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Abstract

Background: Drug prescriptions are often recorded in free-text clinical narratives; making this information available in a
structured form is important to support many health-related tasks. Although several natural language processing (NLP) methods
have been proposed to extract such information, many challenges remain.

Objective: This study evaluates the feasibility of using NLP and deep learning approaches for extracting and linking drug names
and associated attributes identified in clinical free-text notes and presents an extensive error analysis of different methods. This
study initiated with the participation in the 2018 National NLP Clinical Challenges (n2c2) shared task on adverse drug events
and medication extraction.

Methods: The proposed system (DrugEx) consists of a named entity recognizer (NER) to identify drugs and associated attributes
and a relation extraction (RE) method to identify the relations between them. For NER, we explored deep learning-based approaches
(ie, bidirectional long-short term memory with conditional random fields [BiLSTM-CRFs]) with various embeddings (ie, word
embedding, character embedding [CE], and semantic-feature embedding) to investigate how different embeddings influence the
performance. A rule-based method was implemented for RE and compared with a context-aware long-short term memory (LSTM)
model. The methods were trained and evaluated using the 2018 n2c2 shared task data.

Results: The experiments showed that the best model (BiLSTM-CRFs with pretrained word embeddings [PWE] and CE)
achieved lenient micro F-scores of 0.921 for NER, 0.927 for RE, and 0.855 for the end-to-end system. NER, which relies on the
pretrained word and semantic embeddings, performed better on most individual entity types, but NER with PWE and CE had the
highest classification efficiency among the proposed approaches. Extracting relations using the rule-based method achieved higher
accuracy than the context-aware LSTM for most relations. Interestingly, the LSTM model performed notably better in the
reason-drug relations, the most challenging relation type.

Conclusions: The proposed end-to-end system achieved encouraging results and demonstrated the feasibility of using deep
learning methods to extract medication information from free-text data.

(JMIR Med Inform 2021;9(5):e24678) doi: 10.2196/24678
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Introduction

Background
Electronic health records (EHRs) are a valuable source of
routinely collected health data that can be used for secondary
purposes, including clinical and epidemiological research [1].
They typically contain information on consultations, admissions,
symptoms, clinical examinations, test results, diagnoses,
treatments, and outcomes. Medication prescriptions are a key
source for understanding the effects of patient treatment. In
some settings (eg, general practitioners’ practices), they might
be recorded in a structured fashion through prescribing software
and would comprise, apart from drug names, medication
attributes such as dosage, frequency, and duration. Still, there
are often additional, free-text sources of prescription
information, such as clinic letters or discharge summaries,
particularly in secondary care. Extracting information from
free-text is challenging because much of the information is
provided in a narrative manner, and the text is often written in
haste and under considerable time pressure. There has been
strong interest among researchers in the use of natural language
processing (NLP) to extract information from clinical free-text
notes on a large scale [2-9], including a number of shared tasks
and benchmark data sets to assess and advance the
state-of-the-art in this domain, such as challenges in medication
extraction [7]; chemical and drug named entity recognition
(NER) [10]; drug-drug interaction extraction [11]; and extraction
of medications, indications, and adverse drug events (ADEs)
[12,13].

Medication prescription instructions are a specific clinical
sublanguage, where expressions are often abbreviated (eg, od
for once a day) and may contain spelling errors (eg, 20 mcg
evry othr wk) [14,15]. Existing approaches for extracting drugs
and associated attributes from the clinical text are diverse in
their methods, using various approaches including dictionary
lookup (ie, searching for matches from existing drug
dictionaries) [16-18], rule-based approaches (manually design
patterns, eg, regular expressions that can be searched in
free-text) [2-4,8,14,16,19-22], machine learning approaches
(training models on example data) [23-28], and hybrid
approaches that combine different methods [29-32]. Recently,
methods based on deep learning and neural networks, such as

convolutional neural networks and recurrent neural networks,
have been shown to be state-of-the-art in drug attribute
extraction tasks [33-41]. Deep learning methods take relevant
features (eg, orthographic and lexical features) as inputs and
produce labels as outputs. These manually constructed feature
vectors can then be replaced with, for example, word
embeddings (WE), character embeddings (CEs), and feature
embeddings. Embeddings are representations of tokens in an
n-dimensional space, typically learned over large collections of
unlabeled data through an unsupervised process (eg, word2vec
[42], Global Vectors for Word (GloVe) [43], and fastText [44]).
Recently, more advanced embedding methods and
representations (eg, Embeddings from Language Models
[ELMo] [45] and Bidirectional Encoder Representations from
Transformers [BERT] [46]) have further advanced
state-of-the-art clinical NLP.

Objectives
Although deep learning methods have been extensively used in
medication information extraction [13], the effects of various
architectures and token representations have not been widely
discussed. The purpose of this study is to provide a
comprehensive comparison of various representations used for
drug information extraction within the same settings. The main
contributions of our work are as follows:

• An investigation of the effect of various token
representations (ie, CE, WE, and semantic-feature
embeddings [SFEs]) on extracting medication information

• The comparison between a rule-based method and deep
learning approaches for identifying relations between drugs
and associated attributes.

Methods

Overview
The DrugEx system proposed here is composed of (1) an NER
method for extracting mentions of drug names and
drug-associated attributes and (2) a relation extraction (RE)
method for identifying relations between drugs and their
associated attributes. The NER task involves extracting 8 types
of entities: drug, strength, duration, route, form, dosage,
frequency, and reason of administration (see Textbox 1 for
definitions and examples of the extracted entities).

Textbox 1. Definitions and examples of entity types extracted by the DrugEx system.

• Drug: The chemical name of a drug or the advertised brand name under which a drug is sold (eg, aspirin)

• Dosage: The amount of medicine that the patient takes or should take (eg, 2 tablets, 5 mL)

• Strength: The amount of drug in a given dosage (eg, 200 mg)

• Frequency: The rate at which medication was taken or is repeated over a particular period (eg, daily, every 4 hours)

• Duration: The period of continuous medication taking (eg, pro re nata, for 5 days)

• Route: The path by which medication is taken into the body or the location at which it is applied (eg, topical, per os)

• Form: The form in which a medication is marketed for use (eg, tablet)

• Reason: The reason for medication administration (eg, for pain)

The scope of these entity types and the data sets that were used
for training and evaluation were provided as part of the 2018

National NLP Clinical Challenges (n2c2) shared task track 2:
ADEs and medication extraction in EHR challenge [13,47]. The
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data set consists of discharge summaries drawn from the Medical
Information Mart for Intensive Care III (MIMIC-III) clinical
care database [48]. It comprises 505 documents, of which 303
documents were used as the training set, and the remaining 202
documents were used as the test set. These data were annotated
by 7 domain experts, consisting of 4 physician-assistant students
and 3 nurses. Annotations included drug, strength, dosage,
frequency, duration, form, route, reason, and ADEs; ADEs
annotations have been omitted here as they are beyond the scope
of this study.

The annotations also included relations between drugs and other
attributes. Table 1 shows the descriptive statistics for the
associated drug attributes in the n2c2 data set and how often
each of them was linked to more than 1 drug. Noticeably, 17%

(1412/8579) of the reason entities were associated with more
than one drug; the maximum number of drugs associated with
a single reason was 10. For example, in “START: Guaifensin
with codeine QHS and Benzonatate as needed for cough,” the
reason cough is associated with 2 drugs: guaifenesin (with
codeine) and benzonatate. Table 2 shows the number of drug
entities participating in each link and the ratio of drugs with
more than one link. From a total of 11,028 form-drug relations,
4517 (41%) drugs that have been associated with the form
attribute has more than one association (ie, multiple forms
reported for a single drug entity), for example, “Bisacodyl 5
mg Tablet Sig: 1-2 Tablets PO once a day as needed for
constipation;” both mentions of tablets were annotated as form,
and they both associated to the bisacodyl drug.

Table 1. Descriptive statistics of entity types in the National NLP Clinical Challenges (n2c2) data set.

Maximum number of drug associationsLinks to multiple drugs, n (%)Links to 1 drug, n (%)Entities, n (%)Entity types

———a26,800 (32.57)Drug

248 (<1)10,980 (99.56)11,010 (13.38)Form

333 (<1)10,913 (99.70)10,921 (13.27)Strength

463 (1)10,281 (99.39)10,293 (12.51)Frequency

484 (1)9000 (99.08)8989 (10.92)Route

443 (1)6877 (99.38)6902 (8.39)Dosage

101421 (16.56)7158 (83.44)6400 (7.78)Reason

478 (7)991 (92.7)970 (1.2)Duration

aNot applicable.

Table 2. Descriptive statistics of relations between drugs and their associated attributes in the National NLP Clinical Challenges (n2c2) data set.

Drugs with more than 1 link, n (%)Drugs with 1 link, n (%)Relations, n (%)Relation type

307 (2.8)10,639 (97.20)10,946 (18.88)Strength-drug

290 (2.8)10,054(97.20)10,344 (17.84)Frequency-drug

181 (1.99)8903 (98.01)9084 (15.67)Route-drug

875 (10.2)7704 (89.80)8579 (14.80)Reason-drug

155 (2.2)6765 (97.76)6920 (11.94)Dosage-drug

4517 (40.96)6511 (59.04)11,028 (19.02)Form-drug

48 (5)1021 (95.51)1069 (1.84)Duration-drug

NER Method
All NER models rely on bidirectional long-short term memory
with conditional random fields (BiLSTM-CRF) architecture

(Figure 1), which is composed of 3 different layers: embedding
layer, bidirectional long-short term memory (BiLSTM) layer,
and conditional random fields (CRFs) layer.
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Figure 1. The architecture of bidirectional long-short term memory with conditional random field for the named entity recognition models. BiLSTM-CRF:
bidirectional long-short term memory with conditional random field; PWE+CE: pretrained word embeddings and character embeddings; PWE: pretrained
word embeddings; PWE+SFE: pretrained word embeddings and semantic-feature embeddings; RIWE: randomly initialized word embeddings; WE:
word embeddings.

Preprocessing
The data were first tokenized using spaCy, an open-source
library for NLP, with support for various languages. Then, as
target entities differ in length and may contain more than one
token, each token was annotated using the BIOES (Begin,
Inside, Outside, End, Single) tagging scheme to capture
information about the sequence of tokens. We further processed
the discharge summaries using the Clinical Language
Annotation, Modeling, and Processing Toolkit (CLAMP) [49]
and the Clinical Text Analysis and Knowledge Extraction
System (cTAKES) [50] to extract token-level clinical semantic
tags (eg, medication, disease disorder, and procedure; see the
section Embedding Layer for details), which were used for SFEs.

Embedding Layer
The embedding layer maps tokens into vectors of numbers that
represent their meanings. WEs provide dense representations
that make them capable of representing many aspects of
similarities between words, such as semantic relations and
morphological properties [51,52]. Several methods can be used
to initialize the values in WEs at the beginning of neural network
training. We examined the randomly initialized word
embeddings (RIWE) and the pretrained word embeddings
(PWE), where the latter has been pretrained on data from the
clinical (ie, target) domain.

Although WEs can capture tokens’ semantics, they might still
be affected by data sparsity and, therefore, cannot remediate
synonyms, out-of-vocabulary tokens, and misspellings. WE
may not be able to capture morphemes (such as prefixes and

suffixes) derived from classic Latin and ancient Greek roots,
which are often included in drug names and drug attributes.
Thus, we addressed these issues by using character feature
embeddings in addition to WEs. The concatenation of the PWE
with the CEs allows the model to learn subtoken patterns such
as morphemes and roots, thereby aiming to capture
out-of-vocabulary tokens, different forms, and any other
information not captured by WEs [53].

We also considered representations beyond tokens, aiming to
add clinical semantics to words. Specifically, the concatenation
of the PWE and SFEs was used to represent the clinical
categories of entities identified in the text, such as medical
problems, tests, or temporal information. Note that in this study,
we did not evaluate SFE without PWEs. Some entity types (such
as frequency or route) are not present among the semantic tags
we used, whereas other semantic tags (such as signs, symptoms,
disease, and disorder) are more frequent. Therefore, the
representations of semantic tags were learned simultaneously
with word representations and concatenated together to form
the final token representations. We used CLAMP [49] to extract
semantic tags (ie, problem, treatment, and temporal entities)
with associated assertion tag attributes (ie, present or absent).
We also used the default clinical pipelines in cTAKES [50] to
tag tokens with other semantic categories (ie, Medication,
DiseaseDisorder, and SignSymptom). In each pipeline, tokens
were tagged with the corresponding semantic features and
attributes (if available); otherwise, they were tagged with the
outside (ie, O) tag. Token-level semantic tags from both
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pipelines were then mapped and merged based on their types to create a set of semantic features (Figure 2).

Figure 2. Semantic-feature token embeddings. B-Drug: begin-drug; B-Temporal: begin-temporal; CLAMP: Clinical Language Annotation, Modeling,
and Processing Toolkit; cTakes: Clinical Text Analysis and Knowledge Extraction System; O: outside.

BiLSTM Layer
The BiLSTM layer takes the sequence of vectors (ie, token
representations) corresponding to a sequence of tokens (the
output from the embedding layer) and calculates the hidden
states by processing the sequence of token representations
forward and backward (ie, left-to-right and right-to-left) to learn
important token-level features. It then outputs the sequence of
vectors, including the probability of each label for each
corresponding token. The labels were either 1 of the 8 entity
types (Textbox 1) or none. The label assigned to the token is
the label with the highest probability from the predicted labels’
sequence (output from the BiLSTM layer).

CRF Layer
The BiLSTM output does not consider the dependencies
between neighboring labels when predicting the current label.
For example, it may be more likely to have a token labeled as
a drug name followed by a token labeled as strength than any
other entity type. Thus, to learn these dependencies, we added
a CRF layer that uses past and future labels to optimize
predictions and obtain the most probable sequence of predicted
labels. Finally, the labels (BIOES tags) were combined into
named entities by merging consecutive labeled B-, I-, E-, or
S-tags of the same class.

NER Models Training and Tuning of Hyperparameters
We used the standard data split established by the n2c2
organizers, using the training set for fitting models, tuning the
model parameters, and evaluating our best models on the test
set. As there is no official development set, we randomly
selected 9.9% (30/303) of the training documents for validation.
This data set was used to optimize the models’hyperparameters.

We trained all neural network models using stochastic gradient
descent, with a learning rate of 0.005. In the baseline model
(RIWE), we randomly selected 100-dimensional WEs. In other
models, we used pretrained 600-dimensional WEs [54], which
were trained on approximately 2 million discharge summaries
drawn from the MIMIC-III data [48] using the word2vec
continuous bag-of-words method [42]. CEs were 25-dimensional

vectors, whereas SFEs were 50-dimensional vectors. The
number of hidden states was set to 300 dimensions for running
the BiLSTM WEs and to 25-dimensions for running the
BiLSTM for learning CE. We also applied dropout to the token
embeddings at a rate of 0.5 to avoid overfitting. The number of
epochs was determined by an early stopping criterion (ie, after
10 epochs with no improvement) on the validation set, with the
maximum number of epochs set to 100. Finally, the batch size
was set to 32. These hyperparameters were optimized through
a random search of the validation set [55]. We tested WEs with
dimensions ranging from 100 to 600, CE and SFEs with 25, 50,
and 100 dimensions, and the dropout rate with values in the
range between 0 and 0.75.

RE Method
Once drugs and attributes are extracted, the subsequent step is
to link drug names to the corresponding attributes. For this task,
we experimented with a rule-based method engineered for the
task and a context-aware long-short term memory (LSTM)
model, where the positions of the involved entities were encoded
using marker embeddings.

Context-Aware LSTM
We used a context-aware LSTM [56] that considers other
relations in the sentential context while predicting the target
relation. It uses an LSTM-based encoder to jointly learn
representations for all relations in the text. Thus, the
representation of the target relation and representations of the
context relations are combined to make the final prediction.
Figure 3 presents the architecture of the LSTM model for RE.
It consists of an embedding layer, an LSTM layer, and a softmax
layer. The embedding layer maps a portion of the text that
contains a target entity pair into a high-level representation
vector. First, each token in the text is mapped to its WE vector.
Second, every 2 entities (ie, a drug and its associated attribute)
in the text are paired as candidate entities for a possible relation.
All other tokens are then marked as either belonging to a drug
(as the main actor of all relations) or not. Afterward, each
token’s marker embeddings are concatenated to the WEs to
generate a single vector. This vector is then passed to the LSTM,
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which calculates the hidden states by processing the sequence
of token representations. Finally, the LSTM layer’s output is
routed into the softmax layer to map the nonnormalized output

to the final output vector that contains the probability for each
relation type.

Figure 3. The architecture of context-aware long-short term memory for the relation extraction model. e: embedding; LSTM: long-short term memory.

Rule-Based Method
In this approach, we examined patterns of prescription
information in discharge summaries in the training set and
manually implemented a set of rules using regular expressions.
These regular expressions were designed and implemented in
the General Architecture of Text Engineering environment [57]
(Figure 4). First, the discharge summaries were split into
sentences. For sentences that include only one drug name D,
all drug attributes found in that sentence will be linked to drug
D. However, for sentences that include multiple drug names,

the sentences are split into several segments, where the
segment’s start offset is the beginning of the next drug name.

If a sentence does not include a drug name but contains other
entities, then the previous 2 sentences are checked. If they
contain a drug name, then the attributes are linked to the closest
drug name. For example, “Patient will be on Topiramate 25mg
PO BID until 22/3 PM. Then increase to 50mg po BID for seven
days. Then increase to 75mg ongoing”. All the italicized entities
are linked to the drug topiramate that appears in the first
sentence.
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Figure 4. Rule-based method for linking drug names to corresponding attributes in discharge summaries.

RE Model Training and Tuning of Hyperparameters
We used the same procedure and the same approach for
hyperparameter settings that we have used previously in the
NER models. Specifically, we trained the LSTM model using
the same hyperparameters that we have used previously in the
NER models. We used marker embeddings with 10-dimensional
vectors.

The regular expressions in the RE rule-based method were
implemented based on manual observation of the training set,
followed by an initial evaluation of the validation set. The
regular expressions were then refined based on an error analysis
of the output from the validation process, and the final
evaluation was performed on the official test set.

Evaluation
We considered the available annotations in the corpus as the
gold standard when evaluating the models. To assess the
performance of the proposed models, we performed hold-out
cross-validation (using training and testing sets) and used the
official n2c2 evaluation script provided with the data. It uses
standard evaluation methods in information retrieval (ie,
precision, recall, and F-score). We report the lenient micro-and
macroaveraging for each NER experiment. Lenient matches
refer to cases where the overlapped boundaries between the

gold standard and the system’s predictions are allowed.
Macroaveraging calculates the metrics on a per-document basis
and then averages the results. Microaveraging, on the other
hand, refers to the pooling of the results of all classified
instances into a single contingency table.

In addition, we evaluated the performance of the NER models
with the best-performing RE model as an end-to-end system.
This allows us to measure the effect of missing entities in the
NER models on the RE task. As shown in Table 1, attributes
could be associated with more than one drug. Thus, when an
NER model fails to recognize an entity (either drug or attribute),
then all of its semantic relations (ie, associations) will also be
missed. Finally, the best-performed end-to-end system was
chosen for our DrugEX system.

Results

NER Task
Table 3 shows the lenient precision, recall, and F-score for all
models in the NER task. The best result in the NER task was
achieved by PWE+CE embeddings (micro F-score of 0.921).
Interestingly, NER (PWE), which ranked second in F-score,
achieved a slightly higher precision, and NER (PWE+SFE)
achieved a higher recall than any other model. NER (PWE+SFE)
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also yielded a better balance between precision and recall.
Concerning individual F-scores, PWE performed better than
the baseline (RIWE) for every entity type. The SFEs with the
PWEs in NER (PWE+SFE) allow the model to perform better
than others on some individual entity types, especially
frequency, duration, and reason. An analysis at the per-entity

type level shows that most entity types (ie, drugs, strength, form,
dosage, frequency, and route) are associated with excellent
performance (F-scores above 0.90). Duration and reason,
however, are associated with lower performance. This might
be amplified by the fact that there were few examples of duration
and reason entities in the training data (Table 1).

Table 3. Evaluation results of the named entity recognition models on the test set (lenient evaluation).

(PWE+SFE)d(PWE+CE)cPWEbRIWEaEntity

F-scoreRecallPrecisionF-scoreRecallPrecisionF-scoreRecallPrecisionF-scoreRecallPrecision

0.950e0.9470.9520.9490.9530.9460.9460.9300.9630.9170.8920.942Drug

0.9770.9770.9770.9740.9760.9730.9750.9700.9790.9680.9590.977Strength

0.8400.7860.9030.7900.6980.9100.8180.7620.8830.7890.7060.893Duration

0.9480.9430.9530.9520.9480.9560.9510.9380.9640.9460.9280.964Route

0.9510.9320.9720.9560.9440.9690.9520.9400.9650.9490.9350.964Form

0.9300.9310.9280.9290.9280.9310.9310.9310.9320.9200.9120.928Dosage

0.9680.9680.9680.9560.9330.9800.9590.9520.9650.9350.9250.945Frequency

0.6370.6530.6210.5930.4520.8600.6200.4970.8210.5750.4580.771Reason

0.9200.9130.9270.9210.8940.9500.9210.8920.9510.9010.8630.943Micro

0.9100.9010.9230.9140.8840.9490.9100.8760.9510.8830.8400.936Macro

aRIWE: bidirectional long-short term memory with conditional random fields with random word embeddings.
bPWE: bidirectional long-short term memory with conditional random fields with pretrained word embeddings.
c(PWE+CE): bidirectional long-short term memory with conditional random fields with pretrained word embeddings and character embeddings.
d(PWE+SFE): bidirectional long-short term memory with conditional random fields with pretrained word embeddings and semantic-feature embeddings.
eThe best results for each metric are italicized.

To explore the complementarity of the methods, we created an
ensemble model using the outputs of all the proposed NER
models. The ensemble output for each task was generated using
a majority voting scheme. In addition to its type, the entire
named entity phrase is taken as 1 prediction instance. The
ensemble model showed precision, recall, and F-scores of 0.961,

0.884, and 0.921, respectively. As expected, the ensemble
showed performance gains in precision when compared with
the best individual models. This indicates that the 3 models did
not learn the same patterns from the data set. However, the
difference in recall and F-score is not evident, even for specific
attributes (Table 4).
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Table 4. Evaluation results of pretrained word embeddings+character embedding named entity recognition model, pretrained word embeddings+character
embedding named entity recognition model, and the ensemble model on the test set (lenient evaluation).

Ensemble(PWE+SFE)b(PWE+CE)aEntity

F-scoreRecallPrecisionF-scorePrecisionRecallF-scoreRecallPrecision

0.9500.9390.9620.950c0.9470.9520.9490.9530.946Drug

0.9770.9720.9810.9770.9770.9770.9740.9760.973Strength

0.8070.7200.9190.8400.7860.9030.7900.6980.910Duration

0.9530.9440.9630.9480.9430.9530.9520.9480.956Route

0.9550.9390.9720.9510.9320.9720.9560.9440.969Form

0.9360.9300.9430.9300.9310.9280.9290.9280.931Dosage

0.9460.9150.9790.9680.9680.9680.9560.9330.980Frequency

0.6130.4760.8580.6370.6530.6210.5930.4520.860Reason

0.9210.8840.9610.9200.9130.9270.9210.8940.950Micro

0.9110.8690.9620.9100.9010.9230.9140.8840.949Macro

a(PWE+CE): bidirectional long-short term memory with conditional random fields with pretrained word embeddings and character embeddings.
b(PWE+SFE): bidirectional long-short term memory with conditional random fields with pretrained word embeddings and semantic-feature embeddings.
cThe best results for each metric are italicized.

We further conducted paired t tests to determine whether the
differences between the models were statistically significant.
Differences were considered significant if the P value was <.05.
The samples used in this test were the microaverage F-scores
from each document in the test set (ie, document-level NER
performance). Table 5 shows the post hoc analysis of variance
for the NER task. The statistical significance test showed that
there were no statistically significant differences between any
of the models (PWE, PWE+CE, and PWE+SFE), despite the

presence of apparently important and computationally expensive
clinical information such as the type of entities (ie, problems,
signs, and symptoms) in some of the models. However, the 3
models (PWE, PWE+CE, and PWE+SFE) were statistically
significantly different from the baseline (ie, RIWE), where
random embeddings were used. This means that pretraining
embeddings on the target domain (ie, discharge summaries from
MIMIC-III) helped in comparison with the random initialization
of WEs.

Table 5. Post-hoc analysis of variance (ANOVA) of the named entity recognition models: P values of two-tailed paired t tests for each pair of models.a

PWE+SFEd, P valuePWE+CEc, P valuePWEb, P valueNamed entity recognition

<.001<.001<.001RIWEe

.99.94N/AfPWE

.95N/AN/APWE+CE

aRIWE is significantly worse than the rest of the models. At the same time, there is no statistically significant difference between PWE, PWE+CE, and
PWE+SFE.
bPWE: pretrained word embeddings.
cCE: character embedding.
dSFE: semantic-feature embeddings.
eRIWE: randomly initialized word embeddings.
fN/A: not applicable.

RE Models
Table 6 shows the performances of the RE models using the
gold-standard entities, whereas Table 7 shows the performances
of the RE model using the output from the NER models
(end-to-end). Using the gold-standard entities and using the
output from the best NER model (end-to-end), we achieved
micro F-scores of 0.927 for rules and 0.855 for
(PWE+CE)+rules, respectively. Thus, the traditional rule-based
method performed surprisingly well relative to the context-aware

LSTM for this task. Relations between form and frequency to
drugs are examples of such success: there was at least a 4%
improvement in F-score over the LSTM model. The
microaverage F-score for the end-to-end task was notably lower
than that for the NER tasks and RE using gold-standard entities.
This was expected because prediction in the end-to-end
compounded the errors in both the NER and RE steps. A major
factor behind the low score is the reasons-drug relation type,
which was often not recognized because the NER did not
recognize the reason attribute. However, the prediction of this
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relation itself (ie, reason-drug) is also challenging, as evidenced
by the F-score of 0.734 in the RE task (rules) on the
gold-standard entities. This might be because the text span

between 2 entities in this relation is often relatively long; thus,
none of the methods explored in this study could capture this.

Table 6. Evaluation results of the relation extraction models (using gold-standard entities) on the test set (lenient evaluation).

RulesbLSTMaRelation type

F-scoreRecallPrecisionF-scoreRecallPrecision

0.975c0.9880.9630.9670.9610.973Strength-drug

0.9660.9760.9560.9610.9580.963Dosage-drug

0.9100.8800.9420.9010.8920.909Duration-drug

0.9750.9880.9640.9320.9040.962Frequency-drug

0.9810.9920.9700.9490.9180.982Form-drug

0.9670.9720.9620.9460.9340.958Route-drug

0.7340.7040.7670.7830.8300.741Reason-drug

0.9270.9170.9370.9180.9130.922Micro

0.9170.9020.9350.9090.9100.914Macro

aLSTM: long-short term memory method.
bRules: rule-based method.
cThe best results for each metric are italicized.

Table 7. Evaluation results of the end-to-end models (ie, output from the best-performing named entity recognition and relation extraction models) on
the test set (lenient evaluation).

(PWE+SFE)d+rules(PWE+CE)c+rulesPWEb+rulesRIWEa+rulesRelation
type

F-scoreRecallPrecisionF-scoreRecallPrecisionF-scoreRecallPrecisionF-scoreRecallPrecision

0.956e0.9640.9480.9490.9500.9480.9470.9430.9520.9170.9140.919Strength-
drug

0.8950.8970.8940.8880.8840.8920.8890.8880.8900.8510.8530.848Dosage-drug

0.7590.6780.8600.7290.6170.8890.7410.6620.8420.7090.6150.837Duration-
drug

0.9400.9470.9340.9250.9020.9490.9250.9190.9310.8760.8740.878Frequency-
drug

0.9390.9200.9590.9310.9190.9440.9270.9150.9390.8910.8880.894Form-drug

0.9140.9080.9200.9110.9040.9190.9090.8950.9240.8750.8660.885Route-drug

0.4870.4720.5030.4700.3430.7440.4850.3710.7020.4370.3330.635Reason-drug

0.8500.8300.8710.8550.7970.9180.8520.8020.9090.8150.7700.865Micro

0.8210.8010.8490.8240.7650.9180.8240.7700.9020.7840.7330.859Macro

aRIWE: bidirectional long-short term memory with conditional random fields with random word embeddings.
bPWE: bidirectional long-short term memory with conditional random fields with pretrained word embeddings.
cPWE+CE: bidirectional long-short term memory with conditional random fields with pretrained word embeddings and character embeddings.
dPWE+SFE: bidirectional long-short term memory with conditional random fields with pretrained word embeddings and semantic-feature embeddings.
eThe best results for each metric are italicized.

The statistical significance test for the RE task showed that the
differences between the LSTM and rule-based models were
insignificant (P=.41). For the end-to-end task, similar to the
NER task, there was no statistically significant difference
between any of the models (PWE, PWE+CE, and PWE+SFE);

however, the 3 models were statistically significantly different
from the RIWE (Table 8). Accordingly, the best-performed
end-to-end system, (PWE+CE)+rules, was chosen for our
DrugEx system.
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Table 8. Post-hoc analysis of variance (ANOVA) of the end-to-end models: P values of two-tailed paired t tests for each pair of models.

(PWE+SFEc)+rules, P value(PWE+CEb)+rules, P valuePWEa+rules, P valueEnd-to-end models

.03.01.01RIWEd+rules

.99.99N/AePWE+rules

.99N/AN/A(PWE+CE)+rules

aPWE: pretrained word embeddings.
bCE: character embedding.
cSFE: semantic-feature embeddings.
dRIWE: randomly initialized word embeddings.
eN/A: not applicable.

Discussion

Principal Findings
The models explored in this study demonstrated high F-scores
of 0.921 for NER, 0.927 for RE, and 0.855 for the end-to-end
approach. The overall highest F-scores (achieved by different
teams) in the n2c2 challenge in the NER, RE, and end-to-end
tasks were 0.942, 0.963, and 0.891, respectively [13]. The
top-ranked NER used a BiLSTM-CRF with ELMo language
model [45], CFEs, and normalized section titles as features. The
top-ranked RE and end-to-end tasks used a joint concept-relation
extraction system that uses 2 layers of BiLSTM-CRFs [58].

The results for our NER models showed that PWE+CE had the
highest classification efficiency, followed by PWE and
PWE+SFE, which had similar scores among themselves and
above the baseline. RE models’ results showed that the
rule-based method achieved significantly higher accuracy than
the context-aware LSTM for most relation types. Interestingly,
the LSTM model performed notably better in the reason-drug
relations, which were missed more than all other relation types.

We observed that external resources (ie, SFEs) contributed to
the attribute extraction. Presumably, plentiful labeled data
already available and complementary information from these
external resources appear to have been helpful for performance.
Nevertheless, simpler methods, such as PWE and rule-based
methods, can match these sophisticated and expensive methods.

Error Analysis
We further analyzed false positives and false negatives from
the NER to obtain deeper insights into the common classification
errors. Note that the focus in the error analysis was on the NER
only, as it appears to be the main factor of the relatively low
F-score in RE.

To gain an insight into where errors are made and how models
can be improved, we manually reviewed false negatives (entities
identified in the gold standard but incorrectly rejected, ie,
missed, by the models) and false positives (entities identified
by the models when they are not in the gold standard) in the

best-performing model. Errors were then grouped into different
categories based on their causes, including (1) context error:
when an entity is captured as one of the drug-related attributes,
although it is not, or when an entity is missing because of the
context; (2) type error: when an attribute is extracted but with
an incorrect annotation type; and (3) gold-standard error:
possible error in the gold standard. We also generated a
confusion matrix to subdivide the errors made by the method
based on which type of mistake was made.

Context error was a major category of errors. These mostly
resulted from previously unseen information (eg, “He was given
a loading dose of amiodarone,” where the dosage loading dose
was missed), atypical expression formats (eg, “One (1) Tablet,”
where dosage one (1) was missing because of the parentheses),
and abbreviations (eg, “Dig level 2.1,” where drug dig—which
should be digoxin—was missed). Context errors may also result
from the complexity of language expressions; for example, 200
units in the phrase “was started on a 7d course of DRUG 200
units daily” could be a dosage when considered as a single
phrase, or it could be 2 concepts: 200 (a strength) and unit (a
form). Gold annotation preferred the latter, whereas our method
identified the former.

Another interesting cause of error is the ambiguity between
attributes, where an attribute is recognized, but the type is
incorrect. Figure 5 presents the confusion matrix for the
BiLSTM-CRF (PWE+CE) and indicates how often each entity
is predicted. The confusion of dosage for strength and strength
for dosage is the most frequent type of error, accounting for
28% ([66+126]/693) of the errors. The following example
illustrates this type of error: “Meropenem 500 mg Intravenous
every eight (8) hours.” The dosage 500 mg is wrongly predicted
as strength; usually, the mg unit is associated with strength. The
substitution of dosage for strength is a common error, and these
entities are often mislabeled as each other—both are often
numeric quantities and used in similar contexts. A common
solution for this issue is to merge these 2 types into 1 annotation
type [59]. However, extracting them separately may be
important for some applications.
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Figure 5. Confusion matrix (token-level) from the output of bidirectional long-short term memory with conditional random field (with pretrained word
embeddings and character embeddings) on the National NLP Clinical Challenges test set. The diagonal entries indicate labels that were correctly
predicted, and the off-diagonal entries indicate errors. The total number of errors (sum of off-diagonal cells) was 693.

The second most frequent type of this error, which accounts for
16% ([48+65]/693) of the errors, is the confusion of form for
route and route for form. These entities are often annotated as
the gold standard in various ways. For example, the word
injection is sometimes annotated as a form and sometimes as a
route; in the training set, it is annotated as a form 68 times and
as a route 53 times, which makes learning from these examples
challenging.

The confusion of drugs with general words is one of the other
sources of error. We found that there were several causes of
this confusion among drug names. These include (1) generic
drug names (eg, glucose, IVF, blood, D5W, and chemo)
corresponding to prescribed medications but not occurring in
expected contexts; (2) words such as pressor, fluids, agents, or
medication that may be considered to be underspecified, but
should be extracted, at least in this data set; (3) some classes of
drugs (eg, antiinflammatory drugs and hypertension
medications) missing in the training sources; (4) new drug names
that did not occur within an expected context or semantic
patterns (eg, Dig level 2.5), so they were not extracted by the
NER methods; and (5) abbreviations (eg, aspirin325 and ABX).

The analysis also showed a few potential omissions and
inconsistencies in human annotations. Gold-standard errors fall
into 2 different categories: missing in the gold standard and
potential problems in gold standards. The more common error
in this category is missing in the gold standard, where the
method annotates entities that are not annotated in the data set.
For example, four weeks in the phrase, “adding DRUG cover
for the first four weeks of treatment,” is not annotated as a
duration in the gold standard, whereas it appears to be a
potentially correct attribute. Inconsistency may also appear in
annotation spans; for example, dosage or strength, and form
were annotated separately sometimes and jointly in others.

Conclusions
In this study, we constructed an end-to-end system (DrugEx)
composed of bidirectional LSTM, CRF, and rule-based methods
for extracting drug-related information from free-text discharge
summaries. We studied various token representations (ie, WE,
CE, and SFE) for extracting drug attributes from free-text
discharge summaries. We also proposed a rule-based method
for relations between drugs and attributes and compared this
method with a context-aware deep learning method. The results
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showed that the proposed system can be used successfully for
extracting and linking drug attributes in discharge summaries,
although some attributes (ie, reason and duration) are still
challenging. The results also showed that domain-tailored
embeddings (ie, PWE) perform better than random embeddings
(RIWE) in this task. Concatenating PWE with CE or SE
achieved a comparable overall performance when compared
between themselves. NER (PWE+CE) ranked best in F-score
among other proposed models; however, NER (PWE+SE)
performed better on some individual entity types, especially
frequency, duration, and reason. Semantic embeddings also
yielded a better balance between precision and recall. However,
a simpler method (eg, WE and CE) can match these
sophisticated and expensive methods. Incorporating external
knowledge (eg, of a drug’s reason, proposed treatment, and a
drug’s reactions) and incorporating a larger context may improve
performance.

Concerning RE, the rule-based method achieved higher accuracy
than the context-aware LSTM for most relations. Interestingly,

the LSTM model performs notably better on some of the most
challenging relations (eg, reason-drug).

In future work, we aim to investigate contextual embeddings,
such as ELMo and BERT, which have been proven to provide
considerable improvements in other tasks that include complex
language structures, ambiguous word use, and unseen words in
training. We also consider assessing the performance and
transferability of the models across different biomedical data
sets and tasks.

Finally, the medication NER and RE tasks are important not
only from a research perspective but also because they have
applications as steps in practical information extraction
pipelines. The current level of performance indicates that these
models should be good enough for large-scale statistical and
epidemiological studies. However, applications that require
patient-specific information may need NER systems with even
higher recall and precision, ensemble and multiple-step systems
(ie, systems that combine the output of multiple classifiers), or
be subject to semiautomated verification.
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