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Abstract

Background: Though shock wave lithotripsy (SWL) has developed to be one of the most common treatment approaches for
nephrolithiasis in recent decades, its treatment planning is often a trial-and-error process based on physicians’subjective judgement.
Physicians’ inexperience with this modality can lead to low-quality treatment and unnecessary risks to patients.

Objective: To improve the quality and consistency of shock wave lithotripsy treatment, we aimed to develop a deep learning
model for generating the next treatment step by previous steps and preoperative patient characteristics and to produce personalized
SWL treatment plans in a step-by-step protocol based on the deep learning model.

Methods: We developed a deep learning model to generate the optimal power level, shock rate, and number of shocks in the
next step, given previous treatment steps encoded by long short-term memory neural networks and preoperative patient
characteristics. We constructed a next-step data set (N=8583) from top practices of renal SWL treatments recorded in the
International Stone Registry. Then, we trained the deep learning model and baseline models (linear regression, logistic regression,
random forest, and support vector machine) with 90% of the samples and validated them with the remaining samples.

Results: The deep learning models for generating the next treatment steps outperformed the baseline models (accuracy = 98.8%,
F1 = 98.0% for power levels; accuracy = 98.1%, F1 = 96.0% for shock rates; root mean squared error = 207, mean absolute error
= 121 for numbers of shocks). The hypothesis testing showed no significant difference between steps generated by our model
and the top practices (P=.480 for power levels; P=.782 for shock rates; P=.727 for numbers of shocks).

Conclusions: The high performance of our deep learning approach shows its treatment planning capability on par with top
physicians. To the best of our knowledge, our framework is the first effort to implement automated planning of SWL treatment
via deep learning. It is a promising technique in assisting treatment planning and physician training at low cost.

(JMIR Med Inform 2021;9(5):e24721) doi: 10.2196/24721
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Introduction

Shock wave lithotripsy (SWL, or extracorporeal shock wave
lithotripsy) has been considered as a safe and effective
noninvasive treatment option for nephrolithiasis since its
introduction in early 1980s [1]. Reported SWL stone-free rates

approach 74%-88% [2,3]; however, it is not without risk.
Common contraindications to SWL include pregnancy,
coagulopathy or use of platelet aggregation inhibitors, aortic
aneurysms, severe untreated hypertension, and untreated urinary
tract infections [4]. Failure of SWL treatment results in
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unnecessary exposure to various complications, such as loin
pain, dysuria, analgesia, hematuria, and infection [3,5].

Given such risks, previous studies have identified proper patient
selection, modifications in treatment technique, and employment
of adjunctive measures as elements to improve SWL outcomes
[6]. The treatment outcomes are strongly affected by a variety
of preoperative patient characteristics (PPC), including BMI
[7-9], stone location, overall stone burden [4], skin-to-stone
distance [10,11], stone composition [12,13], stone density
[14-17], and variation coefficients of stone density [18]. Various
studies have also demonstrated that precise targeting [19,20]
and tight coupling [21,22] increase fragmentation probability.

Appropriate control over shock wave delivery has a strong
impact on treatment success and minimal complications. A
treatment plan for shock wave delivery is a series of shock wave
delivery steps with a specified power level, shock rate, and
number of shocks; a successful sample SWL treatment plan is

shown in Table 1. A plan precisely specifies step-by-step power
levels, shock rates, and number of shocks. Each treatment step
has a single power level, a constant shock rate, and shocks
usually between 500-2500 [23-28]. Physicians are obliged to
design plans that both deliver sufficient energy for breaking
stones and minimize damage to body tissues. While the range
of shock rates is typically 30-180 shocks/minute, a shock rate
of 60-90 shocks/minute has been shown to improve efficacy
[29-31] and decrease potential injury risks. The main reason is
that the slower shock rate of 60-90 shocks/minute allows time
for cavitation bubbles caused by the shock to disperse before
the next shock arrives. Physicians can check stone fragmentation
via x-ray. If the fragments of treated stones are ≤4 mm, they
typically pass on their own without further treatment. An SWL
treatment has to be stopped to reduce risks of tissue damage
when the shock number reaches the maximum limit, even though
the treated stone has not broken up.

Table 1. A sample shock wave lithotripsy (SWL) treatment plan.

Number of shocksShock rate (per minute)Power levelShock wave delivery steps

1001201Step 1

1001202Step 2

1001203Step 3

1001204Step 4

1001205Step 5

1001206Step 6

1001207Step 7

23001208Step 8

Effective fragmentation leads to fewer shocks overall and
therefore less damage to tissue [32,33]. In order to maximize
treatment effect and control tissue damage, ramping protocols
have been developed. The low-energy pretreatment allows for
better pain management, thus preventing movement and
subsequent decoupling of the shock head [34]. Clinical trials
support that stepwise voltage ramping is associated with less
tissue damage compared with a fixed maximal voltage protocol
[23,25,26,35].

Although the strength, rates, and total number of shock waves
are identified as the important factors of SWL treatment
outcomes, there is no case-by-case guideline for physicians to
optimize shock wave delivery protocols that take into account
patient demographics and stone characteristics. The optimal
energy delivery strategy remains controversial. In vitro and in
vivo studies suggest that the strategy of ramping up shock wave
energy is beneficial to improve fragmentation and stone
clearance and limit renal damage, but clinical results are
discordant [6,23]. In the current planning process, physicians
adopt a trial-and-error approach to tune treatment plans. This
approach involves nonintuitive iterations based on physicians’

subjective decisions. Inexperienced physicians using this method
may be more apt to produce inefficient or ineffective treatment
plans. Such dependence on physicians’ unique experience also
leads to significant variability in the quality and consistency of
treatment delivery. Moreover, different types of machines have
different designs and different sources for generating shock
waves. Therefore, an effective treatment plan for one machine
may not transfer to a different machine.

As a result, SWL success rates are significantly different among
physicians. Table 2 shows the percentiles of success rates of
171 physicians who recorded outcomes in the International
Stone Registry, a database of accumulated treatment records
for all patients treated within a national network of SWL
services provided by Translational Analytics and Statistics, a
lithotripsy service provider. Here, treatment success is defined
as treated stone fragments ≤4 mm that typically pass on their
own without further treatment. The top 20% of physicians have
success rates higher than 94.3%, while the success rates of the
bottom 20% of physicians are lower than 79.1%. Such variation
indicates that the inexperience with and subjectivity of SWL
treatment could lead to unnecessary damage to patients.
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Table 2. Percentiles of treatment success rates.

Treatment success rates, %Percentiles

54.5Minimum

74.810th percentile

79.120th percentile

82.630th percentile

84.740th percentile

86.650th percentile

88.960th percentile

91.470th percentile

94.380th percentile

10090th percentile

100Maximum

Machine learning techniques have been applied in the planning
process of high-quality personalized treatments, such as
radiation therapies [36-39], chemotherapies [40,41] and diabetes
treatments [42]. Most machine learning models only take
independent vectors as inputs, so they are not suited to the
sequential nature of SWL treatment plans. However, recurrent
neural networks (RNNs) are naturally suited to temporal
sequence inputs. Several variants like long short-term memory
(LSTM) [43] and gated recurrent unit [44] have been developed
for sequential features and applied to disease diagnosis [45,46].
Following these recent works, we aimed to validate the deep
learning approach to generate next SWL treatment steps by
learning the practices of top physicians and, based on the deep
learning approach, develop a system to automatically produce
personalized, unbiased, and consistent SWL treatment plans.
The generated treatment plans can help physicians minimize
the trial-and-error process and develop evidence-based
personalized treatment based on PPC, including patient
demographics and stone characteristics. An additional benefit
is that this treatment planning framework can be generalized to
different machine types, so physicians can easily adapt to new
generations of SWL machines.

Methods

Data
To train and evaluate our models, we used a dataset of renal
treatments with Storz SLX-T from the International Stone
Registry provided by Translational Analytics and Statistics.
Each treatment consisted of PPC and several treatment steps
(ie, ternaries of a power level, a shock rate, and number of
shocks). The power level ranged from 1 to 9. The options for
shock rates were 60, 90, 120, and 180 shocks per minute. The
maximum number of shocks was typically set at 3000 for renal
stones. The PPC in our dataset included patient gender, age,
stone location (one-hot encoding), stone size, mean arterial
pressure before treatment, anticoagulant use, sedation use,
whether multiple stones existed, and whether strapping was
applied.

Our deep learning models were trained with the best treatment
plans for obtaining the best planning capability. We selected
54 physicians in the top quartile of treatment success rates.
These physicians had more than 91.4% treatment success rates.
Then, we selected their successful treatment cases with no
reported complications, in which they were stone free or had
fragments ≤4 mm and typically passed on their own without
further treatment. We identified 1216 cases in total and assumed
these cases are the best practices in SWL treatment planning.

We then built the step dataset from the identified successful
cases to train and evaluate the step generation model. We
identified steps by power level change or shock rate change and
limited the number of shocks to 1000 for each step, a natural
step length in previous literature [25]. If more than 1000 shocks
were delivered under the same power level and the same shock
rate, we broke them into multiple steps with 1000 shocks
maximum.

Then, we exhaustively decomposed each case into samples by
step for the step generation task, where the ternary of each step
was generated by its previous steps and PPC. An n-step
treatment case was decomposed into n – 1 samples: we used
the first i step(s) and PPC as the model inputs and the power
level, shock rate, and number of shocks in the (i + 1)th step as
the model outputs, where 0 < i < n. For example, the SWL
treatment case in Table 1 that consisted of 10 steps after the last
2300 shocks at power level 8 was split into 3 steps: (1) power
level = 8, shock rate = 120, number of shocks = 1000; (2) power
level = 8, shock rate = 120, number of shocks = 1000; and (3)
power level = 8, shock rate = 120, number of shocks = 300.
Then, we decomposed this case into 9 samples: (1) The input
is the first step (power level = 1, shock rate = 120, number of
shocks = 100) and PPC, and the output is the second step (power
level = 2, shock rate = 120, number of shocks = 100); (2) the
input is the first 2 steps and PPC, and the output is the third step
(power level = 3, shock rate = 120, number of shocks = 100);
…; and (9) the input is the first 9 steps and PPC, and the output
is the last step (power level = 8, shock rate = 120, number of
shocks = 300).

At last, we constructed 8583 samples for step generation. We
randomly chose 90% of the samples for model training and used
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the remaining samples for validation. In the data split, we
enforced that samples from the same treatment case were only
contained within the same split.

Deep Learning for Step Generation
We first built deep neural networks to separately generate power
levels, shock rates, and numbers of shocks for the next steps,
given previous steps and PPC (Figure 1). Most off-the-shelf
machine learning models only take inputs represented as
independent vectors rather than a sequence of previous steps.
However, RNNs are naturally suited to temporal sequence
inputs, so we adopted an RNN variant, the LSTM model [43],
which can keep track of arbitrary long-term dependencies in

the input sequences, to encode the treatment sequences to
vectors. More specifically, assume the i-th step is encoded as a
vector xi, then the LSTM model is defined iteratively as follows:

where the initial values c0 and h0 are zero vectors, ° denotes the
element-wise product, σ is the sigmoid function, and h1 is the
representation of the first i treatment steps.

Figure 1. The framework for automated shock wave lithotripsy (SWL) treatment planning. LSTM: long short-term memory; PPC: preoperative patient
characteristics; ReLU: rectifier linear unit.

Then, the encoded previous steps were concatenated to PPC
vectors and fed to deep neural networks. In our implementation,
we used 2 fully connected layers with a rectifier linear unit
(ReLU) function as activation functions, because ReLU
functions are nonsaturated and make the model less likely to
overfit [47]. At last, we used different classifiers or regressors
to generate power levels, shock rates and shock numbers. The
formula are as follows.

where hn is the n previous steps encoded by LSTM, and p
denotes the PPC vector. The classifiers at the end of the
networks were softmax functions for generating power level
and shock rate because they are categorical, and we used
categorical cross-entropy as the loss functions; for shock number
generation in which the output is an integer, we used ReLU as
the regressor and mean squared error (MSE) as the loss function.

For all the deep neural networks, we chose the Adam SGD
optimizer [48,49] in model training.

Statistical Analysis
We hypothesized that the deep learning approach is comparable
to the treatment practices of top physicians and that it
outperforms machine learning models which do not take
treatment sequences as inputs. Thus, we compared the
performance of the deep learning model and other up-to-date
machine learning models.

Three classical machine learning approaches were selected as
baselines for generating power level, shock rate, and number
of shocks, respectively. We used logistic regression, random
forest classifier (RFC), and support vector classifier (SVC) as
the baseline models for power level generation and shock rate
generation. We chose linear regression, random forest regression
(RFR), and support vector regression (SVR) as the baseline
models to generate the number of shocks. As these baseline
models could not be fed with sequential data directly, the
features for the baseline models were (1) the average power
level, average shock rate, and average number of shocks in
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previous steps; (2) the power level, shock rate, and number of
shocks in the last step; and (3) PPC.

We trained the deep learning models and baseline models with
90% of the samples. Then, we validated them with the remaining
samples and calculated evaluation metrics. In the multiclass
tasks of power level generation and shock rate generation, we
used accuracy, macro-averaged precision, macro-averaged
recall, and macro-averaged F1 score as the evaluation metrics
[50,51]. Accuracy was defined as a ratio of correctly generated
observations to the total observations. Suppose the number of
categories is n and the confusion matrix of a classifier is a n x
n matrix C, where Ci j is the number of samples that is labeled
as i but generated as j, then the accuracy is defined as

The precision and recall of category k are defined as

Macro-averaged precision and recall are the average of
precisions and recalls for all categories:

The F1 score of category k is defined as the harmonic mean of
precision and recall of category k

and macro-averaged F1 score is defined as the average of F1
scores for all categories:

Because the number of shocks is an integer, we used the root
mean squared error (RMSE) and mean absolute error (MAE)
as the metrics to evaluate the models generating the number of
shocks and to measure the average magnitude of errors. At last,
we conducted paired t test to detect the difference between
treatment steps generated by machine learning models and
treatment practices of top physicians.

Results

The deep learning models generated high-quality treatment
steps and outperformed the baselines, as summarized in Tables
3-5. In power level generation (Table 3), the accuracy of the
deep learning model was 0.988, and the precision, recall, and
F1 scores were all 0.980. The best baseline was the SVC, for
which the accuracy was 0.981, precision was 0.969, recall was
0.976, and F1 score was 0.972, lower than the performance of
the deep learning model. For shock rate generation (Table 4),
our model achieved an F1 score of 0.960 along with an accuracy
of 0.981, precision of 0.963, and recall of 0.957. Among the
baseline models, the logistic regression performed the best in
accuracy and precision, at 0.978 and 0.932, respectively, while
the RFC had the best recall and F1 score, at 0.986 and 0.956,
respectively. Though the recall of the RFC and the logistic
regression was better than that of the deep learning model, the
accuracy, precision, and F1 score of our proposed model
outperformed all the baseline models. The RMSE of the
generation of the number of shocks (Table 5) by the deep
learning model was 207, about 19% less than the best baseline
model RFR. The MAE of the deep learning model was 121,
about 23% less than the best baseline model.

Table 3. Model performance in power level generation.

P valuet statisticF1RecallPrecisionAccuracyModel

.4800.7070.9800.9800.9800.988Deep learning

.2091.2570.9640.9640.9640.974Logistic regression

<.0014.9760.8030.8590.8230.708RFCa

.0282.2050.9720.9760.9690.981SVCb

aRFC: random forest classifier.
bSVC: support vector classifier.

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e24721 | p. 5https://medinform.jmir.org/2021/5/e24721
(page number not for citation purposes)

Chen et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 4. Model performance in shock rate generation.

P valuet statisticF1RecallPrecisionAccuracyModel

.7820.2770.9600.9570.9630.981Deep learning

.0202.3310.9450.9600.9320.978Logistic regression

.0392.0640.9560.9860.9300.952RFCa

.0122.5100.9390.9560.9260.976SVCb

aRFC: random forest classifier.
bSVC: support vector classifier.

Table 5. Model performance in shock number generation.

P valuet statisticMAEbRMSEaModel

.7270.350121207Deep learning

.3590.917206265Linear regression

.5300.628158255RFRc

<.0019.427173350SVRd

aRMSE: root mean squared error.
bMAE: mean absolute error.
cRFR: random forest regression.
dSVC: support vector regression.

The analysis also tested the difference between the generated
step and the ground truth. In the paired t test result, there was
no evidence indicating a difference between the generated steps
of the deep learning model and treatment steps planned by top
physicians, while the outputs of some baseline models
significantly deviated from the ground truth. The power levels
generated by the RFC and SVC, the shock rates generated by
all the baseline models, and the numbers of shocks generated
by the SVR were significantly different from the treatment steps
in the successful SWL cases of top physicians.

Furthermore, we analyzed the performance of the deep learning
models on samples of various treatment sequence lengths to
gain a better understanding of how the treatment sequence
information could aid decision making. We partitioned the
validation dataset into 9 sets by the number of previous
treatment steps and summarized the validation results in Tables
6-8. As shown in Table 6, the deep learning model was able to
perfectly generate power levels when previous treatment steps
were fewer than 6. As the number of previous treatment steps
increases, the treatment becomes more complicated and leads
to lower performance of power level generation by the deep
learning model. The deep learning model reached the lowest

accuracy (accuracy = 0.875) and lowest recall (recall = 0.500)
in samples containing 9 previous treatment steps and the lowest
precision (precision = 0.873) and lowest F1 score (F1 = 0.888)
in samples containing 8 previous treatment steps. Similarly, the
deep learning model generated highly accurate shock rates in
samples with previous treatment steps fewer than 6; the model
reached the lowest accuracy (accuracy = 0.889), lowest precision
(precision = 0.857), and lowest recall (recall = 0.631) in samples
containing 7 previous treatment steps and the lowest F1 score
(F1 = 0.861) in samples containing 6 previous treatment steps
(Table 7). For the performance of generating the number of
shocks (Table 8), the RMSE and MAE generally increased as
the number of previous treatment steps increased, and the
maximum number of errors appeared in samples with 5 previous
treatment steps (RMSE = 365; MAE = 310). The results show
the excellent performance of deep learning models in step
generation in the first 4-6 steps, where most successful cases
end. It reflects the reliability of deep learning models in aiding
treatment decision making. Longer treatment lengths typically
indicate treatment difficulties; even our deep learning models
cannot generate treatment steps with high accuracy in these rare
cases.

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e24721 | p. 6https://medinform.jmir.org/2021/5/e24721
(page number not for citation purposes)

Chen et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 6. Power level generation performance in samples containing different numbers of previous treatment steps.

F1RecallPrecisionAccuracyNumber of previous treatment steps

1.0001.0001.0001.0001

1.0001.0001.0001.0002

1.0001.0001.0001.0003

1.0001.0001.0001.0004

1.0001.0001.0001.0005

0.9800.9800.9800.9836

0.9250.9390.9150.9267

0.8880.9140.8730.8898

0.9330.5000.8750.8759

Table 7. Shock rate generation performance in samples containing different numbers of previous treatment steps.

F1RecallPrecisionAccuracyNumber of previous treatment steps

1.0001.0001.0001.0001

0.9840.9720.9970.9922

1.0001.0001.0001.0003

1.0001.0001.0001.0004

0.9850.9740.9970.9925

0.8610.8020.9760.9756

0.8880.6310.8570.8897

0.9020.6420.8640.9178

1.0001.0001.0001.0009

Table 8. Performance of the generation of the number of shocks in samples containing different numbers of previous treatment steps.

MAEbRMSEaNumber of previous treatment steps

25311

17322

24343

601394

3103655

2333176

1902737

2422758

76999

aRMSE: root mean squared error.
bMAE: mean absolute error.

The validation showed that the capability of the deep learning
model for step generation is on par with that of top physicians.
Based on the high-quality step generation, we generated
treatment plans by iteratively generating steps with the trained
models (Figure 1). We started from an empty treatment
sequence. We fed PPC and the current treatment sequence into
the step generation model. The generated next step was then
added to the current treatment sequence. We repeated such a
process until the total number of shocks reached the upper limit.

If a physician confirms stone fragmentation via x-ray before
reaching the maximum limit of the number of shocks, they can
stop immediately; if the number of shocks reaches the maximum
limit, the physician has to stop for risk control. Thus, the
generated treatment sequence is enough to guide practice. The
specifications of individual lithotripters limit the maximum
number of shocks per session to 2000-4500 [4], and for the
majority of treatments of upper ureteral and renal stones, the
range is 2000-3500 [52]. We used 3000 as the upper limit in
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our implementation, which is a typical shock limit in renal stone
treatment practices and can be adjusted according to shock wave
generating machines.

Discussion

Principal Findings
Previous literature has shown a series of work on standardizing
SWL treatment [2,53]; however, energy delivery is still
controversial and unclear [4,6], relying on physicians’subjective
judgement. Manual treatment design is significantly affected
by nonstandardizable radiographic appearance of stones, bias
to a low power level for fear of complications, and preconceived
expectations. Our study utilized deep learning to generate
treatment steps and developed a framework for automated SWL
treatment planning.

The analysis results revealed that deep learning models for
treatment step generation effectively learn from SWL treatment
plans and achieve the step generation capability of top
physicians. The performance comparison indicated that
utilization of a previous treatment sequence in deep learning
improves the quality of generated steps. By iteratively generating
treatment steps, our automated planning framework can avoid
human biases and generate personalized, high-quality, and
consistent SWL treatment plans based on PPC, including patient
demographics and stone characteristics. With the help of these
automatically generated treatment plans, physicians can
minimize the trial-and-error process and implement
evidence-based personalized treatment. This framework can be

generalized to different machine types, so physicians can easily
adapt to new generations of SWL machines.

Limitations
Our proposed model only learns and imitates the best practices,
but cannot perform better than them. Even the best physician
cannot plan successful SWL treatment plans for all cases, so
successful difficult cases, including those requiring long
treatment sequences, are rare for model training. Therefore, our
model may be good at planning easier cases, but less adept in
rare difficult cases, similar to physicians’ actual practice. As
the treatment cases, especially successful difficult cases,
accumulate, our model is likely to gain an expert-level planning
capability to handle difficult cases.

Due to data limitations, we were only able to consider a small
set of patient demographics and stone characteristics. However,
our framework can be easily extended to utilize a larger set of
parameters than has previously been used. Moreover, the data
are retrospective. Therefore, clinical studies are warranted to
confirm the effectiveness and efficiency of this framework.

Conclusions
To the best of our knowledge, our framework is the first effort
to implement automated planning of SWL treatment via deep
learning. Its assistance for inexperienced urologists in designing
SWL treatment plans is useful in both SWL treatment planning
and physician training. While the applications of machine
learning in diagnosis are becoming more mature, few studies
exist in automated treatment plan generation. Our approach is
a step forward in exerting the potential of machine learning in
medical sciences.
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