign) ultrasound images were collected from 6 institutions and used for
federated learning and conventional deep learning. Five deep learning networks (VGG19, ResNet50, ResNext50, SE-ResNet50,
and SE-ResNext50) were used. Using stratified random sampling, we selected 20% (1075 malignant, 616 benign) of the total
images for internal validation. For external validation, we used 100 ultrasound images (50 malignant, 50 benign) from another
institution.
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Results: For internal validation, the area under the receiver operating characteristic (AUROC) curve for federated learning was
between 78.88% and 87.56%, and the AUROC for conventional deep learning was between 82.61% and 91.57%. For external
validation, the AUROC for federated learning was between 75.20% and 86.72%, and the AUROC curve for conventional deep
learning was between 73.04% and 91.04%.

Conclusions: We demonstrated that the performance of federated learning using decentralized data was comparable to that of
conventional deep learning using pooled data. Federated learning might be potentially useful for analyzing medical images while
protecting patients’ personal information.

(JMIR Med Inform 2021;9(5):e25869) doi: 10.2196/25869
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Introduction

Deep neural networks for image classification, object detection,
and semantic segmentation have been proven to be high
performance, surpassing human-level performance in some
fields [1]. Deep learning for computer aided diagnosis has been
frequently reported using various medical imaging modalities,
such as ultrasound images, computed tomography, and magnetic
resonance imaging. As in other fields, the ability for deep
learning using medical images to surpass human-level
performance is dependent on the volume and quality of data
[2,3].

There are several challenges in the implementation of deep
learning in the clinical environment. To obtain a sufficient
number of medical images for high performance, medical images
must be collected from multiple institutions. Personal
information protection may be violated during the data collection
process. Heterogeneity of data between contributing institutes
is another issue that can negatively influence the performance
of a deep learning network. Distribution of data varies
considerably between institutions in terms of disease entities,
as does the volume, location, and characteristics of medical
images; this influences the performance of deep learning
networks.

Federated learning is a technique used to build learning networks
without the need for centralized data that is hugely advantageous
in a health care context where data protection and patient
confidentiality are paramount. Federated learning mitigates
many systemic privacy risks by sharing with each local data
source only the model and trained parameters for network
training, without the need to export existing medical data sets.
Network parameters that are trained with data from each local
data source are aggregated in one place and are updated and
sent back to each local data source. The network is trained as
this process is repeatedly executed.

Although federated learning does not require the exchange of
local data (ie, each medical institution’s data), it’s performance
is similar to that of conventional deep learning. Federated
learning has been applied to multiple open data sets such as
Modified National Institute of Standards and Technology
(MNIST) [4], Canadian Institute for Advanced Research
(CIFAR-10) [4], and Brain Tumor Segmentation challenge

(BraTS) 2018 [5,6] data sets. Various methods [4,6] have been
applied to optimize the performance of federated learning. The
application of federated learning for personal health information
from wearable devices has also been reported [7]. These studies
[4-7] demonstrated that federated learning is similar in
performance to conventional deep learning (ie, data centralized
training) approaches; however, they used either general image
data, or if used, medical image data were few in number (for
example, open medical image data sets such as BraTS 2018
contain only a few hundred images). In addition, the images
were from one institution, and only one deep learning network
was used. In real-world health care environments, when deep
learning is applied, data distributions are frequently unbalanced.

In this study, we collected thyroid ultrasound images from
medical institutions to evaluate the feasibility and performance
of federated learning.

Methods

Thyroid Nodule Clinical Data Collection
The institutional review boards at all participating institutions
(Seoul Metropolitan Government Seoul National University
Boramae Medical Center, Gangnam Severance Hospital, Seoul
National University Bundang Hospital, Catholic University of
Korea Incheon St. Mary’s Hospital, Catholic University of
Korea Seoul St. Mary’s Hospital, and Korea Cancer Center
Hospital) approved this study. Representative institutional
review board approval was granted by Seoul Metropolitan
Government Seoul National University Boramae Medical Center
(H-10-2020-195).

Images were collected from 6 medical institutions in captured
DICOM file format (Figure 1). Of the 6 institutions, 3 used
iU22 systems (Philips Healthcare), one used EPIQ 5G (Philips
Healthcare), one used Prosound Alpha 7 (Hitachi Aloka), and
one used Aplio 500 Platinum (Toshiba Medical Systems).
Experienced surgeons at each institution labeled the images as
benign (fine-needle aspiration cytology Bethesda Category II
or benign surgical histology) or malignant (fine-needle
aspiration cytology Bethesda Category V/VI or surgical
histology of thyroid carcinoma). The images were cropped into
299×299 pixels to include typical thyroid features. The images
were not augmented.
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Figure 1. Thyroid ultrasound image data collected from 6 medical institutions to verify federated learning.

Table 1 summarizes details of the thyroid ultrasound images
used in this experiment. We used 80% of each institution’s data
as training data and the remaining 20% as test data. We used
stratified random sampling to select the test data set. There was
a total of 4300 malignant images and 2465 benign images in
the total training data set and a total of 1075 malignant images

and 617 benign images in the test data set. For external
validation, 100 thyroid ultrasound images (50 malignant image
data and 50 benign) were provided by a medical institution in
Japan. We were blinded to the labeling (malignant or benign)
of the images.

Table 1. Thyroid ultrasound image data from 6 medical institutions used to validate federated learning.

Total, nInstitution 6, nInstitution 5, nInstitution 4, nInstitution 3, nInstitution 2, nInstitution 1, nClass

53752779910646931911233Malignant

430022279853752553986Training

107555202194638247Test

3082324100100102912257Benign

2466259808082331806Training

616652020258451Test

In addition, to verify the performance of federated learning with
external data, we collected an external test data set, which
consisted of 50 malignant and 50 benign ultrasound images
taken using a TUS-A500 system (Toshiba Medical System)
from Kuma Hospital.

Federated Learning System Design in a Real Health
Care Environment
We conducted federated learning experiments (Figure 2) with
each institution’s serverworker (a computer system that can
train deep learning algorithms with local data in the federated
learning process) and the coordinator of Seoul National
University Hospital to validate federated learning in a real health

care environment (serverworker system at each institution: Intel
4-core 2.3 GHz i5-8259U processor, 16 GB DDR4 RAM
memory, and 11 GB Nvidia RTX 2080 Ti graphics; coordinator
system: 2.3 GHz i5-8259U processor, 16 GB DDR4 RAM, and
8 GB Nvidia GTX 1080). Network training was performed on
the serverworkers, and then each serverworker was configured
with a high-memory graphic process unit. We configured the
system using the processor and external graphics processing
unit for system portability. All versions of software (Python
version 3.6.5; PyTorch version 1.4.0; PySyft version 0.2.5) were
identical between institutions. We installed Ubuntu 18.04 LTS
version on each serverworker and the coordinator system.

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e25869 | p. 3https://medinform.jmir.org/2021/5/e25869
(page number not for citation purposes)

Lee et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Federated learning procedure in a real-world health care environment. (A) The serverworker from each medical institution (upper 6 medical
institutions) was trained with local data from their corresponding medical institution. (B) Trained parameters were sent from each institution to the
coordinator. (C) The coordinator averaged the parameters received from each institution. (D) The average value was sent back to each serverworker.

Deep Learning Algorithm
We used 5 deep neural network classifiers for thyroid ultrasound
image analysis: VGG19 [8], ResNet50 [9], ResNext50 [10],
SE-ResNet50, and SE-ResNext50 [11]. We also used these 5
models to verify federated learning.

Stochastic optimization (ADAM) was used with the following

parameters: β1=0.9, β2=0.999,  =10–8 [12]. The initial learning
rate was 0.001 which was reduced by half every 30 rounds. The
mini-batch size was 32. We used a binary cross-entropy loss
function to train all networks. We trained the network for 120
rounds. We used PyTorch [13] and PySyft [14] to implement
and train all networks with federated learning.

Conventional Deep Learning Using Pooled Data
After removing all patient identifying information, images from
each participating institution were collected at Seoul National
University Hospital to create a pooled data set. We used the
pooled data set to conduct conventional deep learning. All
settings were the same as those for federated learning, with the

exception of those used in PySyft, and the same equipment,
with the same specifications as those of the serverworker, was
used. Only training data from each hospital used in the federated
learning were pooled and used for conventional deep learning.
The test data set was the same as that used for federated learning.

Results

Federated Learning Performance
For the internal test data set, consisting of 1691 images (1075
malignant and 616 benign), and federated learning–trained deep
learning algorithms, the accuracies of VGG19, SE-ResNet50,
ResNet50, SE-ResNext50, and ResNext50 were 79.5%, 77.9%,
77.4%, 77.2%, and 73.9%, respectively (Table 2; Table S1 in
Multimedia Appendix 1). Figure 3 shows the receiver operating
characteristic curve [15] of each network for the internal test
data set. Area under the receiver operating characteristic
(AUROC) curve values of SE-ResNext50, ResNext50, VGG19,
SE-ResNet50, and ResNet50 were 87.6%, 86.0%, 82.0%, 79.9%,
and 78.9%, respectively.

Table 2. Thyroid classification results with federated learning with internal test data.

AUROC (%)F1 score (%)NPVb (%)PPVa (%)Sensitivity (%)Specificity (%)Accuracy (%)Deep learning algorithm

82.084.575.781.288.264.379.5VGG19

78.983.374.378.688.657.877.4ResNet50

86.082.791.171.598.231.573.9ResNext50

79.983.876.878.390.256.377.9SE-ResNet50

87.684.490.074.697.342.177.2SE-ResNext50

aPPV: positive predictive value.
bNPV: negative predictive value.
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Figure 3. Receiver operating characteristic curves of each deep learning network for the internal test data set.

For the external test data set and federated learning model, the
accuracies of ResNet50, SE-ResNet50, VGG19, SE-ResNext50,
and ResNext50 were 76.0%, 73.0%, 69.0%, 60.0%, and 56.0%,
respectively (Table 3; Table S2 in Multimedia Appendix 1).

AUROC curve values of SE-ResNet50, SE-ResNext50,
ResNext50, ResNet50, and VGG19 were 86.7%, 83.4%, 83.0%,
81.0%, and 75.2%, respectively.

Table 3. Thyroid classification results with federated learning with external test data.

AUROC (%)F1 score (%)NPVb (%)PPVa (%)Sensitivity (%)Specificity (%)Accuracy (%)Deep learning algorithm

75.273.578.864.286.052.069.0VGG19

81.079.790.669.194.058.076.0ResNet50

83.069.410053.210012.056.0ResNext50

86.778.496.065.398.048.073.0SE-ResNet50

83.471.410055.610020.060.0SE-ResNext50

aPPV: positive predictive value.
bNPV: negative predictive value.

Performance of Conventional Deep Learning Using
Pooled Data
For each deep learning algorithm trained with the pooled data,
the accuracies of VGG19, ResNet50, ResNext50, SE-ResNet50,
and SE-ResNext50 were 81.5%, 78.7%, 85.2%, 83.2%, and
85.2%, respectively (Table 4; Table S3 in Multimedia Appendix
1). The AUROC curve values of VGG19, ResNet50, ResNext50,

SE-ResNet50, and SE-ResNext50 were 87.6%, 82.6%, 91.0%,
84.5%, and 91.5%, respectively.

For conventional deep learning using the pooled external test
data set, the accuracies of VGG19, ResNet50, ResNext50,
SE-ResNet50, and SE-ResNext50 were 71.0%, 77.0%, 80.0%,
66.0%, and 76.0%, respectively (Table 5; Table S4 in
Multimedia Appendix 1). The AUROC curve values of VGG19,
ResNet50, ResNext50, SE-ResNet50, and SE-ResNext50 were
79.3%, 81.2%, 89.7%, 73.4%, and 91.0%, respectively.
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Table 4. Thyroid classification results with conventional deep learning using pooled internal test data.

AUROC (%)F1 score (%)NPVb (%)PPVa (%)Sensitivity (%)Specificity (%)Accuracy (%)Deep learning algorithm

87.686.583.081.092.762.081.5VGG19

82.683.974.680.587.762.878.7ResNet50

91.088.884.785.592.572.585.2ResNext50

84.582.781.284.190.770.083.2SE-ResNet50

91.589.086.284.993.570.985.3SE-ResNext50

aPPV: positive predictive value.
bNPV: negative predictive value.

Table 5. Thyroid classification results with conventional deep learning using pooled external test data.

AUROC (%)F1 score (%)NPVb (%)PPVa (%)Sensitivity (%)Specificity (%)Accuracy (%)Deep learning algorithm

79.374.880.066.286.056.071.0VGG19

81.278.180.074.582.072.077.0ResNet50

89.781.585.775.988.072.080.0ResNext50

73.471.275.061.884.048.066.0SE-ResNet50

91.079.790.669.194.058.076.0SE-ResNext50

aPPV: positive predictive value.
bNPV: negative predictive value.

Discussion

Principal Results
The goal of this study was to verify the performance of federated
learning in a real-world health care environment. We first
collected thyroid nodule data from 6 institutions and designed
a federated learning system using these data. We trained each
deep learning algorithm (VGG19, ResNet50, ResNext50,
SE-ResNet50, and SE-ResNext50) with the federated learning
system. We also trained the same deep learning algorithms using
conventional deep learning techniques and compared the
performance of federated learning with that of conventional
deep learning.

Comparison With Prior Work
The medical vision community is currently actively conducting
diagnosis using computer-aided diagnosis [16]. To improve the
performance of computer-aided diagnosis, several deep learning
algorithms have been developed and applied [17-20]. Various
challenges for deep learning with open data sets have been
identified [21,22]. In particular, due to health care data privacy
regulations, most open data sets only have a small amount of
data collected from a single institution. When training and
validation are carried out with only a small volume of data, the
performance of a deep learning model cannot be properly
evaluated, and generality cannot properly be validated. Federated
learning, which can train a deep learning model without
centralized data, offers a training strategy that addresses these
challenges.

There have been several recent reports of the use of federated
learning trained with general images [4] and medical imaging
[5,6]. McMahan et al [4] published a study using federated

learning with federated averaging and reported that the average
parameters trained from each serverworker each round
performed similarly to those of conventional deep learning and
better than those of federated stochastic gradient descent;
however, the study used a relatively simple model and general
image data sets (MNIST and CIFAR-10). Sheller et al [5]
compared federated learning, institutional incremental learning
(IIL), and cyclic IIL using the BraTS 2018 data set [21]. IIL is
a collaborative learning process that trains a network with data
from one institution and then continues training with another
institution’s data successively. One disadvantage of this model
is that when the network is trained using data from another
institution, the patterns trained from the previous institutions’
data are disregarded. To compensate for this shortcoming,
Sheller et al [5] proposed cyclic IIL which repeats the IIL
process. They used U-Net architecture [17] for brain tumor
segmentation with federated learning, IIL, and cyclic IIL and
demonstrated that the performance of federated learning was
superior to those of IIL and cyclic IIL; however, the study
applied federated learning but did not address the class
imbalance or data volume imbalance problems associated with
federated learning. Li et al [6] also used the BraTS 2018 data
set to compare federated learning and centralized data training;
they found no significant difference in performance between
federated learning and centralized data training. Most federated
learning studies compare federated learning with conventional
deep learning only, and there are no studies using clinical data
from a real-world health care environment.

The application of federated learning in our study shows that
this technology has substantial potential applicability in clinical
environments. First, federated learning showed performance
comparable with that of conventional deep learning, despite an
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extremely uneven distribution of data volume from each
institution. The difference between the hospital with the most
data and the hospital with the least data was 17.5 fold. Moreover,
the distribution of benign and malignant images was also
skewed. For example, the ratio of malignant to benign images
was 47:1 for institution 3, whereas it was 1:2 for institution 1.
Because data distributions between hospitals are diverse, the
conditions presented in this study demonstrated the applicability
of federated learning in the real world and its ability to facilitate
collaboration between different size institutions.

In medical image analysis, if the amount of data is insufficient,
overfitting (learning from noise in data) often occurs. In such
cases, only the accuracy of the internal data set is high, and deep
learning algorithms cannot be rigorously evaluated. We were
able to overcome the issue of overfitting by collecting images
from multiple institution and by performing external validation
using images from an institute in a different country. We
demonstrated that federated learning is able to maximize the
efficiency of medical resources and generalizability of deep
learning algorithms using data from different size medical
institutions (with various imaging devices and different patient
groups). This represents scenarios in real-world health care
environments [23-26].

In our study, federated learning training took at least 4 times
longer than that of conventional deep learning. The training
time for federated learning varied depending on the peripheral
environment such as internet speed and temperature of graphics
process unit. The performance of federated learning may be
enhanced with more images or data augmentation. The ideal
volume of data and the distribution of data contributed by each
institution for peak performance of federated learning is also
not yet known. Further investigation into the optimal training
environment, training time, data volume, data distribution, and
state-of-the-art deep learning algorithms is required for federated
learning.

As shown in Table 5, we noted that when thyroid nodules were
classified by a conventional deep learning model, the number
of malignant calls was extremely high. The same trend is
frequently observed in the literature [20,27-29]. As shown in
Table 3, we also found this trend to be prominent in federated
learning. Because deep learning is a black box [30], we were
unable to determine the potential reasons for this tendency, but
we plan to investigate this phenomenon in the future.

Limitations
This study has several limitations. First, we presented the results
of federated learning used in a specific context in terms of the
number of participating institutions, and the number and ratio
of benign and malignant images. Thus, the generalizability of
the results in terms of the performance of federated learning is
not known and warrants further investigation. We also used
thyroid ultrasound images, which are relatively easy to analyze
compared to those from computed tomography, magnetic
resonance imaging, and histopathology sections. Results may
not be generalizable across different imaging modalities. In
future work, comparisons of federated learning with unequal
data distribution, data augmentation, one-shot learning are
required to explore the implications of data imbalance.

Conclusions
We demonstrated that the performance of federated learning
using a shared training model and parameters from 6 institutions
was comparable with that of conventional deep learning using
pooled data. Federated learning is highly generalizable because
it can effectively utilize data collected from different
environments despite data heterogeneity. Federated learning
has the potential to mitigate many systemic privacy risks by
sharing only the model and parameters for training without the
need to export existing medical data sets.
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