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Abstract

Background: The increasing number of patients treated with peritoneal dialysis (PD) and their consistently high rate of hospital
admissions have placed a large burden on the health care system. Early clinical interventions and optimal management of patients
at a high risk of prolonged length of stay (pLOS) may help improve the medical efficiency and prognosis of PD-treated patients.
If timely clinical interventions are not provided, patients at a high risk of pLOS may face a poor prognosis and high medical
expenses, which will also be a burden on hospitals. Therefore, physicians need an effective pLOS prediction model for PD-treated
patients.

Objective: This study aimed to develop an optimal data-driven model for predicting the pLOS risk of PD-treated patients using
basic admission data.

Methods: Patient data collected using the Hospital Quality Monitoring System (HQMS) in China were used to develop pLOS
prediction models. A stacking model was constructed with support vector machine, random forest (RF), and K-nearest neighbor
algorithms as its base models and traditional logistic regression (LR) as its meta-model. The meta-model used the outputs of all
3 base models as input and generated the output of the stacking model. Another LR-based pLOS prediction model was built as
the benchmark model. The prediction performance of the stacking model was compared with that of its base models and the
benchmark model. Five-fold cross-validation was employed to develop and validate the models. Performance measures included
the Brier score, area under the receiver operating characteristic curve (AUROC), estimated calibration index (ECI), accuracy,
sensitivity, specificity, and geometric mean (Gm). In addition, a calibration plot was employed to visually demonstrate the
calibration power of each model.

Results: The final cohort extracted from the HQMS database consisted of 23,992 eligible PD-treated patients, among whom
30.3% had a pLOS (ie, longer than the average LOS, which was 16 days in our study). Among the models, the stacking model
achieved the best calibration (ECI 8.691), balanced accuracy (Gm 0.690), accuracy (0.695), and specificity (0.701). Meanwhile,
the stacking and RF models had the best overall performance (Brier score 0.174 for both) and discrimination (AUROC 0.757 for
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the stacking model and 0.756 for the RF model). Compared with the benchmark LR model, the stacking model was superior in
all performance measures except sensitivity, but there was no significant difference in sensitivity between the 2 models. The
2-sided t tests revealed significant performance differences between the stacking and LR models in overall performance,
discrimination, calibration, balanced accuracy, and accuracy.

Conclusions: This study is the first to develop data-driven pLOS prediction models for PD-treated patients using basic admission
data from a national database. The results indicate the feasibility of utilizing a stacking-based pLOS prediction model for PD-treated
patients. The pLOS prediction tools developed in this study have the potential to assist clinicians in identifying patients at a high
risk of pLOS and to allocate resources optimally for PD-treated patients.

(JMIR Med Inform 2021;9(5):e17886) doi: 10.2196/17886
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Introduction

Over the past 30 years, the United States Renal Data System
has reported a rapid increase in the incidence of end-stage
kidney disease (ESKD) [1]. The increasing number of patients
with ESKD treated with kidney replacement therapy—including
hemodialysis, peritoneal dialysis (PD), and renal
transplantation—has put a large burden on the health care
system. Approximately 2.6 million people worldwide received
kidney replacement therapy in 2010 [2], and the prevalence of
ESKD in China was 237.3 cases per million population in 2012
[3]. In 2015, the average inpatient expenditure for patients with
ESKD in China was approximately ¥24,800 (US $3793) [4],
and the total inpatient expenditure for patients with ESKD in
China was in excess of ¥6.75 billion (US $1.03 billion). In 2016,
the average expenditure on patients with ESKD in the United
States was estimated to be US $50 billion, one-third of which
was attributed to hospitalization costs [1]. Hospitalization
remains a critical outcome for patients with ESKD, and the risk
of hospitalization in patients undergoing dialysis is triple that
of patients without ESKD [5]. In-hospital length of stay (LOS)
is a key indicator of the efficiency of inpatient management.
Prolonged LOS (pLOS) is associated not only with high resource
consumption and medical expenses [6,7] but also with a high
risk of complications [8]. Much attention has been given to
reducing hospitalization costs [9-15], but few studies have
focused on preventing pLOS for PD-treated patients. The
increasing number of PD-treated patients and their consistently
high hospital admission rate have placed a large burden on the
health care system. An accurate pLOS prediction model can
assist physicians to risk-stratify patients and optimally allocate
health care resources [7,16]. Early clinical interventions and
optimal management of patients at a high risk of pLOS may
help reduce hospitalization expenses and improve prognosis for
PD-treated patients [7,8,17]. If timely clinical interventions are
not provided, patients at a high risk of pLOS may face poor
prognosis and high medical expenses, which will also burden
hospitals [18].

Given the increasing number of patients undergoing dialysis
and the importance of optimal resource allocation, physicians
need an effective LOS prediction model. However, no
well-developed LOS prediction models for patients undergoing
dialysis can be found in the literature. Some other
risk-stratification models for patients undergoing dialysis use

mortality [19-21] or cardiovascular events [22] as the end point.
Wagner et al [20] used a nationwide, multicenter, prospective
cohort study in the United Kingdom (the UK Renal Registry)
as a data source to develop a Cox proportional hazards model
for predicting long-term mortality in incident dialysis patients.
They found that using basic patient characteristics, comorbid
conditions, and laboratory variables to predict the 3-year
mortality of incident dialysis patients had sufficient accuracy.
Quinn et al [21] used a Canadian administrative health database
to develop a prognostic index for 1-year mortality in patients
undergoing dialysis by combining logistic regression (LR) with
different variable selection methods. Matsubara et al [22] used
data from the Japan Dialysis Outcomes and Practice Patterns
Study to develop an LR model for predicting the incidence of
cardiovascular events among patients undergoing hemodialysis.
However, few models use LOS as the prediction outcome.

Meanwhile, a number of studies have explored the factors
affecting the LOS of patients undergoing dialysis. Allon et al
[23] explored the association of hospitalization outcomes with
clinical factors and laboratory parameters in patients undergoing
hemodialysis and found that infection-related hospitalization
was associated with pLOS. Kshirsagar et al [24] compared the
LOS of hemodialysis patients receiving care from nephrologists
and internists and found that the LOS was significantly shorter
for patients under the care of nephrologists than for patients
under the care of internists. Rocco et al [25] studied the risk
factors for hospitalization in patients receiving chronic dialysis
and confirmed that the risk factors for LOS were similar to those
for mortality. Other factors affecting the LOS of patients
undergoing dialysis have also been explored, such as obesity
[26], hemoglobin level [27], admission diagnosis [28], and
comorbidities [23,29]. However, no study has built an effective
model for pLOS prediction in patients undergoing dialysis.

With the exponential increase in the amount of health care data,
machine learning algorithms have gained special attention for
their capabilities of handling high-dimension and large-scale
data. Some machine learning–based LOS prediction models
have been developed for patients with other diseases. The
prediction outcome of existing LOS prediction models could
be classified into 2 types: (1) numeric LOS and (2) binary
outcome (ie, having a pLOS or not). Moran et al [30] constructed
a numeric LOS prediction model for patients in the intensive
care unit (ICU) by using a traditional linear regression model.
Their results suggested that their LOS prediction model
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performed well in predicting the average LOS of patients in the
ICU but showed limited performance in predicting the LOS of
individual patients. Yang et al [31] developed a numeric LOS
prediction model based on the support vector machine (SVM)
algorithm for burn patients at different stages and compared its
prediction performance with that of the traditional linear
regression model. They found that although the SVM model
was more effective than the linear regression model in LOS
prediction for burn patients, it yielded a high mean relative error
of 43.9%. LaFaro et al [32] developed a numeric LOS prediction
model based on the artificial neural network (ANN) algorithm
for patients in the ICU after cardiac surgery. Their results also
suggested that the ANN-based LOS prediction model

outperformed the traditional linear regression model (R2: 0.410

vs 0.200; R2 measures the goodness of fit of the corresponding
model), but the prediction performance of the ANN-based model
was still limited. However, if patients are classified into 2 groups
(ie, with and without pLOS), the difference in LOS patterns
between patients in the 2 groups could be more obvious and
easily discovered, and this classification helps identify typical
LOS patterns and improve the performance of LOS prediction
models [33]. In the literature, the LOS prediction models with
binary outcomes achieved good performance. Ma et al [34]
developed a personalized pLOS prediction model for patients
in the ICU by combining just-in-time learning and one-class
extreme learning machine algorithms and found that the model
achieved superior performance to the traditional binary
classification algorithms. Chuang et al [35] compared the
performance of various supervised learning approaches with an
LR model in pLOS prediction for general surgery patients and
the results showed that the random forest (RF) model
outperformed the LR model. Morton et al [36] used 5 machine
learning algorithms to predict the pLOS of hospitalized patients
with diabetes and found that the SVM model demonstrated the
best prediction performance, followed closely by the RF model.
However, LOS prediction models based on machine learning
technologies for PD-treated patients remain to be developed.

Stacked generalization, or stacking, is a general ensemble
method that combines different types of machine learning
models (“base models”) through an aggregation model
(“meta-model”) to maximize the prediction performance [37].
Several studies [38,39] have found that ensemble learning
methods can produce a better or equal predictive performance
than their component parts. Lertampaiporn et al [38] developed
a heterogeneous ensemble model for microRNA precursor
classification through a voting system. Their results showed
that the ensemble method produced a more reliable prediction
than its base classifiers. Wang et al [39] used the stacking
algorithm to predict membrane protein types, and the ensemble
model yielded a better overall performance than its base models.
Phan et al [40] developed a stacking model to predict cancer
survival and reported that this model outperformed the
majority-vote model. An ensemble of various machine learning
models could help reduce the bias in a single machine learning
algorithm to provide a much better prediction performance than
single models.

This study aimed to develop an optimal data-driven pLOS
prediction model for PD-treated patients by using basic

admission data from a national database. A pLOS prediction
model was constructed for PD-treated patients by using the
stacking method, and the Hospital Quality Monitoring System
(HQMS) database in China was used for model development.
An LR-based pLOS prediction model was built and considered
as the benchmark model. The RF, SVM, and K-nearest neighbor
(KNN) algorithms were employed as the base models because
of their superior performance in constructing ensemble models
[38,41], and the LR model was used as the meta-model for
constructing the stacking model.

Methods

Data Set and Subjects
In this study, the HQMS database—a mandatory, patient-level
national database in China—was used for data extraction and
model development. The HQMS database is a large database
consisting of standardized electronic inpatient discharge records,
including 878 Class 3 hospitals in China [42]. The standardized
electronic inpatient discharge record is a national standard
medical record with a stringent standard format across different
hospitals in China. The standardized electronic inpatient
discharge records of patients must be filled in by clinicians who
have the most comprehensive understanding of the patients’
medical conditions to ensure their validity. Strict automated
data quality control was performed on the HQMS data reporting
system. The completeness, accuracy, and consistency of data
were assessed at the time of data submission to the HQMS.
Patient demographic characteristics, clinical diagnoses, medical
procedures, pathology diagnoses, and medical expenditures
were included in the HQMS database.

This study was reviewed and approved by the Ethics Committee
of Peking University First Hospital (2015-928). The HQMS
data set used in this study spans from 2013 to 2015.

Patient records of individuals who met the following criteria
were extracted from the HQMS data set: (1) aged between 18
and 100 years, and (2) treated with PD. Exclusion criteria were
as follows: (1) diagnosed with acute kidney injury or kidney
transplantation, and (2) died in the hospital. For patients
readmitted on the same day as hospital discharge, we
recalculated their LOS by merging the back-to-back admission
records. The PD-treated patients were identified through
admission and discharge diagnoses or in-hospital medical
operations by using the International Statistical Classification
of Diseases, Tenth Revision (ICD-10) codes (Multimedia
Appendix 1). For PD-treated patients with several discontinuous
hospitalizations, we randomly selected one record for each
patient to ensure that all observations were independent and
that PD-treated patients with varying severities were included
for model development.

Outcome and Predictor Variables
The prediction outcome of this study was binary (ie, having a
pLOS or not). LOS was defined as the period from admission
to discharge. pLOS was defined as an LOS longer than the
average LOS, which is 16 days for patients with ESKD in China
[43]. Patients with pLOS may have serious medical situations
and thus need a longer hospital stay. We adopted this pLOS

JMIR Med Inform 2021 | vol. 9 | iss. 5 | e17886 | p. 3https://medinform.jmir.org/2021/5/e17886
(page number not for citation purposes)

Kong et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


definition in our study by referring to existing studies [44-46]
and consulting with experienced clinicians. The pLOS prediction
models developed in our study aimed to assist physicians in
identifying patients at a high pLOS risk and thus to provide
early and timely interventions for these high-risk patients.

Predictor variables were determined on the basis of prior studies
[23,24,28,29] and variable availability on admission. Variables
used as predictor variables for model development in this study
included age, sex, nationality, reason for admission, specific
causes of chronic kidney disease (CKD), comorbidities,
admission type, number of hospitalizations within 6 months,
number of emergency admissions within 6 months, admission
department, planned admission or not, admission day of the
week, admitted in the same hospital as last admission or not,
place of residence, and insurance type. The reason for admission,
specific causes of CKD, and comorbidities were extracted using
ICD-10 codes. The categories of reasons for admission and
comorbidities were determined after consultation with
experienced clinicians. Limited by the available data set, the
number of hospitalizations within 6 months and number of
emergency admissions within 6 months were calculated on the
basis of the data collected from Class 3 hospitals.

Model Development

RF Model
RF is a supervised ensemble learning algorithm consisting of
a collection of tree-structured classifiers [47]. RF models work
by generating a multitude of decision trees independently and
then synthesizing the individual predictions of all trees through
a voting system. Each tree in an RF model is built using a
bootstrap sample of the training data set. Assuming that M
predictor variables are included for model development, F of
all M input variables are randomly selected for each node, and
the split of each node is performed according to the minimal
impurity principle. For each tree, a variable that was used for
tree growth in the previous nodes will no longer be used in later
splitting. In decision tree induction, the Gini index is a general
impurity measure used to determine the splitting variables. If a
data set D contains samples with J classes, the Gini index of
data set D—Gini(D)—is defined as follows [48]:

where pj is the frequency of the jth class in D. At each node, if
a variable can split the parent data set D into 2 child data sets,
D1 and D2, the decrease in the Gini index, S, for this variable
is defined by the following:

The variable with a maximal decrease in the Gini index will be
used for splitting at this node.

In an RF model, to classify a new case, each tree in the forest
model gives a classification result for the new case as a vote,
and the majority vote is declared as the final classification of
the model. Twice randomization in an RF model, which involves
randomly selecting training data samples and randomly selecting
the attributes for each tree growth, provides the model with a

strong capability of handling high-dimensional data together
with a stable generalization error [49].

We used the RandomForestClassifier package in Python to
construct the RF model in this study. A set of optimal parameters
of the RF model was found using grid search, which is an
exhaustive searching method using a manually specified subset
of hyperparameter space to find the optimal parameters of a
learning algorithm [50]. The RF model obtained in this study
had the following parameters: the number of decision trees was
300, the number of variables (F) selected at each node was 10,
and the maximal depth of each decision tree was 28.

SVM Model
SVMs have been used frequently in various classification
problems because of their remarkably robust performance in
handling noisy and nonlinearly classified data [51]. If the data
set is not linearly separable, a mapping function will be used in
the SVM to map the data set into a high-dimensional space. An
SVM tries to find an optimal separating hyperplane (ie, the
maximum-margin hyperplane) in the high-dimensional space
to make a classification. Assuming that a training data set, D,

consists of N labeled cases, , where
xi represents the ith feature vector and yi is the label of the ith
case. A mapping function, ø (x), will map the data set from the
original space into a high-dimensional space. In the transformed
high-dimensional space, the separating hyperplane [52] is
defined as follows:

where is a normal vector determining the direction, and b is the
bias. The training cases with minimum margins from the
hyperplane are called support vectors. A support vector (xj, yj)
satisfies:

In the high-dimensional space, the margin M between the
support vector and the hyperplane is defined as

The hyperplane that makes the margin M maximum is the
optimal separating hyperplane (ie, maximum-margin
hyperplane). In the process of finding the optimal separating
hyperplane, a kernel function is usually used to deal with the
high computational cost. Commonly used kernel functions
include the polynomial kernel, the linear kernel, the exponential
kernel, and the radial basis function kernel.

We used the svm package in Python to construct the SVM
model, and the optimal parameters of our SVM model were
found using grid search. The SVM model obtained in this study
had the following parameters: the kernel function was
polynomial kernel, the degree of the polynomial kernel function
was 2, and the penalty parameter C was 0.01.
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KNN Model
KNN is a type of instance-based learning method that makes
predictions based on a small number of cases that are very
similar to the target observation [53]. Specifically, given a new
case (xnew), we can find the K closest training cases,

sorted by the distance to xnew, and then classify
xnew using majority voting among the K neighbors. A commonly
used distance metric in the KNN algorithm is the Euclidean

distance. Assuming the presence of case and

, we define the Euclidean distance from xi to xj

as

where and denote the values of M input
predictor variables of the 2 cases. Typically, we first normalize
all the values of the variables to the range of (0,1) because
different variables could be measured in different units. The
KNN algorithm yields convincing results in handling various
classification problems in medicine [54-56]. The model is
effective on data sets where samples of 1 class have many
possible patterns and the decision boundary is nonlinear [57].
The most important parameter in the KNN model is the number
of neighbors, which must be selected with care. In this study,
we used the KNeighborsClassifier package in Python to
construct the KNN model. The optimal parameter K was found
using grid search, and the KNN model with optimal performance
was obtained with the parameter K=130.

Stacked Generalization
Stacked generalization, or stacking, is an ensemble model that
can combine the predictions of several primary machine learning
models [37]. There are 2 types of models in a stacking
framework: several base models (level-0 models) and 1
meta-model (level-1 model). The meta-model is employed to
combine the base models. In general, a stacking framework can
obtain a more accurate prediction result than any single base
model. Different models may complement each other, and the
meta-algorithm can combine the advantages of these base
models.

The stacking model is trained as follows. Given a data set

we define Dk and D–k = D – Dk as
the training and test data sets, respectively, in the kth round of
model training. We assume that the stacking model has J base
models (Model1, Model2, ... , Modelj, ... ModelJ) and that each

base model is trained using Dk. Let denote the prediction
outcome produced by Modelj for training case (xi, yi). The
outputs of all J base models are assembled as the input of the

meta-model. Let denote the set of outputs
produced by all of the J base models for (xi, yi). The meta-model

is then trained using data set .

For a new input case, the output of the meta-model is the final
prediction outcome produced by the stacking model for the case.
How the base models are assembled in the stacking method and
how the prediction outcome for a new input case is generated
by the stacking model are shown in Figure 1.

Figure 1. Stacked generalization, where Predictionj denotes the prediction outcome produced by the model (Modelj) for a new case.

Given that the level-0 base models have already completed most
of the prediction work, the level-1 meta-model could be rather
simple [58]. The LR model is commonly used as the
meta-model. Existing studies [37,59] suggested that increasing
diversity of the base models could help improve the performance
of the stacking model. In this study, the RF, SVM, and KNN

models were employed as the base models and the LR model
was used as the meta-model.

Statistical Analysis
Two-sided t tests and chi-square tests were used for comparisons
of patient demographics. In model development and
comparisons, we employed 5-fold cross-validation. In
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performance comparisons, the Brier score [60], area under the
receiver operating characteristic curve (AUROC) [60], estimated
calibration index (ECI) [61], accuracy, sensitivity, specificity,
and geometric mean (Gm) [62] were employed as performance
measures. Considering that other performance metrics, such as
positive and negative predictive values and likelihood ratios,
can be calculated from sensitivity and specificity, we did not
employ them in performance comparisons. Brier score is an
overall performance measure, with a lower Brier score
suggesting a superior overall prediction performance. AUROC
measures the discrimination power of a prediction model,
representing the ability to distinguish positive samples from
negative samples. ECI measures the calibration power of a
model, representing the average difference between the predicted
probabilities of individual patients and the observed probability
in that patient population. ECI ranges between 0 and 100, with
a lower ECI suggesting a stronger calibration power of the
corresponding model. Gm is considered a balanced accuracy
measure because it incorporates sensitivity and specificity, and
it is defined as follows:

Gm measures the balance of the classification performance for
the majority and minority classes. The optimal cutoff value for
each model was obtained according to its corresponding receiver
operating characteristic curve, and then accuracy, sensitivity,
specificity, and Gm were calculated. Performance differences
between different models were assessed using 2-sided t tests.

Furthermore, we used the calibration plot [60] to demonstrate
the calibration power of each model in different patient groups
with pLOS risk from low to high. In the calibration plot, patients
were divided into 10 groups according to their predicted pLOS
probabilities. The x-axis shows the observed pLOS probability
of each patient group, and the y-axis shows the averaged
predicted pLOS probability of each group. The ideal calibration
curve for a perfect model is a diagonal, which suggests that the
predicted probabilities are exactly consistent with the observed
probabilities.

Statistical analysis and calculations were performed using
Python 3. Less than 15% of records in the HQMS database had
missing values for the nationality and admission type variables,
and the missing values were considered as a special category
in the analysis.

Results

A total of 23,992 eligible patients receiving PD were included
in our study, of whom 30.3% had a pLOS. Characteristics of
the PD-treated patients are displayed in Table 1. The proportion
of male patients was 55.6% (13,351/23,992), and the average
age of all patients was 52.1 (SD 15.0) years. The 2-sided t tests
showed that the differences in age, place of residence, and
insurance type between PD-treated patients with a pLOS and
those without a pLOS were statistically significant. The
histogram of the LOS distribution of the PD-treated patients is
displayed in Figure 2.
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Table 1. Characteristics of peritoneal dialysis–treated patients in the study.

P valuePatients without pLOSPatients with pLOSaAll patientsCharacteristic

16,722 (69.7)7270 (30.3)23,992 (100)Number of patients (%)

<.00151.5 (14.8)53.6 (15.4)52.1 (15.0)Age (years), mean (SD)

.63Sex, n (%)

7399 (44.2)3242 (44.6)10,641 (44.4)Female

9323 (55.8)4028 (55.4)13,351 (55.6)Male

<.001Place of residence, n (%)

6860 (41.0)2565 (35.3)9425 (39.3)East China

1416 (8.5)902 (12.4)2318 (9.7)North China

2259 (13.5)1157 (15.9)3416 (14.2)Central China

2717 (16.2)1261 (17.3)3978 (16.6)South China

2084 (12.5)849 (11.7)2933 (12.2)Southwest China

842 (5.0)225 (3.1)1067 (4.4)Northwest China

544 (3.3)311 (4.3)855 (3.6)Northeast China

.005Insurance, n (%)

6386 (38.2)2714 (37.3)9100 (37.9)UEBMIb

1487 (8.9)705 (9.7)2192 (9.1)URBMIc

4151 (24.8)1931 (26.6)6082 (25.4)NRCMSd

233 (1.4)101 (1.4)334 (1.4)Free medical care

2496 (14.9)997 (13.7)3493 (14.6)Self-paid treatment

1969 (11.8)822 (11.3)2791 (11.6)Other

apLOS: prolonged length of stay.
bUEBMI: urban employee basic medical insurance.
cURBMI: urban resident basic medical insurance.
dNRCMS: new rural cooperative medical system.

Figure 2. Histogram of length of stay (LOS) distribution of peritoneal dialysis–treated patients.

A comparison of the prediction performance of the stacking
model, its 3 base models, and the benchmark LR model in terms

of the Brier score, AUROC, ECI, Gm, accuracy, sensitivity,
and specificity is shown in Table 2. Among these models, the
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stacking model achieved the best calibration (ECI 8.691),
balanced accuracy (Gm 0.690), accuracy (0.695), and specificity
(0.701). Meanwhile, the stacking and RF models had the best
overall performance (Brier score 0.174 for both) and
discrimination (AUROC 0.757 for the stacking model and 0.756
for the RF model). Compared with the benchmark LR model,

the stacking model was superior in all performance measures
except sensitivity, but there was no significant difference in
sensitivity between the 2 models. The 2-sided t tests revealed
significant performance differences between the stacking and
LR models in overall performance, discrimination, calibration,
balanced accuracy, and accuracy.

Table 2. Prediction performance of the 5 models.

SpecificitySensitivityAccuracyGmcECIbAUROCa (95% CI)Brier scoreModel

0.6710.6830.6750.6778.9110.742 (0.731-0.753)0.178LRd

0.6570.6660.6660.661*9.386*0.721 (0.703-0.740)*0.188*KNNe

0.6900.6560.6800.6739.342*0.730 (0.720-0.739)*0.187*SVMf

0.6930.6860.691*0.689*8.722*0.756 (0.748-0.765)*0.174*RFg

0.7010.6800.695*0.690*8.691*0.757 (0.748-0.765)*0.174*Stacking

aAUROC: area under the receiver operating characteristic curve.
bECI: estimated calibration index.
cGm: geometric mean.
dLR: logistic regression.
eKNN: K-nearest neighbor.
fSVM: support vector machine.
gRF: random forest.
*P<.05 in 2-sided t test when compared with the LR model.

Figure 3 demonstrates the calibration plots of the 5 models. The
calibration curve of the stacking model was the optimal fitting
curve among the 5 models. The SVM model underestimated
the pLOS probabilities for most patients, whereas the KNN

model overestimated the pLOS probabilities for most patients.
The RF model underestimated the pLOS probabilities for most
patients at low risk and overestimated the probabilities for most
patients at high risk.
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Figure 3. Calibration plots of the 5 models. KNN: K-nearest neighbor; LR: logistic regression; RF: random forest; SVM: support vector machine.

Discussion

Principal Findings
The main objective of this study was to develop an optimal
data-driven model for predicting the pLOS risk of PD-treated
patients using basic admission data. To the best of our
knowledge, this study is the first to develop such pLOS
prediction models for PD-treated patients by using data from a

national database. Our study constructed a pLOS prediction
model for PD-treated patients based on a stacking method with
KNN, SVM, and RF as its base models and LR as its
meta-model. The prediction performance of the stacking model
was compared with those of a benchmark LR model and its 3
base models. A pragmatic pLOS prediction model for PD-treated
patients would be useful in family consultation and has the
potential to assist physicians in making optimal clinical
decisions. Considering that medical expenses are highly
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associated with LOS [6,7], the pLOS prediction model could
help estimate the medical expenses for PD-treated patients. The
degree of satisfaction may increase if patients and their families
know more about their LOS and medical expenses on hospital
admission. In addition, the pLOS prediction models could be
integrated into hospital information systems, providing
physicians with real-time suggestions about the LOS of patients
and helping physicians to identify PD-treated patients at a high
risk of pLOS and give timely individualized intervention.

In this study, the RF, SVM, and KNN models were employed
as base models for stacking because they have different learning
mechanisms and have advantages in different aspects. RF is an
ensemble learning algorithm consisting of a collection of
tree-structured classifiers. The twice randomization in an RF
model provides the model with a strong capability of handling
high-dimensional data together with a stable generalizability
[49]. However, RF models are sensitive to noise data. SVM
models make classifications by mapping data into a
high-dimensional space and finding an optimal separating
hyperplane in the high-dimensional space. SVM models show
remarkably robust performance in handling noisy and
nonlinearly classified data but have limitations in handling
high-dimensional data [51]. KNN is an instance-based learning
method that makes predictions depending on a small number
of cases that are strongly similar to the target observation. KNNs
are effective on nonlinearly separable data sets and data sets
where samples of one class have different patterns [57]. KNNs
are insensitive to noise data but have limited accuracy in
unbalanced data. In addition, an existing study [38] showed that
the ensemble of the 3 models demonstrated superior prediction
performance in dealing with classification problems. Moreover,
the literature states that the 3 classifiers are suitable for pLOS
prediction problems. All 3 classifiers have shown superior
performance in predicting pLOS for patients. Chuang et al [35]
employed the SVM and RF models for pLOS prediction in
patients who underwent general surgery, and both models
achieved a high AUROC. Steele and Thompson [63] developed
a KNN-based pLOS prediction model for general patients and
achieved an AUROC of 0.847. KNN was included as the base
model in our study because it has shown superior performance
in pLOS prediction in existing studies [63,64]. Given that its
learning mechanism is different from the learning mechanisms
of the 2 other base models (SVM and RF), KNN was expected
to improve the prediction performance of the stacking model
in dealing with data sets with various characteristics [37,59].
We also attempted to construct stacking models with
combinations of any 2 base models of RF, SVM, and KNN. We
found that the stacking model with SVM and KNN as its base
models had the worst performance, while the stacking model
with 3 base models and the stacking models with the other 2
combinations (SVM and RF, and KNN and RF) had similar
overall performances. Considering the diversity and respective
advantages of the base models, and the generalizability of the
stacking model in dealing with data sets with different
characteristics, we selected the stacking model with 3 base
models.

The performance comparison results showed that the stacking
model was the best among the 5 models in terms of overall

performance (Brier score), discrimination (AUROC), calibration
(ECI), balanced accuracy (Gm), accuracy, and specificity. The
RF model showed the best prediction performance among the
3 base models, and it had a similar overall performance and
discrimination power as the stacking model. The good prediction
performance of the stacking and RF models may be due to the
fact that both models are ensemble learning models. Our study
results are consistent with previous studies showing that the
ensemble model is almost always superior to single learning
models [38,39]. A stacking model can exploit its base models
by combining the output of each model via a meta-model, thus
reducing the bias that tends to occur with a single classifier. An
RF model can exploit its base tree models by combining the
output of each model via a voting system. The stacking model
was slightly superior to the RF model in most performance
measures for 2 possible reasons. First, the prediction
performance of a stacking model is usually similar to its best
base model [40,41]. Second, compared with an RF model, a
stacking model has more diverse base models that can
complement each other.

The calibration curves of the 5 models further suggest that the
stacking model had the optimal calibration power in different
patient groups. ECI measures the overall calibration power of
a model, whereas the calibration curve visually shows the
calibration power of a model in patient groups with pLOS risk
from low to high. The ECI and calibration curve demonstrated
that the stacking model had superior calibration power. The
calibration curve showed that the averaged predicted pLOS
probability of the stacking model had high consistency with the
observed outcome across different pLOS risk groups.
Meanwhile, the calibration curve showed that the RF model
underestimated the pLOS probabilities of most patients at low
risk and overestimated the probabilities of most patients at high
risk. This feature can help the RF model expand the difference
of predicted probabilities between patients with different pLOS
risks and thus discriminate the patients at a high pLOS risk from
those at a low risk. This probably explained why the RF model
showed similar discrimination but worse calibration power than
the stacking model.

We also attempted to develop numeric LOS prediction models
for PD-treated patients, but the corresponding prediction
performance of the models was limited, which was similar to
that of existing numeric LOS prediction models. Numeric LOS
prediction models focused on mining different LOS patterns
for patients with different LOSs (even 1 day apart), but the
difference in LOS patterns between patients with different LOSs,
especially those LOSs with 1 or 2 days apart, may be slight and
was difficult to identify. The pLOS prediction models with
binary outcomes had a much better performance.

Regarding data exclusion, the PD-treated patients who died in
the hospital were excluded in our study because the LOS pattern
of the decedents might be different from that of patients who
survived in the hospital [65,66]. Based on our consultations
with experienced clinicians, we knew that there was uncertainty
in the LOS pattern of patients who died in the hospital.
Specifically, deceased patients could die quickly after hospital
admission and have a short LOS or die after a long period of
treatment and have a long LOS. In fact, the proportion of
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PD-treated patients who died in the hospital was only 0.8% in
our study. Selection bias might have occurred when we excluded
those PD-treated patients who died in the hospital, and the pLOS
prediction model developed in our study may not apply to those
patients who have a high risk of in-hospital mortality.

In our study, some PD-treated patients were hospitalized more
than once; they can be classified into 2 types: (1) patients
readmitted on the same day as discharge, and (2) patients with
several discontinuous hospitalizations. Some hospitals in China
may discharge patients with a potential pLOS first and then
readmit them on the same day to reduce the average LOS, which
is an important indicator in hospital evaluation. Therefore, for
the PD-treated patients readmitted on the same day as discharge,
we recalculated their actual LOS by merging the back-to-back
admission records in this study. To deal with the situation of
PD-treated patients with several discontinuous hospitalizations,
we examined 2 approaches that were employed in the literature:
(1) selecting the first hospitalization record, or (2) randomly
selecting 1 record among multiple hospitalization records.
Compared with the former approach, the latter approach may
help include patients with varying severities [67]. Thus, we
employed the second approach and randomly selected 1 record
for each patient to ensure that all observations were independent
and PD-treated patients with varying severities were included
in model development.

Definition of pLOS
In this study, pLOS was defined as an LOS longer than the
average LOS by referring to existing studies [44-46] and
consulting with experienced clinicians. In the literature, there
is no consensus on the definition of pLOS for general patients
or PD-treated patients. Existing studies have defined pLOS as
an LOS longer than the average LOS [44-46], longer than the
median LOS [68], or longer than a specific LOS according to
experiences [69]. After consulting with experienced clinicians,
we know that the average LOS is a more important metric for
PD-treated patients, and it is also a more commonly used metric
in assessing medical efficiency around the world. In addition,
pLOS has been defined as an LOS longer than the average LOS
in various medical fields by researchers from different countries
[44-46]. Among the 3 cited references that defined pLOS as an
LOS longer than the average LOS, one study [44] was of trauma
patients in the United States, another study [45] was of critically
ill patients in Switzerland, and the third study [46] was of
surgery patients in China. Therefore, the definition of pLOS as
longer than the average LOS may help our models achieve good
generalizability to some extent.

Diagnosis Codes
The use of diagnosis codes to identify patients with specific
diseases may miss some target patients because clinicians tend

to focus on the main diagnosis related to admission reasons and
overlook the diagnosis of other diseases. To address this
problem, we employed ICD-10 codes associated with all
admission and discharge diagnoses and in-hospital medical
operations to identify PD-treated patients. We also used ICD-10
codes associated with admission and discharge diagnoses to
identify patients' comorbidities.

Strengths and Limitations of the Study
This study has several strengths. First, a large nationwide
database with a relatively representative population was used
to derive the prediction models. Second, all of the predictor
variables are available at admission, which ensures the feasibility
of applying the developed models in clinical practice to assist
clinical decision making. Third, 5-fold cross-validation was
employed to achieve reliable performance results.

However, this study has some limitations. First, the models
were derived from a nationwide data set in China. Some of the
variables included in the models, such as nationality and
insurance type, are region specific. The generalizability and
validity of our prediction models need to be validated using a
data set from different regions. Second, other potentially
important variables, such as some laboratory markers, that
reportedly affect LOS [27,70] were not available in the studied
data set. Third, only patient data from Class 3 hospitals were
included in the studied data set. Class 3 hospitals in China
provide the best medical services for patients, and patients
admitted to Class 3 hospitals in China may be suffering from
serious diseases. Thus, our pLOS prediction models may not
be applicable to the PD-treated patients in the primary or Class
2 hospitals in China, considering that patients admitted to those
hospitals may have only minor or moderate diseases.

Conclusion
This study was the first to develop data-driven automated pLOS
prediction models for PD-treated patients using basic admission
data from a national database. The results of our study indicate
the feasibility of utilizing a stacking-based model for PD-treated
patients. The developed pLOS prediction models have the
potential to help clinicians identify PD-treated patients at a high
risk of pLOS and then provide optimal patient management.
The pLOS prediction tools developed in this study have the
potential to assist clinicians in identifying patients at a high risk
of pLOS and to allocate resources optimally for PD-treated
patients. The generalizability and validity of the developed
pLOS prediction models need to be externally validated, and
the clinical utility of the models needs further validation before
they are used in clinical practice. The pLOS prediction models
developed in our study are purely theoretical so far, and we plan
to integrate them into the information system of a pilot hospital
for prospective validation.
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