
Original Paper

Leveraging Genetic Reports and Electronic Health Records for
the Prediction of Primary Cancers: Algorithm Development and
Validation Study

Nansu Zong1, PhD; Victoria Ngo2, PhD; Daniel J Stone1, BSc; Andrew Wen1, MSc; Yiqing Zhao1, PhD; Yue Yu1,

PhD; Sijia Liu1, PhD; Ming Huang1, PhD; Chen Wang1, PhD; Guoqian Jiang1, MD, PhD
1Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
2University of California Davis Health, Sacramento, CA, United States

Corresponding Author:
Guoqian Jiang, MD, PhD
Department of Health Sciences Research
Mayo Clinic
200 First Street
Rochester, MN
United States
Phone: 1 480 301 8000
Email: Jiang.Guoqian@mayo.edu

Abstract

Background: Precision oncology has the potential to leverage clinical and genomic data in advancing disease prevention,
diagnosis, and treatment. A key research area focuses on the early detection of primary cancers and potential prediction of cancers
of unknown primary in order to facilitate optimal treatment decisions.

Objective: This study presents a methodology to harmonize phenotypic and genetic data features to classify primary cancer
types and predict cancers of unknown primaries.

Methods: We extracted genetic data elements from oncology genetic reports of 1011 patients with cancer and their corresponding
phenotypical data from Mayo Clinic’s electronic health records. We modeled both genetic and electronic health record data with
HL7 Fast Healthcare Interoperability Resources. The semantic web Resource Description Framework was employed to generate
the network-based data representation (ie, patient-phenotypic-genetic network). Based on the Resource Description Framework
data graph, Node2vec graph-embedding algorithm was applied to generate features. Multiple machine learning and deep learning
backbone models were compared for cancer prediction performance.

Results: With 6 machine learning tasks designed in the experiment, we demonstrated the proposed method achieved favorable
results in classifying primary cancer types (area under the receiver operating characteristic curve [AUROC] 96.56% for all 9
cancer predictions on average based on the cross-validation) and predicting unknown primaries (AUROC 80.77% for all 8 cancer
predictions on average for real-patient validation). To demonstrate the interpretability, 17 phenotypic and genetic features that
contributed the most to the prediction of each cancer were identified and validated based on a literature review.

Conclusions: Accurate prediction of cancer types can be achieved with existing electronic health record data with satisfactory
precision. The integration of genetic reports improves prediction, illustrating the translational values of incorporating genetic
tests early at the diagnosis stage for patients with cancer.

(JMIR Med Inform 2021;9(5):e23586) doi: 10.2196/23586
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Introduction

Cancer is the second leading cause of death worldwide [1]. The
health burden of cancer in the United States is substantial [2,3],
with approximately 1.8 million new diagnoses and an estimated
600,000 deaths in 2020 alone [4]. Despite the advances in
characterizing oncogenic mutations in the past few decades,
overcoming the consequences of cellular self-renewal and
neoplastic transformation remains a challenge in cancer therapy
research [5]. Therefore, continued discoveries in causes,
treatment, and management are needed to further the knowledge
and understanding of this collection of related diseases [6].

Modern gene technology has provided an opportunity to identify
certain gene mutations associated with increased cancer risk.
Approximately 5% to 10% of all cancer diagnoses are linked
to cancer predisposition syndromes [7-9]. Major syndromes of
cancer disposition affecting adults include breast, ovarian,
prostate, gastric, and pancreatic cancer [7]. Precision medicine
initiatives call for the leveraging of clinical and genomic data
to not only screen for cancers but also to help monitor cancer
progression and guide therapy options [10]. Clinicians can
facilitate early screening critical for risk assessment and
surveillance [8]. If cancer is detected at an early stage, survival
rates tend to be significantly higher than those for cancers
diagnosed at an advanced stage [11-13]. Nash et al [11] cite
figures as drastic as 90% survival for early ovarian cancer
detection compared to only 5% survival with advanced stage
detection, as an example. The utilization of genetic tests in
diagnosing primary cancer also becomes critical when the
symptoms and the physical exams suggest unspecified cancer
known as cancer of unknown primary [14]. Cancer of unknown
primary accounts for 3% to 5% of all tumors [15]. The
prediction of the primary cancer of cancer of unknown primary
can significantly increase our current knowledge of metastasis
and benefit the treatment of patients with cancer of unknown
primary.

The implementation and adoption of health information
technology have given frontline clinicians access to a large
repository of longitudinal clinical data collected during health
care encounters [16,17]. Medical insight and clinical decision
making rely heavily upon access to these data from electronic
health records. Artificial intelligence techniques, such as
machine learning methods, are promising for finding patterns
and discovering associations in health care data to help predict
diseases [18]. Improved predictions can be made by integrating
diverse types of digital data in patients’ charts, which include
diagnosis codes, clinical notes, laboratory test results, and
treatment data [19].

As demand grows for genetic testing from patients and as
genomic data continue to be incorporated into electronic health
records, there is a need to study how genetic reports, along with
electronic health record data, can be leveraged to predict cancers.
Conventional computational methods for predictive models are
based on features extracted from diverse data sources, known
as bag of features [20]. The features in these models are treated
independently, and the potential connections and patterns among
the features cannot be fully explored to serve the prediction. A

network-based data model can be used to represent the
association between data models with edges, and the potential
patterns are embedded in the topological structure of the
network. Predictions from network-based data representations
have achieved promising results in diverse biomedical areas,
such as drug-target prediction [21] and patient clustering [22].
Representing correlations among phenotypic and genetic data
elements through network-based data modeling shows great
potential in cancer prediction.

The objective of this study was to harmonize phenotypic and
genetic features for accurate and explainable cancer prediction,
specifically: (1) developing a network-based framework with
standard health care data exchange frameworks, the HL7 Fast
Healthcare Interoperability Resources (FHIR) [23] and the
Resource Description Framework (RDF) for graph-based data
representations, (2) employing a state-of-the-art graph
embedding algorithm, Node2vec [24], to obtain features for
machine learning and deep learning models, and (3)
implementing the proposed method with a collection of genetic
reports of patients with cancer and the corresponding phenotypic
data from Mayo Clinic’s electronic health record systems and
comprehensive experiments.

Methods

Preliminary
FHIR is a standardized data framework designed for data
exchange between different medical centers to enable
information to be captured as it is generated, significantly
simplifying population and real-time updates of predefined data
models [23,25]. The FHIR specification defines a set of granular
clinical concepts and resources to provide standard data
infrastructure to support implementations [23]. FHIR-based
data models are built upon combinations of these resources and
a set of attributes with value types. The common attributes (eg,
identifier) and unique attributes (eg, bodySite) in a resource are
used to facilitate data modeling. Common data types (eg, String
and CodeableConcepts) are used to constrain the attribute based
on an adaptation of clinically related ontologies, such as
SNOMED CT [26], LOINC [27], and International Statistical
Classification of Diseases ninth (ICD-9) and tenth revisions
(ICD-10) [28].

RDF is a general metadata or data model that defines concepts
and web-resources based on a variety of syntax notations and
data serialization formats [29]. Inherited from the classical
conceptual modeling approaches, RDF utilizes the expressions
to form triples, subject-predicate-object, to model data elements
(eg, web resources). Specifically, in this study, the subject
denotes the clinical data elements (eg, patients), and the
predicate denotes a relationship between 2 data elements.

Framework
We proposed a network-based framework (Figure 1) that
represented cancer data using the FHIR standard and RDF to
facilitate the cancer prediction process. Five types of data
sources extracted from the electronic health record—genetic
information, lab tests, diagnosis, medication, and family
historical records—were represented with FHIR resources and
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converted to the RDF-based representation. A graph-embedding
algorithm, Node2vec, was used to provide a vectorial

representation of nodes in the resulting network along with bag
of features to form the features for the classification models.

Figure 1. A network-based framework for cancer prediction based on Fast Healthcare Interoperability Resources and Resource Description Framework.

Data Preprocessing
Genetic data were extracted from 1011 aggregated anonymized
genetic test results (Foundation Medicine Inc), including
microsatellite instability and tumor mutational burden. Medical
record data elements related to laboratory results, diagnoses,
medications, and family histories were extracted from
approximately 515,000 billing encounters (666,000 electronic
health record encounters) retrieved from a Mayo Clinic clinical
data warehouse of [30]. We integrated genetic and electronic
health record data by mapping patient information based on 3
data elements: patient clinic number, names (first and last name),
and date of birth. Lab tests, diagnosis, medication, and family
historical records were searched based on the mapped patients.

We used natural language processing to normalize the names
and values. For diagnosis and medication, all diseases and
medications were represented with standardized names encoded
by ICD-9 [31] and RxNorm [32] codes. For lab tests, we
represented all the tests with standard names encoded by LOINC
[27]. For family historical records, each record was processed
by a pipeline (NLP2FHIR [33]), where the medical concepts
were identified and normalized using cTAKES [34], MedXN
[35], and MedTime [36]. We encoded the diseases from family
historical records using ICD-9 codes. To build the data set
utilized for the cancer prediction, all the records within the
billing circle related to the target cancers were removed. The
top 10 elements in each data source can be found in Table 1.
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Table 1. Distribution of the top 10 elements in each data source.

Record, n (%)Code and verbatim description

Genes

553 (54.70)tumor protein p53TP53

292 (28.88)KRAS proto-oncogene, GTPaseKRAS

173 (17.11)lysine methyltransferase 2DaMLL2

171 (16.91)LDL receptor related protein 1BLRP1B

150 (14.84)lysine methyltransferase 2CaMLL3

141 (13.95)APC regulator of WNT signaling pathwayAPC

137 (13.55)AT-rich interaction domain 1BARID1B

134 (13.25)FAT atypical cadherin 1FAT1

128 (12.66)protein kinase, DNA-activated, catalytic subunitPRKDC

126 (12.46)AT-rich interaction domain 1AARID1A

Diagnosisb

204 (25.66)Work Status Exam (RTW)Z02.9

142 (17.86)Hypertension (HTN) ChronicI10

138 (17.36)HYPERTENSION NOS401.9

116 (14.59)HYPERLIPIDEMIA NEC/NOS272.4

113 (14.21)Mass LungR91.8

106 (13.33)ADMINISTRTVE ENCOUNT NOSV68.9

101 (12.70)Maintenance Health (HM)Z00.00

93 (11.70)Dyslipidemia NOSE78.5

79 (9.94)PREOP EXAMINATION NECV72.83

79 (9.94)ROUTINE MEDICAL EXAMV70.0

Lab testsc

991 (99.40)Platelets [#/volume] in Blood by Automated count777-3

988 (99.10)Creatinine [Mass/volume] in Serum or Plasma2160-0

985 (98.80)Hematocrit [Volume Fraction] of Blood by Automated count965763

985 (98.80)Hemoglobin [Mass/volume] in Blood718-7

985 (98.80)Erythrocyte distribution width [Ratio] by Automated count788-0

985 (98.80)Erythrocytes [#/volume] in Blood by Automated count789-8

985 (98.80)Leukocytes [#/volume] in Blood by Automated count1749545

985 (98.80)MCV [Entitic volume] by Automated count787-2

975 (97.80)Potassium [Moles/volume] in Serum or Plasma337180

973 (97.60)Sodium [Moles/volume] in Serum or Plasma383903

Family historical recordsb

205 (29.54)Other cardiorespiratory problemsV47.2

205 (29.54)Heart disease, unspecified429.9

205 (29.54)Other ill-defined heart diseases429.89

133 (19.16)Malignant neoplasm of bronchus and lung, unspecified162.9

130 (18.73)Malignant neoplasm of other parts of bronchus or lung162.8

124 (17.87)Other and unspecified hyperlipidemia272.4

104 (14.99)Cerebral artery occlusion, unspecified with cerebral infarction434.91
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Record, n (%)Code and verbatim description

84 (12.10)Other unknown and unspecified cause of morbidity and mortality799.9

72 (10.37)Depressive disorder, not elsewhere classified311

63 (9.08)Unspecified disorders of arteries and arterioles447.9

Medicationd

399 (72.41)Iohexol5956

374 (67.88)Sodium Chloride 9 MG/ML Prefilled Syringe1359867

304 (55.17)20 ML Sodium Chloride 9 MG/ML Injection1807638

298 (54.08)1000 ML Sodium Chloride 9 MG/ML Injection1807639

251 (45.55)2 ML Ondansetron 2 MG/ML Injection1740467

224 (40.65)Fentanyl4337

207 (37.57)heparin sodium, porcine314659

202 (36.66)Calcium Chloride 0.0014 MEQ/ML / Potassium Chloride 0.004 MEQ/ML / Sodium
Chloride 0.103 MEQ/ML / Sodium Lactate 0.028 MEQ/ML Injectable Solution

847630

188 (34.12)Acetaminophen 500 MG Oral Tablet198440

163 (29.58)10 ML Propofol 10 MG/ML Injection1808234

Cancersb

231 (22.85)Malignant neoplasm of bronchus and lung, unspecified162.9

124 (12.27)Malignant neoplasm of colon, unspecified site153.9

118 (12.67)Malignant neoplasm of liver, primary155

116 (11.47)Malignant neoplasm of pancreas, part unspecified157.9

85 (8.41)Malignant neoplasm of ovary183

80 (7.91)Malignant neoplasm of prostate185

68 (6.73)Malignant neoplasm of connective and other soft tissue, site unspecified171.9

55 (5.44)Malignant neoplasm of thyroid gland193

53 (5.24)Malignant neoplasm of breast (female), unspecified174.9

———e

aCurrent standard gene symbols: MLL2 is now KMT2D; MLL3 is now KMT2C.
bInternational Statistical Classification of Diseases (ninth revision) code and description.
cLOINC code and description.
dRxNorm code and description.
eA tenth item is not included.

Data Preprocessing and Data Modeling Based on FHIR
and RDF
We adapted FHIR-based data models from our previous work
[37] employing FHIR resources to represent data elements of
genetic reports and structured electronic health record data for
phenome-wide association studies. Specifically, we represented
genetic entries with the existing profile Observation-genetics,
extended from the resource Observation. The lab test, diagnosis,
and medication entries were represented with the resources
Observation, Condition, and Medication, respectively, and were
identified by encounters (eg, billing and electronic health record

encounters) and service date. The family historical records
entities were represented with the resource
FamilyMemberHistory as diseases and were encoded with the
attributed condition. All the resources were associated with the
resource Patient. We further converted the JavaScript object
notation–formatted FHIR data to RDF format based on the
conversion rules, where (1) all the string-type values were
considered as the entities in the RDF graph, and (2) all the values
of the resources were considered as the object of the data-type
property—named after the resource for the subject resource
Patient. We illustrated an example of data representation based
on FHIR and RDF in Figure 2.
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Figure 2. An example of data representation based on Fast Healthcare Interoperability Resources (FHIR) and Resource Description Framework (RDF):
2 JavaScript object notation–formatted FHIR representations for patients 1 and 2 are merged and converted into 1 RDF graph.

Feature Generation and Cancer Prediction

Bag of Features
Bag of features is analogous to the bag-of-words representation
and characterizes a sample with an orderless collection of
features [38]. In this study, we used bag of features based on
the attribute values from the FHIR model. Specifically,
categorical values of mutated genes, lab test results, disease
diagnoses, medications for treatment, and historical family
disease diagnoses were collected as the features from
Observation-genetics, Observation, Condition, Medication, and
FamilyMemberHistory, respectively. Additionally, patient
demographic features, such as age and gender, were also used.

Topological Features
In order to train a model with the features generated from the
input RDF data, we adapted a methodology [21] that considered
RDF graph as a network, G(V,E) with a set of vertices V and a
set of edges E, where V has 7 types of vertices (ie, genetics, lab
tests, diagnosis, medication, family historical records,
demographics, and patients) and E represents associations
between the 6 types of vertices (ie, genetics, lab tests, diagnosis,
medication, family historical records, demographics) and
patients. We used the graph embedding method to learn the
features of the patients, where a patient could be represented
by a vector embedded within the topological structure of the
patient in the network G. Node2vec [30] is a state-of-art graph
embedding method that vectorizes the vertices of a network
based on the topology of the network by maximizing the
probability of observing the neighborhood N(u) of each node u
in G:

where

and f (∙) was the feature representation of a node. In addition,
we also generated a |V|×|V| adjacency matrix from G, where
each cell of the matrix was set to 1 if there was a connection
between nodes, otherwise the cell was set to 0.

We modeled cancer prediction as a multiple-label classification
problem, where a given patient was represented with
k-dimensional features, and a model categorized the patient into
precisely 1 of 9 cancer types: colon cancer (ICD-9: 153.9),
pancreas cancer (ICD-9: 157.9), ovary cancer (ICD-9: 183),
prostate cancer (ICD-9: 185), connective and other soft tissue
cancer (ICD-9: 171.9), thyroid gland cancer (ICD-9: 193), breast
cancer (ICD-9: 174.9), liver cancer (ICD-9: 155), and bronchus
and lung cancer (ICD-9: 162.9).

Experiment Design

Overview
There were 2 main drivers of this study: (1) from a
methodological perspective—how could generated features be
coordinated with classification methods in a favorable manner
to achieve satisfactory prediction?—and (2) from a data
perspective—which data sources, especially genetic data, are
preferable in prediction? Our experiment was thus conducted
as a sequence of 6 distinct tasks.

Task 1: Comparison of Combinations of Features and
Popular Classification Methods
A comparison of 3 feature generation methods—bag of features,
Node2vec, and bag of features+Node2vec (ie, a linear
combination of bag of features and Node2vec)—was conducted.
Seven classification methods—random forest [39], naive Bayes
[40], logistic regression [41], support vector machine [42], deep
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neural network [43], convolutional neural network [44], and
graph convolutional networks [45]—were used.

Task 2: Comparison of Combinations of Data Sources
There were 5 types of data sources used in this study. We took
all possible combinations of the data sources into consideration
and studied how the features generated from these sources
affected the results.

Task 3: Comparison of Predictions for Each Cancer
To understand how the prediction varied in different cancers
predictions, we conducted 9 prediction tasks for all the cancers
to study.

Task 4: Analysis of Feature Contribution for Each
Cancer Prediction
To interpret the model and understand which features were
important to each cancer, we studied the features that contributed
most to the prediction of cancer.

Task 5: Time Effect of Cancer Prediction
To understand how the prediction could be made precisely prior
to a certain amount of time of the diagnosis, we studied the
prediction based on data collected at different duration, ranging
from 0 to 24 months, in advance.

Task 6: Prediction of Cancer of Unknown Primary
Patients
We identified the 43 primary cancers from 81 patients with
cancer of unknown primary based on the diagnosis records to
understand how the proposed method performed for real cancer
predictions. Please note, no patients with pancreas cancer of
unknown primary were identified, and therefore, pancreatic
cancer was not considered in this task.

Feature Selection and Classification
Two methods were used to generate features: bag of features
and Node2vec. For bag of features, all genes, diseases, drugs
in genetics, diagnosis, medication, and family historical records
were considered as features. For the lab tests, the values were
converted into categorical values (Null, Normal, or Abnormal)
based on the normal range defined in the unified data platform.
To avoid overfitting, the features were reduced to
d={10,20,30,40,50,60,70,80,90,100} based on information gain
[46]. For Node2vec, the parameter ranges for the grid search
were specified as the number of walks γ={10,40}, return
P={0.5,1.0,2.0}, in-out q={0.5,1.0,2.0}, dimension
d={10,20,30,40,50,60,70,80,90,100}, window size w={5,10},
and walk length t={40,80}.

Four popular machine learning models and 3 deep learning
models were used for classification. For machine learning
methods, the following settings were used: L2 regularization
for logistic regression, type C-SVC and linear kernel for support
vector machine, 500 trees for random forest, and default settings
for naive Bayes. For deep learning methods, the following

structure were used: 5 dense layers with dimensions {256,
256,128, 64, 10} (4 rectified linear unit [ReLU] activation
functions with 0.5 dropout rate and 1 softmax activation
function) for deep neural network, 3 convolution layers with
filters {256, 256, 256} (3 ReLU activation functions and
maxpooling layers with 0.5 dropout rate) followed with 4 dense
layers with dimensions {256,128, 64, 10} (3 ReLU activation
functions with 0.5 dropout rate and 1 softmax activation
function) for convolutional neural network, and 2 graph
convolutional layers with channels {64, 10}(1 ReLU activation
function with 0.5 dropout rate and 1 softmax activation function)
for graph convolutional networks.

Node2vec was obtained from the Node2vec library [47]. The
logistic regression classifier was obtained from the LIBLINEAR
library [48]; naive Bayes, random forest, and information gain
algorithms were obtained from Weka library [49], support vector
machine was obtained from LIBSVM [50]. Deep neural network
and graph convolutional networks were constructed based on
Keras library [51]. Graph convolutional networks algorithms
were obtained from Spektral library [52].

Validation and Evaluation Metrics
We used conventional 10-fold cross-validation for the
evaluation, where 10 independent iterations of training and
testing were conducted, and a random partition of the original
samples into 10 equal-size subsamples was performed. To assess
the quality of classification, we used area under the receiver
operating characteristic curve (AUROC) [53]. In addition, the
area under the precision-recall curve (AUPRC) [53] was used
as a supplementary metric characterizing the results for
imbalanced classes [54,55]. AUROC and AUPRC scores were
calculated using the Java Receiver Operating Characteristic
library [56] and Weka evaluation package [57].

Results

Combinations of Features and Popular Classification
Methods
Table 2 shows the best performance result was achieved by
using bag of features+Node2vec and random forest (AUROC
96.19%) (AUPRC: Table S1, Multimedia Appendix 1).
Generally, using bag of features+Node2vec outperformed using
bag of features (+1.27 %) and Node2vec (+1.41%). Although
we observed that machine learning–based methods outperformed
deep learning–based methods, in general, the best deep
learning–based approach (AUROC 95.12%) was second to the
best machine learning–based approach by only 1
percentage-point difference (outperforming the remaining
machine learning–based approaches). As our implementation
of deep learning models is based on simple architectures, the
deep learning models with more complex architectures have
the potential to facilitate feature generation and may directly
contribute to improvements in cancer prediction.
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Table 2. Prediction performance (area under the receiver operatic characteristic curve) for combinations of features and classification methods.

Feature generation algorithmClassifiers

Bag of features+Node2vecNode2vecBag of features

AUROC (%)AUROC (%)AUROCa (%)

96.1991.8994.82Random forest

94.7692.9192.30Naive Bayes

89.3985.2586.68Logistic regression

86.7283.9284.62Support vector machine

57.6863.3664.14Convolutional neural network

95.1292.8792.56Deep neural network

83.8383.6279.67Graph convolutional networks

aAUROC: area under the receiver operating characteristic curve.

Combinations of Data Sources
Table 3 shows better results were achieved by the model
DML+G (diagnosis, medication, lab test, and genetic
information; AUROC 96.56%). Steady improvement is obtained
when more features are used (AUPRC: Table S2, Multimedia
Appendix 1). For example, increasing average AUROCs
(75.49%, 82.65%, 87.98%, and 91.74%) are achieved by adding
1 to 5 features successively without using genetic information.
Table 3 also presents the importance of the features, where lab

test is the most important feature (91.00%), followed by
diagnosis (73.12%), medication (72.83%), and family historical
records (65.01%). We also demonstrated the value of genetic
information for cancer prediction—an average improvement of
10.52% was reached. Interestingly, such improvement is
weakened when more feature types are used (+15.76% for using
1 feature type, +10.45% for 2 feature types, +6.92% for 3 feature
types, and +4.45% for 4 feature types). Table 3 also indicates
the potential of using diverse types of features alternatively
when genetic information is not available.
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Table 3. Prediction performance for combinations of data sourcing with bag of features+Node2vec and random forest algorithms.

AUROCa (%)Feature types

With genetic informationBase feature set

1 feature type

90.8973.12Gb

88.3765.01Dc

95.8091.00Hd

89.9472.83Le

90.9273.21Mf

2 feature types

96.0991.55DH

90.8877.09DL

95.9291.30DM

89.0271.53HL

95.7591.22MH

96.0191.98ML

3 feature types

91.2876.76DHL

96.5691.76DMH

95.7691.43DML

96.1991.74MHL

4 feature types

90.8973.12DMHL

aAUROC: area under the receiver operating characteristic curve.
bG: genetic information.
cD: diagnosis.
dH: family historical records.
eL: lab test.
fM: medication.

Predictions for Each Cancer
Table 4 shows that the proposed method achieved high AUROC
values across all 9 cancer types (AUPRC: Table S3, Multimedia
Appendix 1), especially for thyroid gland (AUROC 99.80%),
prostate (99.76%), breast (98.53%), ovary (98.29%), connective

and other soft tissue (96.05%), and liver (95.41%). Genetic
information improved the predictions in general (P<.001) based
on a Wilcoxon signed-rank test [58], specifically for thyroid
gland cancer (P=.03), ovary cancer (P=.03), connective and
other soft tissue cancer (P=.03), liver cancer (P=.03), and colon
cancer (P=.03).
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Table 4. Prediction performance for 9 cancer types.

AUROCb (%)Cancer (ICD-9a code)

DML+GdDMLc

99.8099.55Malignant neoplasm of thyroid gland (193)

99.7698.43Malignant neoplasm of prostate (185)

98.5396.80Malignant neoplasm of breast (female), unspecified (174.9)

98.2995.73Malignant neoplasm of ovary (183)

96.0582.39Malignant neoplasm of connective and other soft tissue, site unspecified (171.9)

95.4191.39Malignant neoplasm of liver, primary (155)

95.4191.07Malignant neoplasm of pancreas, part unspecified (157.9)

93.2490.61Malignant neoplasm of bronchus and lung, unspecified (162.9)

92.5679.88Malignant neoplasm of colon, unspecified site (153.9)

aICD-9: International Statistical Classification of Diseases, ninth revision.
bAUROC: area under the receiver operating characteristic curve.
cDML: diagnosis, medication, and lab test.
dDML+G: diagnosis, medication, and lab test, and genetic information.

Feature Contributions for Each Cancer Prediction
Our analysis examines the feature contribution based on SHAP
values [59] for the cancer prediction and selects the top 5
features interpretable for each cancer (Figure 3). Frequent
common features are lab tests (11/17); cancer antigen 19-9 in
serum or plasma (2.03%), carbohydrate antigen 19-9, S (1.76%),
and cancer antigen 125 in serum or plasma by immunoassay
(2.59%) are the most common features across all the cancer
types. These lab tests are considered to be predictive biomarkers
for prognosis and chemotherapeutic effect for carcinomas
[60-63]. Two genes—KRAS proto-oncogene, GTPase homolog
(KRAS) (1.46%) and adenoma polyposis coli regulator of WNT
signaling pathway (APC) (1.60%) contribute the most cancer
predictions. KRAS is the most commonly mutated oncogene in
human cancers. The sustained expression and signaling of KRAS
results in the progress of many cancers thus make it the
high-priority target in clinical therapeutic implications [64].
APC participates in a cytoplasmic complex and its mutation
triggers negatively regulating canonical WNT signaling. APC
counteracts proliferation, facilitates apoptosis, and suppresses
tumor progression, thus APC-deficient tumors drive colorectal
and gastric cancers [65,66].

Lab tests testosterone (2.49%) and prostate-specific antigen in
serum or plasma (2.29%) were found to be the major
contributors to prostate cancer prediction. Evidence supports
the androgen hypothesis, where prostate cancer development
and progression are related to androgens. These findings drive

the studies to explore the correlation between testosterone and
prostate cancer development and progression [67,68]. For
thyroid gland cancer prediction, thyroglobulin antibody in serum
or plasma by immunoassay (2.69%), thyroglobulin in serum or
plasma (0.58%), T4 (thyroxine) (0.62%), and gene telomerase
reverse transcriptase (TERT) (SHAP value 0.59%) were found
to be the major contributors. Associations between autoimmune
thyroiditis and thyroid cancer have been documented [69] in
studies where thyroid autoimmunity was assessed by measuring
thyroglobulin antibody and thyroid peroxidase antibody [70,71].
Thyroglobulin in serum also plays a key role in the surveillance
of differentiated patients with thyroid cancer [72]. TERT
promoter mutations have been found to be strongly associated
with different pathological types of thyroid cancers and are
considered as the biomarker to the preoperative diagnosis and
prognosis of thyroid cancers [73]. Cancer antigen 15-3 in serum
or plasma (1.57%) and cancer antigen 15-3 (CA 15-3) S (0.98%)
lab tests are the major contributors to breast cancer prediction.
Cancer antigen 15-3 is a protein made by a variety of cells,
particularly breast cancer cells, and the cancer antigen 15-3 test
is A biomarker test used to monitor breast cancer [74]. In
addition, the cancer markers alpha-fetoprotein, tumor marker,
S (0.78%) and epidermal growth factor receptor (EGFR) (1.56)
were found to be the main contributors for the prediction of
cancers of the liver [75] and bronchus and lung [76]. In our
study, sex appears to be the major contributor to prediction of
cancers of the breast (0.76%), prostate (0.92%), and ovary
(1.16%).
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Figure 3. Top 5 features contributing to cancer prediction.

Time Effect of Cancer Prediction
Table 5 shows predictions based on different resources with
different combinations of time-dependent (diagnosis,
medication, and lab test) features (AUPRC: Table S4,
Multimedia Appendix 1). Among the 7 models, diagnosis and
lab test were the best (average AUROC 90.31 %). In general,
the performance of prediction decreases as more time increases
prior to the formal diagnosis. For example, the average
performance was reduced from 92.37% to 77.18% from 0

months to 24 months in advance, with an average decrease of
3.04%. Table 5 also demonstrates the performance of the model
(ie, diagnosis, medication, lab test, and genetic information)
based on genetic information (AUROC 91.38% at 24 months
in advance, an improvement of +11.38% over diagnosis,
medication, and lab test). The difference between the two
increase as time increases (eg, 1.06 for 0 months to 11.38% for
24 months), which suggests the importance of genetic testing
at early stages.

Table 5. Prediction performance (AUROC) 0 months to 24 months in advance.

Feature typeMonths

Lab testMedicationDiagnosisMedication
and lab test

Diagnosis and
medication

Diagnosis and
lab test

Diagnosis,
medication,
and lab test

DML+Ga

AUROC (%)AUROC (%)AUROC (%)AUROC (%)AUROC (%)AUROC (%)AUROC (%)AUROCb (%)

87.9370.3997.9088.6797.8998.4198.3699.430

86.6771.0194.5386.8394.3195.5195.6298.081

84.1869.3691.2084.8590.7493.2293.1696.523

83.3868.1285.2683.0985.5389.9189.6995.216

79.9966.7678.2180.5678.2084.6084.3993.1712

78.3566.2271.7177.7371.8180.2080.0191.3824

aDML+G: diagnosis, medication, and lab test, and genetic information.
bAUROC: area under the receiver operating characteristic curve.
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Prediction of Patients With Cancer of Unknown
Primary
In spite of the challenge in identifying patients with cancer of
unknown primary in the clinical setting, hybrid features—the
diagnosis, medication, lab test, and genetic information
model—outperformed the diagnosis, medication, and lab test
model (AUPRC: Table S5, Multimedia Appendix 1), and bag
of features+Node2vec outperform the bag of features and
Node2vec in most cases. Table 6 shows promising prediction
results for 4 cancers, especially for breast (AUROC 92.31%),
connective and other soft tissue (AUROC 92.31%). Cancers of

the liver and lung have the largest number of patients (24/43)
and also achieved satisfactory predictions (AUROCs 88.21%
and 85.51%). We also note that the proposed method performed
suboptimally in predicting cancer of the colon (AUROC
52.56%). Prediction of the prostate, thyroid gland, and colon
cancers had better results for the bag of features+Node2vec
model with diagnosis, medication, and lab test features and for
the bag of features or Node2vec model with diagnosis,
medication, lab test, and genetic information features (Table
S6, Multimedia Appendix 1), suggesting a more flexible strategy
of model adaptation for the prediction of cancer of unknown
primary in practice.

Table 6. AUROC (%) of prediction for 9 cancer types.

Patients, nAUROCb (%)Cancer (ICD-9a code)

DML+GdDMLc

492.3183.97Malignant neoplasm of breast (female), unspecified (174.9)

492.3153.21Malignant neoplasm of connective and other soft tissue, site unspecified (171.9)

1388.2184.10Malignant neoplasm of liver, primary (155)

1185.5174.43Malignant neoplasm of bronchus and lung, unspecified (162.9)

280.4965.85Malignant neoplasm of ovary (183)

379.1791.67Malignant neoplasm of prostate (185)

275.6190.24Malignant neoplasm of thyroid gland (193)

452.5664.74Malignant neoplasm of colon, unspecified site (153.9)

aICD-9: International Statistical Classification of Diseases, ninth revision.
bAUROC: area under the receiver operating characteristic curve.
cDML: diagnosis, medication, and lab test.
dDML+G: diagnosis, medication, and lab test, and genetic information.

Discussion

It is recognized that both genetic and nongenetic factors may
lead to the development of cancers, and they are, therefore,
considered to be risk factors in the plethora of cancer prediction
models based on statistical analysis; this leads to performance
(eg, AUROC) ranging from 60% to 90% [77]. For example, the
variables of high DNA load of high-risk human papillomavirus,
age, marital status, smoking status, and age at sexual debut are
the critical factors to achieve the AUROC 90% in the prediction
of cervical intraepithelial neoplasia grade 2 or worse [78]. DNA
methylation-based markers-based method achieves AUROC
93% in the detection of preinvasive neoplasia and cervical
cancer [79]. Computational methods (eg, machine learning and
deep learning) have been adapted to provide solutions for cancer
prediction challenges in a controlled environment (eg, UCI
machine repository [80]). For example, linear support vector
machines achieved AUROC 96.7% [81] and k-nearest neighbors
classifier achieved an accuracy of 99.28% [82] for breast cancer
prediction.

Public genetic expression databases (eg, The Cancer Genome
Atlas) are frequently used to train diverse deep learning models.
A convolutional neural network–based model achieved
accuracies of 93.9% to 95.0% in the prediction of 34 cancer
types [83]. For lung, stomach, and breast cancer, AUROCs

99.5%, 97.1%, and 95.0%, respectively, were achieved by a
stacked sparse auto-encoder–based classification model [84].
Prostate cancer prediction achieved an AUROC of 95.5% with
a genetic algorithm–optimized artificial neural network [85].
Accuracies of 95.3% for breast cancer, 57.9% for leukemia, and
84.9% for colon cancer were achieved by sample expansion
based 1D convolutional neural network [86].

Electronic health records are utilized in cancer prediction.
DeepPatient has proposed a novel unsupervised feature learning
method based on autoencoders for disease prediction [87]. The
overall AUROC was 77.3%, where AUROCs of 88.7% for
cancer of rectum and anus, 88.6% for cancer of the liver and
intrahepatic bile duct, 85.9% for cancer of the prostate were
predicted with a time interval of 12 months. Multiple studies
have utilized electronic health record data to predict specific
cancers, where AUROCs of 88.1% for lung cancer [88], 64.8%
for breast cancer [89], 85% for pancreatic cancer [90] were
achieved, and 85.7% precision and 60.0% recall were achieved
for colorectal cancer [91]. Our method achieved AUROC
96.56% in general and outperformed the state-of-the-art methods
for most cancer types. Specifically, prostate cancer (99.8%),
breast cancer (AUROC 98.5%), liver cancer (95.4%), and
pancreas cancer (95.4%) predictions results were better for our
method.
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In this study, we designed and developed a network-based
framework leveraging the FHIR resources and RDF for cancer
prediction. Our contributions can be summarized as exploration
of utilizing FHIR and RDF technology to provide a
network-based representation for the prediction of patient health
status, demonstrating the value of integrating the phenotypic
and genetic features data sources to improve the accuracy and
interpretability in cancer prediction models. To enable the
standard representation of data, a FHIR-based representation
was used as the core to support the network population and
feature generation. It is one of the most popular clinical data
standards and is widely used among modern electronic health
record vendors and data providers, enabling the plug and play
functionality of the proposed method to be used across the
different institutions, and it provides the specification and tools
to seamlessly convert to RDF format and support the efficient
data communication based on the popular data exchanging
formats, such as XML or JavaScript object notation.

This study demonstrated a solution for the prediction of
unknown cancer in clinical practice. Despite the value of this
work, there are several limitations that should be addressed.

First, the genetic alterations in the genetic reports provided in
Foundation Medicine are all somatic mutations in tumors and
are collected from somatic tissues. Thus, we could not
differentiate the germline and somatic mutations in our model.
The bias introduced to the system caused by a failure in
capturing this difference weakens the findings of our study.

Second, as most genetic tests are based on specimens collected
from the biopsy or surgery, the best-performing (diagnosis,
medication, lab test, and genetic information) model introduced
in Task 5 might not be adaptable as some medical organizations
have limited access to genetic information available for study.
We, therefore, consider that it is more practical to learn a large
amount of phenotypical information for cancer prediction with
the full utilization of existing generic information. On the other
hand, as the costs of genetic testing are reduced, we believe that
the genetic information will be increasingly used in prediction
models for different tasks, which makes the proposed method
a good reference as a pilot study.

Third, within 81 patients who have been documented as having
cancer of unknown primary (from genetic reports), we could

identify specific cancer types for 43 patients based on the review
of patients' diagnostic report for task 6. We understand that the
limited data set used might affect result analysis, which is a
limitation of this experiment. We also noticed that the proposed
method performs differently in task 6, especially with some
notable failures. Such failures indicate the patterns of the value
distribution for the features learned in the training data are not
the same as the patterns in the cancer of unknown primary. The
cancer of unknown primary source is not considered a single
type of cancer and is known to spread at the early stage without
causing phenotypical symptoms at the origin site [92]. As such,
the proposed model is affected in Task 5 accordingly.

Fourth, our experiment demonstrates the performance of the
proposed method based on data collected over a varying
timeline. Data were used in isolation to train classification
models, ignoring the continuous changing of the measurable
values of phenotypes (eg, lab tests) during cancer progression.
The introduction of deep learning models, such as recurring
neural networks [93] and long short-term memory [94], which
are capable of processing time-series data may potentially
improve predictions.

Fifth, cancers related to the same genetic alteration (eg, both
colorectal and gastric cancers are related to the APC gene)
inspire us to explore the potential of considering dependent
phenotypes of the genetic alteration. With the utilization of
phenotype and genotype dependence based on the ontology
structure, a more sophisticated method can be designed to
empower the prediction. In the future, we plan to reach out to
other institutions to apply our method both with and without
genetic information on diverse electronic health record systems.
We consider it is necessary to adopt other medical data
standards, such as Observational Health Data Sciences and
Informatics Common Data Model [95], to cover the diversity.
We are aware that there are some challenging issues in genetic
data modeling with relational databases, such as how to
anonymize and aggregate genomic data. We believe that the
research community will develop solutions for handling these
challenging issues. We will incorporate such developments into
our framework as part of future work to better support these
requirements. The data process and cancer prediction tools of
this study are publicly available [96].
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