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Abstract

Background: Each year, influenza affects 3 to 5 million people and causes 290,000 to 650,000 fatalities worldwide. To reduce
the fatalities caused by influenza, several countries have established influenza surveillance systems to collect early warning data.
However, proper and timely warnings are hindered by a 1- to 2-week delay between the actual disease outbreaks and the publication
of surveillance data. To address the issue, novel methods for influenza surveillance and prediction using real-time internet data
(such as search queries, microblogging, and news) have been proposed. Some of the currently popular approaches extract online
data and use machine learning to predict influenza occurrences in a classification mode. However, many of these methods extract
training data subjectively, and it is difficult to capture the latent characteristics of the data correctly. There is a critical need to
devise new approaches that focus on extracting training data by reflecting the latent characteristics of the data.

Objective: In this paper, we propose an effective method to extract training data in a manner that reflects the hidden features
and improves the performance by filtering and selecting only the keywords related to influenza before the prediction.

Methods: Although word embedding provides a distributed representation of words by encoding the hidden relationships
between various tokens, we enhanced the word embeddings by selecting keywords related to the influenza outbreak and sorting
the extracted keywords using the Pearson correlation coefficient in order to solely keep the tokens with high correlation with the
actual influenza outbreak. The keyword extraction process was followed by a predictive model based on long short-term memory
that predicts the influenza outbreak. To assess the performance of the proposed predictive model, we used and compared a variety
of word embedding techniques.

Results: Word embedding without our proposed sorting process showed 0.8705 prediction accuracy when 50.2 keywords were
selected on average. Conversely, word embedding using our proposed sorting process showed 0.8868 prediction accuracy and
an improvement in prediction accuracy of 12.6%, although smaller amounts of training data were selected, with only 20.6 keywords
on average.

Conclusions: The sorting stage empowers the embedding process, which improves the feature extraction process because it
acts as a knowledge base for the prediction component. The model outperformed other current approaches that use flat extraction
before prediction.

(JMIR Med Inform 2021;9(5):e23305) doi: 10.2196/23305
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Introduction

Influenza is a highly contagious disease that affects 3 to 5
million people and kills 290,000 to 650,000 worldwide each
year [1]. To track and counter its effects, various countries have
established influenza surveillance systems, such as the European
Influenza Surveillance Scheme in Europe and the Centers for
Disease Control and Prevention (CDC) in the United States.
These mechanisms provide clinical data, such as physician visits
with influenza-like illness (ILI). However, a proper extraction
of actionable insights is hindered by a delay of approximately
2 weeks for such information to become available. To solve
this problem, studies in the field of infodemiology [2,3] have
been trying to gain novel and effective insights into diseases
from internet-based data. Hence, various recent studies in
infodemiology have attempted to deter this time delay to predict
impending outbreaks by monitoring influenza in real time using
cloud-sourced data, such as online news articles and social
network services [4-9].

Key studies have been conducted on influenza prediction
systems based on search queries, including Google Flu Trends
[10,11], in which Google provided surveillance and prediction
services for influenza using search queries [2,10,12-16]. Twitter
has recently received significant attention as a potential source
of data for the prediction of influenza outbreaks. The number
of studies that leverage tweets to predict influenza has multiplied
and they have achieved moderately accurate prediction accuracy
[17-23]. The advantage of predicting a fast-spreading outbreak
via social network data (such as Twitter) is the speed at which
people can share the news, hence providing a prompt
opportunity to use an analytical system to predict a serious
outbreak. However, various obstacles—such as privacy issues
for search query data—hinder the real-time prediction because
of the failure to capture the inherent features of the data [24].
In addition, the tweets are created by amateur users and are
prone to noise due to poor writing standards, typographical
errors, use of jargon expressions, and meaningless content
[19,25].

Previous studies have used these web data to surveil influenza
outbreaks and improved predictive performance, but the problem
exists that which data are used depends on the subjective choice
of the experimenter [2,10,18,26,27]. Owing to these drawbacks,
the performance of any machine learning approach that
leverages such data depends on a meticulous extraction of data
and the extraction of key latent features. Because training data
are extracted from the internet based on keywords, it is important
to select influenza-related keywords that perfectly reflect the
latent characteristics of the data [10,18,26]. In previous studies,
the keywords were selected by calculating the correlations
between each word and influenza-related tokens [10], directly
filtering all words that referred to influenza [19,25], or extracting
all words that were subjectively related to influenza [27].
Calculating the correlations for all words is the most effective
approach to selecting keywords that properly capture the hidden
features of the data. However, this approach requires a lot of
time because of the sheer number of correlation coefficients
that must be calculated. On the other hand, the selection of
keywords by screening the words that directly refer to influenza

or are subjectively defined to be related to influenza fails to
capture the ingrained features, even if the method is relatively
fast.

To solve these problems, we proposed a method that combines
word embedding [28-32] with cosine similarity to capture only
the word vectors that are highly correlated with influenza using
the distributed vectors. Filtering is followed by a sorting process
that ranks these keywords according to their relationship with
the actual influenza outbreak. To assess the effect of the sorting
process on embeddings, we applied a long short-term memory
(LSTM) [33] predictive model that predicts the impending
influenza outbreak.

Word embedding is a natural language processing–based feature
extraction technique that consists of establishing a distributed
representation of words. Importantly, the features that are
generated from word embedding can capture the context
between tokens. However, in the context of influenza, using the
features obtained through word embedding alone results in a
large vector space that includes unnecessary tokens and
deteriorates the prediction performance. To reduce the number
of tokens to be considered in the prediction stage, the cosine
similarity function empowers the word embedding by selecting
influenza-related features according to their similarity.

After filtering the features of the tokens that are related to
influenza keywords, it is also important to determine the optimal
amount of training data to be used for the predictive model to
improve its performance. To preferentially use keywords that
are highly related to influenza outbreaks among keywords
selected by word embedding and cosine similarity, these
keywords are sorted using the Pearson correlation coefficient
(PCC) [34] between the actual influenza outbreak keywords
and the extracted features of the training data. The ultimate
purpose of the sorting stage is to ensure that during the training,
only the features that are highly correlated with the true features
are input to the predictive model. The sorting reduces the error
and facilitates the optimization process during the LSTM model
training. The model is trained with the fine-grained features,
and the sorting process improves the performance of the LSTM
predictive model considerably. To assess the effect of the
embedding process, various embedding approaches are
evaluated.

We compared the model’s performance when the keywords
used were sorted versus when they were unsorted. For the
evaluation of the performance, we recorded the
root-mean-square error (RMSE). FastText continuous
bag-of-words (CBOW) outperformed other embedding schemes
with a PCC of 0.8986 and an RMSE of 0.0090 with sorted
keywords.

Methods

Online News Articles
Online news articles offer a rich opportunity to predict epidemic
diseases such as influenza. However, news articles extracted
based solely on the presence of the “influenza” token do not
capture the hidden insights from the news. The main reason for
this is the presence of noisy tokens, such as advertising content
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that has no association with influenza. To reflect the
characteristics of the data, before keyword selection, we used
an effective embedding stage to capture the latent relationship
between words. Furthermore, to preferentially use the keywords
most relevant to the influenza outbreak among the selected
keywords, we sorted them according to the PCC based on the
actual influenza outbreak and the proportion of news articles
containing the keyword. Moreover, the classification model
was trained on the extracted keywords.

Main Components of the Overall Methodology
In this section, we cover the overall methodology, which
includes 4 main parts: (1) tokenization and word embedding,
(2) selection of flu-related keywords via cosine similarity, (3)
extraction of flu-related news and its conversion into time-series
data, and (4) training and classification. Figure 1 depicts the
following 4 components of the model.

Figure 1. System architecture. LSTM: long short-term memory.

Tokenization and Word Embedding
Various tokens that are present in news articles do not have a
semantic or syntactic relationship to the classification of the
articles. Words such as “at” and “in” or adverbs such as “many”
and “very” are filler words that must be removed before the
embedding process. Hence, these stop words were stripped. To
use only nouns as influenza-related words, tokenization was
performed using the Mecab class provided by the morpheme
analyzer KoNLPy [35]. The tokenized articles were fed to an
embedding module that established a distributed representation
of input tokens.

As shown in Figure 1, given the input article made of tokens

, the objective of the embedding process is to
learn a distributed feature representation of each token in the

form of a distributed matrix, , where n represents
the number of tokens and d represents the embedding size. The
embedding matrix is structured such that the cosine similarity
between the features that represent related tokens is higher. The
generated vectors have the same dimension, and thus facilitate
the training process.

Here, W learns a hidden vector that produces a context vector
W' that considers other words when representing a given word.
Given the input word, Wi, the corresponding word vector in W
(which is denoted as vwi) generates a corresponding context

vector in W' (denoted as ). The embedding output layer

uses a softmax function to estimate the probability, ,
of generating the output word Wo from Wi via the context vector
as follows:

The vector assigned to each word uses the distance between the
vectors to capture the relationship between words. Using the
cosine similarity between the obtained embedding vectors, it is
feasible to express the similarity between words. For instance,
the results of the embedding are such that the cosine similarity
between the vectors for “influenza” and “sneeze” is closer to 1
and is very close to the similarity between “malaria” and “fever.”
Key hyperparameters are set during the training process. The
embedding size d is the length of a dense vector that represents
each word, and the window size is the number of words to be
checked simultaneously to learn semantic relationships. The
min count represents the minimum number of words to ponder
during the training, and any word whose number of appearances
is less than this count will be disregarded. In our
implementation, we set the embedding size to 300, the window
size to 5, and the min count to 100. There are various embedding
approaches; in this study, we compared them to evaluate their
performance in influenza detection. We compared Word2Vec
skip-gram, Word2Vec CBOW, GloVe, FastText CBOW, and
FastText skip-gram.

Selection of Flu-Related Keywords
The main objective of our model was to filter the
influenza-related tokens to be considered for prediction. For
this, we measured the cosine similarity to establish the closeness
of each token with the word “influenza.” The cosine function
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was applied to the embeddings obtained in the previous step.
Cosine similarity is a method of measuring the similarity
between 2 vectors using the cosine between the 2 vectors. It has
a value between –1 and 1. The formula to measure the similarity
using vector W of a specific word and vector Wflu of influenza
is as follows:

The above formula means that the inner product of vector W of
a specific word and vector Wflu of influenza is divided by the
length of the 2 vectors. We selected n influenza-related
keywords in the order of high cosine similarity.

Extraction of the Flu-Related News and Its Conversion
Into Time-Series Data
Following the selection of influenza-related keywords, we
extracted influenza-related news articles containing the
keywords selected by word embedding and the word “influenza”
simultaneously to ensure that the news articled reflected the
characteristics of the data. In other words, news articles extracted
through this process were a subset of the news articles that
contained only the word “influenza.” The following step
involved the conversion of news articles that contained only
the word “influenza” and news articles that contained both the
word “influenza” and the keywords selected by word embedding
into time-series data to use as a training set. The n related

keywords selected by the word embeddings were

converted into time-series data by the following
process:

In the above equation, D(t) represents the number of news
articles in the t-th week, and D(Wflu AND Rk) is the number of
news articles that contain both the word “influenza” and the
related keyword Rk. Therefore, Q(k, t) refers to the proportion
of news articles containing both “influenza” and Rk news articles
from the t-th week. The time-series data Qk are an array

of Q(k, t) corresponding to each week

.

Sorting the Time-Series Data
Another key objective of the model was to capture a weekly
match between influenza trends in news articles and the actual
occurrences of influenza. Hence, the sorting of the obtained
time-series data was critical to progressive prediction and trend

capturing. Time-series data extracted using the
keyword selected by word embedding were in the order that
was highly related to the word “influenza.” Therefore, we sorted
the keywords and the time-series data based on the PCCs
between the actual influenza outbreak and extracted time-series

data to preferentially use the time-series data that were most
relevant to the influenza outbreak. For example, since
“headache” is a word associated with influenza symptoms that
tends to appear alongside “influenza” in many news articles,
the generated embeddings for these 2 tokens are likely to be
close to encode a high association between “influenza” and
“headache.” However, because “headache” is a symptom of
various diseases, it can be difficult to determine if the
“headache” in the text refers to “influenza” outbreak. Therefore,
for effective training of influenza prediction, we applied a
sorting process that preferentially uses highly relevant tokens
to influenza outbreaks. After this step, we trained the (n+1)
predictive model by adding the sorted time-series data

sequentially to the time-series data extracted using
only the word “influenza” (Qflu). This was performed to check
the change in performance according to the additional training
data and find the optimal number of training data. In other
words, the input dimension of the k-th predictive model was

k-1, and were used as training data.

Training of the Predictive LSTM Model
We built an LSTM model [33] to predict the weekly ILI-related
cases. LSTM networks have recently been used for various
prediction studies and performed well compared with vanilla
recurrent neural networks (RNNs). LSTM networks use a gating
mechanism that helps them overcome the vanishing gradient
problem faced by RNNs. LSTM networks perform efficiently
with time-series data, as they can choose which past information
to forget or use while encoding a given time step. Bidirectional
LSTM [36], recently studied in the field of natural language
processing, showed better performance than unidirectional
LSTM on average in time-series prediction such as influenza
prediction [37]. However, in order to evaluate the proposed
keyword selection process and the performance according to
the type of word embeddings, we trained a prediction model
using LSTM, which was mainly used in existing influenza
studies [6,38,39].

During the training, we calculated the RMSE loss function,
which is the square root of the difference between the predicted
number of ILI cases and the actual numbers reported by the
CDC. The model was optimized using the Adam optimizer [40],
the time step was fixed to 5, and the layer size was set to 64.

Results

Embedding Models
To identify the most suitable word embeddings for the selection
of influenza-related keywords, we selected 100 keywords that
were highly related to influenza using 5 word-embedding
models: Word2Vec CBOW, Word2Vec skip-gram, GloVe,
FastText CBOW, and FastText skip-gram. The PCC [34] was
used to sort the extracted keywords so that only the highly
correlated ones were input to the LSTM model for training. The
predictive accuracy of each model was evaluated using the PCC
and the RMSE [41].
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Experimental Setup
We trained each word embedding model to evaluate its
performance. As per the recent trend, many studies skip the
embedding stage by using pretrained vectors. Although
pretrained vectors are obtained from a large data set, they
contain many tokens and have exhibited good performance in
various recent studies. However, it is difficult to obtain efficient
pretrained embeddings for languages other than English.
Therefore, we collected approximately 2 million news articles
over 2 years from September 11, 2017, to September 15, 2019,

and the size of the collected data was approximately 761 MB,
containing about 140,000 words as shown in Table 1. Table 2
shows the hyperparameters used when training word embeddings
and the LSTM model. Epoch means the number of training
repetitions; dimension of word embeddings means the dimension
of the vector representing the word, and in the case of LSTM
models it means the layer size. The window size of word
embeddings means the number of surrounding words to be used
for training, and min count means the minimum number of
occurrences of words to be used for learning. The LSTM model's
time step means how many weeks of data to use for prediction.

Table 1. Summary of news data for word embeddings.

ValueParameter

September 11, 2017, to September 15, 2019Time period

2,093,120Total articles

761,233,009Total bytes

142,651Total terms

Table 2. Hyperparameters for word embeddings and long short-term memory model training.

Long short-term memory modelWord embeddingsHyperparameter

20010Epoch

64300Dimension

–5Window size

–100Min count

5 weeks–Time step

Experimental Results
Figures 2 to 6 show the accuracy of the predictive model for
100 keywords selected from each word embedding. The black
dotted line in each figure depicts the condition when no keyword
was selected and only “influenza” was used, and all time-series
data related to the word “influenza” were used as input.
Moreover, for each embedding schema, the figures show the
PCC and the RMSE of the predictive model using the time-series
data of only the word “influenza.” In the figures, “sorted” means
that the keywords selected by the word embeddings were sorted
based on the PCC—that is, the keywords were sorted in the
order of their correlation with the influenza outbreak. “Unsorted”
means that the keywords were not sorted. We expected that both
sorted and unsorted approaches would show an accuracy
increase to a certain level and then decrease with a further
increase in the number of keywords. The sorted version achieved
better accuracy than the unsorted method.

Figure 2 shows the accuracy of the LSTM model using PCC
and RMSE when adding 1 to 100 time-series training data for
the selected keyword using Word2Vec CBOW. As the number
of keywords increased, both sorted and unsorted approaches
showed an accuracy increase to a certain level and then
decreased with a further increase in the number of keywords.
The sorted version achieved better accuracy than the unsorted
method. In the case of the sorted method, the maximum value
achieved by PCC was 0.8951 with 22 keywords used, and the
minimum RMSE value was 0.0082 when the same number of
keywords was used. In the case of the unsorted method, the
maximum PCC was 0.8784 with 59 keywords, and the minimum
RMSE value was 0.0095 with 19 keywords. The sorted method
showed better accuracy with fewer keywords. When using
keywords that were highly related to influenza outbreaks, as
the number of keywords increased, the accuracy decreased
significantly. However, the decrease in accuracy was a natural
result of using less relevant keywords. It was judged that the
training data added in the sorted order had a more positive effect
on accuracy improvement.
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Figure 2. Pearson correlation coefficient (PCC) (A) and root-mean-square error (RMSE) (B) of long short-term memory models using Word2Vec
continuous bag-of-words.

Figure 3 shows the accuracy of the LSTM model using PCC
and RMSE when adding 1 to 100 time-series training data for
the selected keyword using Word2Vec skip-gram. Both the
sorted and unsorted methods of Word2Vec skip-gram showed
repeated increases and decreases in accuracy as keywords were
added. This means that the keywords selected using Word2Vec
skip-gram were somewhat less related to the influenza outbreak
than were the keywords selected using Word2Vec CBOW.

However, in the case of the sorted method, although the repeated
increase and decrease was large, it tended to increase to a certain
level and then decrease with a further increase in the number
of keywords. For the sorted keywords, the maximum PCC was
0.8942 with 8 keywords, and the minimum RMSE was 0.008
with the same number of keywords. In the case of the unsorted
method, the maximum PCC was 0.8942 with 8 keywords, and
the minimum RMSE was 0.0089 with 9 keywords.

Figure 3. Pearson correlation coefficient (PCC) (A) and root-mean-square error (RMSE) (B) of long short-term memory models using Word2Vec
skip-gram.

Figure 4 shows the accuracy of the LSTM model using PCC
and RMSE when adding 1 to 100 keywords using GloVe. The
accuracy of the predictive model using GloVe was similar to
that of the predictive model using Word2Vec CBOW. Both the
unsorted and sorted methods temporarily exhibited a boost in
accuracy as per the increase in the number of keywords.
However, the accuracy gently decreased as the number of
keywords increased further. Generally, the sorted method

achieved higher accuracy. However, as shown in the figure,
when the number of added keywords was very large, the
accuracy of the unsorted and sorted methods was similar. In the
case of the sorted method, the maximum PCC was 0.8783 with
29 keywords, and the minimum RMSE was 0.009 with 22
keywords. In the case of the unsorted method, the maximum
PCC was 0.8467 with 14 keywords, and the minimum RMSE
was 0.0095 with the same number of keywords.
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Figure 4. Pearson correlation coefficient (PCC) (A) and root-mean-square error (RMSE) (B) of long short-term memory models using GloVe.

The accuracy of the LSTM model using PCC and RMSE when
adding 1 to 100 time-series training data for the selected
keywords using FastText CBOW is depicted in Figure 5. Similar
to the accuracy of the predictive model using the previous word
embeddings, the sorted method outperformed the unsorted

method. The sorted method achieved a maximum PCC of 0.8986
with 34 keywords and a minimum RMSE of 0.009 with the
same number of keywords. The unsorted method achieved a
maximum PCC of 0.8467 with 42 keywords and a minimum
RMSE of 0.0095 with 11 keywords.

Figure 5. Pearson correlation coefficient (PCC) (A) and root-mean-square error (RMSE) (B) of long short-term memory models using FastText
continuous bag-of-words.

Figure 6 depicts the accuracy of the LSTM model using PCC
and RMSE when adding 1 to 100 time-series training data for
the selected keywords using FastText skip-gram. The general
accuracy of unsorted and sorted methods was lower than that
of other word embeddings covered thus far. This means that
the time-series data for keywords selected using the FastText
skip-gram were negatively correlated with actual influenza
outbreaks. In the case of the sorted method, the maximum PCC
was 0.8679 with 10 keywords, and the minimum RMSE was

0.009 with the same number of keywords. However, the model
that used more keywords than the model with maximum
accuracy showed a sharp decline in accuracy. The accuracy was
lower than that of the model that used only “influenza” as a
keyword. In the case of the unsorted method, the maximum
PCC was 0.8676 with 86 keywords, and the minimum RMSE
was 0.0095 with 87 keywords. However, similar to the sorted
method, the accuracy increased sharply and decreased
significantly.
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Figure 6. Pearson correlation coefficient (PCC) (A) and root-mean-square error (RMSE) (B) of long short-term memory models using FastText
skip-gram.

Analysis
In this study, we aimed to obtain the optimal word embedding
when the PCC-based sorting was applied after keyword
selection. We compared the best accuracy of the LSTM models
trained using each type of word embedding against the number
of selected keywords using PCC and RMSE. We considered 2
cases: whether PCC-based sorting was applied or not. Table 3
shows the highest accuracy of the LSTM predictive model using
different word embedding techniques and the number of
keywords used at each time. We found that the sorted method
used fewer keywords but performed better on average. This
means that using the data highly related to influenza outbreaks

through the sorted method effectively selected training data and
improved the average accuracy of the predictive model.
Moreover, we found that among the word embedding
techniques, FastText CBOW had the highest performance in
terms of PCC and Word2Vec skip-gram had the highest
performance in terms of RMSE. The process of training by
using the context words is the same except that FastText
produces a word vector using subword information while
Word2Vec considers vectors for complete words. Therefore,
there is a slight difference in the performance of Word2Vec and
FastText, but it can be confirmed that they are very similar.
GloVe, which utilizes the statistical data of the entire document,
showed lower performance than the other embedding techniques.

Table 3. Pearson correlation coefficient (PCC) and root-mean-square error (RMSE) for influenza prediction models using different word embedding
techniques.

RMSE (number of keywords)PCC (number of keywords)Prediction model

SortedUnsortedSortedUnsorted

0.0082 (22)0.0095 (19)0.8951 (22)0.8784 (59)Word2Vec CBOWa

0.0080 (8)0.0089 (9)0.8942 (8)0.8755 (50)Word2Vec skip-gram

0.0090 (22)0.0095 (14)0.8783 (29)0.8467 (14)GloVe

0.0090 (34)0.0095 (11)0.8986 (34)0.8845 (42)FastText CBOW

0.0090 (10)0.0095 (87)0.8679 (10)0.8676 (86)FastText skip-gram

0.0086 (19)0.0094 (28)0.8868 (21)0.8705 (50)Mean

aCBOW: continuous bag-of-words.

Figure 7 shows the prediction results of the model using only
the time-series data of “influenza” (basic LSTM) and the
unsorted and sorted methods using FastText CBOW,
respectively, which showed the highest PCCs (Table 3). In
Figure 7, the left side of the black dotted line drawn vertically
at weeks 18-37 is the prediction result using the training data
set, and the right side is the prediction result using the test data
set. The predictive model using Korea Centers for Disease
Control and Prevention ILI data and time-series data of only
“influenza” hardly predicted the influenza peak at weeks 19-5
in the test data set. However, the predictive model trained on

time-series data of additional keywords selected by FastText
CBOW substantially improved the prediction accuracy
compared with the model that used only the word “influenza.”
In addition, the method that sorted the keywords selected by
FastText CBOW based on PCC and added time-series data
outperformed the unsorted method. Both unsorted and sorted
methods using FastText CBOW predicted the influenza peaks
at weeks 18-1 included in the training data set. However, neither
method accurately predicted the influenza peaks at weeks 18-52
and 19-5 in the test data set. This is because the proportion of
news articles containing the word “influenza” at the second
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(18-52) and the third (19-5) peak decreased compared with the
first (18-1) peak, which affected the performance of all

predictive models.

Figure 7. Comparison of actual influenza outbreaks and influenza prediction results from prediction models. CBOW: continuous bag-of-words; ILI:
influenza-like illness; KCDC: Korea Centers for Disease Control and Prevention; LSTM: long short-term memory.

Discussion

Related Work
The accurate and timely prediction of influenza outbreaks has
recently gained significant research attention. Many studies rely
on legacy statistical approaches. High-performing methods use
machine learning with internet-sourced and social
network–sourced cloud data.

Eysenbach [2] found a close correlation between
epidemiological data on flu and the number of clicks on Google's
keyword-triggered links, which is based on the fact that many
people use the internet to find health information. The PCC for
the number of clicks in the current week and influenza cases in
the following week was 0.91, which was a better predictor for
influenza than ILIs reported by sentinel physicians. Eysenbach
[2] also defined “information epidemiology” or “infodemiology”
as a set of research methods such as tracking health information
trends on the internet and distributing people's health
information. Infodemiology data have the advantage that they
can be collected and analyzed in real time.

Ginsberg et al [10] proposed a linear regression model using
the search query from the Google search engine and the ILI data
provided by the CDC in the United States to predict influenza.
The rationale behind the study was that the search frequency of
any influenza-related search query was correlated with the
occurrence of influenza. The study established a list of candidate
query groups to be used in the regression model by calculating
the correlation between time-series forms of all search queries
and the ILI value from the CDC. Hence, the top 100 of these
correlated search queries were selected for training the model.
The performance of the model improved depending on the
number of highly correlated queries. The accuracy improved
with 100 queries but did not improve with 45 queries.

Achrekar et al [19] proposed the framework of social
network–enabled flu trends, which monitored flu trends. The
study developed a model based on autoregression with an
exogenous input that used tweets to predict influenza warnings
and ILI occurrences. Tweets with the keywords “flu,” “H1N1,”
and “swine flu” were defined as influenza-related tweets.
Support vector machines (SVMs) [42] were used to exclude
meaningless tweets. The study concluded that Twitter data were
highly correlated with ILI rates.
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Li and Cardie [25] developed a model that predicted influenza
using Twitter and a probabilistic graphical Bayesian approach
based on a Markov network. The approach divided influenza
progression into 4 phases: nonepidemic, rising epidemic,
stationary epidemic, and declining epidemic. Tweets containing
the keywords “flu,” “H5N1,” “H5N9,” “swine flu,” and “bird
flu” were defined as influenza-related tweets, and SVMs were
used to remove the unnecessary tweets.

Zhang et al [27] implemented FluOutlook, an online system for
predicting influenza outbreaks in 7 countries using statistical
regression analysis and Global Epidemic and Mobility models
[43,44]. The model was based on Influweb [45]—a voluntary
participation information collection system—and Twitter.
FluOutlook collected tweets containing 40-50 defined keywords
and assigned a priority flag based on the correlation between
the time-series data corresponding to each keyword and actual
flu occurrences. The limited number of keywords helped
mitigate the effect of noise included in the collected raw tweets.

These recent influenza prediction studies have used search
queries and microblogging, such as Twitter, for real-time
prediction. However, search queries provided by search engines
(such as Google) cannot be used for real-time prediction because
it is difficult and imprecise to infer the exact search trends.
Moreover, as already asserted, Twitter and other social platforms
are prone to noise. On the other hand, web-based news data
exhibit less vulnerability to noise and have recently been adopted
in several prediction studies [46-48]. The strength of these news
data is due to real-time online accessibility and rigorous
professional editing.

A crucial aspect to consider during the extraction of training
data from the internet is the selection of keywords. Various
studies calculated correlations for all words or used keywords
that directly indicated influenza or were subjectively selected.
Calculating the correlation coefficient for every token has been
argued to be the best approach. However, it requires a lot of
computing resources and training time. The direct or subjective
selection of influenza-related keywords cannot be generalized
to various data sets because it is challenging to extract the
inherent features of the data set. Therefore, a method for
selecting related keywords by reflecting the latent characteristics
of the data during the selection of keywords improves the model
considerably.

Various studies have also focused on word embedding as a
feature extraction method that can capture the semantic and
contextual aspects from texts by establishing a distributed
representation of each token.

Mikolov et al [29,30] proposed Word2Vec—a model that uses
a shallow neural network to assign a distributed vector to each
word by calculating the co-occurrence probability. Using the
distributional hypothesis [49], the probabilities are calculated
such that words with close meaning or words that are likely to
appear together in a certain context window are close in the
vector space. The model consists of 2 distinct learning
paradigms: skip-gram and CBOW. To build the distributed
vector, skip-gram learns the probability of occurrence of context
words from the target word, while CBOW learns the probability
of occurrence of the target words from context words.

Word2Vec uses local information (context window) between
words in the context by disregarding the global information.
Hence, Pennington et al [31] proposed GloVe, which assigns a
vector to each word by using the proportion of the target word
appearing along with other words throughout the document.

Another key limitation of Word2Vec is that it ignores the
internal morphology of words and fails to capture proper vectors
for rare words. To address this limitation, Joulin et al [32]
proposed FastText, which considers the subwords of each word.
Rather than feeding the individual words to the neural network,
FastText breaks them into n-grams and uses skip-grams to learn
the distributed representation of each of these subwords. The
final representation of a distinct word is the sum of these
n-grams.

Limitations and Future Work
When predicting influenza from news articles, we used word
embedding to find words related to influenza and sorted them
based on their association with actual influenza outbreaks,
effectively extracting training data and improving the accuracy
of predictions. However, our research has the following
limitations, and future studies are needed. First, we need to
check whether our approach works well for novel data sets other
than news articles. Recently, influenza prediction has been
studied using various data [38,50-53]. Therefore, it is necessary
to study whether our approach can improve performance when
applied to different data sets used in the recent state-of-the-art
studies. In this study, we focused on improving the
representation of the training data rather than on the learning
scheme. Hence, we used the standard, unmodified LSTM model,
which is widely used in existing influenza prediction studies
[6,38,39]. However, research is being conducted to change the
standard LSTM model in state-of-the-art influenza prediction
[54,55] or to apply a prediction model that shows better
performance in other fields [56,57]. Therefore, it is necessary
to study whether our approach can lead to improvement in
performance when applied to predictive models other than the
standard LSTM model. Third, we used word embedding to
extract keyword candidates for training data extraction, but we
need to see if our sorting process can improve performance even
when other keyword extraction methods are used.

Conclusions
In this paper, we proposed an effective training data extraction
method to improve influenza prediction from news articles. The
input data selected by the extraction method encoded the
relationship between the words with influenza-related keywords.
Subsequently, these data were filtered as per their relationship
with the actual influenza outbreak. This process was ensured
by sorting the selected keywords based on PCCs between the
actual influenza outbreak and the proportion of news articles
containing the keywords. The predictive model that was trained
on the extracted data using only the word “influenza” did not
reflect the characteristics of the collected data; hence, it showed
unsatisfactory performance. However, because the predictive
models trained on the data extracted through the proposed
method reflected the characteristics of the data, it was confirmed
that the performance was greatly improved. We also compared
the performance of the predictive models with 5 popular word
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embedding techniques. The experimental results proved that
with the proposed method, FastText CBOW outperformed other

embedding techniques with unsorted and sorted keywords.
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