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Abstract

Background: Each year, influenza affects 3 to 5 million people and causes 290,000 to 650,000 fatalities worldwide. To reduce
the fatalities caused by influenza, several countries have established influenza surveillance systemsto collect early warning data.
However, proper and timely warnings are hindered by a1- to 2-week delay between the actual disease outbreaks and the publication
of surveillance data. To address the issue, novel methods for influenza surveillance and prediction using real-time internet data
(such as search queries, microblogging, and news) have been proposed. Some of the currently popular approaches extract online
data and use machine learning to predict influenza occurrences in a classification mode. However, many of these methods extract
training data subjectively, and it is difficult to capture the latent characteristics of the data correctly. There is a critical need to
devise new approaches that focus on extracting training data by reflecting the latent characteristics of the data.

Objective: In this paper, we propose an effective method to extract training data in a manner that reflects the hidden features
and improves the performance by filtering and selecting only the keywords related to influenza before the prediction.

Methods: Although word embedding provides a distributed representation of words by encoding the hidden relationships
between various tokens, we enhanced the word embeddings by selecting keywords related to the influenza outbreak and sorting
the extracted keywords using the Pearson correlation coefficient in order to solely keep the tokens with high corréelation with the
actual influenzaoutbreak. The keyword extraction process was followed by a predictive model based on long short-term memory
that predictstheinfluenzaoutbreak. To assess the performance of the proposed predictive model, we used and compared a variety
of word embedding techniques.

Results: Word embedding without our proposed sorting process showed 0.8705 prediction accuracy when 50.2 keywords were
selected on average. Conversely, word embedding using our proposed sorting process showed 0.8868 prediction accuracy and
an improvement in prediction accuracy of 12.6%, although smaller amounts of training datawere selected, with only 20.6 keywords
on average.

Conclusions: The sorting stage empowers the embedding process, which improves the feature extraction process because it
acts as aknowledge base for the prediction component. The model outperformed other current approaches that useflat extraction
before prediction.

(IMIR Med Inform 2021;9(5):€23305) doi: 10.2196/23305
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Introduction

Influenza is a highly contagious disease that affects 3 to 5
million people and kills 290,000 to 650,000 worldwide each
year [1]. To track and counter its effects, various countries have
established influenza surveillance systems, such asthe European
Influenza Surveillance Scheme in Europe and the Centers for
Disease Control and Prevention (CDC) in the United States.
These mechanisms provide clinical data, such asphysician visits
with influenza-like illness (ILI1). However, a proper extraction
of actionable insights is hindered by a delay of approximately
2 weeks for such information to become available. To solve
this problem, studies in the field of infodemiology [2,3] have
been trying to gain novel and effective insights into diseases
from internet-based data. Hence, various recent studies in
infodemiology have attempted to deter thistime delay to predict
impending outbreaks by monitoring influenzain real timeusing
cloud-sourced data, such as online news articles and social
network services [4-9].

Key studies have been conducted on influenza prediction
systems based on search queries, including Google Flu Trends
[10,11], in which Google provided surveillance and prediction
servicesfor influenzausing search queries[2,10,12-16]. Twitter
has recently received significant attention as a potential source
of datafor the prediction of influenza outbreaks. The humber
of studiesthat leverage tweetsto predict influenzahas multiplied
and they have achieved moderately accurate prediction accuracy
[17-23]. The advantage of predicting a fast-spreading outbreak
viasocia network data (such as Twitter) is the speed at which
people can share the news, hence providing a prompt
opportunity to use an analytical system to predict a serious
outbreak. However, various obstacles—such as privacy issues
for search query data—hinder the real-time prediction because
of the failure to capture the inherent features of the data [24].
In addition, the tweets are created by amateur users and are
prone to noise due to poor writing standards, typographical
errors, use of jargon expressions, and meaningless content
[19,25].

Previous studies have used these web data to surveil influenza
outbreaks and improved predictive performance, but the problem
existsthat which data are used depends on the subjective choice
of the experimenter [2,10,18,26,27]. Owing to these drawbacks,
the performance of any machine learning approach that
leverages such data depends on a meticul ous extraction of data
and the extraction of key latent features. Because training data
are extracted from theinternet based on keywords, it isimportant
to select influenza-related keywords that perfectly reflect the
latent characteristics of the data[10,18,26]. In previous studies,
the keywords were selected by calculating the correlations
between each word and influenza-rel ated tokens [10], directly
filtering all wordsthat referred to influenza[19,25], or extracting
all words that were subjectively related to influenza [27].
Calculating the correlations for all words is the most effective
approach to selecting keywordsthat properly capture the hidden
features of the data. However, this approach requires a lot of
time because of the sheer number of correlation coefficients
that must be calculated. On the other hand, the selection of
keywords by screening the wordsthat directly refer to influenza
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or are subjectively defined to be related to influenza fails to
capture the ingrained features, even if the method is relatively
fast.

To solve these problems, we proposed a method that combines
word embedding [28-32] with cosine similarity to capture only
theword vectorsthat are highly correlated with influenzausing
the distributed vectors. Filtering isfollowed by a sorting process
that ranks these keywords according to their relationship with
the actual influenza outbreak. To assessthe effect of the sorting
process on embeddings, we applied along short-term memory
(LSTM) [33] predictive model that predicts the impending
influenza outbreak.

Word embedding isanatural language processing—based feature
extraction technique that consists of establishing a distributed
representation of words. Importantly, the features that are
generated from word embedding can capture the context
between tokens. However, in the context of influenza, using the
features obtained through word embedding alone results in a
large vector space that includes unnecessary tokens and
deteriorates the prediction performance. To reduce the number
of tokens to be considered in the prediction stage, the cosine
similarity function empowersthe word embedding by selecting
influenza-related features according to their similarity.

After filtering the features of the tokens that are related to
influenzakeywords, it isalso important to determine the optimal
amount of training data to be used for the predictive model to
improve its performance. To preferentially use keywords that
are highly related to influenza outbreaks among keywords
selected by word embedding and cosine similarity, these
keywords are sorted using the Pearson correlation coefficient
(PCC) [34] between the actual influenza outbreak keywords
and the extracted features of the training data. The ultimate
purpose of the sorting stageisto ensure that during thetraining,
only the featuresthat are highly correlated with the true features
are input to the predictive model. The sorting reduces the error
and facilitates the optimization process during the LSTM model
training. The model is trained with the fine-grained features,
and the sorting processimprovesthe performance of the LSTM
predictive model considerably. To assess the effect of the
embedding process, various embedding approaches are
evaluated.

We compared the model’s performance when the keywords
used were sorted versus when they were unsorted. For the
evaluation of the performance, we recorded the
root-mean-square error (RMSE). FastText continuous
bag-of-words (CBOW) outperformed other embedding schemes
with a PCC of 0.8986 and an RMSE of 0.0090 with sorted
keywords.

Methods

Online News Articles

Online news articles offer arich opportunity to predict epidemic
diseases such as influenza. However, news articles extracted
based solely on the presence of the “influenza’ token do not
capture the hidden insights from the news. The main reason for
thisisthe presence of noisy tokens, such as advertising content
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that has no association with influenza To reflect the
characteristics of the data, before keyword selection, we used
an effective embedding stage to capture the latent relationship
between words. Furthermore, to preferentially use the keywords
most relevant to the influenza outbreak among the selected
keywords, we sorted them according to the PCC based on the
actual influenza outbreak and the proportion of news articles
containing the keyword. Moreover, the classification model
was trained on the extracted keywords.

Figure 1. System architecture. LSTM: long short-term memory.

Jang et al

Main Components of the Overall M ethodology

In this section, we cover the overall methodology, which
includes 4 main parts. (1) tokenization and word embedding,
(2) selection of flu-related keywords via cosine similarity, (3)
extraction of flu-related news and its conversioninto time-series
data, and (4) training and classification. Figure 1 depicts the
following 4 components of the model.

Embedding
I/‘L.F'J |»-p| LSTM |»b >1 LSTM |
W, l—-l 15TM I—. % LST™ |
W,
|—-| LSTM |—> >1 LST™ |
News
articles *
|—.-| LSTM I—» ----- »] LST™ |
Wn.—l |—b| LSTM I—b b-! LSTM |
VVFI
|| |
Tokenization Select flu-related keywords Extract flu-related news Sort the time-series data

and word embedding using cosine similarity

Tokenization and Word Embedding

Various tokens that are present in news articles do not have a
semantic or syntactic relationship to the classification of the
articles. Wordssuch as“at” and“in” or adverbs such as* many”
and “very” are filler words that must be removed before the
embedding process. Hence, these stop words were stripped. To
use only nouns as influenza-related words, tokenization was
performed using the Mecab class provided by the morpheme
analyzer KoNLPy [35]. The tokenized articles were fed to an
embedding module that established adistributed representation
of input tokens.

As shown in Figure 1, given the input article made of tokens

(Wo, Wo, - W1, W) the objective of the embedding processis to

learn a distributed feature representation of each token in the

form of a distributed matrix, wWe n*a), where n represents
the number of tokens and d represents the embedding size. The
embedding matrix is structured such that the cosine similarity
between the featuresthat represent rel ated tokensishigher. The
generated vectors have the same dimension, and thus facilitate
the training process.

Here, W learns a hidden vector that produces a context vector
W that considers other words when representing a given word.
Given the input word, W, the corresponding word vector in W

(which is denoted as v,,;) generates a corresponding context

vector in W (denoted as vI’/Vi). The embedding output layer
uses a softmax function to estimate the probability, ?™-!":),
of generating the output word W, from W, viathe context vector

asfollows:
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The vector assigned to each word uses the distance between the
vectors to capture the relationship between words. Using the
cosine similarity between the obtained embedding vectors, itis
feasible to express the similarity between words. For instance,
the results of the embedding are such that the cosine similarity
between the vectors for “influenza’ and “sneeze” is closer to 1
andisvery closeto thesimilarity between “malaria’ and “fever.”
Key hyperparameters are set during the training process. The
embedding size d isthe length of a dense vector that represents
each word, and the window size is the number of words to be
checked simultaneously to learn semantic relationships. The
min count represents the minimum number of wordsto ponder
during the training, and any word whose number of appearances
is less than this count will be disregarded. In our
implementation, we set the embedding size to 300, the window
sizeto 5, and the min count to 100. There are various embedding
approaches; in this study, we compared them to evaluate their
performance in influenza detection. We compared Word2Vec
skip-gram, Word2Vec CBOW, GloVe, FastText CBOW, and
FastText skip-gram.

Selection of Flu-Related Keywords

The main objective of our model was to filter the
influenza-related tokens to be considered for prediction. For
this, we measured the cosine similarity to establish the closeness
of each token with the word “influenza” The cosine function
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was applied to the embeddings obtained in the previous step.
Cosine similarity is a method of measuring the similarity
between 2 vectors using the cosine between the 2 vectors. It has
avalue between—1 and 1. Theformulato measurethe similarity
using vector W of a specific word and vector Wy, of influenza

isasfollows:
Z?=1 Wi X Wflui
=1 (W% X X (W, )?

The above formula means that the inner product of vector W of
a specific word and vector Wy, of influenza is divided by the
length of the 2 vectors. We selected n influenza-related
keywordsin the order of high cosine similarity.

Sim(W, Wﬂu) =

Extraction of the Flu-Related News and Its Conversion
Into Time-Series Data

Following the selection of influenza-related keywords, we
extracted influenzarelated news articles containing the
keywords selected by word embedding and the word “influenza”
simultaneously to ensure that the news articled reflected the
characteristics of the data. In other words, news articles extracted
through this process were a subset of the news articles that
contained only the word “influenza” The following step
involved the conversion of news articles that contained only
theword “influenza” and news articles that contained both the
word “influenza’ and the keywords sel ected by word embedding
into time-series data to use as a training set. The n related
(Ro:Rysoee

keywords 'R2) selected by the word embeddings were

a (Qo- Qys e

converted into time-series dat ‘%) by the following

process:

D(W;,, AND R
Ak ) = ( sz(t) k)

In the above equation, D(t) represents the number of news
articlesin the t-th week, and D(W;, AND Ry) is the number of
news articles that contain both the word “influenza’ and the
related keyword R,. Therefore, Q(k, t) refersto the proportion
of newsarticles containing both “influenza’ and R, newsarticles
from the t-th week. The time-series data Q, are an array

([Q0k t).Qk t2)..... QU t)]) of Q(k, t) corresponding to each week

(torty - tr)

Sorting the Time-Series Data

Another key aobjective of the model was to capture a weekly
match between influenza trends in news articles and the actual
occurrences of influenza. Hence, the sorting of the obtained
time-seriesdatawas critical to progressive prediction and trend

capturing. Time-series data (*% %) extracted using the
keyword selected by word embedding were in the order that
was highly related to theword “influenza.” Therefore, we sorted
the keywords and the time-series data based on the PCCs
between the actual influenza outbreak and extracted time-series
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data to preferentially use the time-series data that were most
relevant to the influenza outbreak. For example, since
“headache” is aword associated with influenza symptoms that
tends to appear alongside “influenza’ in many news articles,
the generated embeddings for these 2 tokens are likely to be
close to encode a high association between “influenza” and
“headache.” However, because “headache” is a symptom of
various diseases, it can be difficult to determine if the
“headache” inthetext refersto “influenza’ outbresk. Therefore,
for effective training of influenza prediction, we applied a
sorting process that preferentially uses highly relevant tokens
to influenza outbreaks. After this step, we trained the (n+1)
predictive model by adding the sorted time-series data

(%o @ ) gequentially to thetime-series dataextracted using

only theword “influenza” (Qy,,). This was performed to check
the change in performance according to the additional training
data and find the optimal number of training data. In other
words, the input dimension of the k-th predictive model was

k-1, and Qaw Qe Q.+ Qow_. were used astraining data.

Training of the Predictive LSTM Model

Webuilt an LSTM model [33] to predict theweekly ILI-related
cases. LSTM networks have recently been used for various
prediction studies and performed well compared with vanilla
recurrent neural networks (RNNSs). LSTM networks useagating
mechanism that helps them overcome the vanishing gradient
problem faced by RNNs. LSTM networks perform efficiently
with time-series data, asthey can choose which past information
to forget or use while encoding a given time step. Bidirectional
LSTM [36], recently studied in the field of natural language
processing, showed better performance than unidirectional
LSTM on average in time-series prediction such as influenza
prediction [37]. However, in order to evaluate the proposed
keyword selection process and the performance according to
the type of word embeddings, we trained a prediction model
using LSTM, which was mainly used in existing influenza
studies[6,38,39].

During the training, we calculated the RMSE loss function,
which isthe squareroot of the difference between the predicted
number of ILI cases and the actual numbers reported by the
CDC. Themodel was optimized using the Adam optimizer [40],
the time step was fixed to 5, and the layer size was set to 64.

Results

Embedding Models

Toidentify the most suitableword embeddingsfor the selection
of influenza-related keywords, we selected 100 keywords that
were highly related to influenza using 5 word-embedding
models. Word2Vec CBOW, Word2Vec skip-gram, GloVe,
FastText CBOW, and FastText skip-gram. The PCC [34] was
used to sort the extracted keywords so that only the highly
correlated oneswereinput to the LSTM model for training. The
predictive accuracy of each model was eval uated using the PCC
and the RMSE [41].
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Experimental Setup

We trained each word embedding model to evaluate its
performance. As per the recent trend, many studies skip the
embedding stage by using pretrained vectors. Although
pretrained vectors are obtained from a large data set, they
contain many tokens and have exhibited good performance in
variousrecent studies. However, it isdifficult to obtain efficient
pretrained embeddings for languages other than English.
Therefore, we collected approximately 2 million news articles
over 2 years from September 11, 2017, to September 15, 2019,

Table 1. Summary of news data for word embeddings.

Jang et al

and the size of the collected data was approximately 761 MB,
containing about 140,000 words as shown in Table 1. Table 2
showsthe hyperparameters used when training word embeddings
and the LSTM model. Epoch means the number of training
repetitions; dimension of word embeddings meansthe dimension
of the vector representing the word, and in the case of LSTM
models it means the layer size. The window size of word
embeddings means the number of surrounding wordsto be used
for training, and min count means the minimum number of
occurrences of wordsto be used for learning. TheLSTM model's
time step means how many weeks of datato use for prediction.

Parameter Value

Time period September 11, 2017, to September 15, 2019
Total articles 2,093,120

Total bytes 761,233,009

Total terms 142,651

Table 2. Hyperparameters for word embeddings and long short-term memory model training.

Hyperparameter Word embeddings Long short-term memory model
Epoch 10 200

Dimension 300 64

Window size 5 -

Min count 100 -

Time step - 5 weeks

Experimental Results

Figures 2 to 6 show the accuracy of the predictive model for
100 keywords selected from each word embedding. The black
dotted linein each figure depicts the condition when no keyword
was selected and only “influenza’ was used, and all time-series
data related to the word “influenza’ were used as input.
Moreover, for each embedding schema, the figures show the
PCC and the RM SE of the predictive model using thetime-series
dataof only theword “influenza” Inthefigures, “ sorted” means
that the keywords sel ected by the word embeddingswere sorted
based on the PCC—that is, the keywords were sorted in the
order of their correlation with theinfluenza outbreak. “ Unsorted”
meansthat the keywords were not sorted. We expected that both
sorted and unsorted approaches would show an accuracy
increase to a certain level and then decrease with a further
increasein the number of keywords. The sorted version achieved
better accuracy than the unsorted method.

https://medinform.jmir.org/2021/5/€23305

Figure 2 shows the accuracy of the LSTM model using PCC
and RM SE when adding 1 to 100 time-series training data for
the selected keyword using Word2Vec CBOW. As the number
of keywords increased, both sorted and unsorted approaches
showed an accuracy increase to a certain level and then
decreased with a further increase in the number of keywords.
The sorted version achieved better accuracy than the unsorted
method. In the case of the sorted method, the maximum value
achieved by PCC was 0.8951 with 22 keywords used, and the
minimum RM SE value was 0.0082 when the same number of
keywords was used. In the case of the unsorted method, the
maximum PCC was 0.8784 with 59 keywords, and the minimum
RM SE value was 0.0095 with 19 keywords. The sorted method
showed better accuracy with fewer keywords. When using
keywords that were highly related to influenza outbreaks, as
the number of keywords increased, the accuracy decreased
significantly. However, the decrease in accuracy was a natural
result of using less relevant keywords. It was judged that the
training data added in the sorted order had a more positive effect
on accuracy improvement.

JMIR Med Inform 2021 | val. 9 |iss. 5] e23305 | p. 5
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS

Jang et al

Figure 2. Pearson correlation coefficient (PCC) (A) and root-mean-square error (RMSE) (B) of long short-term memory models using Word2Vec

continuous bag-of-words.
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Figure 3 shows the accuracy of the LSTM model using PCC
and RM SE when adding 1 to 100 time-series training data for
the selected keyword using Word2Vec skip-gram. Both the
sorted and unsorted methods of Word2Vec skip-gram showed
repeated increases and decreasesin accuracy as keywordswere
added. This meansthat the keywords selected using Word2Vec
skip-gram were somewhat lessrelated to the influenza outbreak
than were the keywords selected using Word2Vec CBOW.
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0.009 4

0.010 4

RMSE

0.011 A

0.012 4

0.013 4

Number of keywords
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However, inthe case of the sorted method, although the repeated
increase and decrease waslarge, it tended to increaseto acertain
level and then decrease with a further increase in the number
of keywords. For the sorted keywords, the maximum PCC was
0.8942 with 8 keywords, and the minimum RM SE was 0.008
with the same number of keywords. In the case of the unsorted
method, the maximum PCC was 0.8942 with 8 keywords, and
the minimum RM SE was 0.0089 with 9 keywords.

Figure 3. Pearson correlation coefficient (PCC) (A) and root-mean-square error (RMSE) (B) of long short-term memory models using Word2Vec

skip-gram.
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Figure 4 shows the accuracy of the LSTM model using PCC
and RM SE when adding 1 to 100 keywords using GloVe. The
accuracy of the predictive model using GloVe was similar to
that of the predictive model using Word2Vec CBOW. Both the
unsorted and sorted methods temporarily exhibited a boost in
accuracy as per the increase in the number of keywords.
However, the accuracy gently decreased as the number of
keywords increased further. Generaly, the sorted method
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achieved higher accuracy. However, as shown in the figure,
when the number of added keywords was very large, the
accuracy of the unsorted and sorted methods was similar. Inthe
case of the sorted method, the maximum PCC was 0.8783 with
29 keywords, and the minimum RMSE was 0.009 with 22
keywords. In the case of the unsorted method, the maximum
PCC was 0.8467 with 14 keywords, and the minimum RMSE
was 0.0095 with the same number of keywords.
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Figure 4. Pearson correlation coefficient (PCC) (A) and root-mean-square error (RMSE) (B) of long short-term memory models using GloVe.
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The accuracy of the LSTM model using PCC and RM SE when
adding 1 to 100 time-series training data for the selected
keywords using FastText CBOW isdepictedin Figure 5. Similar
to the accuracy of the predictive model using the previousword
embeddings, the sorted method outperformed the unsorted

method. The sorted method achieved amaximum PCC of 0.8986
with 34 keywords and a minimum RMSE of 0.009 with the
same number of keywords. The unsorted method achieved a
maximum PCC of 0.8467 with 42 keywords and a minimum
RM SE of 0.0095 with 11 keywords.

Figure 5. Pearson correlation coefficient (PCC) (A) and root-mean-square error (RMSE) (B) of long short-term memory models using FastText

continuous bag-of-words.

0.90 - 0.0090
0.88 - J
i ,4 . 0.0095 | g
4 ATL r \ "
0.86 ALYy 0.0100 ! Wi\
M 1:\”r H :,\J\ :\ , L. .. - -4 { .......... ,I .........................
J [RTI 1 P S ! [} Iy I}
0.84 1) | i L ;:ﬁ RV I",l".. . 00105 | g M- A oS A
- i 'i Il 1 ! ¥ (I .ll' “‘\Il ! % R Y] J 1!,Ih I:J‘l !
0 082 0 i v . ..|'- J L u.l...-””r ..... k 1 1l v i II il )
& N LT N SRR £ o010 j p AW AL h e e
oso 1 1 ' - b ' ARV Al
] o 0.0115 + l v i il
07844 yi! i N
' v 0.0120 4 ! { Ul 4
e ”“i
0.76 l !
0.0125
0.74 4
0 20 40 60 80 100 0 20 40 60 80 100
Number of kevwords Number of keywords
=== Unsorted Sorted

Figure 6 depicts the accuracy of the LSTM model using PCC
and RM SE when adding 1 to 100 time-series training data for
the selected keywords using FastText skip-gram. The general
accuracy of unsorted and sorted methods was lower than that
of other word embeddings covered thus far. This means that
the time-series data for keywords selected using the FastText
skip-gram were negatively correlated with actua influenza
outbreaks. In the case of the sorted method, the maximum PCC
was 0.8679 with 10 keywords, and the minimum RMSE was

https://medinform.jmir.org/2021/5/€23305

XSL-FO

RenderX

0.009 with the same number of keywords. However, the model
that used more keywords than the model with maximum
accuracy showed asharp declinein accuracy. The accuracy was
lower than that of the model that used only “influenza’ as a
keyword. In the case of the unsorted method, the maximum
PCC was 0.8676 with 86 keywords, and the minimum RMSE
was 0.0095 with 87 keywords. However, similar to the sorted
method, the accuracy increased sharply and decreased
significantly.
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Figure 6. Pearson correlation coefficient (PCC) (A) and root-mean-square error (RMSE) (B) of long short-term memory models using FastText

sKip-gram.
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Analysis

In this study, we aimed to obtain the optimal word embedding
when the PCC-based sorting was applied after keyword
selection. We compared the best accuracy of the LSTM models
trained using each type of word embedding against the number
of selected keywords using PCC and RM SE. We considered 2
cases. whether PCC-based sorting was applied or not. Table 3
showsthe highest accuracy of the LSTM predictive model using
different word embedding techniques and the number of
keywords used at each time. We found that the sorted method
used fewer keywords but performed better on average. This
means that using the data highly related to influenza outbreaks
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through the sorted method effectively selected training dataand
improved the average accuracy of the predictive model.
Moreover, we found that among the word embedding
techniques, FastText CBOW had the highest performance in
terms of PCC and Word2Vec skip-gram had the highest
performance in terms of RMSE. The process of training by
using the context words is the same except that FastText
produces a word vector using subword information while
Word2Vec considers vectors for complete words. Therefore,
thereisadlight differencein the performance of Word2Vec and
FastText, but it can be confirmed that they are very similar.
GloVe, which utilizesthe statistical data of the entire document,
showed lower performance than the other embedding techniques.

Table 3. Pearson correlation coefficient (PCC) and root-mean-square error (RMSE) for influenza prediction models using different word embedding

techniques.
Prediction model PCC (number of keywords) RM SE (number of keywords)
Unsorted Sorted Unsorted Sorted

Word2Vec CBOW?A 0.8784 (59) 0.8951 (22) 0.0095 (19) 0.0082 (22)
Word2Vec skip-gram 0.8755 (50) 0.8942 (8) 0.0089 (9) 0.0080 (8)
Glove 0.8467 (14) 0.8783 (29) 0.0095 (14) 0.0090 (22)
FastText CBOW 0.8845 (42) 0.8986 (34) 0.0095 (11) 0.0090 (34)
FastText skip-gram 0.8676 (86) 0.8679 (10) 0.0095 (87) 0.0090 (10)
Mean 0.8705 (50) 0.8868 (21) 0.0094 (28) 0.0086 (19)

8CBOW: continuous bag-of-words.

Figure 7 shows the prediction results of the model using only
the time-series data of “influenza’ (basic LSTM) and the
unsorted and sorted methods using FastText CBOW,
respectively, which showed the highest PCCs (Table 3). In
Figure 7, the left side of the black dotted line drawn vertically
at weeks 18-37 is the prediction result using the training data
set, and the right side is the prediction result using the test data
set. The predictive model using Korea Centers for Disease
Control and Prevention ILI data and time-series data of only
“influenza’ hardly predicted the influenza peak at weeks 19-5
in the test data set. However, the predictive modd trained on
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time-series data of additional keywords selected by FastText
CBOW substantially improved the prediction accuracy
compared with the model that used only the word “influenza.”
In addition, the method that sorted the keywords selected by
FastText CBOW based on PCC and added time-series data
outperformed the unsorted method. Both unsorted and sorted
methods using FastText CBOW predicted the influenza peaks
at weeks 18-1 included in the training data set. However, neither
method accurately predicted theinfluenza peaks at weeks 18-52
and 19-5 in the test data set. This is because the proportion of
news articles containing the word “influenza’ at the second
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(18-52) and the third (19-5) peak decreased compared with the
first (18-1) peak, which affected the performance of all

Jang et al

predictive models.

Figure 7. Comparison of actual influenza outbreaks and influenza prediction results from prediction models. CBOW: continuous bag-of-words; ILI:
influenza-like illness; KCDC: Korea Centers for Disease Control and Prevention; LSTM: long short-term memory.
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: : Ginsberg et a [10] proposed a linear regression model using
Discussion the search query from the Google search engineand the IL| data
Related Work provided by the CDC in the United Statesto predict influenza.

The accurate and timely prediction of influenza outbreaks has
recently gained significant research attention. Many studiesrely
on legacy statistical approaches. High-performing methods use

machine learning with internet-sourced and socid
network—sourced cloud data
Eysenbach [2] found a close correlation between

epidemiologica dataon flu and the number of clickson Google's
keyword-triggered links, which is based on the fact that many
people use theinternet to find health information. The PCC for
the number of clicksin the current week and influenza casesin
the following week was 0.91, which was a better predictor for
influenzathan ILIsreported by sentinel physicians. Eysenbach
[2] aso defined “information epidemiology” or “infodemiology”
asaset of research methods such astracking health information
trends on the internet and distributing people's health
information. Infodemiology data have the advantage that they
can be collected and analyzed in real time.
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The rationale behind the study was that the search frequency of
any influenza-related search query was correlated with the
occurrence of influenza. The study established alist of candidate
guery groups to be used in the regression model by calculating
the correlation between time-series forms of all search queries
and the IL1 value from the CDC. Hence, the top 100 of these
correlated search queries were selected for training the model.
The performance of the model improved depending on the
number of highly correlated queries. The accuracy improved
with 100 queries but did not improve with 45 queries.

Achrekar et a [19] proposed the framework of social
network—enabled flu trends, which monitored flu trends. The
study developed a model based on autoregression with an
exogenous input that used tweets to predict influenzawarnings
and ILI occurrences. Tweetswith the keywords “flu,” “HIN1,”
and “swine flu” were defined as influenza-related tweets.
Support vector machines (SVMs) [42] were used to exclude
meaninglesstweets. The study concluded that Twitter datawere
highly correlated with ILI rates.
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Li and Cardie [25] developed a model that predicted influenza
using Twitter and a probabilistic graphical Bayesian approach
based on a Markov network. The approach divided influenza
progression into 4 phases: nonepidemic, rising epidemic,
stationary epidemic, and declining epidemic. Tweets containing
the keywords “flu,” “H5N1,” “H5N9,” “swine flu,” and “bird
flu” were defined as influenza-related tweets, and SVMs were
used to remove the unnecessary tweets.

Zhang et al [27] implemented FluOutlook, an online system for
predicting influenza outbreaks in 7 countries using statistical
regression analysis and Global Epidemic and Mobility models
[43,44]. The model was based on Influweb [45]—a voluntary
participation information collection system—and Twitter.
FluOutlook collected tweets containing 40-50 defined keywords
and assigned a priority flag based on the correlation between
the time-series data corresponding to each keyword and actual
flu occurrences. The limited number of keywords helped
mitigate the effect of noiseincludedin the collected raw tweets.

These recent influenza prediction studies have used search
gueries and microblogging, such as Twitter, for real-time
prediction. However, search queries provided by search engines
(such as Google) cannot be used for real-time prediction because
it is difficult and imprecise to infer the exact search trends.
Moreover, asaready asserted, Twitter and other social platforms
are prone to noise. On the other hand, web-based news data
exhibit lessvulnerability to noise and have recently been adopted
in several prediction studies[46-48]. The strength of these news
data is due to real-time online accessibility and rigorous
professional editing.

A crucial aspect to consider during the extraction of training
data from the internet is the selection of keywords. Various
studies calculated correlations for all words or used keywords
that directly indicated influenza or were subjectively selected.
Calculating the correlation coefficient for every token has been
argued to be the best approach. However, it requires a lot of
computing resources and training time. The direct or subjective
selection of influenza-related keywords cannot be generalized
to various data sets because it is challenging to extract the
inherent features of the data set. Therefore, a method for
selecting related keywords by reflecting the latent characteristics
of the data during the selection of keywordsimprovesthe model
considerably.

Various studies have also focused on word embedding as a
feature extraction method that can capture the semantic and
contextual aspects from texts by establishing a distributed
representation of each token.

Mikolov et a [29,30] proposed Word2Vec—a model that uses
a shallow neural network to assign a distributed vector to each
word by calculating the co-occurrence probability. Using the
distributional hypothesis [49], the probabilities are calculated
such that words with close meaning or words that are likely to
appear together in a certain context window are close in the
vector space. The model consists of 2 distinct learning
paradigms: skip-gram and CBOW. To build the distributed
vector, skip-gram learnsthe probability of occurrence of context
words from the target word, while CBOW learnsthe probability
of occurrence of the target words from context words.
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Word2Vec uses local information (context window) between
words in the context by disregarding the global information.
Hence, Pennington et al [31] proposed GloVe, which assigns a
vector to each word by using the proportion of the target word
appearing along with other words throughout the document.

Another key limitation of Word2Vec is that it ignores the
internal morphol ogy of words and fail sto capture proper vectors
for rare words. To address this limitation, Joulin et a [32]
proposed FastText, which considers the subwords of each word.
Rather than feeding the individual wordsto the neural network,
FastText breaksthem into n-grams and uses skip-gramsto learn
the distributed representation of each of these subwords. The
final representation of a distinct word is the sum of these
n-grams.

Limitations and Future Work

When predicting influenza from news articles, we used word
embedding to find words related to influenza and sorted them
based on their association with actual influenza outbreaks,
effectively extracting training data and improving the accuracy
of predictions. However, our research has the following
limitations, and future studies are needed. First, we need to
check whether our approach workswell for novel data sets other
than news articles. Recently, influenza prediction has been
studied using various data [ 38,50-53]. Therefore, it isnecessary
to study whether our approach can improve performance when
applied to different data sets used in the recent state-of-the-art
studies. In this study, we focused on improving the
representation of the training data rather than on the learning
scheme. Hence, we used the standard, unmodified LSTM mode,
which is widely used in existing influenza prediction studies
[6,38,39]. However, research is being conducted to change the
standard LSTM model in state-of-the-art influenza prediction
[54,55] or to apply a prediction model that shows better
performance in other fields [56,57]. Therefore, it is necessary
to study whether our approach can lead to improvement in
performance when applied to predictive models other than the
standard LSTM model. Third, we used word embedding to
extract keyword candidates for training data extraction, but we
need to seeif our sorting process can improve performance even
when other keyword extraction methods are used.

Conclusions

In this paper, we proposed an effective training data extraction
method to improve influenza prediction from newsarticles. The
input data selected by the extraction method encoded the
relationship between thewordswith influenza-related keywords.
Subsequently, these data were filtered as per their relationship
with the actual influenza outbreak. This process was ensured
by sorting the selected keywords based on PCCs between the
actual influenza outbreak and the proportion of news articles
containing the keywords. The predictive model that wastrained
on the extracted data using only the word “influenza” did not
reflect the characteristics of the collected data; hence, it showed
unsatisfactory performance. However, because the predictive
models trained on the data extracted through the proposed
method reflected the characteristics of the data, it was confirmed
that the performance was greatly improved. We a so compared
the performance of the predictive models with 5 popular word
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embedding techniques. The experimental results proved that embedding techniques with unsorted and sorted keywords.
with the proposed method, FastText CBOW outperformed other
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