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Abstract

Background: Privacy should be protected in medical data that include patient information. A distributed research network
(DRN) is one of the challenges in privacy protection and in the encouragement of multi-institutional clinical research. A DRN
standardizes multi-institutional data into a common structure and terminology called a common data model (CDM), and it only
shares analysis results. It is necessary to measure how a DRN protects patient information privacy even without sharing data in
practice.

Objective: This study aimed to quantify the privacy risk of a DRN by comparing different deidentification levels focusing on
personal health identifiers (PHIs) and quasi-identifiers (QIs).

Methods: We detected PHIs and QIs in an Observational Medical Outcomes Partnership (OMOP) CDM as threatening privacy,
based on 18 Health Insurance Portability and Accountability Act of 1996 (HIPPA) identifiers and previous studies. To compare
the privacy risk according to the different privacy policies, we generated limited and safe harbor data sets based on 16 PHIs and
12 QIs as threatening privacy from the Synthetic Public Use File 5 Percent (SynPUF5PCT) data set, which is a public data set
of the OMOP CDM. With minimum cell size and equivalence class methods, we measured the privacy risk reduction with a trust
differential gap obtained by comparing the two data sets. We also measured the gap in randomly sampled records from the two
data sets to adjust the number of PHI or QI records.

Results: The gaps averaged 31.448% and 73.798% for PHIs and QIs, respectively, with a minimum cell size of one, which
represents a unique record in a data set. Among PHIs, the national provider identifier had the highest gap of 71.236% (71.244%
and 0.007% in the limited and safe harbor data sets, respectively). The maximum size of the equivalence class, which has the
largest size of an indistinguishable set of records, averaged 771. In 1000 random samples of PHIs, Device_exposure_start_date
had the highest gap of 33.730% (87.705% and 53.975% in the data sets). Among QIs, Death had the highest gap of 99.212%
(99.997% and 0.784% in the data sets). In 1000, 10,000, and 100,000 random samples of QIs, Device_treatment had the highest
gaps of 12.980% (99.980% and 87.000% in the data sets), 60.118% (99.831% and 39.713%), and 93.597% (98.805% and 5.207%),
respectively, and in 1 million random samples, Death had the highest gap of 99.063% (99.998% and 0.934% in the data sets).

Conclusions: In this study, we verified and quantified the privacy risk of PHIs and QIs in the DRN. Although this study used
limited PHIs and QIs for verification, the privacy limitations found in this study could be used as a quality measurement index
for deidentification of multi-institutional collaboration research, thereby increasing DRN safety.
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Introduction

As medical data include sensitive personal patient information,
various challenges are being studied to protect patient
information and optimize research results, including artificial
intelligence, federated learning, and distributed research
networks (DRNs) [1-11]. Among the above challenges, the
DRN is a multi-institutional collaboration network [1] for
standardizing the data of participating institutions into a common
structure, terminology, and software called a common data
model (CDM) [12-16]. In such research networks, data are not
shared directly, and only analysis results are shared [1,3,6,17].
In research where sharing sensitive patient information has
limitations or where large-scale data privacy needs to be
preserved, the DRN structure is applied to standardize the data,
terminology, and software [4-6]. There are several CDMs in
DRNs, including the Observational Medical Outcomes
Partnership (OMOP) CDM of Observational Health Data
Sciences and Informatics (OHDSI), Sentinel CDM of the Food
and Drug Administration, and Patient‐Centered Outcomes
Research Network of the Patient-Centered Outcomes Research
Institute [18,19].

A DRN was recently recognized as a platform for protecting
large-scale data [16,20-22]. DRN-based studies have argued
two factors that enable the DRN infrastructure to mitigate
privacy issues relative to other data sharing–based studies
[1,6,23-29]. First, a DRN process protects patient information
without directly sharing data [1,3,6,17]. Second, a CDM
structure excludes some direct identifiers that could threaten
the privacy of patient information, such as names and exact
birthdays, by complying with the Health Insurance Portability
and Accountability Act (HIPAA) [30-33]. Therefore, a DRN
protects patient information through processes and structures.

However, previous studies have revealed limitations of DRNs
in terms of data privacy. First, a DRN in a single site has privacy
issues similar to a conventional database owing to repeated
reuse [34-41]. Second, DRN privacy may be threatened when
the remaining age and local information are used, even if direct
identifiers are removed [34-43]. DRN researchers have
recognized that there are no satisfactory solutions to privacy
risk [43]. Despite such privacy risks, few studies have
objectively measured these risks as compared to conventional
data sharing–based studies [44-46]. To mitigate the possible
risk to a DRN, an objective measurement of the privacy risk
should be performed.

Thus, this study aimed to quantify DRN privacy risk by
comparing different deidentification levels focusing on personal
health identifiers (PHIs) and quasi-identifiers (QIs) of patient
information. The key research questions in this study are as
follows: (1) What PHIs and QIs are included in a DRN, and
how many exist? (2) Using a PHI and QI, when comparing the
deidentification level of a CDM to a safe harbor policy, how
much will be the decrease in the DRN privacy risk? and (3)
What is the true privacy risk of the PHI or QI itself when
adjusted for the number of records?

Methods

Data Sources
We used the Synthetic Public Use File 5 Percent (SynPUF5PCT)
data set, which is a sample data set of the OMOP CDM. The
OMOP CDM (version 5.2.2), which was developed by OHDSI
[18,47], is a database of relational schema and consists of 37
tables with demographic information, disease natural history,
health care cost, etc [48]. The SynPUF5PCT is a synthetic data
set with 5% random sampling from a synthetic public use file
of the Centers for Medicare and Medicaid Services [49] and
complies with the limited data set policy of the HIPAA [32].
The SynPUF5PCT consists of 33 of 37 OMOP CDM tables and
is provided from the OHDSI [50]. We used only 12 tables with
patient information without missing and null variables from the
SynPUF5PCT [51].

Target PHIs and QIs
In this study, PHIs and QIs were focused on as
privacy-threatening patient information by referencing previous
studies [52-54]. For the PHIs, we manually matched the structure
of the OMOP CDM based on 18 HIPAA identifiers (Figure 1)
[55]. For the QIs, we selected the target range in demographic
variables (eg, year of birth and gender) and clinical variables
(eg, clinical order code) based on previous studies on the privacy
risk of QIs [52-54,56,57]. In the 18 HIPAA identifiers, however,
dates (excluding the year) and zip codes are defined as PHIs
with a QI characteristic [56]. We prioritized the 18 HIPAA
identifiers and fixed the dates and zip codes as PHIs instead of
QIs. Forty-five PHIs and 17 QIs were detected from the OMOP
CDM structure (Multimedia Appendix 1) [58]. Because there
were missing tables in the SynPUF5PCT compared to the
OMOP CDM, 16 PHIs and 12 QIs were targeted from the
SynPUF5PCT (Figure 1 and Table 1). Detailed information for
the 28 targeted variables is presented in Multimedia Appendix
2.
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Figure 1. Study workflow. PHI: personal health identifier; QI: quasi-identifier.
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Table 1. Sixteen personal health identifiers and 12 quasi-identifiers targeted in the Observational Medical Outcomes Partnership common data model
based on not null values in the Synthetic Public Use File 5 Percent data set.

Clinical variable of quasi-identifierDemographic variable of quasi-
identifier

Variable of personal health identifierStandard clinical tables in the

OMOPa CDMb

N/AcYear_of_birth, Gender_con-
cept_id, Race_concept_id, and
Ethnicity_concept_id

Month_of_birth and Day_of_birthPerson

N/AN/ADeath_dateDeath

Device_concept_idN/ADevice_exposure_start_date and De-
vice_exposure_end_date

Device_exposure

Drug_concept_idN/ADrug_exposure_start_date and
Drug_exposure_end_date

Drug_exposure

N/AStateCountyLocation

Measurement_concept_idN/AMeasurement_dateMeasurement

Observation_concept_idN/AObservation_dateObservation

Procedure_concept_idN/AProcedure_dateProcedure_occurrence

N/AN/AVisit_start_date and Visit_end_dateVisit_occurrence

Condition_concept_idN/ACondition_start_date and Condi-
tion_end_date

Condition_occurrence

N/AN/ANPIdProvider

Place_of_service_concept_idN/AN/ACare_site

aOMOP: Observational Medical Outcomes Partnership.
bCDM: common data model.
cN/A: not applicable.
dNPI: national provider identifier.

Study Design
We conducted privacy risk experiments of the PHIs and QIs.
We generated data sets for each experiment. The workflow for
this study is shown in Figure 1. In the privacy risk experiment
of the PHIs, 16 limited data sets were generated, with each
comprising one of the 16 PHIs merged with five common
demographic variables (Year_of_birth, Gender_concept_id,
Race_concept_id, Ethnicity_concept_id, and State), as in
previous clinical studies [53,54]. For example,
Condition_start_date, which is the name of data set 1 of the 16
limited data sets, consists of one PHI (Condition_start_date
variable) and five common demographic variables. Another
example is the Procedure_date data set consisting of one PHI
(Procedure_date variable) and five common demographic
variables. Thus, each limited data set consists of six variables.

In the QI privacy risk experiment, we mocked up seven
scenarios based on the core tables of the OMOP CDM
[16,59-61], which are frequently used in the real world. The
seven scenarios are as follows: (1) diagnosis, (2) procedure, (3)
drug treatment, (4) lab test, (5) device treatment, (6) death, and
(7) medical history (Multimedia Appendix 3). Based on the
scenarios, seven limited data sets were generated: 10 PHIs and
seven QIs were assigned according to the characteristics of each
scenario differently, and five demographic variables and six
PHIs were used as common variables (Multimedia Appendix
3). For example, the diagnosis scenario consisted of 14 variables
as follows: two PHIs (Condition_start_date and

Condition_end_date) and one QI (Condition_concept_id), which
followed the characteristics of the diagnosis scenario, and 11
common variables were merged.

To compare different deidentification levels for the same data
set, we applied the safe harbor policy to the 16 limited data sets.
For example, when the safe harbor policy was applied to the
limited data set, the PHIs were partially or completely masked.
The date type (such as start date, end date, and death date) was
masked from “YYYY-MM-DD” to “YYYY-**-**.” In other
words, they used only the “year”. The others (such as
Month_of_birth, Day_of_birth, NPI, and County) were
completely masked. We additionally generated 16 and seven
safe harbor data sets for PHIs and QIs, respectively, by applying
the safe harbor policy on the limited data sets.

Privacy Risk Evaluation Metrics
An equivalence class (EC) denotes a group of indistinguishable
record forms with common attributes. The common attribute
sizes that are included in each group can be represented as the
calculated size of the EC [46]. An EC size of one represents the
highest possibility of privacy disclosure for a certain patient’s
information [56]. In contrast, if the size is maximum, it indicates
the highest deidentification level of the data set. In previous
studies, the minimum cell size was an empirically defined
threshold with the calculated EC size [56,57]. The minimum
cell size determines the level of deidentification and measures
the privacy risk in the data set. The most commonly used
minimum cell size in practice is five, and a larger size, such as
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20, is used for data sets that include highly sensitive patient
information [56]. The minimum cell size, calculated by the EC,
was compared for both the limited and safe harbor data sets.

The trust differential mechanism represents the privacy risk of
a data set with a gap obtained by comparing two different
deidentification levels [54]. The gap represents the following
two factors: (1) the quantified difference of the deidentification
level and (2) the degree of decrease in privacy risk. In other
words, when a certain privacy policy applies to the data set that
complies with another privacy policy, a gap will occur between
the two different privacy policies, which have different
deidentification levels. Therefore, the gap indicates that the data
set’s privacy level with the lower deidentification privacy policy
could be protected as the difference that arises when the higher
privacy policy is applied.

Through the PHI and QI privacy risk experiments, we measured
privacy risk in terms of the following two aspects: (1)
measurements based on the number of total records in each data
set and (2) measurements based on the identical number of
records through random sampling from each data set. In the
first aspect, we considered that clinical studies perform analysis
with clinical tables according to clinical scenarios [16,59-61];
thus, we measured privacy risk with the number of total records
in the data set generated by referring to previous studies [53,54].
With the number of total records, we compared the limited and
safe harbor data sets based on the total records of each PHI and

QI. Then, we measured with different minimum cell sizes from
each PHI and QI experiment. To measure PHI privacy risk, we
compared the limited and safe harbor data sets with the
maximum EC size and a minimum cell size of one. In the QI
privacy risk experiment, we compared the limited and safe
harbor data sets with a minimum cell size of 1 to 20. In the
second aspect, we extracted 1000, 10,000, 100,000, and 1
million random samples from each limited and safe harbor data
set and iterated them 100 times. With the iterated random
samples, we calculated the average of the minimum cell size 1
and then compared the limited and safe harbor data sets for PHIs
and QIs.

Results

Overview
Overall, when compared with the limited and safe harbor data
sets, privacy risk was reduced in both PHIs and QIs according
to the trust differential gap. For the trust differential gap of a
minimum cell size of one, there are two overall results. In the
number of total records, the trust differential gaps of PHIs and
QIs averaged 31.448% and 73.798%, respectively. In the random
samples, the trust differential gaps of PHIs and QIs averaged
18.869% and 6.493% (1000 samples), 50.730% and 33.248%
(10,000 samples), 74.013% and 60.306% (100,000 samples),
and 50.744% and 71.868% (1,000,000 samples), respectively
(Table 2).

Table 2. The averaged trust differential gap according to total records and random samples.

Trust differential gapc with a minimum cell size of onedNumber of total recordsa and sampleb

Quasi-identifier (mean percentage)Personal health identifier (mean percentage)

73.798%31.448%Number of total records

Sample

6.493%18.869%1000

33.248%50.730%10,000

60.306%74.013%100,000

71.868%50.744%1,000,000

aNumber of total records is each personal health identifier’s total record.
bSample is the number of random samples (ie, 1000, 10,000, 100,000, or 1 million) from the limited and safe harbor data sets.
cTrust differential gap is the difference obtained by comparing two data sets to measure privacy risk.
dMinimum cell size of one is the percentage of unique records. This can be expressed with the number of unique records as the numerator and the
number of total records as the denominator.

Evaluation of the Personal Health Identifier Privacy
Risk of the DRN
In the number of total record results of the limited data set, the
variable with the most included minimum cell size of one was
Death_date, which was 98.787% (1141/1155). In addition, the
maximum EC size of two for Death_date means that every
record consists of only two value types. In Death_date of the
safe harbor data set, the minimum cell size of one was 87.359%
(1009/1155), and the maximum EC size was three. Even though
the safe harbor policy was applied, privacy was still threatened.
In the Death_date trust differential gap, the gap with a minimum

cell size of one was 11.428%, and the maximum EC size was
one. The maximum EC size of one is the lowest trust differential
gap among all the maximum EC size gaps. In the limited data
set, the variable with the least minimum cell size of one was
Condition_end_date, which was 4.540% (146,727/3,231,730).
In Condition_end_date from the safe harbor data set, the
minimum cell size of one was 0.003% (125/3,231,730). Even
though the safe harbor policy was applied, the records of a
minimum cell size of one did not significantly decrease. In the
Condition_end_date trust differential gap, the minimum cell
size of one was 4.536%, and the maximum EC size was 2348.
This maximum EC size of 2348 was the highest trust differential
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gap among all the maximum EC size gaps. In the trust
differential gaps with a minimum cell size of one, the NPI
variable had the highest trust differential gap of 71.236%, which
was the difference between the limited (71.244%) and safe
harbor (0.007%) data sets. For Drug_exposure_start_date and
Drug_exposure_end_date, both data sets exhibited the same
maximum EC size and a minimum cell size of one.

Day_of_birth consists of the day part of the date of birth and
was already deidentified as “1” in the SynPUF5PCT data set
(eg, “dd” to “1”); thus, every patient had the exact same
Day_of_birth value. Because it was the same deidentified

method as for the safe harbor policy, the Day_of_birth trust
differential gap was zero (Table 3). It could be provided as a
statistical baseline for five demographic variables without any
PHI variables. When the measured result of the Day_of_birth
variable (13.079%) was compared with that of the
Condition_end_date variable, the result of the
Condition_end_date variable was lower by 8.539 percentage
points (from 13.079% to 4.540%), and when it was compared
with that of the Death_date variable, the result of the Death_date
variable was higher by 85.708 percentage points (from 13.079%
to 98.787%).

Table 3. Comparison of 16 personal health identifier variables and five demographic variables of the SynPUF5PCT with limited and safe harbor data
sets in terms of a minimum cell size of one and the maximum size of the equivalence class.

Trust differential gapcSafe harbor data setLimited data setNumber of
total

recordsb

Variablea

Maximum
size of the
equiva-
lence class

Minimum
cell size
of one
(%)

Maximum
size of the
equiva-

lence classf

Minimum
cell size of

onee (%)

Number of
unique

recordsd

Maximum
size of the
equiva-

lence classf

Minimum
cell size of

onee (%)

Number of
unique

recordsd

87862.9528880.0475811063.310771,6841,218,881Visit_start_date

87962.9608890.03955811063.327771,8911,218,881Visit_end_date

111.428387.3591009298.78711411155Death_date

23464.53823910.004137454.543146,8283,231,730Condition_start_date

23484.53623930.003125454.540146,7273,231,730Condition_end_date

21168.49521800.006201648.502257,1613,024,452Procedure_date

53222.6105750.0805954322.691168,180741,161Measurement_date

30743.1153350.2339832843.349182,497420,986Observation_date

17821.0732186.69331904027.76613,23247,655Device_expo-
sure_start_date

14721.0431876.69631914027.73913,21947,655Device_expo-
sure_end_date

36432.9704091.79728454534.76755,042158,316Drug_expo-
sure_start_date

36432.9704091.79728454534.76755,042158,316Drug_expo-
sure_end_date

4144.4924913.0793296857.57114,50825,200Month_of_birth

004913.07932964913.079329625,200Day_of_birth

217771.23622470.007917071.244865,8401,215,317NPIg

3758.7574913.07932961271.83718,10325,200County

771.93731.448829.4378.999N/A34.7540.488N/AN/AhAverage

aVariable refers to the variable targeted from the Observational Medical Outcomes Partnership common data model as the personal health identifier.
bNumber of total records is each personal health identifier’s total record.
cTrust differential gap is the difference obtained by comparing two data sets to measure privacy risk.
dNumber of unique records is the number of records with a common attribute size of one within the total record.
eMinimum cell size of one is the percentage of unique records. This can be expressed with the number of unique records as the numerator and the
number of total records as the denominator.
fMaximum size of the equivalence class is the largest size of the indistinguishable common attributes.
gNPI: national provider identifier.
hN/A: not applicable.
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In randomly sampled PHIs, privacy risk reduction was different
depending on the number of samples (Table 4 and Multimedia
Appendix 4). The variables with a highly ranked trust
differential gap were Device_exposure_start_date (1000
samples) (33.730%; 87.705% and 53.975% in the limited and
safe harbor data sets, respectively), NPI (10,000 samples)
(83.852%; 98.945% and 15.094% in the limited and safe harbor
data sets, respectively), Visit_start_date (100,000 samples)
(92.566%; 95.583% and 3.016% in the limited and safe harbor
data sets, respectively), and NPI (1,000,000 samples) (73.588%;
73.599% and 0.011% in the limited and safe harbor data sets,
respectively).

Overall, for 1000 random samples, both data sets consisted
primarily of the minimum cell size of one. In the limited data
set, the variables with the most and fewest included minimum
cell size of one records were Visit_end_date (99.978%) and
Day_of_birth (73.754%), respectively. In the safe harbor data
set, the variables with the most and fewest included minimum
cell size of one records were Death_date (89.044%) and NPI
(67.377%), respectively (Table 4). For Visit_end_date in the
limited data set with the most included minimum cell size of
one records, after applying the safe harbor policy, the minimum

cell size of one records of the Visit_end_date variable decreased
to 86.171% (861.710/1000). Even though the safe harbor policy
was applied, the minimum cell size of one records did not
decrease significantly. Death_date, with the most included
minimum cell size of one records in the safe harbor data set,
had a trust differential gap of 9.862% (98.906% and 89.044%
in the limited and safe harbor data sets, respectively). The
privacy risk did not decrease significantly after applying the
safe harbor policy. In the trust differential gap, the variable with
the highest gap was Device_exposure_start_date (33.730%;
87.705% and 53.975% in the limited and safe harbor data sets,
respectively). When the safe harbor policy was applied, the
Death_date privacy risk could be significantly reduced. In the
number of total records of the limited and safe harbor data sets,
with a minimum cell size of one, the most privacy-threatening
variables were Death_date (98.787%) and Death_date
(87.359%), respectively. However, in the random sample of
1000, it was Visit_end_date (99.978%) and Death_date
(89.044%), respectively. Therefore, we verified that
privacy-threatening variables could differ depending on the
number of records. Detailed random sampled results are
displayed in Multimedia Appendix 4.
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Table 4. Comparison of records with a minimum cell size of one between the limited and safe harbor data sets from 16 personal health identifier data
sets.

Trust differential

gapc (%)

Safe harbor data setLimited data setSamplea and variableb

Number of minimum cell sizes of onedNumber of minimum cell sizes of oned

Percentageg (%)Meane (SDf)Percentageg (%)Meane (SDf)

1000 samples

13.95885.968859.68 (16.229)99.926999.26 (1.125)Visit_start_date

13.80786.171861.71 (15.086)99.978999.78 (0.629)Visit_end_date

9.86289.044890.44 (7.478)98.906989.06 (2.155)Death_date

14.08585.759857.59 (15.178)99.844998.44 (1.766)Condition_start_date

13.94285.87858.7 (16.45)99.812998.12 (2.006)Condition_end_date

13.96385.861858.61 (16.504)99.824998.24 (1.804)Procedure_date

14.00385.511855.11 (15.321)99.514995.14 (2.971)Measurement_date

14.27585.479854.79 (14.238)99.754997.54 (2.162)Observation_date

33.7353.975539.75 (16.877)87.705877.05 (13.107)Device_exposure_start_date

33.56653.968539.68 (20.112)87.534875.34 (16.05)Device_exposure_end_date

23.56472.07720.7 (17.729)95.634956.34 (8.669)Drug_exposure_start_date

23.56472.07720.7 (17.729)95.634956.34 (8.669)Drug_exposure_end_date

23.30773.84738.4 (17.707)97.147971.47 (7.612)Month_of_birth

073.754737.54 (17.774)73.754737.54 (17.774)Day_of_birth

32.50367.377673.77 (19.212)99.88998.8 (1.775)NPIh

24.12373.846738.46 (16.856)97.969979.69 (6.59)County

18.869N/AN/AN/AN/AiAverage

aSample is the number of random samples (ie, 1000, 10,000, 100,000, or 1 million) from the limited and safe harbor data sets.
bVariable is the variable targeted from the Observational Medical Outcomes Partnership common data model as the personal health identifier.
cTrust differential gap is the difference obtained by comparing two data sets to measure privacy risk.
dNumber of minimum cell sizes of one is the number of records with a unique record among the total records.
eMean is the average of the quantity with a minimum cell size of one obtained by iterating the random sampling of each variable 100 times.
fSD is the standard deviation of the quantity with a minimum cell size of one obtained by iterating random sampling of each variable 100 times.
gPercentage is the percentage of the quantity with a minimum cell size of one. The numerator is the mean of the minimum cell size of one, which was
obtained from 100 iterations, and the denominator was the number of random samples.
hNPI: national provider identifier.
iN/A: not applicable.

Evaluation of the Quasi-Identifier Privacy Risk of the
DRN
In the results for the number of total records, the privacy risk
of the QI with a minimum cell size of 1 to 20 was measured in
the limited and safe harbor data sets. As shown in Figure 2, for
the minimum cell size of one, the minimum and maximum
percentages in the seven scenarios were 71% and 99%,
respectively, in the limited data set (Figure 2A) and 0.7% and
41%, respectively, in the safe harbor data set (Figure 2B). The
QI privacy risk was represented with a minimum cell size of
one to five (Multimedia Appendix 5 and Table 5). For the

minimum cell size of one in the limited data set, the Diagnosis
(71.465%) and Procedure (76.123%) scenarios showed lower
privacy risks than the other five scenarios (Drug treatment
[95.475%], Lab test [93.012%], Medical history [92.353%],
Death [99.997%], and Device treatment [97.647%]). For the
Death scenario, the limited data set records were concentrated
in the minimum cell size of one to two. The average gaps
between the limited and safe harbor data sets, with the minimum
cell size of one to five decreased from 73.798% to 54.548%.
For the gaps of the minimum cell size of one, the Diagnosis
scenario showed the smallest gap (28.869%), whereas the Death
scenario showed the largest gap (99.212%).
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Figure 2. Percentage of records measuring the quasi-identifier privacy risk with a minimum cell size of 1–20 for the (A) limited and (B) safe harbor
data sets. The flattened lines are expanded (inner graph).
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Table 5. Percentage of records measuring quasi-identifier privacy risk with gaps between the limited and safe harbor data sets with a minimum cell
size of one, two, and five.

Trust differential gapbSafe harbor data setLimited data setNumber of
total

recordsa

Scenarios

Minimum cell size of one,

two, and five, percentagec
Minimum cell size of one, two, and five,

percentagec (recordd)

Minimum cell size of one, two, and five,

percentagec (recordd)

521521521

19.98635.36129.8694.412
(29,737)

14.248
(240,043)

41.595
(1,401,556)

2.333
(15,726)

11.049
(186,162)

71.465
(2,407,996)

3,369,468Diagnosis

33.17342.30144.8714.460
(27,708)

12.472
(193,672)

31.251
(970,568)

1.731
(10,752)

9.902
(153,767)

76.123
(2,364,135)

3,105,665Procedure

88.61189.18789.9170.356
(927)

1.625
(10,569)

5.558 (72,292)0.306 (796)0.895
(5826)

95.475
(1,241,796)

1,300,649Drug treatment

64.95873.55876.2632.385
(7744)

7.748
(62,875)

16.749
(271,819)

0.138 (448)5.043
(40,923)

93.012
(1,509,486)

1,622,884Lab test

76.75980.09480.2741.550
(4183)

4.466
(30,115)

12.079
(162,898)

0.224 (606)4.286
(28,900)

92.353
(1,245,455)

1,348,569Medical history

098.52999.2120.719
(1755)

0.686
(4185)

0.784 (9557)0 (0)0.003 (18)99.997
(1,218,845)

1,218,881Death

95.62595.95596.1820.139
(348)

0.380
(2372)

1.464 (18,271)0.059 (149)0.152 (954)97.647
(1,218,368)

1,247,726Device treatment

54.45873.56973.798N/AN/AN/AN/AN/AN/AN/AeAverage

aNumber of total records denotes each total record of the scenarios.
bTrust differential gap indicates the differences obtained by comparing two data sets to measure privacy risk.
cMinimum cell size of one, two, and five represents the percentage of records that have a common attribute size of one, two, and five, respectively. This
percentage is presented as the records of minimum cell size of one, two, and five as the numerator and the total number of records as the denominator.
dRecord is the number of records with a common attribute size of one, two, and five within the total records.
eN/A: not applicable.

In the random samples with a minimum cell size of one, (1) the
average percentage of the limited data set decreased from
99.986% to 99.327%, (2) the average percentage of the safe
harbor data set decreased from 93.493% to 21.460%, and (3)
the average trust differential gap increased from 6.493% to
71.868% (Table 6). In the limited data set with 1000 to 1 million
random samples, the scenario with the most included records
of a minimum cell size of one was the Death scenario (1000 to
100,000 random samples had 99.999% and 1 million had
99.998%). In the safe harbor data set with 1000 to 1 million
random samples, the scenario with the most included records
of a minimum cell size of one was the Diagnosis scenario (1000
random samples had 99.858%, 10,000 had 98.685%, 100,000
had 89.758%, and 1 million had 60.361%). In the order of the
four random samples, the scenarios with the highest trust
differential gap were Device_treatment (1000 random samples:
12.980%, 99.980% and 87.000% in the limited and safe harbor
data sets, respectively; 10,000 random samples: 60.118%,

99.831% and 39.713% in the limited and safe harbor data sets,
respectively; 100,000 random samples: 93.598%, 98.805% and
5.207% in the limited and safe harbor data sets, respectively)
and Death (1 million random samples: 99.063%, 99.998% and
0.934% in the limited and safe harbor data sets, respectively).
When the safe harbor policy was applied, privacy risks were
significantly reduced. In the number of total records, the most
privacy-threatening scenarios were Death (99.997%) and
Diagnosis (41.595%) in the limited and safe harbor data sets,
respectively, with a minimum cell size of one. In the random
samples with a minimum cell size of one in the limited data set,
the most privacy-threatening scenario was Death, which had
privacy risks of 99.999% (1000 to 100,000 random samples)
and 99.998% (1 million random samples). In the safe harbor
data set, Diagnosis had privacy risks of 99.858% (1000 random
samples), 98.685% (10,000 random samples), 89.758% (100,000
random samples), and 60.361% (1 million random samples).
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Table 6. Comparison of records with a minimum cell size of one between the limited and safe harbor data sets from seven scenarios.

Trust differential

gapc (%)

Safe harbor data setLimited data setSamplea and scenariob

Number of minimum cell sizes of onedNumber of minimum cell sizes of oned

Percentageg (%)Meane (SDf)Percentageg (%)Meane (SDf)

1000

0.12299.858998.58099.980999.800Diagnosis

0.23699.740997.40099.976999.760Procedure

11.03988.947889.47099.986999.860Drug_treatment

4.29995.691956.91099.990999.900Lab_test

6.76493.232932.32099.996999.960Medical_history

10.01689.983899.83099.999999.990Death

12.98087.000870.00099.980999.800Device_treatment

6.49393.493N/A99.986N/AhAverage

10,000

1.07398.6859868.54099.7599975.850Diagnosis

2.30997.4389743.83099.7479974.680Procedure

53.37846.4284642.82099.8069980.620Drug_treatment

26.73973.2017320.07099.9399993.920Lab_test

37.63062.2676226.70099.8979989.730Medical_history

51.48748.5124851.23099.99909999.980Death

60.11839.7133971.31099.8319983.140Device_treatment

33.24866.606N/A99.854N/AAverage

100,000

7.96789.75889,757.54097.72597,724.930Diagnosis

15.64982.09382,093.25097.74397,742.680Procedure

86.35612.06312,062.98098.41998,419.410Drug_treatment

57.21242.16442,164.13099.37699,375.690Lab_test

70.46928.55328,552.75099.02299,022.020Medical_history

90.8929.1079106.63099.99999,999.640Death

93.5985.2075206.99098.80598,804.960Device_treatment

60.30638.420N/A98.727N/AAverage

1,000,000

24.32160.361603,607.95084.682846,819.090Diagnosis

39.20747.250472,502.94086.458864,575.710Procedure

89.7255.98359,825.33095.708957,078.730Drug_treatment

74.47220.681206,809.13095.153951,528.090Lab_test

80.15413.462134,617.45093.616936,158.630Medical_history

99.0630.9349344.16099.998999,975.900Death

96.1311.55015,496.02097.680976,802.140Device_treatment

71.86821.460N/A93.327N/AAverage

aSample is the number of random samples (ie, 1000, 10,000, 100,000, or 1 million) from the limited and safe harbor data sets.
bScenario is the variable targeted from the Observational Medical Outcomes Partnership common data model as the personal health identifier.
cTrust differential gap is the difference obtained by comparing two data sets to measure privacy risk.
dNumber of minimum cell sizes of one is the number of records with a unique record among the total records.
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eMean is the average of the quantity with a minimum cell size of one obtained by iterating the random sampling of each variable 100 times.
fSD is the standard deviation of the quantity with a minimum cell size of one obtained by iterating random sampling of each variable 100 times.
gPercent is the percentage of the quantity with a minimum cell size of one. The numerator is the mean of the minimum cell size of one, which was
obtained from 100 iterations, and the denominator was the number of random samples.
hN/A: not applicable.

Discussion

Principal Findings
In this study, we quantified the DRN privacy risk focusing on
PHIs and QIs using 18 HIPAA identifiers and the findings of
previous studies [34-43]. To measure the DRN privacy risk, we
compared the limited data set, consisting of PHIs and QIs from
the SynPUF5PCT data set, with the safe harbor data set
generated by applying the safe harbor policy on the limited data
set. More specifically, privacy risk was measured with the gap
obtained between the two data sets, based on the trust
differential, applying the threshold of the minimum cell size
with the calculated size by the EC. We verified that the PHIs
and QIs increased the DRN privacy risk. However, the privacy
risk decreased overall when the safe harbor policy was applied
to the DRN. To the best of our knowledge, this is the first study
to verify that PHIs and QIs may threaten patient privacy within
DRNs.

Prior studies have shown that patient privacy is threatened by
PHIs and QIs within clinical databases [53,54]. The DRN of
this study may have the same privacy risk as those in previous
studies because the DRN at a single site follows a conventional
database, although it does not share data [34-41]. Therefore,
the privacy risk in a DRN should be quantified and objectively
measured for three important reasons. First, because existing
patient information in a CDM affects the privacy risk, the DRN
privacy risk can be mitigated by providing objectively measured
PHI and QI privacy risks [62]. Second, researchers can
understand the mechanism of privacy risk change with the
objective differences measured by comparing two different
deidentification levels of data sets [63]. Finally, an objective
measurement of privacy risk will contribute to the design of
more secure privacy protection methods suitable for a DRN.

Consideration for Measuring Privacy Risk From
Variable Characteristics
The PHI results, which measure the privacy risk, were verified
in two different deidentification levels and indicated a much
greater privacy risk reduction in the safe harbor data set than in
the limited data set. In addition, we found that privacy risks
differ depending on PHI characteristics. The privacy risk of the
Visit_start_date variable, which occurs multiple times per
patient, was significantly reduced after applying the safe harbor
policy. However, the Death_date variable, which occurs only
once per patient, still had many remaining unique records after
the safe harbor policy was applied. The State variable, which
is one of the demographic variables in the data set of the
Death_date variable, still had unique values because it had not
been deidentified by the safe harbor policy. Although the NPI
variable had the highest reduction rate of privacy risk after
applying the safe harbor policy, we found that it could not be
used as data because it was completely masked. For the

Day_of_birth as a statistical baseline, we compared the
Day_of_birth with other PHI variables and could interpret a
privacy risk according to the characteristics of the variable as
follows. First, because each patient had multiple points for the
Condition_end_date value in the SynPUF5PCT, there were
fewer unique records relatively. Thus, the privacy risk of
Condition_end_date was lower than that of Day_of_birth.
Second, because every patient had only one point for the
Death_date value, most of them had unique records. Thus, the
privacy risk of Death_date was higher than that of Day_of_birth.

In the results of QI, when the limited data set had a minimum
cell size of one, the privacy risk differed based on the
characteristics of the scenario. In our study, we found that the
QI privacy risks of the Drug treatment, Lab test, Medical history,
Death, and Device treatment scenarios decreased on average
1.3 times more than those of the Diagnosis and Procedure
scenarios, with a minimum cell size of one. The reason for the
relatively low reduction in privacy risk under the Diagnosis and
Procedure scenarios is that clinical order codes, such as
Condition_concept_id and Procedure_concept_id, which used
QIs, were prescribed three times on average with the same code.

The privacy risk could differ depending on the characteristics
of variables, and the “balls and bins problem” theoretical basis
supports our research [64]. As the number of bins increases, it
could frequently take only one ball to fill than fewer bins.
Similarly, the Visit_end_date variable, with 1096 distinct values
(“bins”), consisted of more unique records (“only one ball”)
than the Month_of_birth with 12 distinct values. Consequently,
a privacy protection approach must be customized or optimized
by considering the characteristics of each variable.

Consideration for Measuring Privacy Risk From
Record Extraction
Through the random samples, we found the following two facts:
(1) Depending on the number of records, the privacy-threatening
variable or scenario could differ and (2) The influence of safe
harbor policy could differ depending on the number of records,
because the number of unique records, which are included with
PHI data sets or QI scenarios, differs according to each random
sampling. Therefore, to measure the true privacy risk of PHIs
and QIs, it is necessary to compare the same records through
random sampling.

A minimum cell size of five, which has been a commonly used
threshold in previous studies [56], may be difficult to apply as
a threshold for measuring the DRN privacy risk. In the QI
privacy risk experiment, the Death scenario of the limited data
set was not appropriate for a minimum cell size of five because
the records were concentrated in a minimum cell size of one to
two. Therefore, our results reflect the fact that a minimum cell
size of five may not be suitable for the current DRN. However,
it should be recognized that the captured features may differ
according to the data set used. Therefore, further research is
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required using various real-world data sets to find an appropriate
minimum cell size that can contribute to the measurement of
the DRN privacy risk.

Limitations
This study has some limitations. First, this study used a public
data set (SynPUF5PCT), which does not handle all PHIs or QIs
existing in a DRN. Therefore, we could not consider the CDM
of real-world data sets generated by each institution. However,
the results of this study are reliable because the SynPUF5PCT
data set is an officially published data set by the OHDSI [50].
Second, when measuring the QI privacy risk, some QIs were
considered based on scenarios and not based on all variables.
Thus, we did not handle the privacy risk considering the
combination of all QIs. However, the CDM does not use all
variables because the research is based on clinical questions
[59]. In addition, we focused on the frequently used scenarios.
Third, we did not consider some PHIs and QIs within free text
from Note and Note_nlp tables [48], because in our research
methodology, PHIs and QIs are detected in the structure of
OMOP CDM based on 18 HIPAA identifiers and not in the free
text. However, previous studies have indicated that free text
includes not only PHIs and QIs but also direct identifiers

[65,66]. Therefore, further research needs to include a free text
data set. Fourth, we did not consider privacy risk depending on
the timespan. Because the SynPUF5PCT data set used in this
study contained only 3-year records (2008-2010) and the
Day_of_birth variable had already been deidentified as “1,” we
could not measure privacy risk according to an extended (such
as 20-year records) or a narrowed (such as single-week records)
timespan. A future study should consider timespan-related
privacy.

Conclusions
In this study, we validated and quantified the privacy risks of
PHIs and QIs in the DRN. We objectively measured the privacy
risk reduction with the gaps obtained by comparing a safe harbor
policy with the DRN. In addition, we measured the true privacy
risk of PHIs and QIs by random sampling to adjust for the
influence of the number of records. Therefore, it is necessary
to reinforce a level of privacy protection for each institution
because the DRN involves big data research based on
multi-institution collaboration. Our study findings can help in
constructing an advanced DRN environment that protects these
privacy risks as a quality measurement index.
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