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Abstract

Background: Semantic textual similarity (STS) is a natural language processing (NLP) task that involves assigning a similarity
score to 2 snippets of text based on their meaning. This task is particularly difficult in the domain of clinical text, which often
features specialized language and the frequent use of abbreviations.

Objective: We created an NLP system to predict similarity scores for sentence pairs as part of the Clinical Semantic Textual
Similarity track in the 2019 n2c2/OHNLP Shared Task on Challenges in Natural Language Processing for Clinical Data. We
subsequently sought to analyze the intermediary token vectors extracted from our models while processing a pair of clinical
sentences to identify where and how representations of semantic similarity are built in transformer models.

Methods: Given a clinical sentence pair, we take the average predicted similarity score across several independently fine-tuned
transformers. In our model analysis we investigated the relationship between the final model’s loss and surface features of the
sentence pairs and assessed the decodability and representational similarity of the token vectors generated by each model.

Results: Our model achieved a correlation of 0.87 with the ground-truth similarity score, reaching 6th place out of 33 teams
(with a first-place score of 0.90). In detailed qualitative and quantitative analyses of the model’s loss, we identified the system’s
failure to correctly model semantic similarity when both sentence pairs contain details of medical prescriptions, as well as its
general tendency to overpredict semantic similarity given significant token overlap. The token vector analysis revealed divergent
representational strategies for predicting textual similarity between bidirectional encoder representations from transformers
(BERT)–style models and XLNet. We also found that a large amount information relevant to predicting STS can be captured
using a combination of a classification token and the cosine distance between sentence-pair representations in the first layer of a
transformer model that did not produce the best predictions on the test set.

Conclusions: We designed and trained a system that uses state-of-the-art NLP models to achieve very competitive results on
a new clinical STS data set. As our approach uses no hand-crafted rules, it serves as a strong deep learning baseline for this task.
Our key contribution is a detailed analysis of the model’s outputs and an investigation of the heuristic biases learned by transformer
models. We suggest future improvements based on these findings. In our representational analysis we explore how different
transformer models converge or diverge in their representation of semantic signals as the tokens of the sentences are augmented
by successive layers. This analysis sheds light on how these “black box” models integrate semantic similarity information in
intermediate layers, and points to new research directions in model distillation and sentence embedding extraction for applications
in clinical NLP.
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Introduction

Clinical Semantic Textual Similarity
Semantic textual similarity (STS) has long been an important
task in natural language processing (NLP) research. Early work
built document-level models for textual similarity that used an
unsupervised approach, primarily for the purpose of indexing
documents for search [1,2]. These models generally relied on
the assumption that greater overlap in terms indicated greater
interdocument similarity. This body of work was enriched by
Lee et al [3] who also modeled similarity at the document level
but elicited human semantic judgments of similarity to create
a small data set of interest to NLP researchers and cognitive
scientists. It was not until SemEval-2012 Task 6 [4] that the first
sentence-based STS data set was released, featuring 2000
training and 750 test sentence pairs that were rated by humans
on a scale of 0-5 (from low to high similarity). Since then, there
have been many new SemEval STS tasks, building on the initial
task to encompass new domains of text [5] and cross-lingual
similarity [6,7]. Researchers have used these models in a diverse
set of applications such as discovering links between data sets
[8] and identifying arguments in online discourse [9].
Recognizing both the potential of STS for processing eHealth
records and the need for specialized data sets to account for
clinical domain knowledge and handle the use of medical
abbreviations, Rastegar-Mojarad et al [10] introduced a corpus
of clinical sentence pairs that were assigned semantic similarity
labels on a 0-5 scale by medical experts. This data set of 1068
annotated sentence pairs, as well as an expanded corpus of
174,629 unannotated sentence pairs, was released as MedSTS
[11]. As with previous STS tasks, performance on this data set
is measured by the Pearson correlation between the predicted
labels and the ground-truth similarity scores. In general, the
best systems in the BioCreative/OHNLP Challenge STS task
used ensembles of traditional machine learning models and deep
learning models [12], with the overall top-performing model
achieving a correlation of 0.83 on the test set. The clinical STS
task tackled in this paper, the 2019 n2c2/OHNLP Track on
Clinical Semantic Textual Similarity [13], uses an expansion of
the BioCreative/OHNLP Challenge STS task data set.

Transformer Models
In this work we train different types of transformer language
models [14]. One of the types of transformer models that we
train is bidirectional encoder representations from transformers
(BERT) [15], which uses a masked language modeling task to
train fully on bidirectional context without the decoder
component of the original transformer architecture. Recently
there has been much work in further training BERT on data
from specialized domains, including biomedical text [16] and
clinical documents [16-18]. We also further fine-tune these
models on the task of STS. The last type of transformer model
that we fine-tune is XLNet [19], which performs autoregressive
language modeling while also capturing bidirectional context
by sampling different possible word orders.

Interpreting Deep Neural Networks
After we train our models, we explore the representations that
they build of clinical semantic similarity to identify any
systematic biases or heuristics they may have learned that we
can then work toward addressing to improve future clinical STS
transformer architectures. There is a substantial literature that
uncovers the kind of linguistic representations deep neural
networks learn by experimentally perturbing the model’s input
and carefully analyzing the failure cases [20-22]. Another
approach uses “decoding” to try to predict task-relevant
information from intermediate representations generated from
the model [23-25]. Recently there has been further work on
interpreting the representations in deep neural models using
attention weights [26,27]. While this approach is intuitive, there
is still an ongoing debate about the extent to which the attention
mechanism can be used to interpret a model’s decision-making
process [28,29]. As such, we focus our layer-wise analysis on
our models’ hidden token vectors [24]. Other relevant work on
layer-wise analyses of BERT representations include [30] and
[31].

One method we use to analyze the representational geometry
of our models is representational similarity analysis (RSA) [32],
which compares models that represent stimuli using vectors
with different numbers of dimensions by measuring the
correlation of second-order dissimilarity matrices with each
other (ie, how dissimilar each pair of sentences is to each other
pair by some metric). RSA has been used recently to analyze
linguistic properties of deep learning models [33,34]. We use
basic RSA to correlate various representations that we extract
from each layer of our fine-tuned models with a matrix that
corresponds to the ground-truth dissimilarity patterns found in
the test set. This allows us to measure the strength of a clinical
semantic signal through the layers of our networks and compare
this signal across both models and choices of representation.
We also employ a version of RSA that involves reweighting
and linearly recombining the representational dissimilarity
matrices (RDMs) [35] to build a representational model that
best explains the ground-truth dissimilarity patterns in the test
set. To our knowledge, this is the first use of this framework to
explore the representational space of a deep neural language
model.

Contributions
This work presents the following contributions:

• A transformer ensemble that achieves very competitive
results on a new clinical STS task (with predictions
producing a correlation of 0.87 with ground-truth similarity
scores compared with the state-of-the-art correlation of
0.9), serving as a very strong deep learning baseline for this
task.

• An extensive qualitative analysis of the transformer
ensemble’s error cases in the task of clinical semantic
similarity that highlights the inability of popular transformer
models to capture fine-grained differences between

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e23099 | p. 2https://medinform.jmir.org/2021/5/e23099
(page number not for citation purposes)

Ormerod et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


medicinal sentence pairs, despite being trained on clinical
or biomedical text.

• A quantitative error analysis framework for STS that reveals
the shallow heuristics that transformer models learn to rely
on for this task.

• The application of linear decoding and RSA to measure the
semantic similarity signal in intermediate token
representations of 5 popular transformer models, showing
convergent and divergent representational strategies that
reflect the models’ performance on this task.

• The first application (to the authors’ knowledge) of a
reweighted and recombined version of RSA to neural
language models, indicating that better representations of
sentence pairs may be synthesized by combining 2 layers
from a relatively poorly performing biomedical transformer
with a simple textual feature signal, and suggesting new
directions for research in sentence embedding extraction.

Methods

Data
The training data for this task were made up of 1642 sentence
pairs and their associated similarity scores and the test set was
made up of 412 sentence pairs. The similarity scores are floats
on a scale of 0 to 5, ranging from no similarity to semantically
identical. The annotations were performed by 2 medical experts

(Donna Ihrke and Gang Liu [13]). The task is evaluated by the
Pearson correlation between the predictions of a model and the
ground-truth similarity scores.

Models
We fine-tuned 5 transformer [14] models. These include
BERT-Large [15], 3 variants of BERT that were fine-tuned on
text from the clinical domain, and XLNet-Large [19]. The 3
BERT variants were BioBERT [16], ClinicalBERT [17,18],
and Discharge Summary BERT (DS BERT) [17,18]. We also
created a mean_score model by taking the average prediction
of the 5 transformer models. A linear layer was added on top
of the pooled output for each model to perform the regression.
The input for the BERT models was [CLS] + A + [SEP] + B
+ [SEP], where [CLS] is the classification token, A and B are
the 2 text snippets, and [SEP] is the separator token. The input
for XLNet was A + [SEP] + B + [SEP] + [CLS]. We set the
maximum sequence length for each model to 128. As we add
3 additional tokens to the input, any sentence pairs with over
125 tokens in total were shortened. This affected 5 sentence
pairs, all of which were in the training set (with an average of
7.6 removed tokens). Each model was trained over 23 epochs
using a batch size of 32. These models were trained using the
PyTorch-Transformers library [36]. Our system architecture is
depicted in Figure 1. We submitted the predictions of 3 models
for evaluation on the n2c2 2019 Track 1 task: those from
ClinicalBERT, XLNet, and the mean_score model.

Figure 1. Our system architecture for predicting the semantic textual similarity between two sentences using an ensemble of five Transformer models.

Results

Overview
Our best performing model, the mean_score ensemble, achieved
a correlation of 0.87, reaching 6th place out of 33 teams in the
n2c2 2019 Track 1 task. The best model on the task achieved
a correlation of 0.9 [37]. Our results are presented in Table 1.

The correlation between the predictions of each of 5 transformer
models with all others is presented in Table 2. While the 3
models that have been fine-tuned with biomedical or clinical
text (BioBERT, ClinicalBERT, and DS BERT) are more
correlated with each other than with both XLNet and BERT,
the predictions of all models generally correlate strongly with
each other.

Table 1. Pearson correlation between the ground-truth labels and the predicted labels for each model.

Mean scoreXLNetDS BERTClinicalBERTBioBERTBERTModel

0.8700.8370.8670.8540.8550.817Correlation
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Table 2. Correlation between the predictions of each transformer model on the test set.

XLNetDS BERTClinicalBERTBioBERTBERTModel

0.910.920.920.921BERT

0.920.960.9510.92BioBERT

0.920.9610.950.92ClinicalBERT

0.9310.960.960.92DS BERT

10.930.920.920.91XLNet

Error Analysis

Error Cases Investigation
Rather than only evaluating our transformer ensemble by the
correlation between its predictions and the ground-truth
similarity scores, we carried out an extensive investigation into
the error cases of this ensemble to shed light on any trends in
the biases and heuristics that the component models may have
learned from the training data. In this endeavor we carried out
both qualitative and quantitative error analyses. Both analyses
use a measure of loss that is calculated as the squared error
between the models’ prediction and the ground-truth similarity
score.

Qualitative Analysis
We first carried out a qualitative analysis by grouping the
sentence pairs that were most difficult to predict for the

transformer ensemble by the primary lexical, syntactic, or
semantic feature that we consider to be most salient and
distinguishing. By identifying common error clusters, we can
better understand our models’ biases and attempt to mitigate
these issues in future iterations of the clinical STS system. A
list of these error categories as well as example sentences can
be found in Table 3. We took 100 sentence pairs from the test
data set with the highest loss and manually analyzed them to
find possible explanations for incorrect predictions. The main
categories that were identified are shown in Figures 2 and 3.
We divided the errors into 2 cases: those where the transformer
ensemble overpredicted sentence similarity with respect to the
ground truth (Figure 2, which includes 77 sentence pairs) and
those where the models underpredicted sentence similarity
(Figure 3, which includes 23 sentence pairs).

Table 3. Example sentence pairs and error type (ie, whether the transformer ensemble overpredicted or underpredicted semantic similarity with respect
to the ground truth) for each error category selected for the qualitative analysis.

NotesExample sentence pairCategoryError type

(1) Ibuprofen [MOTRIN] 400 mg tablet 1 tablet by mouth every 4
hours as needed. (2) Gabapentin [NEURONTIN] 300 mg capsule 1
capsule by mouth every bedtime.

Medical prescriptionOverprediction

(1) Patient to call to schedule additional treatment sessions as needed
otherwise patient dismissed from therapy. (2) Patient tolerated session
without adverse reactions to therapy.

Lexical overlapOverprediction

Some semantic overlap de-
spite low ground-truth simi-
larity score of 0

(1) The client verbalized understanding and consented to the plan of
care. (2) The patient consented to the possibility of blood transfusion.

Semantic overlapOverprediction

Common phrase structures
often feature lexical overlap,
as well as strong syntactic
similarity

(1) male who presents for evaluation of Knee Pain (right). (2) female
who presents for evaluation of Ear Infection/ Ear Pain.

Reuse of phrase templateOverprediction

Note quotation marks within
original text

(1) “Left upper extremity: Inspection, palpation examined and nor-
mal.” (2) “Abdomen: Liver and spleen, bowel sounds examined and
normal.”

Similar punctuationOverprediction

The ensemble predicted a
score of 2.55/5 for this exam-
ple sentence pair

(1) “Mental: Alert and oriented to person, place and time.” (2) She
demonstrated understanding and agreed to proceed as noted.

UnknownOverprediction

(1) He denies any shortness of breath or difficulty breathing. (2) Pa-
tient denies any chest pain or shortness of breath.

UnknownUnderprediction

(1) “Thank you for choosing the Name, M.D.. care team for your
health care needs!” (2) Thank you for choosing Location for your
health care and wellness needs.

Different punctuationUnderprediction

Semantic similarity with lit-
tle lexical overlap

(1) The above has been discussed and reviewed in detail with the pa-
tient. (2) The family was advised that the content of this interview
will be shared with the health care team.

Lack of lexical overlapUnderprediction
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Figure 2. Common categories of error for cases when the model over-predicts similarity as identified by manual analysis of the 100 worst predictions.

Figure 3. Common categories of error for cases when the model under-predicts similarity as identified by manual analysis of the 100 worst predictions.

Quantitative Analysis
To complement our qualitative analysis, we developed a simple
STS quantitative analysis framework that allows us to
investigate the relationship between surface features of the
sentence pairs and our model’s performance. This involves
measuring the correlation between model loss and various
features of the sentence pairs. In addition to providing the results
for all labels, we present correlations (measured using Spearman

rho) between the loss and pair features for each similarity score
in the test set. The results are shown in Table 4. Below is an
explanation of each sentence-pair feature that we investigated:

• Average sentence length: The total amount of tokens across
the 2 sentences.

• Scaled total token frequency: The number of times each
token in the sentence pair appears in the training set divided
by the average sentence length, calculated after we removed
stop words.
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• Scaled unseen tokens per pair: The number of tokens in the
sentence pair that do not appear in the training corpus,
divided by the average sentence length.

• Scaled difference in token frequency: The difference
between the training corpus token frequency across the 2

sentences, divided by the average sentence length,
calculated after we removed stop words.

• Jaccard distance: The distance between the token sets of 2
sentences in a pair measured as

1 – (|A ∩ B|)/(|A ∪ B|)

Table 4. Correlation (Spearman rho) between the model’s loss (mean score) per sentence pair and various sentence-pair features.

Jaccard distanceScaled difference in token
frequency

Scaled unseen tokens
per pair

Scaled total token frequencyAverage sentence lengthLabela

−0.0250.0740.0200.142−0.132All

−0.554 (<.001)b0.219−0.2630.391−0.3100.0

−0.202−0.010−0.249−0.1140.1020.5

−0.074−0.0330.047−0.0430.0671.0

−0.153−0.2810.033−0.1510.0041.5

−0.3380.3540.0120.4410.1182.0

0.1090.070−0.2380.014−0.0182.5

0.119−0.026−0.0980.432−0.4533.0

0.587−0.0460.257−0.051−0.4403.5

0.1710.0520.2680.138−0.0884.0

0.4680.033−0.221−0.266−0.1814.5

0.5960.590−0.2420.789 (.042)−0.0405.0

aLabels are ground-truth similarity scores.
bSignificant P value is reported in parenthesis after Bonferroni correction.

Layer-wise Token Representation Decoding
Given the difficulty of analyzing how these models build
representations of clinical STS by looking at their loss alone,
we next performed a layer-wise decoding analysis by training
linear regression models to predict between-sentence semantic
similarity given representations from each transformer across
different layers of the model. By decoding the semantic signal
in the intermediate layers of each model, we can uncover the
mechanisms that transformer models use to predict clinical
semantic similarity. We can then investigate whether any
representational strategies correspond to better performance on
this task, shedding light on why certain constituent models of
the transformer ensemble perform worse, and potentially
indicating directions for sentence-pair embedding extraction
for STS. In the case of 12-layer models we used each layer and
in the case of the larger 24-layer models, we used every other
layer. This allows for direct comparison of representations by
relative depth through the network.

We chose a variety of representations to decode. As we have
many tokens per sentence pair, there are many different possible
ways to map this list of vectors to a fixed-length representation.
We aimed to choose representations that can reveal potential
strategies and heuristics that our models use to predict semantic
similarity. In doing so, we may also reveal how different types

of models (ie, those trained on clinical versus general domain
text, or those with BERT/XLNet-style architectures) diverge
or converge in their representational transformation strategies.
The chosen representations were

• [CLS]: The token vector corresponding to the classification
token input.

• avg_reps_concat: Concatenation of the mean-pooled token
vector representations of sentences A and B.

• max_reps_concat: Concatenation of max-pooled token
vectors within sentences A and B.

• sent_avg_difference: The absolute difference in average
token vector representations in sentences A and B.

• sent_max_difference: The absolute difference in
max-pooled token vector representations in sentences A
and B.

• sent_a_avg_max_concat: Concatenation of mean- and
max-pooled token vectors from sentence A.

• sent_b_avg_max_concat: Concatenation of mean- and
max-pooled token vectors from sentence B.

The linear regression models were evaluated using 10-fold
cross-validation. Table 5 shows the overall best representations
for decoding similarity score. Figures 4 and 5 feature layer-wise
correlation plots for representations based on the classification
token vector (Figure 4) and the absolute difference between the
average token vectors in each sentence (Figure 5).

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e23099 | p. 6https://medinform.jmir.org/2021/5/e23099
(page number not for citation purposes)

Ormerod et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 5. The overall top decoding scores ranked in descending order. All the top-performing representations were extracted from XLNet and are mostly
made up of the concatenation of the max-/mean-pooled token representations in the 2 sentences that were extracted from middle-late layers.

CorrelationLayerRepresentationModel

0.918max_reps_concatXLNet-large

0.8918sent_a_avg_max_concatXLNet-large

0.8818avg_reps_concatXLNet-large

0.8820max_reps_concatXLNet-large

0.8816avg_reps_concatXLNet-large

0.8820avg_reps_concatXLNet-large

0.8718sent_b_avg_max_concatXLNet-large

0.8714sent_b_avg_max_concatXLNet-large

0.8714max_reps_concatXLNet-large

0.8716max_reps_concatXLNet-large

Figure 4. Pearson correlation between linear regression models’ predictions of a sentence pair’s semantic similarity and the ground-truth score (10-fold
cross-validated on test-set) using [CLS] token pair representations.
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Figure 5. Pearson correlation between linear regression models’ predictions of a sentence pair’s semantic similarity and the ground-truth score (10-fold
cross-validated on test-set) using the absolute difference between each sentence’s mean-pooled token vector.

Representational Similarity Analysis

Overview
To find which representations learned by our models best
explain the representational geometry of the semantic similarity
task, we carried out 2 types of investigations within the
framework of RSA. We use RSA to complement our layer-wise
linear probing analysis, as it can reveal second-order
representational patterns across many samples, while the
layer-wise probing analysis relies on identifying particular
dimensions of the representational space that predict semantic
similarity. By taking these methods together, we can reach more
robust conclusions about how transformer models build
representations of semantic similarity and use this information
to understand the performance of these models and identify how
we can improve them. The data RDMs that we compared with
the ground-truth RDM were extracted from each layer of each
of the 5 transformer models, for each of the pair representations

defined in the previous decoding analysis as well as 3 additional
potential explanatory representations:

• avg_representation: The average across all token vectors.
• avg_sent_cosine_dist: The cosine distance between the

mean-pooled token vector representations in sentences A
and B.

• max_sent_cosine_dist: The cosine distance between the
max-pooled token vector representations in sentences A
and B.

Basic RSA
In our first RSA experiment, we performed a basic analysis in
which we measure the Spearman correlation between a model
RDM (calculated using the distance between all the samples in
the test set measured by their ground-truth similarity score) and
various representations elicited from our transformer models.
Using the 412 test sentence pairs we produced the 412 × 412
matrix shown in Figure 6.
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Figure 6. Model representational dissimilarity matrix for 412 test sentence pairs measured by distance between ground-truth semantic similarity scores.
The dimensions of the dissimilarity matrix are sorted by each sentence-pair’s ground-truth semantic similarity score.

Reweighted and Recombined RSA
We then found a combination of representations from all layers
of each of the separate 5 transformer models and an RDM made
up of text features (detailed in the “Quantitative Analysis”
section) that best explains the ground-truth model when linearly

recombined. Each explanatory RDM in a given trial had an
associated weight that altogether summed to 1. These weights
were found using a non-negative least squares (NNLS) solver
using 10-fold cross-validation. This analysis revealed that the
best performing explanation model was BioBERT. The final
BioBERT-reweighted explanatory RDM is shown in Figure 7.
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Figure 7. The final best-fitting re-weighted and linearly re-combined explanatory model found using NNLS and representations from BioBERT,
achieving a correlation of 0.54 with the ground-truth model. The dimensions of the dissimilarity matrix are sorted by each sentence-pair’s ground-truth
semantic similarity score.

Layer-wise Reweighted RSA
In the final part of our reweighted RSA, we revisited the
representations of BERT-Large to investigate why the
classification token suddenly becomes less representative of
the ground-truth similarity score around layers 12-16 as
measured by linear regression probing (Figure 4) and RSA
correlation (Figure 8). We reran the NNLS solver for the
BERT-Large representations (using 10-fold cross-validation)

but this time we excluded the text features RDM and used token
vectors from only 1 layer at a time. We performed this analysis
for the even layers, from layers 2 to 24 (as we had previously
extracted every other layer of the 24-layer models to directly
compare representations with 12-layer models based on relative
depth through the network), and retrieved the values used to
reweight the RDM for each layer. The plot of weights associated
with each representation can be seen in Figure 9.
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Figure 8. Correlation between the ground-truth model RDM and explanatory RDMs constructed from [CLS] token pair representations.

Figure 9. Weights associated with sentence-pair representations of BERT-Large found using NNLS to minimise the distance between a linearly
re-combined set of RDMs and the ground-truth model RDM for each layer.

Discussion

Principal Results

Qualitative Error Analysis
In the case of sentence pairs that caused our ensemble to
overpredict semantic similarity (Figure 2), the most obvious
problem with our ensemble was its failure to model the semantic
similarity of 2 sentences which contain details of medical
prescriptions. This is likely because our models do not have the
advanced level of domain knowledge necessary to correctly
model this problem. As these sentences are usually very similar
(apart from the name of a drug and dosage), the models
overpredict similarity. The second biggest issue when

overpredicting similarity is when there is a lexical overlap
without semantic overlap. This suggests that our models
over-rely on surface features such as token overlap. In most
cases when our model underpredicts similarity, there is no
obvious possible explanation. However, in the interpretable
samples the issue was usually that synonyms were used, again
suggesting an over-reliance on lexical overlap, and potentially
motivating a concept normalization preprocessing step. In any
case, the qualitative approach to analysis error is relatively
limited for interpreting the instances of underprediction of
semantic similarity for this ensemble. This limitation is mitigated
by the fact that overpredictions made up the majority of the
largest errors (77 out of 100). By taking both the cases of
underprediction and overprediction together, it is clear that
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simple heuristics, such as predicting similarity given lexical
overlap, are prominent within the transformer ensemble, and
that these transformer models still lack the ability to produce
the extremely fine-grained clinical semantic representations that
are required to implicitly calculate semantic distances between
medical concepts (eg, particular drugs) given a relatively small
task set. Any future work would have to address these issues;
for example, by augmenting the data using a concept
normalization preprocessing step, or by enriching the ensemble’s
domain knowledge by incorporating a clinical terms resource.

Quantitative Error Analysis
Overall, Table 4 shows a weak negative correlation between
the average sentence length and loss. This relationship is
relatively strong for entirely dissimilar sentence pairs and
moderately similar sentence pairs and may be explained by the
fact that longer sentences provide more contextual information
that can be used to decide whether 2 sentences are semantically
similar. Another trend is for the loss to increase with the scaled
total token frequency (ie, how often the words in the pair appear
in the training corpus), particularly in the case where the 2
sentences are semantically identical. This relationship is difficult
to interpret, but additional analysis could investigate the extent
to which the loss can be explained using the relative frequency
of the words given a more general corpus (such as Wikipedia),
to separate the effect of clinical term frequency.

We also see that Jaccard distance is negatively correlated with
loss for sentence pairs that are less semantically similar and
positively correlated with loss for pairs that are more
semantically similar. One possible explanation for this
observation is that our deep transformer models have learned
an appropriate strategy of predicting low similarity scores given
token overlap for the extreme case when sentence pairs are
dissimilar and have little overlap. However, the model seems
unable to apply such a shallow heuristic in cases where sentence
pairs are very semantically similar. Further analysis showed
Jaccard distance to be very significantly negatively correlated
with the ground-truth label (P<.001), which may indicate that
a deep ensemble model could benefit from the presence of
traditional machine learning models that are trained on simple
features of the text such as relative overlap between tokens.

The quantitative analysis approach has both verified the
existence of overall heuristics that use surface features of the
sentence pairs to predict semantic similarity as noted in the
previous qualitative analysis and allowed to us examine these
trends as they occur within certain ranges of semantic similarity
scores. This approach to quantitative analysis of STS errors has
thus produced a richer view of these biases, while still
suggesting that these deep transformer models use a set of
relatively shallow strategies for this task.

Layer-wise Token Representation Decoding
The first striking pattern to note in Figure 4 is that the BERT
models tend to drop in performance on the CLS token task in
the middle of the network, thereafter reaching their apexes (in
the extreme case this is amplified in BERT-Large), whereas
XLNet tends to steadily increase to its highest point before
dropping off over the rest of the network. This indicates that in

BERT-style models, the [CLS] token does not serve as the
primary representation of semantic similarity in the middle
layers. Second, the correlation between linear model predictions
and ground-truth scores held-out folds almost always
monotonically increases for the difference between average
sentence representations for all BERT-style models (Figure 5).
This contrasts with the performance on the XLNet sent_avg_diff
representation, which caps half-way through the network, then
drops off steadily beginning a few layers later. It appears that
XLNet builds a good representation based on the mean-pooled
token representations, but that this information is integrated in
the middle of processing and subsequently discarded around
layer 18.

All the top 10 best decoding scores across all representations
were extracted from XLNet (Table 5). Overall, XLNet did best
using the max_reps_concat, reaching a correlation of 0.9 in
layer 18, which represents a 7.5% increase in that model’s initial
performance on the test set. This demonstrates that given the
initial representations of a large deep model, it may be possible
to increase its performance very inexpensively and massively
on small amounts of held-out data using a simple linear model
and the correct choice of representation.

It is clear from the linear decoding experiment that the
representational strategies of the transformers fine-tuned with
biomedical or clinical documents tend to align, with each model
gradually building better representations of STS over the course
of their layers in an almost always monotonic fashion, in both
the [CLS] token and the absolute difference between
mean-pooled sentence representations. This is in contrast to the
relatively erratic differences between decodability over layers
seen with BERT-Large and XLNet, where decodability will
rapidly gain or fall over the course of 1-2 layers, especially
when looking at the distance between mean-pooled sentence
vectors representation. This result suggests that models with
more clinical domain knowledge (and better performance on
this task) learn to build robust representations of clinical
semantic similarity (ie, not only using the [CLS] token or the
distance between mean-pooled vectors) and that this information
is gradually recovered in a steady, step-wise manner.

Representational Similarity Analysis

Basic RSA

In carrying out the single-correlation RSA task, we found
confirmation for some of the representational trends identified
during the decoding task. Two of such trends are presented in
Figures 8 and 10, which include the correlation of the model
RDM with data RDMs built using classification tokens (Figure
8) and the absolute difference between average token vectors
from the 2 sentences in a pair (Figure 10). As was previously
shown in Figure 4, BERT-Large diverges drastically from the
other models in how representative the classification token is
of a sentence pair’s semantic similarity score around layers
12-16, while all other models generally generate progressively
better [CLS] tokens throughout the network, with only slight
loss in performance around the middle of the network. The
performance of BERT-Large [CLS] representations on this task
again reflects its final score, which was the lowest of the 5
models. We further analyzed the representational geometry of
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BERT-Large in our reweighting analysis later in the current
section to better understand this observation. The confirmation
of this considerable drop in decodability performance shows
that this trend does not simply reflect the inability of the linear
regression models to predict semantic information due to the
small amount of data. Likewise, the correlation plot featured in
Figure 10 presents more evidence for our previous finding that
BERT-style models seem to represent across-sentence similarity
by minimizing the average difference in token vectors. While

these correlations are positive from layers 4 to 12, this signal
is not as strong as would be indicated by the probing analysis,
suggesting that this strategy may not be a primary heuristic. In
any case, taken together, these 2 layer-wise correlation plots
show that the probing task produces robust metrics of
representational trends, and that probing and basic RSA are
complementary approaches to the analysis of transformations
in token vectors of deep transformer models.

Figure 10. Correlation between the ground-truth model RDM and explanatory RDMs constructed using the absolute difference between each sentence’s
mean-pooled token vector.

Reweighted and Recombined RSA

After performing the next stage in our RSA, reweighting and
recombining a set of RDMs (using all layers using all
representations, as well as the text features RDM) for each
transformer to minimize the distance between the new RDM
and the ground-truth representation, we found that the best
choice of model was BioBERT. Figure 7 shows visual
confirmation that much of the ground-truth dissimilarity
patterning (Figure 6) has been reproduced by this explanatory
model. This result was somewhat unexpected, given that this
model did not perform best on the test set. This finding suggests

that when generating sentence-pair vectors, it may in some cases
be better to reweight and combine representations from
runner-up models, rather than using the single best model. The
weights learned for each RDM in the BioBERT model (Figure
11) show that the RDM is mostly made up of the final layer’s
[CLS] token, although it has been reweighted using the cosine
distance between the average token vector of the 2 sentences
in a given pair and the Jaccard distance between the 2 sentences.
We believe that beyond revealing how well each representation
explains the ground-truth semantic similarity, this technique
has promising potential for generating sentence embeddings for
downstream tasks.
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Figure 11. Proportion of weights learned for the best explanatory model (which used BioBERT representations and text features).

Layer-wise Reweighted RSA

By looking at the weights learned for each component of the
layer-wise BERT explanatory model (Figure 9), we find that
after layer 8, the weight associated with the average token
representation drastically increases and this representation
becomes dominant for the remaining layers, whereas the
explanatory weight of the [CLS] token peaks at layer 8 before
rapidly declining. We link this result to our finding that the
worst linear probing and RSA correlations for BERT’s [CLS]
tokens start to occur after layer 8 (Figures 4 and 8). This
suggests that in middle to late layers, BERT-Large focuses on
building better mean-pooled representations of the sentence
pairs, an interpretation which is in line with the dramatic
increase in correlation between BERT-Large’s representations
and the ground-truth model when using the absolute difference
between the average token vector of each sentence as the data
RDM (Figure 10). This interpretation is also compatible with
the increase in linear regression performance when using
BERT-Large token vectors and taking the absolute difference
between the average token vectors in each sentence as input
(Figure 5).

Limitations and Future Work
While we employed the use of cross-validation for our linear
probing and NNLS RSA tasks, it should be noted that our test
set of 412 sentence pairs represents a relatively small amount
of data and as such it may be difficult to assess whether our
results would generalize to more data-rich contexts. One
potential method for partially mitigating this problem would be
to cross-validate our results across the full set of 2054 sentence
pairs, rather than restricting the analysis to the original test set
from the clinical STS task. While this approach may lead to
insights into the robustness of our interpretation, we consider
it to be outside of the scope of this work as we aim to analyze
the errors and representational strategies that both result from
the inductive biases of transformer models and reflect biases
learned from the task’s data. Restricting our analysis to the
original 412 sentence-pair test set thus enables direct comparison
with other models trained on the same data. Another issue with

cross-validating across the whole data set is that we will always
be limited to a relatively small amount of data for this task, as
even testing on a slice of 50% of the total data would still only
allow for 1027 sentence pairs for evaluation. It could also be
insightful to carry out our analysis on models trained using
larger general domain semantic similarity tasks that feature
more sentence pairs. We again consider this line of research to
be out of scope for this work.

In future work we wish to investigate to what extent we can
directly use a layer’s token representations to automatically
learn interpretable explanations that minimize the distance
between a reweighted RDM and the ground-truth model RDM.
We expect that incorporating our models’attention weights will
be essential at that level of analysis. Additionally, we wish to
set alternative target RDMs to examine how we can recombine
the token vectors in a sentence pair to best explain the model’s
classification token, thereby further exploring the inner
representational dynamics of fine-tuned transformer models.

Conclusion
We tackled a recent clinical STS task using a variety of
transformer models, including both those trained on general
domain language and models that were further trained on clinical
text. After achieving a high correlation between the predictions
of a mean-pooled ensemble of these models and the test-set
ground truth, we analyzed the error cases of our model both
qualitatively and quantitatively, finding groups of semantically
related sentences that are generally difficult for our transformers
to model and identifying surface features of the sentence pair
that significantly correlate with loss for particular ranges of the
semantic similarity space. These findings suggest potential
avenues for further improvement, for example, by augmenting
our models to allow them to directly take traditional NLP textual
features into account.

We then carried out 2 types of representational analyses, namely,
linear decoding and RSA, to shed light on the heuristics on
which these models have learned to rely. These approaches were
shown to be complementary and revealed divergent
representational strategies for predicting textual similarities
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between BERT-style models and XLNet. Furthermore, our
search through the representational space for the best
explanatory model of the ground-truth data suggests that a large
amount of this information can be captured using a combination
of a classification token and the cosine distance between

sentence-pair representations in the first layer of a transformer
model that did not produce the best predictions on the test set,
suggesting interesting directions for research in model
distillation and sentence embedding extraction.
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BERT: bidirectional encoder representations from transformers
NLP: natural language processing
NNLS: non-negative least squares
RDM: representational dissimilarity matrix
RSA: representational similarity analysis
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