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Abstract

Background: Diagnostic neurovascular imaging data are important in stroke research, but obtaining these data typically requires
laborious manual chart reviews.

Objective: We aimed to determine the accuracy of a natural language processing (NLP) approach to extract information on the
presence and location of vascular occlusions as well as other stroke-related attributes based on free-text reports.

Methods: From the full reports of 1320 consecutive computed tomography (CT), CT angiography, and CT perfusion scans of
the head and neck performed at a tertiary stroke center between October 2017 and January 2019, we manually extracted data on
the presence of proximal large vessel occlusion (primary outcome), as well as distal vessel occlusion, ischemia, hemorrhage,
Alberta stroke program early CT score (ASPECTS), and collateral status (secondary outcomes). Reports were randomly split
into training (n=921) and validation (n=399) sets, and attributes were extracted using rule-based NLP. We reported the sensitivity,
specificity, positive predictive value (PPV), negative predictive value (NPV), and the overall accuracy of the NLP approach
relative to the manually extracted data.

Results: The overall prevalence of large vessel occlusion was 12.2%. In the training sample, the NLP approach identified this
attribute with an overall accuracy of 97.3% (95.5% sensitivity, 98.1% specificity, 84.1% PPV, and 99.4% NPV). In the validation
set, the overall accuracy was 95.2% (90.0% sensitivity, 97.4% specificity, 76.3% PPV, and 98.5% NPV). The accuracy of
identifying distal or basilar occlusion as well as hemorrhage was also high, but there were limitations in identifying cerebral
ischemia, ASPECTS, and collateral status.

Conclusions: NLP may improve the efficiency of large-scale imaging data collection for stroke surveillance and research.

(JMIR Med Inform 2021;9(5):e24381) doi: 10.2196/24381
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Introduction

Stroke is a leading cause of death and disability [1].
Neuroimaging study findings inform treatment and prognosis.
For example, recent clinical trials have demonstrated the efficacy
of endovascular thrombectomy, a mechanical clot-retrieval
procedure, in improving functional outcomes in patients with
acute ischemic stroke and proximal large vessel occlusion [2-5].
Data on efficacy of this procedure in patients with distal or
smaller vessel occlusion are currently lacking. Although large
health administrative databases have information on whether a
stroke was ischemic or hemorrhagic, detailed neuroimaging
findings are usually found in narrative diagnostic imaging
reports and obtained through resource-intensive manual chart
abstractions [6,7].

The lack of population-based neuroimaging data limits the
ability to characterize the prevalence of large vessel occlusion.
A recent meta-analysis of cohort studies of patients with
ischemic stroke found that the prevalence of large vessel
occlusion ranged widely, from 13% to 52% [8], suggesting that
smaller cohort studies can be vulnerable to selection bias.
Therefore, automating the extraction of information on vessel
occlusion from diagnostic imaging reports is needed for
population-based disease surveillance and clinical research.

Natural language processing (NLP) can convert large amounts
of free-text data into structured data and has been used to extract
information on stroke type and location from diagnostic imaging
reports [9-11]. However, its ability to characterize vascular
occlusions is not well understood. We aimed to determine the
accuracy of an NLP tool [12] in identifying the presence and
location of vascular occlusions and other stroke-related attributes
from neuroimaging reports of computed tomography (CT), CT
angiography (CTA), and CT perfusion (CTP) scans. We
hypothesized that an NLP tool can identify large vessel
occlusion with high accuracy.

Methods

Manual Chart Abstraction
We obtained full free-text reports of 1320 consecutive stroke
protocol imaging studies comprising CT, CTA, and CTP
imaging of the head and neck performed between October 2017
and January 2019 at a university-affiliated comprehensive stroke
center that provides consultation for endovascular thrombectomy
to a catchment area of 2.5 million people. A stroke specialist
and a trained research assistant manually extracted stroke-related
attributes from the reports. The primary outcome was the
presence of large vessel occlusion defined as occlusion in the

M1 segment of the middle cerebral artery (MCA-M1) or A1
segment of the anterior cerebral artery (ACA-A1) with or
without involvement of the carotid terminus because occlusion
at these sites is treatable with endovascular thrombectomy. We
chose this as the primary outcome because patients with this
type of occlusion can be treated with endovascular
thrombectomy. Isolated intracranial internal carotid artery
occlusion was not categorized as large vessel occlusion in this
study because the effectiveness of endovascular thrombectomy
has not been shown in this population [13].

Secondary outcomes included (1) the presence of cerebral
ischemia, (2) Alberta stroke program early CT score (ASPECTS)
[14], (3) the presence of any intracranial hemorrhage, (4) distal
anterior circulation occlusion defined as occlusion in the middle
or anterior cerebral arteries in the M2 or A2 segments or beyond,
(5) basilar occlusion, and (6) qualitative measure of collateral
status (ie, good, intermediate, or poor). The manually extracted
data were considered the reference standard. Duplicate chart
abstraction on 200 charts showed that the inter-rater reliability
was >96% for all attributes except for the presence of cerebral
ischemia for which it was 80%. We randomly split the reports
into training (n=921) and validation (n 399) sets.

CHARTextract NLP Tool
NLP rule sets for stroke attribute extraction from free-text
diagnostic imaging reports were created using CHARTextract
version 0.3.2, freely available online [12]. CHARTextract is a
rule-based information extraction tool that relies on regular
expressions and works at the sentence level to identify word
patterns. We opted to use a rule-based approach due to the small
sample size and the availability of domain experts to develop
and refine the rules.

We created information extraction pipelines by using an iterative
process where each rule was assigned a weight by the end-user
in the training set. For example, if a report contains the text
“presence of middle cerebral artery occlusion…,” the system’s
estimate of the probability of a large vessel occlusion increases;
however, if a report contains the text “no evidence of…,” it will
lower the system’s estimate of the probability. As shown in
Figure 1, the tool displays the discrepancies between the chart
abstractor label and the tool’s prediction, thus allowing for rapid
iterative refinement of the rules by the end user. Rules were
developed for each attribute through an iterative process by the
end-user (ZL, AY, and CP) by using the training set that was
validated in the validation set. For the presence of large vessel
occlusion (our primary outcome), we also recorded whether the
discrepancy between the chart abstractor and the NLP tool was
due to abstractor or tool error. The rules thus developed are
shown in Multimedia Appendix 1.
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Figure 1. Example 1 of a discrepancy between the chart abstractor and CHARTextract tool output. (A) Computed tomography angiography scan
showing loss of opacification in the left middle cerebral artery, involving the left M1 segment and extending into the M2 segment. (B) CHARTextract
tool output: the chart abstractor labeled that large vessel occlusion was present, but the CHARTextract tool determined this attribute to be absent. The
rules were revised to reflect that occlusion involving the “M1 segment” should be considered a large vessel occlusion even if the terms “MCA” or
“middle cerebral artery” were absent.

Statistical Methods
The stroke-related attributes identified by the NLP tool,
CHARTextract version 0.3.2, were compared to the reference
standard. The sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) were calculated
using this tool.

Ethics Approval
The study was approved by the Sunnybrook Health Sciences
Centre and Unity Health Toronto Research Ethics Boards with
a waiver of individual patient consent prior to data collection.

Results

Among the 1320 consecutive diagnostic imaging reports
manually reviewed, chart abstractors identified 184 large vessel
occlusions (MCA-M1, n=157; ACA-A1, n=27) in 161 (12.2%)
reports. Distal anterior circulation occlusion was reported in

188 (14.2%) scans, basilar artery occlusion in 26 (2.0%) scans,
established ischemia in 391 (29.6%) scans, and intracranial
hemorrhage in 139 (10.5%) scans. ASPECTS was reported only
in 384 (29.1%) reports (ASPECTS <5, n=40; ASPECTS ≥5,
n=344), and collateral status was described in 216 (16.4%)
reports (good, n=141; intermediate, n=26; poor, n=49).

Compared to the reference standard, the NLP tool identified
large vessel occlusion with an overall accuracy of 97.3% (95.5%
sensitivity, 98.1% specificity, 84.1% PPV, and 99.4% NPV).
Despite an iterative process to refine rules, some scenarios
remained challenging to translate into rules. Figure 2 illustrates
an example wherein the CHARTextract tool determined large
vessel occlusion to be present because the words “occlusion”
and “M1 segment” were detected in the same sentence, but the
report indicated that the occlusion was in the cavernous portion
of the internal carotid artery with reconstitution of blood flow
in the M1 segment. In another example illustrated in Figure 3,
the CHARTextract tool determined that large vessel occlusion
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was absent because the report indicated the presence of an
occlusion extending from the internal carotid artery to the M2
segment. Here, the tool only detected “internal carotid artery”
and “M2” as keywords and could not interpret the vascular
anatomy described in the report. Nevertheless, in the validation

set, the overall accuracy for large vessel occlusion was still high
at 95.2% (90.0% sensitivity, 97.4% specificity, 76.3% PPV,
and 98.5% NPV). We also found that two of the 25 discrepancies
between the abstractors and the NLP tool were due to chart
abstractor error.

Figure 2. Example 2 of a discrepancy between the chart abstractor and CHARTextract tool output. (A) Computed tomography angiography scan
showing near-occlusion of the cavernous internal carotid artery with reconstitution of the middle cerebral artery. (B) CHARTextract output: the abstractor
labeled that large vessel occlusion was absent, but the CHARTextract tool determined this attribute to be present because the words “occlusion” and
“M1 segment” were detected in the same sentence.

Figure 3. Example 3 of a discrepancy between the chart abstractor and CHARTextract tool output. The abstractor labeled that large vessel occlusion
was present because the abstractor was able to interpret that an occlusion from the internal carotid artery and extending to the M2 segment of the middle
cerebral artery involves the M1 segment, but the CHARTextract tool determined this attribute to be absent because the tool detects key words without
knowledge of vascular anatomy.
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The accuracy of the CHARTextract tool for the other stroke
attributes is presented in Table 1. The tool identified these other
attributes with moderately high accuracy except for presence
of established ischemia, which had a lower sensitivity and PPV
of 82.2% and 80.5%, respectively, in the derivation cohort and
80.8% and 64.1%, respectively, in the validation cohort. The

other exception was basilar occlusion, which was only present
in 2.0% (26/1320) of the reports. Although the sensitivity and
PPV for basilar occlusion were 100% and 95.0%, respectively,
in the derivation cohort, the corresponding values were lower
in the validation cohort (ie, 71.4% and 41.7%)

Table 1. Accuracy of the natural language processing tool CHARTextract to identify stroke-related attributes in diagnostic imaging reports.

Overall accura-
cy (%)

NPVb (%)PPVa (%)Specificity(%)Sensitivity (%)Attribute preva-
lence, n (%)

Cohort and stroke-related attribute

Derivation cohort (n=921)

97.399.484.198.195.5111 (12.1)Anterior proximal occlusion

97.398.988.198.092.9127 (13.8)Anterior distal occlusion

99.910095.099.910019 (2.1)Basilar occlusion

88.391.980.591.782.2287 (31.2)Presence of established ischemia

97.599.087.698.293.0114 (12.4)Presence of any hemorrhage

Validation cohort (n=399)

95.298.576.397.490.050 (12.5)Anterior proximal occlusion

95.597.186.497.783.661 (15.3)Anterior distal occlusion

97.799.541.798.271.47 (1.8)Basilar occlusion

83.292.564.185.180.8104 (26.1)Presence of established ischemia

95.599.259.596.088.025 (6.3)Presence of any hemorrhage

aPPV: positive predictive value.
bNPV: negative predictive value.

The metrics for ASPECTS and collateral status are shown
separately because data were incomplete (Table 2). Importantly,
we found that the NLP tool was able to identify the reports with
missing data with high accuracy. For example, information on
ASPECTS was absent in 71.8% (661/921) of the reports in the

derivation cohort and 68.99% (275/399) for the validation
cohort. The tool accurately identified that this attribute was
missing with a sensitivity and PPV of 99.7% and 99.7%,
respectively, in the derivation cohort and 99.3% and 98.6%,
respectively, in the validation cohort.
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Table 2. Accuracy of the natural language processing tool CHARTextract to identify Alberta stroke program early CT score (ASPECTS) and collateral
vascular status based on diagnostic imaging reports.

Overall accu-
racy (%)

NPVb (%)PPVa (%)Specificity (%)Sensitivity (%)Attribute preva-
lence, n (%)

Cohort and stroke-related attributes

Derivation cohort (n=921)

98.8ASPECTS

99.299.799.299.7661 (71.8)Not reported

99.980.699.296.730 (3.3)<5

98.999.199.796.5230 (25.0)≥5

98.4Collateral status

95.999.496.699.2774 (84.0)Not reported

99.810010094.134 (3.7)Poor

99.610010078.919 (2.1)Intermediate

99.690.198.896.894 (10.2)Good

Validation cohort (n=399)

98.5ASPECTS

98.498.696.899.3275 (68.9)Not reported

99.2100.010070.010 (2.5)<5

99.698.399.399.1114 (28.6)≥5

98.2Collateral status

98.498.291.399.7330 (82.7)Not reported

99.793.399.793.315 (3.8)Poor

99.510010071.47 (1.8)Intermediate

99.210010093.647 (11.8)Good

aPPV: positive predictive value.
bNPV: negative predictive value.

Discussion

Principal Findings
We showed that an NLP approach can automate data extraction
from neuroimaging reports with moderately high accuracy,
supporting its potential application for stroke surveillance, health
system planning, and population-based clinical research. The
PPV of CHARTextract to identify large vessel occlusion was
76.3%, meaning that of 100 reports identified to have a large
vessel occlusion, there were 24 false-positive cases, but the
sensitivity, specificity, and NPV were over 90%, indicating the
prevalence of fewer false-negative cases. Thus, NLP may be a
helpful screening tool for case finding purposed when using a
large dataset.

Although we did not formally record the time required for data
abstraction, the abstractors estimate an average review time of
5 minutes per chart, which adds to 110 hours of sustained
attention to review a total of 1320 charts. On the other hand,
once the rule sets have been developed, the NLP tool can extract
the requested variables within seconds.

Limitations
There are several limitations of NLP that are worth discussing.
First, the NLP approach can only extract information from the

radiologist’s reported interpretation of diagnostic images, and
it is not designed to be directly used for imaging interpretation
[4]. Although the tool was accurate in identifying which reports
had missing data on ASPECTS and collateral status, information
on these attributes was simply not obtainable without the direct
assessment of the images. Second, each rule is applied at a
sentence level so that the tool will not be able to capture
attributes if keywords occur across different sentences. Third,
the tool does not distinguish between homonyms in the English
language. For instance, we experienced challenges with the
word “ASPECT” used to describe the score and “aspect” used
to describe a facet of the brain or a component of a blood vessel.
Finally, the NLP approach is influenced by variations in
reporting practices to describe imaging findings. This was most
apparent in the evaluation of the presence of cerebral ischemia.
The terms used to describe this attribute were less predictable
and frequently contained ambiguous language such as “possible
subtle hypodensity” or “cannot rule out early ischemia.”
Interestingly, the cerebral ischemia attribute also had a lower
inter-rater reliability between the chart abstractors compared to
the other attributes evaluated. We noticed that the nonclinical
research assistant, who has extensive experience with chart
abstraction for stroke research, was more liberal in recording
ischemia, whereas the stroke specialist was more selective in
recording ischemia depending on the language used by the
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radiologist. In this situation, the application of NLP rule sets
may improve the standardization of data collection. Finally, the
current proof-of-concept study has a small sample size. External
validation of our methods with a larger sample of radiology
reports is needed to address the limitations arising from variation
in reporting practices.

Conclusions
NLP approaches can identify the presence of large vessel
occlusion with high accuracy and have the potential to improve
the efficiency of large-scale data collection from imaging
reports. External validation of our approach is needed.
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