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Abstract

Using machine learning predictive models for clinical decision support has great potential in improving patient outcomes and
reducing health care costs. However, most machine learning models are black boxes that do not explain their predictions, thereby
forming a barrier to clinical adoption. To overcome this barrier, an automated method was recently developed to provide rule-style
explanations of any machine learning model’s predictions on tabular data and to suggest customized interventions. Each explanation
delineates the association between a feature value pattern and an outcome value. Although the association and intervention
information is useful, the user of the automated explaining function often requires more detailed information to better understand
the patient’s situation and to aid in decision making. More specifically, consider a feature value in the explanation that is computed
by an aggregation function on the raw data, such as the number of emergency department visits related to asthma that the patient
had in the prior 12 months. The user often wants to rapidly drill through to see certain parts of the related raw data that produce
the feature value. This task is frequently difficult and time-consuming because the few pieces of related raw data are submerged
by many pieces of raw data of the patient that are unrelated to the feature value. To address this issue, this paper outlines an
automated lineage tracing approach, which adds automated drill-through capability to the automated explaining function, and
provides a roadmap for future research.

(JMIR Med Inform 2021;9(5):e27778)   doi:10.2196/27778
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Introduction

Machine learning has won almost all data science competitions
[1] and is a hot topic these days. It is about computer algorithms
that automatically learn from data, such as extreme gradient
boosting, support vector machine, and random forest [2]. Using
machine learning predictive models for clinical decision support
has great potential in improving patient outcomes and reducing
health care costs [3-10]. However, most machine learning
models are black boxes that do not explain their predictions.
This creates a barrier to clinical adoption. To overcome this
barrier, we recently developed an automated method to offer

rule-style explanations of any machine learning model’s
predictions on tabular data and to suggest customized
interventions without reducing the model’s performance
measures [11-14]. Each rule-style explanation delineates the
association between a feature value pattern and an outcome
value. A feature is also called an independent variable. For the
prediction of future emergency department (ED) visits or
inpatient stays for asthma for a patient with asthma, one example
of the explanation is as follows:

• The patient had 2 ED visits related to asthma in the prior
12 months
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AND the patient’s average respiratory rate recorded in the
prior 12 months is >25 and ≤28 breaths per minute
→the patient will likely have at least 1 ED visit or inpatient
stay for asthma in the next 12 months [13,14].

An ED visit is related to asthma if the ED visit has an asthma
diagnosis code. For the item in the explanation showing that
the patient had 2 ED visits related to asthma in the prior 12
months, 1 intervention suggested by the automatic explanation
method [12-14] is to apply control procedures that decrease the
likelihood that the patient will need emergency care.

The association and intervention information provided by the
automatic explanation method for machine learning predictions
is useful. However, the user of the automated explaining
function often requires more detailed information to better
understand the patient’s situation and to aid in decision making.
More specifically, consider a feature value on the left-hand side
of a rule-style explanation that is computed by an aggregation
function on the raw data. The user often wants to rapidly drill

through to see certain parts of the related raw data producing
the feature value. In the context of a relational database, these
parts refer to the most relevant attributes of the most essential
source tuples producing the feature value. Which attributes are
most relevant and which source tuples are most essential depend
on both the concrete feature type and the clinical decision
support application’s need and are illustrated by several
examples throughout this paper. The patterns embedded in these
parts could provide additional information on the patient that
was lost during the aggregation process to compute the feature
value. This drill-through task is frequently difficult and
time-consuming because the few pieces of related raw data are
submerged by many pieces of raw data of the patient that are
unrelated to the feature value. For example, as Table 1 shows,
the list of encounters of a patient with asthma displayed on the
standard interface of an electronic medical record system
includes much information that is irrelevant to the feature value
“2 of the number of ED visits related to asthma that the patient
had in the prior 12 months.”

Table 1. An example list of encounters of a patient with asthma displayed on the standard interface of an electronic medical record system.a

FacilityProviderDepartmentVisit typePrimary diagnosisbVisit date

HMCJohn SmithHMCc family medicine clinicOutpatientCough (R05)Dec 20, 2020

HMCDavid WongHMC family medicine clinicOutpatientDysphagia, unspecified (R13.10)Dec 18, 2020

………………

UWMCLeslie HurdleUWMCd 8SEInpatientCystitis, unspecified without hematuria
(N30.90)

Oct 15, 2020

HMCPatricia SwardHMC HEDUCC fEmergencyViral infection, unspecified (B34.9)Oct 12, 2020 e

HMCEve JohnsonHMC family medicine clinicOutpatientDizziness and giddiness (R42)Oct 09, 2020

………………

HMCAmy JiangHMC psychotherapy clinicOutpatientPosttraumatic stress disorder, unspeci-
fied (F43.10)

Feb 11, 2020

HMCPeter ShavlikHMC HEDUCCEmergencySyncope and collapse (R55)Feb 08, 2020

HMCJude LakeHMC family medicine clinicOutpatientHeadache, unspecified (R51.9)Feb 03, 2020

………………

aThis example list is made based on a similar list seen in real electronic medical record data at the University of Washington Medicine.
bThis column does not show up on the standard interface. This column is included because it will be discussed in this paper.
cHMC: Harborview Medical Center.
dUWMC: University of Washington Medical Center.
eFor the feature value “2 of the number of emergency department visits related to asthma that the patient had in the prior 12 months,” the related rows
in the list producing the feature value are marked in italics.
fHEDUCC: Harborview Emergency Department Urgent Care Center.

For instance, in the rule-style explanation shown above, the first
item on the left-hand side is the feature value “2 of the number
of ED visits related to asthma that the patient had in the prior
12 months.” Asthma may or may not be the primary diagnosis
of either of these 2 visits. For this feature value, the user of the
automated explaining function wants to see the relevant parts
of these 2 visits (visit date, primary diagnosis, department
handling the visit, admitting provider, facility where the visit
occurred) in the reverse chronological order (see Table 2), like
the way encounters are displayed on the standard interface of
an electronic medical record system. The patterns embedded in

these parts give additional information on the patient not shown
by the feature value, such as the time between these 2 visits,
how long ago these 2 visits occurred, the primary diagnoses in
these 2 visits, and whether these 2 visits occurred at the same
facility. However, finding these parts is nontrivial. As seen in
real electronic medical record data at the University of
Washington Medicine, Intermountain Healthcare, and Kaiser
Permanente Southern California, the patient could have had
over 100 encounters in the prior 12 months. Only a few of these
encounters are ED visits, and even fewer of them are ED visits
related to asthma. To find the ED visits of the patient in the
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prior 12 months, the user would need some manual effort even
if aided by the search function for the electronic medical record
system. To figure out which of these visits are related to asthma,

a task with which the search function often cannot provide much
help, the user would need much more manual effort.

Table 2. An example of the parts of the related raw data that should be displayed for a feature value.a

FacilityProviderDepartmentPrimary diagnosisVisit date

HMCPatricia SwardHMCb HEDUCCcViral infection, unspecified (B34.9)Oct 12, 2020

HMCPeter ShavlikHMC HEDUCCSyncope and collapse (R55)Feb 08, 2020

aFor the example list shown in Table 1 and the feature value “2 of the number of emergency department visits related to asthma that the patient had in
the prior 12 months,” the parts that the user of the automated explaining function wants to see are in the related raw data producing the feature value.
bHMC: Harborview Medical Center.
cHEDUCC: Harborview Emergency Department Urgent Care Center.

In practice, numerous possible features computed by various
aggregation functions on all kinds of longitudinal attributes in
the electronic medical records could be used for predictive
modeling and automatic explanation. Examples of such features
include whether the most recent asthma diagnosis of the patient
is a primary diagnosis, the patient’s average respiratory rate
recorded in the prior 12 months, the total number of distinct
asthma medications ordered for the patient in the prior 12
months, the total number of units of asthma relievers that were
ordered for the patient in the prior 12 months and were neither
systemic corticosteroids nor short-acting beta-2 agonists, the
number of distinct asthma medication prescribers of the patient
in the prior 12 months, and the number of no-shows by the
patient in the prior 12 months [13,14]. Most of the possible
features are unanticipated by the developers of the search
function for the electronic medical record system beforehand.
The search function supports only a few fixed types of search.
For only a small portion of possible features, the search function
can aid drilling through the raw data that produce a given feature
value.

This creates a problem for the widespread adoption of the
automatic explanation method for machine learning predictions.
Frequently, this method gives multiple rule-style explanations
for a patient predicted to be at high risk of incurring a poor
outcome [11,12]. The user of the automated explaining function
is typically a busy clinician having no time to do laborious
manual drill-through regularly. However, to better understand
the patient’s situation and to make better clinical decisions, the
user often wants to drill through multiple feature values of the
patient appearing in the explanations. If done manually, this is
a challenging task. A patient often has extensive records with
numerous variables and hundreds of pages of content
accumulated over a long period of time [15]. Further, the
relevant raw data producing the feature values are frequently
scattered in several places in the electronic medical record
system.

This study makes 2 contributions toward solving this problem:

1. We articulate this problem for the first time in the literature.
This is done in the “Introduction” section.

2. To address this problem, an automated lineage tracing
approach is outlined to add automated drill-through
capability to the automated explaining function. This is
done in the “Outline of the proposed automated lineage

tracing approach” section. Further, a roadmap for future
research is provided in the “Directions for future research”
section.

The automated drill-through capability is intended to be offered
to help the user of the automated explaining function save time,
better understand the patient’s situation, and make better clinical
decisions. The discussion in this paper focuses on structured
electronic medical record data, a specific method commonly
used to build clinical machine learning predictive models, and
the automatic explanation method for machine learning
predictions [11,12]. Nevertheless, the automated lineage tracing
approach is not limited to them. Instead, when automatically
explaining machine learning predictions and after appropriate
extension, the principle of this approach can be applied to
facilitate drilling through any feature value computed by an
aggregation function on longitudinal structured data, regardless
of whether the data came from electronic medical records,
whether the feature is specified by a human expert or
semiautomatically extracted from longitudinal data using the
method outlined in the prior paper [16], which method is used
to build the machine learning predictive model, or which
automatic explanation method is used.

Running Example

To illustrate this approach, a running example is used throughout
this paper: automatically explaining the predictions of future
ED visits or inpatient stays for individual patients with asthma.
Our prior papers [12-14,17-19] detail this use case and the
features used to make predictions in it.

Base Tables
Below are the schemas of 5 tables in a relational database used
in the running example:

The underlined fields mark the key to each table. The encounter
table includes 1 row per encounter listing its information. The
diagnosis table includes 1 row per diagnosis code of an
encounter. Primary diagnoses are signified by
dx_sequence_number=1. The diagnosis_code_master table
includes 1 row per unique diagnosis code giving its description.
The ordered_medication table includes 1 row per medication
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appearing in a medication order. The medication_master table
includes 1 row per unique medication listing its information.

Intermediate Result Tables
Besides the above 5 base tables, 4 intermediate result tables
computed on the new data are also used in the running example:
enc_features_1, enc_features_2, enc_features_3, and
med_features_1. The trained machine learning predictive model
is applied to the new data to make predictions on individual
patients.

The intermediate result table enc_features_1 contains 3 temporal
features on encounters: the number of ED visits, the number of
inpatient stays, and the number of outpatient visits that the
patient had in the prior 12 months. Let today_date denote
today’s date. enc_features_1 is computed from the encounter
base table using the following structured query language (SQL)
query.

The intermediate result table enc_features_2 contains 1 temporal
feature on encounters: the number of outpatient visits with a
primary diagnosis of asthma that the patient had in the prior 12
months. Recall that the International Classification of Diseases,
Tenth Revision diagnosis codes of asthma are J45.x.
enc_features_2 is computed by joining the encounter and
diagnosis base tables using the following SQL query.

The intermediate result table enc_features_3 contains 2 temporal
features on encounters: the number of ED visits related to
asthma and the number of inpatient stays related to asthma that
the patient had in the prior 12 months. enc_features_3 is
computed by joining the encounter and diagnosis base tables
using the following SQL query.

The intermediate result table med_features_1 contains 2
temporal features on medications: the total number of
medications and the total number of distinct medications ordered
for the patient in the prior 12 months. med_features_1 is
computed from the ordered_medication base table using the
following SQL query.

Relational Algebra Operators
This paper uses the following relational algebra operators with

the bag semantics unless otherwise specified: join , left

semijoin , selection σ, projection π, duplicate elimination δ,
and grouping γ [20]. Commercial database management systems
implement relations using the bag semantics.

Review of a Typical Method to Build a
Clinical Machine Learning Predictive

Model and Our Automated Method to
Explain the Model’s Predictions

In this section, a typical method to build a machine learning
predictive model on structured electronic medical record data
as well as the automated method to explain the model’s
predictions [11-14] are reviewed. In the next section, the
automated lineage tracing approach based on these 2 methods
is outlined.

A health care system usually has an enterprise data warehouse.
It stores in a relational database a copy of the structured
electronic medical record data of the health care system, often
after some transformations such as pivoting [21,22] and
denormalization to facilitate data analysis. For predictive
modeling with automated explanation, the overall workflow is
to execute database SQL queries to extract features from the
electronic medical record data, to build a machine learning
predictive model on the training data, to apply the model on
new data to make predictions on individual patients, and then
to use the automated method to explain the predictions. In the
following sections, each of these steps is described sequentially.

Extracting Features From the Electronic Medical
Record Data and Building the Clinical Machine
Learning Predictive Model
The structured electronic medical record data contain both static
attributes (eg, gender) and longitudinal attributes (eg,
encounters, diagnoses). Most attributes are longitudinal. As
Figure 1 shows, the following operations are performed on the
training data:

1. The static features are computed from the static attribute
values. The results are stored in 1 or more intermediate
result tables. Typically, each of these intermediate result
tables is computed by running a select-project-join SQL
query on 1 or more base tables.

2. By aggregating longitudinal attribute values and sometimes
also using some static attribute values, the patient cohort
of interest in the training data is computed. The result is
stored in 1 intermediate result table. This is typically done
by running a complex SQL query on several base tables.
An example patient cohort is the set of all patients with
asthma who visited any of the facilities of the health care
system during a specific time period.

3. By aggregating longitudinal attribute values, temporal
features and the outcome variable are computed and stored
in 1 or more intermediate result tables. Typically, each of
these intermediate result tables is computed by running a
select-project-join-aggregate SQL query on 1 or more base
tables. For example, 1 intermediate result table is similar
to enc_features_1 and contains multiple temporal features
on encounters computed from the encounter base table. A
second intermediate result table is similar to enc_features_2
and contains multiple temporal features on encounters
computed by joining the encounter and diagnosis base
tables. A third intermediate result table contains multiple
temporal features on medications computed by joining the
ordered_medication and medication_master base tables,
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such as the total number of distinct asthma medications and
the total number of units of asthma medications ordered
for the patient in the prior 12 months. The logical query
plan for a select-project-join-aggregate query includes 1 or

more select-project-join-aggregate segments [23]. Each
segment has a grouping or duplicate elimination operator
at its end following a bunch of join, selection, and projection
operators.

Figure 1. The flow chart for building a clinical machine learning predictive model on the training data, making predictions on the new data, and using
our automated method to explain the model’s predictions.

Figure 2 shows the logical query plan for a
select-project-join-aggregate query. By joining the intermediate
result tables containing the patient cohort of interest, the static
and temporal features, and the outcome variable in the training
data, a table containing the unified training data frame is

obtained. For the patient cohort of interest, this table includes
1 column for the outcome variable and a separate column for
each feature. Then a machine learning predictive model is
trained on this table.

Figure 2. A logical query plan for the select-project-join-aggregate query Q3 given in the “Intermediate result tables” section.

Applying the Machine Learning Predictive Model to
New Data to Make Predictions on Individual Patients
As Figure 3 shows, similar to the procedure mentioned above,
the patient cohort of interest and the static and temporal features
in the new data are computed. The results are stored in several

intermediate result tables. By joining these tables, a table
containing the unified data frame for the new data is obtained.
For the patient cohort of interest, this table includes a separate
column for each feature. We then apply the machine learning
predictive model to this table to make predictions on individual
patients.
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Figure 3. The high-level logical query plan for computing the unified data frame that contains all the features of the new data. SQL: structured query
language.

Automatically Explaining the Machine Learning
Model’s Predictions
At the same time of building the clinical machine learning
predictive model, the training data are used to create the
knowledge base of the automated explaining function. We do
automated discretization [24,25] to convert continuous features
to categorical features. Then class-based association rules
[24,26] are mined from the unified training data frame. Each
rule delineates the association between a feature value pattern
and a poor outcome value c and is of the form

i1 AND i2 AND … AND it→c.

This rule shows that a patient satisfying i1, i2, …, and it tends
to have an outcome value c. The values of t and c can change
across rules. Each item ik (1≤k≤t) is a (feature, value) pair
showing that a feature has a specific value or a value within a
specific range. One example item of the former is that the patient
had 2 ED visits related to asthma in the prior 12 months. One
example item of the latter is that the patient’s average respiratory
rate recorded in the prior 12 months is >25 and ≤28 breaths per
minute. An example rule containing both items is given in the
Introduction.

For each (feature, value) pair item used to create association
rules, 0 or more interventions are precompiled. The interventions
precompiled for any item on a rule’s left-hand side are
automatically linked to the rule.

At prediction time, to avoid reducing the machine learning
predictive model’s performance measures, the model’s
predictions are used with no change. The mined association
rules are used to explain these predictions rather than to make
predictions. More specifically, for each patient whom the model
predicts to have a poor outcome value, we find and display the
rules that have this value on their right-hand sides and whose
left-hand sides are fulfilled by the patient. Each rule offers 1
explanation for the prediction. The interventions linked to the
rule are displayed next to it as the suggested candidate
interventions.

Our automatic explanation method for machine learning
predictions has been successfully applied to multiple clinical
predictive modeling problems [11,12,27,28]. It has several
advantages. Among all the automatic explanation methods for
machine learning predictions in the literature [29,30], our
method is the only one that can automatically suggest
customized interventions. The rule-style explanations given by
our method are easier to comprehend than the non–rule-style
explanations given by many other methods. Unlike many other
automatic explanation methods that either lower the machine
learning predictive model’s performance measures or work for
only a specific machine learning algorithm, our automatic
explanation method works for any machine learning algorithm
on tabular data without lowering the model’s performance
measures. Unlike several other methods that use rules computed
at prediction time to offer explanations [31,32], our method
uses rules mined before prediction time to offer explanations.
This is essential for our method to automatically suggest
customized interventions at prediction time.

Review of the Existing Automated
Lineage Tracing Techniques

In this section, the existing automated lineage tracing techniques
are reviewed. An overview of such techniques developed in
various fields is provided. Then, a specific set of automated
lineage tracing techniques most closely related to this work is
reviewed.

Overview of the Existing Automated Lineage Tracing
Techniques
The lineage or provenance of a given data item i refers to the
source data items producing i and how i was derived [33]. The
former is called where-lineage. The latter is called how-lineage.
Each type of lineage can be at either the schema level or the
instance level. An example of where-lineage at the schema level
is the set of base tables producing a specific materialized view.
An example of where-lineage at the instance level is the set of
tuples in the base tables producing a given temporal feature
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value in a materialized view. Lineage information can be
computed in either an eager way or a lazy way. In the former
case, lineage information is computed and stored at the same
time of producing the output data. In the latter case, lineage
information is computed when needed. This paper focuses on
where-lineage that is at the instance level and computed in a
lazy way.

Ikeda et al surveyed existing lineage tracing techniques in
databases [33,34], e-science [35], and scientific data processing
[36]. Among all of the lineage tracing techniques in the
literature, the techniques Cui et al [23,37] developed are the
most closely related to this work. These techniques are used to
trace the lineage of a tuple in a materialized view [38] defined
by a select-project-join-aggregate query in a relational database.
Cui et al [39,40] described lineage tracing techniques for
warehouse data computed via a directed acyclic graph of
transformations, some of which could involve complex
procedural code. Zhang et al [41] described lineage tracing
techniques for data computed by arbitrary functions. In general,
the more flexibility is allowed on the transformations or
functions, the less efficiently lineage can be traced [39].

In big data systems, Ikeda et al [42,43] described lineage tracing
techniques for data computed via a directed acyclic graph of
map and reduce functions [44]. Amsterdamer et al [45] described
lineage tracing techniques for data computed by using Pig Latin
[46].

In scientific data processing, lineage tracing is often done on
curated databases, which contain scientific data copied from
other databases [36,47].

Schelter et al [48] described a method to trace the schema-level
lineage of the data sets, features, models, and predictions
produced in machine learning experiments.

Review of Cui et al’s Automated Lineage Tracing
Techniques for Relational Databases
To automatically trace the lineage of a tuple t in a materialized
view [38] defined by a select-project-join-aggregate query, Cui
et al [23,37] proceeded as follows. First, the materialized view’s
definition query is transformed into a canonical form of the
logical query plan. As Figure 2 shows, the canonical form
includes 1 or more select-project-join-aggregate segments. Each
segment has 0 or 1 join operator, 0 or 1 selection operator, 0 or
1 projection operator, and a grouping or duplicate elimination

operator in this particular order. Second, a separate intermediate
materialized view is created for each intermediate
select-project-join-aggregate segment of the canonical form.
The root node of such a segment is not the root node of the
canonical form. Third, we recursively trace through the
hierarchy of intermediate materialized views in a top-down way.
At each level of the hierarchy, the lineage tracing query for a
1-level select-project-join-aggregate materialized view is used
to compute the current traced tuples’ lineage with respect to
each base table and each materialized view at the next lower
level. For a 1-level select-project-join-aggregate materialized

view MV = γ(πA(σC(R1 R2 … Rn))), the lineage of a tuple
set T⊆MV with respect to the base table or the materialized view

Ri (1≤i≤n) is πRi(σC(R1 R2 … Rn) T). Here, the
projection operator π on Ri has the set semantics, making each
selected tuple in Ri appear only once. Further, all attributes of
Ri appear in the projection operator and subsequently in the
lineage traced on Ri. The final traced lineage of tuple t includes
the lineage traced on every base table appearing in the canonical
form.

We use an example to illustrate Cui et al’s [23,37] automated
lineage tracing techniques. If “create table enc_features_3” is
replaced by “create materialized view enc_features_3_view”
in query Q3 given in the “Intermediate result tables” section, a
query Q3_v defining a materialized view enc_features_3_view
is obtained. To trace the lineage of a tuple t in
enc_features_3_view whose patient_id is asthma_patient_id,
one proceeds as follows.

First, the canonical form of the logical query plan for query
Q3_v is obtained. The canonical form is the same as the logical
query plan for query Q3 shown in Figure 2.

Second, an intermediate materialized view asthma_encounter_id
is created for the intermediate select-project-join-aggregate
segment e_id shown in Figure 2. This is done using the
following SQL query.

Figure 4 shows the resulting hierarchy of intermediate
materialized views, with the materialized view
enc_features_3_view at the top and the encounter and diagnosis
base tables at the bottom.

Figure 4. The hierarchy of intermediate materialized views matching the canonical form of the logical query plan for the definition query of the
materialized view enc_features_3_view.

Third, at the top level of the hierarchy of intermediate
materialized views, the lineage of tuple t with respect to the
encounter base table is computed using the following SQL
query.

The following SQL query is used to compute the lineage of
tuple t with respect to the intermediate materialized view
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asthma_encounter_id and to store the results in a temporary
table temp.

Fourth, at the second level of the hierarchy of intermediate
materialized views, the lineage of the tuples in the temporary
table temp with respect to the diagnosis base table is computed
using the following SQL query.

The final traced lineage of tuple t includes both the results of
query Q6 and the results of query Q8.

Outline of the Proposed Automated
Lineage Tracing Approach

In this section, an automated lineage tracing approach is outlined
to add automated drill-through capability to the automated
explaining function. Our presentation includes 4 subsections.
In the first subsection, an overview of the lineage tracing
component of the automated explaining function is provided.
In the second subsection, the unique requirements on automated
lineage tracing are shown for automatically explaining machine
learning predictions for clinical decision support. In the third
subsection, the proposed automated lineage tracing techniques
fulfilling these requirements is outlined. In the fourth subsection,
some considerations are presented for future computer coding
implementation of the proposed lineage tracing approach.

Overview of the Lineage Tracing Component
At association rule mining time, all (feature, value) pair items
used to create association rules are known. Which items involve
temporal features computed by aggregation functions on the
raw data is also known. For each item that is related to a
temporal feature of a patient and on the left-hand side of a rule,

a hyperlink is added to the item in the rule. In addition, a
parameterized stored procedure is written for the item in the
database to retrieve lineage information. The stored procedure
typically has 2 parameters: the patient_id of the patient being
examined and the endpoint of the temporal aggregation period,
such as today. When the stored procedure is run for the first
time, an execution plan is generated. All subsequent runs will
use the same execution plan to avoid runtime query optimization
overhead.

At automatic explanation time, the user of the automated
explaining function is allowed to do lineage tracing for any item
that is on the left-hand side of a rule-style explanation and
related to a temporal feature value. When the user clicks the
item’s hyperlink, the stored procedure prewritten for the item
is invoked to retrieve some prespecified parts of the related raw
data producing the feature value. Except for the cases with 2
specific aggregation functions described later in the paper, the
retrieved data instances are always displayed on a page in the
reverse chronological order like that in the electronic medical
records.

Unique Requirements for Automated Lineage Tracing
Typically, the user of the automated explaining function is a
clinician. To fit the user’s busy schedule and to aid timely
decision making, the user wants the lineage tracing process for
a temporal feature value to be finished quickly, preferably within
1 second. This goal is partially fulfilled by the existing lineage
tracing techniques [23,37], whereas the realized lineage tracing
speed can be further improved. In addition, the retrieved lineage
information should be easy to scan and include the most
essential content needed to facilitate decision making. This
enables the user to quickly gain useful insights from the
information, ideally within 1 or a few seconds. As summarized
in Table 3, that goal translates to 5 unique requirements on
automated lineage tracing that are unmet by the existing lineage
tracing techniques.

Table 3. The 5 unique requirements of automated lineage tracing for automatically explaining machine learning predictions for clinical decision support.

Reason for posing the requirementRequirement

To prevent the user from being overwhelmed by many nonessential
or irrelevant attributes

Retrieving only a small set of attributes

To make the retrieved lineage information include the most essen-
tial content

Adding some essential attributes that do not directly produce the feature value

To make the retrieved lineage information easy to scanSorting the retrieved lineage information in an appropriate order

To avoid including irrelevant or nonessential source tuples in the

retrieved lineage information

Computing the lineage information based on the semantic meaning of the feature

To avoid including irrelevant data in the retrieved lineage informa-
tion

Performing no lineage tracing for any health care system feature value computed
by an aggregation function

Requirement 1: Retrieving Only a Small Set of Attributes
When tracing the lineage of a temporal feature value, one should
retrieve from the base tables only a small set of attributes
specific to the temporal feature rather than the many attributes
involved in deriving all of the features used for automated
explanation. This requirement is posed to prevent the user of

the automated explaining function from being overwhelmed by
many nonessential or irrelevant attributes.

To aid automatic explanation, we want to allow tracing the
lineage of a temporal feature value in the form of a small set of
attributes specific to the temporal feature (see Table 2 for an
example). This cannot be well done using Cui et al’s lineage
tracing techniques [23,37]. These techniques were developed
to trace the lineage of a tuple including all of its attribute values
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in a select-project-join-aggregate materialized view in a
relational database. If the retrieved lineage information ever
touches a tuple in a base table, all attribute values of the tuple
are included in this information. For automatic explanation,
both factors would cause the retrieved lineage information to
have an excessive volume, overwhelming the user of the
automated explaining function.

To see this, the process of making predictions with automatic
explanations is reviewed. Usually, many features are used to
make predictions and to automatically explain them. All of the
items on the left-hand side of a rule-style explanation come
from the same tuple in the unified data frame, which contains
all features of the new data. As Figure 3 shows, this unified data
frame is obtained by joining many intermediate result tables.
Each of them falls into 1 of the 3 categories: (1) a table
containing the patient cohort of interest in the new data, (2) a
table containing 1 or more static features, and (3) a table
containing 1 or more temporal features. Each hyperlinked item
on the left-hand side of a rule-style explanation comes from
exactly 1 intermediate result table in the third category.

When the user of the automated explaining function clicks the
hyperlink for an item on the left-hand side of a rule-style
explanation, one could use Cui et al’s techniques [23,37] to
trace the lineage of the tuple in the unified data frame, from
which the item comes. For each intermediate result table
mentioned above and each base table used to create it, the
retrieved lineage information contains some tuples from the
base table including all of their attribute values. Most of the
retrieved lineage information is unnecessary for automatic
explanation for 3 reasons.

Reason 1

The retrieved lineage information often includes thousands of
tuples from several dozen base tables. Most of these base tables
are used to compute the other feature values in the tuple in the
unified data frame that are unrelated to the item, and include
no information that can help the user of the automated
explaining function gain useful insights related to the item. In
fact, to obtain the lineage information of the item essential for
automatic explanation, we need to only trace through the
intermediate result table related to the item solely for the item
and to examine the base tables used to create this table. The
features in this table that are unrelated to the item can be
ignored. There is also no need to trace through the intermediate
result tables containing the features unrelated to the item.
Moreover, at automatic explanation time, we know the
patient_id of the patient linked to the item. The user usually
does not need to know why this patient is in the patient cohort
of interest in the new data. Thus, there is no need to trace
through the intermediate result table showing the patient cohort.

Reason 2

A base table often has many attributes, only a few of which are
essential for the user of the automated explaining function to
gain useful insights related to the item. For instance, the
encounter table often has >100 attributes. The lineage
information shown in Table 2 covers only 4 of them: admit_time
transformed to the date format, department, admitting_provider,
and facility.

Reason 3

Certain items are each computed using several base tables and
intermediate query results. For the user of the automated
explaining function to gain useful insights related to the item,
only the attributes and tuples of some of these base tables are
essential. Alternatively, none or only some of these intermediate
query results need to be traced through.

For example, in query Q2 given in the “Intermediate result
tables” section, both the encounter and diagnosis base tables
are used to compute the feature “the number of outpatient visits
with a primary diagnosis of asthma that the patient had in the
prior 12 months.” For a value of this feature, we need to use
the information in the diagnosis table to find the related tuples
in the encounter table. Nevertheless, the user would expect each
encounter shown in the retrieved lineage information to be an
outpatient visit with a primary diagnosis of asthma. Thus, there
is no need to include any attribute or tuple from the diagnosis
table in the retrieved lineage information, for example, to give
the primary diagnosis of each encounter included in that
information.

As a second example, in query Q3 given in the “Intermediate
result tables” section, both the encounter base table and the
intermediate query result e_id are used to compute the feature
“the number of ED visits related to asthma that the patient had
in the prior 12 months.” For a value of this feature, the user of
the automated explaining function would expect each encounter
shown in the retrieved lineage information to be an ED visit
related to asthma, like that shown in Table 2. Thus, there is no
need to trace through e_id and to obtain the corresponding tuples
in the diagnosis table showing that each encounter included in
the retrieved lineage information has an asthma diagnosis code.

Requirement 2: Adding Some Essential Attributes That
Do Not Directly Produce the Feature Value
For certain temporal features, when acquiring the lineage of a
feature value, one should not use only the related raw data that
directly produce the feature value. Instead, one needs to add to
them some related attributes in the base tables, which are
specific to the temporal feature and do not directly produce the
feature value. We pose this requirement to make the retrieved
lineage information include the most essential content needed
to facilitate decision making. For example, as query Q1 given
in the “Intermediate result tables” section shows, the feature
“the number of ED visits that the patient had in the prior 12
months” is computed solely from the encounter base table. For
a value of this feature, we want the retrieved lineage information
to be similar to that shown in Table 2 and include a primary
diagnosis column. This column is computed using the diagnosis
and diagnosis_code_master base tables unused in Q1 and is
formed by concatenating the diagnosis_code and
dx_code_description columns of the diagnosis_code_master
base table. The cases for many other temporal features on
encounters are similar.
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Requirement 3: Sorting the Retrieved Lineage
Information in an Appropriate Order
When presenting the lineage information, the related raw data
retrieved for a temporal feature value should be sorted in an
order specific to the temporal feature. This requirement is posed
to make the retrieved lineage information easy to scan. Usually,
we want the data instances in the retrieved lineage information
to be displayed in the reverse chronological order like that in
the electronic medical records. However, there are 2 exceptions.
First, when the temporal feature is the maximum value of an
attribute of a given patient, we want the related raw data
retrieved for a feature value to be displayed in the descending
order of the attribute value. For example, for the feature “the
highest systolic blood pressure of the patient in the prior 12
months,” we want the lineage information retrieved for a feature
value to contain the systolic blood pressure of the patient in the
prior 12 months sorted in the descending order. Second, when
the temporal feature is the minimum value of an attribute of a
given patient, we want the related raw data retrieved for a feature
value to be displayed in the ascending order of the attribute
value. In either of the 2 cases, a resort button could be added to
the retrieved lineage information on display. If the user of the
automated explaining function clicks this button, the data
instances in the retrieved lineage information are rearranged in
the reverse chronological order for display.

Requirement 4: Computing the Lineage Information
Based on the Semantic Meaning of the Feature
The lineage information of a temporal feature value should be
computed based on the semantic meaning of the feature rather
than solely on the literal writing of the SQL query used to
compute the feature. We pose this requirement to avoid
including irrelevant or nonessential source tuples in the retrieved
lineage information. For a select-project-join-aggregate
materialized view containing 1 or more temporal features, Cui
et al [23,37] compute the lineage of a tuple in it based solely
on the literal SQL query used to define it. In certain cases, this
literal approach is suboptimal for automatic explanation. Instead,
we should consider the semantic meanings of the temporal
features during lineage tracing. In the following, 2 such cases
are described. Each case is presented as a subrequirement.

Subrequirement 4.1

When the temporal feature is the sum of a variable computed
by a case statement in SQL including multiple conditions and
some of them return 0, only the lineage information related to
the other conditions should be retrieved. In SQL, such a
temporal feature is written in the form of

As an example of this subrequirement, for the feature “the
number of ED visits that the patient had in the prior 12 months,”
the lineage information retrieved for a value of the feature
should be the ED visits that the patient had in the prior 12
months, regardless of whether the feature is computed using
SQL query Q9 or Q10 below.

The differences between Q9 and Q10 are highlighted in italics
in Q10. If the feature is computed using Q9, Cui et al’s techniques
[23,37] would retrieve all the encounters of the patient in the
prior 12 months as the lineage information. This could easily
overwhelm the user of the automated explaining function, as
usually most of these encounters are not ED visits.

Subrequirement 4.2

When the temporal feature is the total number of distinct items,
the retrieved lineage information should include only 1
representative data instance for each distinct item. For example,
query Q4 given in the “Intermediate result tables” section
computes the feature “the total number of distinct medications
ordered for the patient in the prior 12 months.” For a value of
this feature, Cui et al’s techniques [23,37] would retrieve all
medications ordered for the patient in the prior 12 months as
the lineage information. This information is often overwhelming
and not succinct enough for the user of the automated explaining
function to quickly find the distinct medications ordered for the
patient in the prior 12 months, as the same medication could be
ordered for the patient multiple times in a year. To avoid this
problem, one could retrieve only the most recent order of each
distinct medication ordered for the patient in the prior 12 months
as the lineage information. For the user, these distinct
medications typically provide enough insight into the patient’s
status related to the feature value.

Requirement 5: Performing No Lineage Tracing for Any
Health Care System Feature Value Computed by an
Aggregation Function
We do not trace the lineage of any health care system feature
value computed by an aggregation function. We pose this
requirement to avoid including irrelevant data in the retrieved
lineage information. Like temporal features of a patient, certain
health care system features [17-19] such as the number of
patients with asthma of the primary care provider of a patient
are computed by aggregation functions. These health care system
features are each computed using multiple patients’ information
rather than solely the information of the patient being examined.
Since other patients’detailed information does not help the user
of the automated explaining function understand this patient’s
situation, we do not trace the lineage of any value of this feature,
even if it appears on the left-hand side of a rule-style
explanation.

Outline of the Proposed Techniques to Form the
Lineage Tracing Query That Computes the Lineage
Information
To perform automated lineage tracing for explaining machine
learning predictions for clinical decision support, Cui et al’s
lineage tracing techniques [23,37] are modified to fulfill the
requirements mentioned above. Even without giving any detail
on the computer coding implementation and the performance
evaluation results, Cui et al [37] already used 49 pages to
describe the details of their automated lineage tracing algorithm.
The case described in this paper is more complex than Cui et
al’s case [37]. In the case described in this paper, which
attributes are most relevant and which source tuples are most
essential for inclusion in the retrieved lineage information
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depend on both the concrete feature type and the clinical
decision support application’s need. In comparison, no such
dependency exists in Cui et al’s case [37]. Thus, it is expected
that, once fully worked out, the proposed automated lineage
tracing algorithm would be more sophisticated than Cui et al’s
algorithm [37]. In this viewpoint paper, the goal is not to
enumerate all possible feature types and to provide a detailed
design or any computer coding implementation of the proposed
automated lineage tracing approach. Rather, the goal is to
describe the design approach for the proposed automated lineage
tracing module and to provide a roadmap for future research.
We achieve this goal by outlining the main steps of forming the
lineage tracing query, giving 4 example temporal features, and
illustrating at a high level how to form the lineage tracing query
for each of these 4 features.

Overview of the Lineage Tracing Query Formation
Process
Usually, each intermediate result table shown in Figure 3 has
a patient_id column. It is used as the join column in the join
operation to produce the unified data frame containing all
features of the new data. As explained in “Reason 1” of the
“Requirement 1” section, to obtain the lineage information of
a temporal feature value, we need to only trace through the
intermediate result table containing this value solely for this
value. This intermediate result table is usually computed from
some base tables by using a select-project-join-aggregate SQL
query S0. To form the lineage tracing query for a temporal
feature value of a patient in the intermediate result table, one
proceeds in 4 steps. First, the other temporal features, if any,
are removed from S0 to obtain a simplified query S1. Second,
if applicable, S1 is transformed to query S2 to fulfill
subrequirement 4.1. Third, Cui et al’s techniques [23,37] are
modified to address Reasons 2 and 3 given in the “Requirement
1” section. The modified techniques are used to form a
preliminary lineage tracing query S3 based on S2 and the
patient’s patient_id. Fourth, to obtain the final lineage tracing
query, S3 is transformed to fulfill Requirements 2 and 3 and
subrequirement 4.2.

In the following, 4 examples are used to illustrate at a high level
how to form the lineage tracing query. In each example, the
user of the automated explaining function is examining a patient
with asthma whose identifier is asthma_patient_id and wants
to drill through a temporal feature value of this patient. We
outline the main steps of forming the lineage tracing query for
the feature value without giving the detailed algorithm.

Example 1: The Number of ED Visits That the Patient
Had in the Prior 12 Months
As defined by query Q1 in the “Intermediate result tables”
section, the intermediate result table enc_features_1 contains
3 temporal features. One of them is the number of ED visits
that the patient had in the prior 12 months. To form the lineage
tracing query for a value of this feature, one proceeds as follows.

First, the other 2 features are removed from query Q1 to obtain
query Q9 given in the “Subrequirement 4.1” section.

Second, to fulfill subrequirement 4.1 on handling the sum of a
variable computed by a case statement, query Q9 is transformed
to query Q10 given in the “Subrequirement 4.1” section.

Third, Cui et al’s lineage tracing techniques [23,37] are used to
form a draft lineage tracing query Q11 based on Q10 and
asthma_patient_id.

The differences between Q10 and Q11 are highlighted in italics
in Q11. To address Reason 2 given in the “Requirement 1”
section and retrieve from the encounter table only its attributes
essential for automatic explanation, Q11 is transformed to the
following preliminary lineage tracing query.

The differences between Q11 and Q12 are highlighted in italics
in Q12.

Fourth, to fulfill Requirement 2, a primary diagnosis column
needs to be added to the raw data that are retrieved by query
Q12 and that directly produce the feature value being examined.
To fulfill Requirement 3, the retrieved raw data need to be sorted
in the reverse chronological order. To meet both demands, Q12

is transformed to the following final lineage tracing query.

The differences between Q12 and Q13 are highlighted in italics
in Q13. || is the string concatenation operator in SQL.

Example 2: The Number of Outpatient Visits With a
Primary Diagnosis of Asthma That the Patient Had in
the Prior 12 Months
As defined by query Q2 in the “Intermediate result tables”
section, the intermediate result table enc_features_2 contains
the temporal feature “the number of outpatient visits with a
primary diagnosis of asthma that the patient had in the prior 12
months.” To form the lineage tracing query for a value of this
feature, one proceeds as follows.

First, to address Reason 2 given in the “Requirement 1” section,
only the attributes essential for automatic explanation should
be included from the encounter table. To address Reason 3
given in the “Requirement 1” section, no attribute or tuple from
the diagnosis table should be included in the retrieved lineage
information. A preliminary lineage tracing query Q14 is formed
based on query Q2 and asthma_patient_id by using a modified
version of Cui et al’s lineage tracing techniques [23,37] that
meets both demands.

The differences between Q2 and Q14 are highlighted in italics
in Q14.

Second, to fulfill Requirement 3 of sorting the related raw data
retrieved for the feature value in the reverse chronological order,
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query Q14 is transformed to the following final lineage tracing
query.

The differences between Q14 and Q15 are highlighted in italics
in Q15.

Example 3: The Number of ED Visits Related to Asthma
That the Patient Had in the Prior 12 Months
As defined by query Q3 in the “Intermediate result tables”
section, the intermediate result table enc_features_3 contains
2 temporal features. One of them is the number of ED visits
related to asthma that the patient had in the prior 12 months.
To form the lineage tracing query for a value of this feature,
one proceeds as follows.

First, the other feature is removed from query Q3 to obtain the
following simplified query.

Second, to fulfill subrequirement 4.1 on handling the sum of a
variable computed by a case statement, query Q16 is transformed
to the following query.

The differences between Q16 and Q17 are highlighted in italics
in Q17.

Third, to address Reason 2 given in the “Requirement 1” section,
only the attributes essential for automatic explanation should
be included from the encounter table. To address Reason 3
given in the “Requirement 1” section, the intermediate query
result e_id should not be traced through to include any
corresponding tuple in the diagnosis table in the retrieved
lineage information. A preliminary lineage tracing query Q18

is formed based on query Q17 and asthma_patient_id by using
a modified version of Cui et al’s lineage tracing techniques
[23,37] that meets both demands.

The differences between Q17 and Q18 are highlighted in italics
in Q18.

Cui et al’s lineage tracing techniques [23,37,49] are applied to
query Q3 to create a materialized view asthma_encounter_id,
which is defined by query Q5 in the “Review of Cui et al’s
automated lineage tracing techniques for relational databases”
section. The asthma_encounter_id is used to rewrite the
preliminary lineage tracing query Q18 as follows.

The differences between Q18 and Q19 are highlighted in italics
in Q19.

Fourth, to fulfill Requirement 2, a primary diagnosis column
needs to be added to the raw data that are retrieved by query
Q19 and that directly produce the feature value being examined.

To fulfill Requirement 3, the retrieved raw data need to be sorted
in the reverse chronological order. To meet both demands, Q19

is transformed to the following final lineage tracing query.

The differences between Q19 and Q20 are highlighted in italics
in Q20.

Example 4: The Total Number of Distinct Medications
Ordered for the Patient in the Prior 12 Months
As defined by query Q4 in the “Intermediate result tables”
section, the intermediate result table med_features_1 contains
2 temporal features. One of them is the total number of distinct
medications ordered for the patient in the prior 12 months. To
form the lineage tracing query for a value of this feature, one
proceeds as follows.

First, the other feature is removed from query Q4 to obtain the
following simplified query.

Second, to address Reason 2 given in the “Requirement 1”
section, only the attributes essential for automatic explanation
should be included from the ordered_medication table. A
preliminary lineage tracing query Q22 is formed based on query
Q21 and asthma_patient_id by using a modified version of Cui
et al’s lineage tracing techniques [23,37] that meets this demand.

The differences between Q21 and Q22 are highlighted in italics
in Q22.

Third, to fulfill subrequirement 4.2, one could retrieve only the
most recent order of each distinct medication ordered for the
patient in the prior 12 months as the lineage information. This
is done by transforming query Q22 to the following query.

The differences between Q22 and Q23 are highlighted in italics
in Q23.

Fourth, to fulfill requirement 2, a medication name column is
added to the raw data that are retrieved by query Q23 and directly
produce the feature value being examined. To fulfill
Requirement 3, the retrieved raw data are sorted in the reverse
chronological order. Q23 is transformed to the following final
lineage tracing query to meet both demands.

The differences between Q23 and Q24 are highlighted in italics
in Q24.
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Considerations for Future Computer Coding
Implementation of the Proposed Automated Lineage
Tracing Approach

Maximizing the Automation Degree of the Lineage
Tracing Query Formation Process
For a select-project-join-aggregate materialized view, Cui et al
[23,37] used a fully automated approach to analyze its definition
query to derive a lineage tracing query for a tuple in it. In the
case of automatically explaining machine learning predictions,
all temporal features used for making predictions and automatic
explanation are known at machine learning model building time.
In general, for each temporal feature, we can form a lineage
tracing query either manually or semiautomatically, but often
not fully automatically, beforehand. Nevertheless, once the
query is formed and put into the knowledge base of the
automated explaining function, we can use the query to
automatically retrieve the lineage information of a value of the
feature at prediction time.

As mentioned before, automatic explanation poses several
unique requirements on automated lineage tracing. Two of them
make it difficult to fully automate the lineage tracing query
formation process. First, Requirement 1 says that the lineage
information retrieved for a temporal feature value should include
only a small set of relevant attributes specific to the temporal
feature. Almost infinite attributes and temporal features could
possibly be used for clinical machine learning. Thus, it is
infeasible to precompile the set of relevant attributes for every
possible temporal feature. Second, Requirement 2 says that
when acquiring the lineage of a value for certain temporal
features, we need to include some attributes that are specific to
the temporal feature and do not directly produce the feature
value. For a reason similar to the above, it is infeasible to
precompile the set of such attributes for every possible such
temporal feature.

Although the lineage tracing query formation process cannot
be fully automated in the most general case, 2 methods can still
be used to maximize the process’ automation degree and to
reduce the workload of the developers of the automated
explaining function. First, for a temporal feature, an approach
similar to that of Cui et al [23,37] can be used to automatically
form a draft lineage tracing query. The developers of the
automated explaining function revise this query as needed to
obtain the final lineage tracing query. Second, the same temporal
feature is often used for multiple predictive modeling tasks.
One can create a library of lineage tracing queries for temporal
features to facilitate query reuse across various predictive
modeling tasks. This library is formed for a data set in the
Observational Medical Outcomes Partnership common data
model format [50] using its linked standardized terminologies
[51]. This format standardizes administrative and clinical
variables from ≥10 large US health care systems [52,53]. For
any data set that is put into this format, we can use this library
to obtain lineage tracing queries.

Improving the Lineage Tracing Speed
As mentioned before, the user of the automated explaining
function wants the lineage tracing process for a temporal feature

value to be finished quickly, preferably within 1 second. To
expedite tracing the lineage of a tuple in a materialized view
defined by a select-project-join-aggregate query S, Cui et al
[23,37,49] advocated creating a materialized view for each
intermediate select-project-join-aggregate segment of the
canonical form of the logical query plan for S. While this boosts
the lineage tracing speed, the resulting speed is still not fast
enough to reach a subsecond response time [23,39]. To further
improve the lineage tracing speed, we can build indices [39,42]
on the selection and join attributes of both the base tables and
the materialized views created for the intermediate
select-project-join-aggregate segments. For instance, in Example
3, we can build 1 index on the encounter_id column of the
materialized view asthma_encounter_id and another index on
the patient_id column of the encounter base table. We can create
indices either manually or by using an automated index design
tool provided by a commercial relational database system
[54-56]. Typically, each intermediate result table containing 1
or more temporal features is computed on 1 or a few base tables
using no more than a small number of join operations. The
lineage tracing query for a temporal feature value falls into a
similar case. Thus, with appropriate indices, we would expect
the lineage tracing query to finish execution quickly. For base
tables of moderate sizes and simple materialized views, Cui and
Widom [39] showed that lineage tracing can be done within 1
second when indices exist on the keys of the base tables. For
large base tables and temporal features computed through more
complex procedures, we would expect that more indices are
needed to reach a subsecond response time.

The above discussion focuses on the case that the electronic
medical record data are stored in a relational database and
features are extracted using SQL queries. When the electronic
medical record data are stored in a big data system and features
are extracted using map and reduce functions [44] or Pig Latin
[46], we can modify the corresponding existing lineage tracing
techniques [42,43,45] in a similar way to enable lineage tracing
to aid automatically explaining machine learning predictions
for clinical decision support.

Discussion

Directions for Future Research
The above discussion describes the high-level design approach
for the proposed automated lineage tracing module. To complete
the detailed design of the proposed automated lineage tracing
approach, implement the module in computer code, and test the
module’s performance, much research is needed along the
following directions:

1. We need to compile a list of attributes and temporal feature
types most commonly used in building clinical machine
learning predictive models. For these attributes and temporal
feature types, we need to complete the detailed design and
the computer coding implementation of the proposed
automated lineage tracing approach.

2. We need to come up with an automated approach to design
indices needed for improving the lineage tracing speed. The
database research community has developed several
automated index design approaches [54-56]. We can modify
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these approaches to fit the database querying workload
posed by automated lineage tracing.

3. We plan to assess the execution speed of the proposed
automated lineage tracing approach after implementing it
in computer code.

4. As shown by prior work on automated lineage tracing
shown in the “Overview of the existing automated lineage
tracing techniques” section, the database research
community takes it for granted that automated lineage
tracing could help users better understand the data and save
time in doing data analysis. To the best of our knowledge,
no formal study to date has been published on measuring
the impact of automated lineage tracing on users’ data
analysis and decision-making process. After implementing
the proposed automated lineage tracing module, we plan
to choose several clinical predictive modeling tasks and
assess for each task, the impact of offering the module on
the data analysis and decision-making process of the users
of the automated explaining function. In particular, we plan
to evaluate whether the addition of the module benefits the
user and improves outcomes, for example, by saving the
user’s time, making it easier for the user to understand the
predictions given by the machine learning predictive model
and helping the user better understand the patient’s situation
and make better clinical decisions.

Limitations of the Proposed Approach
The proposed automated lineage tracing approach has several
limitations:

1. To build clinical machine learning predictive models, we
usually use temporal features that are computed by SQL
queries of low or moderate complexities. It is possible that
some temporal features used to build certain predictive
models are computed by rather complex SQL queries. We
may not be able to finish the lineage tracing process for a
value of such a temporal feature quickly, regardless of how
many indices are built to expedite this process. For example,
this could happen if the SQL query uses complex procedural
code, which has no property that can be used to simplify
the lineage tracing process [39]. Having a long lineage
tracing time could make the user of the automated
explaining function become impatient. Nevertheless, it is
still faster and more convenient to do lineage tracing using
the automated approach than to let the user do manual
drill-through.

2. The proposed automated lineage tracing approach works
for any feature values computed by the standard aggregation
functions in SQL on longitudinal structured data. For certain
deep learning predictive models built on longitudinal

structured data, the previously proposed method [16] could
be used to semiautomatically extract comprehensible and
predictive temporal features from the models and the
longitudinal structured data, and then apply the automated
approach to trace the lineage of the values of these features.
For any other deep learning predictive model that is built
directly on longitudinal structured data and that uses
incomprehensible features hidden in the neurons of the deep
neural network, the proposed automated approach can no
longer be used to trace the lineage of the values of these
features.

3. Almost infinite attributes and temporal features could
possibly be used for clinical machine learning. Further,
some attributes are not covered by the Observational
Medical Outcomes Partnership common data model. For
the reasons given in the “Maximizing the automation degree
of the lineage tracing query formation process” section, we
could maximize the automation degree of the lineage tracing
query formation process for only certain types of temporal
features formed on certain attributes. For any other temporal
feature, the developers of the automated explaining function
could still need a nontrivial amount of time to create the
corresponding lineage tracing query.

Conclusions
Automatically explaining machine learning predictions is critical
to overcome the model interpretability barrier to using machine
learning predictive models in clinical practice. Our previously
developed automatic explanation method for machine learning
predictions can be used to address this barrier, but a gap remains
to fulfill the need of rapidly drilling through a feature value in
an explanation that is computed by an aggregation function on
the raw data. This paper articulates this gap, outlines an
automated lineage tracing approach to close the gap, and
provides a roadmap for future research. The automated
drill-through capability is intended to be offered to help the user
of the automated explaining function save time, better
understand the patient’s situation, and make better clinical
decisions. It would take several people multiple years to work
out the detailed design and the computer coding implementation
of the proposed automated lineage tracing approach. We hope
this paper will make some researchers become interested in and
join the research endeavor on this topic. Only after the detailed
design and the computer coding implementation of the proposed
automated lineage tracing approach are fully worked out, one
could deploy the automated lineage tracing module in clinical
practice and measure the module’s impact on clinicians’
decision-making process. The principle of the automated lineage
tracing approach generalizes to nonmedical data and other
automated methods to explain machine learning predictions.
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Abstract

Background: Statistical analysis, which has become an integral part of evidence-based medicine, relies heavily on data quality
that is of critical importance in modern clinical research. Input data are not only at risk of being falsified or fabricated, but also
at risk of being mishandled by investigators.

Objective: The urgent need to assure the highest data quality possible has led to the implementation of various auditing strategies
designed to monitor clinical trials and detect errors of different origin that frequently occur in the field. The objective of this study
was to describe a machine learning–based algorithm to detect anomalous patterns in data created as a consequence of carelessness,
systematic error, or intentionally by entering fabricated values.

Methods: A particular electronic data capture (EDC) system, which is used for data management in clinical registries, is presented
including its architecture and data structure. This EDC system features an algorithm based on machine learning designed to detect
anomalous patterns in quantitative data. The detection algorithm combines clustering with a series of 7 distance metrics that serve
to determine the strength of an anomaly. For the detection process, the thresholds and combinations of the metrics were used and
the detection performance was evaluated and validated in the experiments involving simulated anomalous data and real-world
data.

Results: Five different clinical registries related to neuroscience were presented—all of them running in the given EDC system.
Two of the registries were selected for the evaluation experiments and served also to validate the detection performance on an
independent data set. The best performing combination of the distance metrics was that of Canberra, Manhattan, and Mahalanobis,
whereas Cosine and Chebyshev metrics had been excluded from further analysis due to the lowest performance when used as
single distance metric–based classifiers.

Conclusions: The experimental results demonstrate that the algorithm is universal in nature, and as such may be implemented
in other EDC systems, and is capable of anomalous data detection with a sensitivity exceeding 85%.

(JMIR Med Inform 2021;9(5):e27172)   doi:10.2196/27172

KEYWORDS

clinical research data; real-world evidence; registry database; data quality; EDC system; anomaly detection

Introduction

Adherence to principles of evidence-based medicine has become
the norm in the present-day clinical practice. Such principles

include establishing proper guidelines built upon evidence
derived from the best available clinical research. Therefore,
high quality of input data is of utmost importance, because
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otherwise biased evidence may be generated, possibly resulting
in harmful health decisions.

Clinical registries, defined as a systematic collection of clearly
defined set of health and demographic data gathered from
patients with specific health characteristics, represent one of
many data sources available in health care [1]. The impact of
clinical registries on quality of patient care taking account of a
clinical research perspective is reviewed in [2], where
monitoring health care delivery patterns and compliance with
the evidence-based guidelines are also examined. The real-world
data (RWD) collected in these registries may, in the context of
postmarket research, provide much needed answers to questions
unaddressed by existing randomized controlled trials. As patient
populations participating in clinical trials are frequently low in
numbers and rather homogenous and highly specific, further
usage of such obtained data sets for the purpose of predicting
medical treatment outcomes or future performance in the
real-world, uncontrolled conditions has proved to be difficult
[3].

The efficiency of data analysis is heavily dependent on data
quality that has the potential to impact clinical research
outcomes in both controlled clinical trials and postmarket
surveillance practice represented mostly by noninterventional,
observational studies and clinical registries. Data quality–related
issues, such as high proportion of missing or inaccurate data,
bring uncertainty to the final analytics, slow workflows, generate
extra work, and thus increase research costs. A review and a
generic framework for data quality in medical registries are
given in [4], including some types and percentages of various
data errors in a case study. In another scoping review [5], which
focused on trauma registries, a call for standardization of
classification, measurement, and improvement of data quality
can be found. In order to mitigate data quality issues, various
auditing techniques and monitoring strategies have been put in
place (see the review in [6]). Besides extensive monitoring
approaches including on-site visits and exhaustive source data
verification, other effective risk-based monitoring methods have
recently been implemented in the field of data quality assurance.
These reduce monitoring costs by utilizing advanced statistical
tools capable of identifying medical centers or clinics with
atypical data patterns which might signify a quality problem
[7]. The statistical concepts underpinning the central statistical
monitoring (CSM) designed to detect fraud, that is, fabrication
or falsification of data, were proposed 2 decades ago. The
incidence of data fraud in clinical research is considered to be
relatively low, yet difficult to estimate accurately [8].

Conventional data collection in clinical research involves
recording data in paper case report forms (CRFs), followed by
a double entry in a relational database. Continuous technological
advancements in computer science, life sciences, and health
care have given rise to the electronic data capture (EDC)
systems, which have proved to be a more efficient [9] and also
a cheaper [10] alternative to the paper data capture. EDC
systems enable investigators to enter data directly into electronic
CRFs (eCRFs) and study coordinators to oversee and control
them in real time [11-13] even in multicenter research studies.
EDC systems have become predominant because they are not
only time- and cost-effective, but also contribute to quality

assurance, as they allow data access to be controlled and all
changes made to them using audit trail features to be traced.
Moreover, they perform automatic edit checks designed to
prevent invalid data from being entered [14] into a clinical
registry, which is, however, hardly possible to be ruled out
completely. When multiple variables need to be constrained by
edit checks, the validation procedures, designed by data
managers, may become too complicated and prone to error. The
alert messages resulting from such complex edit checks may
be unintelligible to clinical investigators, who still need to
understand their factual content, as the validation procedures
form an integral part of the eCRF.

Thus, there is still great potential for further improvements in
ensuring high quality of data with the use of EDC systems.
Integration with the aforementioned risk-based monitoring tools,
such as CSM employing various outlier detection techniques,
represents another automated approach to quality control. The
review in [15] divides the outlier detection techniques, which
have been used for data assurance in health care databases, into
several categories: statistical, clustering, classification, nearest
neighbor, and mixture models. It reveals that the statistical
techniques are used frequently, whereas the other ones
associated with data science and data mining are still little used
in this context.

The viewpoint presented in [16] questions the benefits of a
particular CSM technique which classified clinical sites as
outlying based on the data inconsistency score calculated from
thousands of statistical tests in a particular multicenter,
postmarketing trial, and therefore dismissed the idea that trials
could be conducted at lower costs.

This paper describes an algorithm based on machine learning
designed to detect anomalous patterns in data created as a
consequence of carelessness, systematic error, or intentionally
by entering fabricated values. It focuses on the main concepts
defining the anomaly detection algorithm and presents a
particular EDC system demonstrating its successful
implementation. The data sets collected by this system have
been used in a number of clinical registries and serve here for
pilot testing and calculations of anomaly detection rates. It is
important to note that by anomalous data or an anomaly we
understand an observation that does not conform to normally
gathered data, where an observation refers to a single patient
data record entering the detection algorithm.

Methods

In order to fully implement an anomaly detection algorithm,
which is data structure dependent, having an EDC system in
place is essential. A thorough description representing such a
system, including its architecture and data structure, is presented
in this section.

EDC System and Its Data Structure
The EDC system utilized in this study referred to as the Clade-IS
(Clinical Data Warehousing Information System) is a robust,
modular, web-based software for data management and clinical
trial management. It contains a huge amount of RWD from
many clinical specialties, including neurology and psychiatry,
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that are readily available to be used for experimentation. The
authors of this paper are engineers, data scientists, computer
scientists, and data managers affiliated with the contract research
institution where this EDC system has been developed and so
they have a very good understanding of its data structures.

The system is composed of 5 mutually communicating
components: proxy, server, adminer, designer, and reporter; see
the architecture in Figure 1. The proxy, representing the user
interface, propagates the user’s activity, defined by requests
made through a REST API (representational state transfer

application interface) to the server, where the requests are
processed. The server also stores and accesses registry data in
a relational database and maintains data integrity. For example,
the consistency and accuracy of data must be ensured throughout
the transition between the components, as the format of the data
varies according to its intended use, from its input, through
storage, to extraction and reporting. It also ensures compliance
with data access rules, which can be configured via users,
groups, roles, and form statuses in the adminer. The next
component, called the designer, represents a comprehensive
form builder used by data managers to design eCRFs.

Figure 1. Architecture of the Clinical Data Warehousing Information System (Clade-IS) components and databases. The Server provides a representational
state transfer application interface (REST API) for most operations including data storage. The Proxy represents a forwarded interface that transfers the
user’s activity to the Server. The Proxy can be optionally decentralized into a hospital or to another research facility. The Adminer and the Designer
are used for configuring registry-specific permissions, designing electronic case report forms (eCRFs) and also for building and generating forms that
are accessible to authenticated and authorized users. The Reporter is based on extract–transform–load (ETL) processes and serves for analytical and
reporting purposes.

Finally, the reporter, serving as a toolkit for data analysts and
data scientists, is a component based on the ETL
(extract–transform–load) processes that facilitate data export
and business intelligence. Besides the master database, which
primarily serves for data storage operations, there are 4 other
databases that the aforesaid components use for the following
purposes: (1) the slave database is a logical replica of the master
one performing all data extraction operations; (2) the proxy
auxiliary database stores personal data gathered in research
projects and studies outside the central repository in case that
the centralized deployment of the Clade-IS is no longer possible
under the General Data Protection Regulation (GDPR) on digital
data; (3) the reporter-ad database serves for data export
purposes; and (4) the reporter-bi database is used for business
intelligence reporting.

The primary databases (master and slave) integrated into the
Clade-IS are based on the entity–attribute–value (EAV) model,

also known as the vertical database model, which is able to
efficiently encode entities with sparse features. Such a
functionality is directly applicable to clinical registries, as they
typically contain plenty of available attributes describing an
entity, but the number of attributes with assigned values is, once
the data has been entered, rather low. The following data
structures are used to build an eCRF: arm–phase–form–question
group–question–answer, where a question–answer pair
represents an attribute–value pair, respectively. The other
structures represent entities in the EAV data model. Figure 2
serves to explain the meaning of the entities. The eCRF data
are stored in JSON format; for instance, a single-answer question
(Q10, Patient’s age at diagnosis) is represented as
“Q10”:{“value”:63,“state”:“done”} and stored in a single
cell in the database; see Multimedia Appendices 1 and 2 for
data examples. The other database schemas differ depending
on their specific purpose.
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Figure 2. An example illustrating a structure of entities (arms, phases, forms, question groups) and attributes (questions) used for structuring electronic
case report forms (eCRFs) in the Clinical Data Warehousing Information System (Clade-IS). Questions are logically grouped into question groups (eg,
Demography question group, Comorbidities question group, etc), a form is composed of question groups (eg, Diagnosis form, Treatment form, etc),
forms are grouped into phases (eg, Hospitalization forms phase, Follow-up forms phase, Quality of life forms phase, etc), and phases are grouped into
arms which may represent different sub-populations of subjects in a study or a registry (eg, subjects diagnosed with affective disorders, schizophrenia,
schizoaffective disorders and control subjects).

Anomaly Detection Algorithm
Anomalous data are identified by a scheduled script, built in
the reporter component, that connects to the reporter-ad
database, where it stores and accesses data in its own auxiliary
tables. The main steps defining the detection algorithm are
described in Figure 3.

The multidimensional nature of the detection algorithm requires
that all eCRF questions be merged into 1 flat-wide table, where
the rows represent the patients and the columns represent the
individual variables (attributes) collected from all forms across
the eCRF structure. In order for a single flat-wide table to be
considered an appropriate analytical data set, each patient would
need to be linked to any of the forms in a 1:1 relationship. In
most registries, however, a patient is linked to his/her forms in
a 1:N relationship, where N usually differs between patients.
For instance, patient A records may comprise 1 patient form, 1
hospitalization form, 2 follow-up forms but, say, no
quality-of-life investigation form, whereas patient B records
may comprise 1 patient form, 1 hospitalization form, 3 follow-up
forms, and 2 quality-of-life investigation forms. Merging all
forms into a flat-wide table would result in misalignment of
variables in columns. Even eCRFs with an extremely rigid
structure and predefined number of form instances per patient
may still produce meaningless column combinations in terms
of temporal context of a patient’s condition. To help overcome
this problem, a concept of semiflattened tables is introduced
here (Figure 4). The semiflattened tables consist of a “prefix”
table, which is created by serializing all forms, allowing only

a single instance to be run and 1 merged form that can be
instantiated multiple times. This explains how Nsw semiflattened
tables are created, where Nsw is the total number of all forms
allowing multiple instances per patient. Therefore, the detection
algorithm has to be run Nsw +1 times for the prefix table and for
each semiflattened table independently. The rows in both the
prefix and the semiflattened table contain variables of the
following data types: string, text, integer, float, date, datetime,
time, Boolean, and categorical variables. Because only
numerical data are subjected to further analysis, data tables need
to be preprocessed. There are 4 preprocessing steps in the
algorithm: dropping, imputation, recoding, and normalization.
First, variables for which the amount of missing data exceeds
a preset percentage are dropped (excluded) from the table.
Besides, all variables of string and text data types are dropped,
as they represent only unimportant notes and comments
irrelevant for this study. The remaining variables, which still
have some missing values, are imputed using median that is
calculated for each variable separately. In the next step, the
non-numerical variables are recoded to numerical ones. The
variables of date, time, and datetime data types are recoded to
numerical values representing the number of seconds since
1.1.1600 00:00:01. The Boolean variables and the categorical
variables are recoded in a way that each unique data item
represents a different integer value (eg, “Female” 1 and “Male”
0). The ascending integer values are assigned according to a
frequency of occurrence of unique data. The numerical variables
holding integer and float data types do not require any recoding.
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Figure 3. A scheme illustrating the anomaly detection algorithm and its links to the electronic data capture (EDC) system. The algorithm transforms
registry raw data into semi-flattened tables which contain only meaningful combinations of variables in rows. The tables are preprocessed in four
consecutive steps resulting in feature vectors from which one single centroid is computed. The distance between all data objects (feature vectors) and
the centroid is measured using seven different distance metrics. The number of threshold-exceeding distances shows the strength of evidence of an
anomaly. All anomalies are then subjected to post-hoc univariate tests to identify potentially problematic variables in the description of automatically
generated electronic queries intended to be processed by data managers.
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Figure 4. The concept of semi-flattened tables demonstrated on two patients‘ data. Two semi-flattened tables (Nsw=2) result here from two different
repeating forms: Follow-up and Quality of Life. The other two forms: Subject and Hospitalization exist only in one single instance per patient, and thus
all their variables (Q1, Q2,…,Q30) put together a prefix table. Multiple existence of the semi-flattened tables occurs with electronic case report forms
(eCRFs) that allow multiple forms creation. Each instance of a repeating form is appended to the prefix table. This concept with semi-flattened tables
assures that all values aligned in a column are related to the same variable.

In the last preprocessing step, the data must be normalized
because the variables may vary in orders of magnitude or units
of measurement. At the very end of the preprocessing phase,
the data table looks as follows: each row represents an
observation with columns representing variables with acceptable
proportion of missing data that are recoded to their numerical

representations and subsequently (min–max) normalized to
produce values between 0 and 1; see the example data before
and after preprocessing in Table 1.

Once the fully automatic preprocessing phase is complete, the
anomalous data are classified similarly to how it is done in

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e27172 | p.26https://medinform.jmir.org/2021/5/e27172
(page number not for citation purposes)

Churová et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


[15,17] using well-known clustering-based outlier detection
techniques that also regard outliers as data objects not located
in clusters of a data set. Here, only 1 cluster containing all data
objects is created. Each object is described by a feature vector
that takes the form of a row obtained from the preprocessed
data table. The distance between a potential outlier and the
cluster centroid is measured using 7 different distance metrics:
Canberra (CAN), Chebyshev (CHEB), cosine (COS), Euclidean
(EUC), Manhattan (MAN), Mahalanobis (MAH), and
Minkowski (MINK). The aim of the proposed algorithm is not
to perform a cluster analysis as the well-known k-means
algorithm normally does. Instead, it seeks to find all data objects
whose distance from a centroid is greater than a threshold
differentiating anomalous records from the normal ones. The
distance thresholds are calculated individually for each metric
in 2 ways: (1) with a predefined percentile and (2) using the
IQR rule, which sets the upper bound of the IQR multiplied by

1.5 and added to the third quartile. Data objects are identified
as anomalous when at least one distance metric exceeds the
minimum of both thresholds. With the predefined percentile, if
the value is lower than the threshold specified by the IQR rule,
the detection sensitivity can be increased, but usually at the
expense of specificity. The strength of evidence of an anomaly
is determined by the number of threshold-exceeding distance
metrics.

The algorithm produces a table containing all detected anomalies
represented by a patient identifier, the strength of evidence, and
a list of potentially problematic variables identified using
post-hoc univariate tests, which are different for normally and
non-normally distributed variables. Afterward, a scheduled
handler operating inside the reporter generates automatic queries
which are of great concern to data managers, who are usually
responsible for addressing them over the course of a study or a
registry monitoring process.

Table 1. Example data before and after preprocessing. The index in rows represents a unique patient identifier. The column headings represent unique
question identifiers—variable names encoding location in the study structure. The variables with a missing data rate of more than 20% were dropped.
The other variables, which have an acceptable proportion of missing data, were imputed with median values. The data were subsequently recoded

depending on the variable data type, and normalized to produce values in the interval [0, 1].a

A1.P1.F3.G3.Q6A1.P1.F7.G35.Q1443A1.P1.F7.G44.Q672A0.P0.F2.G2.Q3A0.P0.F2.G2.Q1Index

Before preprocessing

644YesFemale1947-01-230001437

644YesFemale1947-01-230001437

644YesFemale1947-01-230001437

682YesFemale1941-06-240001333

682YesFemale1941-06-240001333

572NoneMale1948-11-030001479

591YesMale1950-03-260001513

After preprocessing

0.6571431010.3404320001437

0.6571431010.3404320001437

0.6571431010.3404320001437

0.7142860.5010.2588070001333

0.7142860.5010.2588070001333

0.5571430.5100.3664530001479

0.5857140.25000.3664530001513

aA: study arm; P: study phase, where the related form is located at; F: form, where the question is located at; G: question group; Q: question.

Simulation of Data Anomalies and Performance
Evaluation
In the context of this study, evaluation refers to an exploratory
analysis designed to establish quantitative characteristics of
anomaly detection performance of the algorithm built into the
aforementioned EDC system. The performance evaluation is
carried out using simulated anomalous data, which need to be
artificially generated inside an anomaly-free data set, in order
to obtain the ground-truth knowledge.

The simulated anomalies, that are generated in a wide format
table, are subsequently preprocessed by dropping, imputation,

and recoding, but not by normalization. First, a small percentage
(1% by default) of all cells in the table being preprocessed is
set as the number of values Nc intended to be changed. Second,
a random number of patients is set as the number of anomalous
data objects Ns intended to be generated. The ratio Nv = Nc/Ns

gives an approximate number of variables whose values need
to be changed in order to transform a normal data object into
an anomalous one. These changes are performed only on
variables of the following data types: integer, float, date, time,
and datetime. The values of normally distributed variables are
transformed to a mean (6σ), whereas the values of non-normally
distributed variables are transformed to random numbers from
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an interval formed by rather unusual values having a frequency
of occurrence lower than 10% in a particular variable.
Afterward, the Shapiro–Wilk test, able to discriminate between
normal and non-normal distributions, is run. Every time an
anomaly occurs, the automatic edit checks built into a given
registry are triggered, assuring that the newly generated,
anomalous data undergo the same validation procedures as if
having been entered by a human investigator. At the end of the
simulation, all the generated anomalous data objects are
identified in terms of their position in the data table, either as
original or as changed values.

Performance evaluation of the detection algorithm is carried
out in 2 phases: (1) setting the best thresholds for each distance
metric and (2) finding the best combination of the distance
metrics. In the first phase, the receiver operating characteristic
(ROC) curves are calculated for each individual distance metric
by varying the threshold percentile value. The best threshold is
then selected based on the C1 criterion, which maximizes overall
accuracy and Youden index [18], whereas the distance of the
corresponding point on the ROC curve from the upper left corner
ULC_dist is minimized:

C1 = normalized (accuracy)2 + normalized (Youden index)2 –

normalized (ULC_dist)2 (1)

where all 3 members of (1) are normalized to the interval (0,
1). All possible combinations of the distance metrics with the
set threshold are then tested and the best one is determined by
the C2 criterion which is based on balanced accuracy but favors
sensitivity over specificity:

C2 = balanced_accuracy + sensitivity = (TPR+TNR)/2 + TPR
= (3TPR+TNR)/2 (2)

where TPR and TNR stand for true positive rate and true
negative rate, respectively.

Validation
In this study, validation refers primarily to repeatability
verification which is performed as follows: all data from 2
different registries were subjected to expert review. As no
problems were reported, these data sets could be used for
evaluation and validation purposes. Once the detection algorithm
is fully specified by the thresholds and the best combination of
the distance metrics is identified by applying the 2-stage
evaluation process to the first registry data, an independent data
set from the second registry is used to validate the detection
performance.

Results

EDC System Deployment
To date, the Clade-IS has been implemented in hundreds of
clinical centers where it serves numerous research studies,

mostly clinical registries and other RWD projects. Therefore,
this EDC system contains millions of authentic records of
different origin. Such a huge set of RWD made it possible to
carry out anomaly detection using the designed detection
algorithm whose performance was subsequently validated.

Five neuroscience-related registries were utilized here to
investigate the possibility of deploying and using the
aforementioned algorithm for automatic detection of anomalous
data. The registries significantly differed in scope, that is, in
research objectives, complexity of the eCRFs, duration, and
also the number of patients involved (Table 2). While 2 out of
5 registries are sponsored by Masaryk University, 3 remaining
registries belong to the neuromuscular section of the Czech
Neurological Society, which did not allow their identification.
For the sake of consistency, the names of all 5 registries are
anonymized here.

Registry number 1 collects data on patients with myasthenia
gravis, a rare, autoimmune disease affecting neuromuscular
transmission. The registry serves to gather comprehensive
information from as many patients as possible, covering the
whole course of the disease and the response to treatment, in
order to enhance development of new therapies and improve
patient care. Registry number 2 collects data on patients
diagnosed with any of the following neuromuscular diseases:
Duchenne and Becker muscular dystrophy, spinal muscular
atrophy, myotonic dystrophy, and facioscapulohumeral muscular
dystrophy. The aim of the registry is to gather comprehensive
information from as many patients with causal genetic defects
as possible and thus to contribute to development of new
treatments. Registry number 3 collects data on patients with
spastic paresis caused by acquired brain injuries including a
craniocerebral trauma, cerebral palsy, and central stroke. The
aim of the registry is to develop visual analytics over the
collected data to enhance decision-making processes related to
physical and medical therapy at an individual patient level.
Registry number 4 represents a longitudinal monitoring of
patients with a cognitive impairment in the depressive phase of
various affective disorders. The aim of the registry is to evaluate
the diagnostic and prognostic potential of changes produced in
brain morphology and function in patients with cognitive
impairments and to investigate their impact on quality of a
patient’s life and social functioning. Registry number 5
represents a 5-year, noninterventional, prospective follow-up
study involving patients in the first episode of schizophrenia.
The study aims to evaluate patients’ psychosocial needs in the
early stages of the disease and also examine the effects of
psychosocial interventions.
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Table 2. Summary data presenting 5 neuroscience-related clinical registries powered by the Clade-ISa utilized to investigate the possibility of performing
automatic detection of anomalous data.

Registry number 5Registry number 4Registry number 3Registry number 2Registry number 1Quantitative characteristic ×
registry characteristic

6721413,71193724763Forms

293340516491150Patients

819156326Investigators

111149Sites

54195Years of study

aClade-IS: Clinical Data Warehousing Information System

Anomaly Detection Algorithm—Evaluation and
Validation
The performance of the detection algorithm was evaluated using
the data set extracted from Registry number 3 and then validated
using the data set extracted from Registry number 5. The
simulated anomalies were generated for each data set separately
using the procedure described in the next section. The default
number of cells to be changed was set to 1%, that is, 22 normal
data objects were transformed to anomalous in the evaluation
data set (Registry number 3) and 7 normal data objects were
transformed to anomalous in the independent data set (Registry
number 5).

Figure 5 shows the ROC curves calculated for single-distance
metric–based classifiers whose function was to find the optimal
thresholds. The worst detection performances achieved by
individual metrics were those of the Chebyshev and cosine
metrics. The results were consistent for both data sets (see the
lowest values of C1 in Table 3). These 2 distance metrics were,
therefore, excluded from the subsequent ensemble classification.
While a detailed ROC analysis was performed on the evaluation
data set in order to find the best thresholds among 81 sampled
and tested percentiles, in the case of the independent data set
the performance characteristics were calculated only for 1
distance threshold setting.
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Figure 5. ROC curves generated for single distance metric-based classifiers. The curves were created by connecting 81 points showing the true positive
rate (sensitivity) and the false positive rate (1-specificity) calculated at various threshold settings ranging from 5th percentile distance to 95th percentile
distance. The highlighted points indicate the thresholds with the best achieved detection performance as determined by the criterion C1.

Once the thresholds were set, the best combination of the 5
remaining distance metrics was searched for. All possible
ensembles were generated, first employing the distance
metric–based classifiers individually, then combining 2, 3, 4 of
them and, finally, all 5 classifiers were combined in 3 different
scenarios: (1) the thresholds were set using the evaluation data
set and so was the best combination of metrics (Table 4); (2)
the thresholds were set using the evaluation data set whereas
the combination of metrics was searched for using the
independent data set (Table 5); (3) the thresholds and the
combination of metrics were searched for using the independent
data set only (Table 6).

The second scenario proved best in mimicking the real use of
the detection algorithm, which would be required to detect
anomalies in yet unseen data. Specifically, the best detection
performance was achieved using the combination of
Mahalanobis, Manhattan, and Canberra distance metrics,
resulting in sensitivity of 85.7%, specificity of 72.7%, and
balanced accuracy of 79.2%.

As anticipated, higher performance rates were achieved when
the data sets were used separately for threshold setting and for
searching the best combination of the distance metrics—as
indicated in scenarios (1) and (2).
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Table 3. The characteristics of detection performance achieved by individual single-distance metric–based classifiers using the evaluation data set and

the independent data set.a

C1ULC_distYouden indexAccuracy (%)Specificity (%)Sensitivity (%)Percentile
threshold

Distance metric

Evaluation data set (Registry number 3)

1.4810.2630.62880.9980.9481.8277.5Canberra

1.3840.3240.67669.3867.62100.0064.0Chebyshev

1.3950.3210.67969.6367.89100.0095.0Cosine

1.7600.2220.69086.9187.2181.8286.0Euclidean

1.4230.3750.54589.3890.8663.6488.0Mahalanobis

1.8820.2080.71689.3889.8281.8286.0Manhattan

1.7600.2220.69086.9187.2181.8283.5Minkowski

Independent data set (Registry number 5)

1.1770.4500.43579.3186.3657.1477.5Canberra

–0.5950.872–0.21444.8350.0028.5764.0Chebyshev

–0.5170.8640.13634.4813.64100.0095.0Cosine

0.9160.5790.33879.3190.9142.8686.0Euclidean

0.4650.7200.19575.8690.9128.5788.0Mahalanobis

1.0840.5730.38382.7695.4642.8686.0Manhattan

0.9160.5790.33879.3190.9142.8683.5Minkowski

aThe distance metrics with the lowest performance as determined by the criterion C1 (highlighted in bold) were excluded from the subsequent classification.

Table 4. The characteristics of detection performance achieved by various ensembles of distance metric–based classifiers using the evaluation data set

only. Ten combinations with the highest performance as determined by the criterion C2 are displayed.a

C2Precision (%)Error (%)Balanced accuracy (%)Specificity (%)Sensitivity (%)Combination of distance metrics

1.84423.8616.7988.9882.5195.46MANb , CANc

1.84223.3317.2888.7281.9895.46MAHd, CAN

1.82921.0019.7587.4179.3795.46EUCe, CAN

1.82921.0019.7587.4179.3795.46MINKf, CAN

1.82921.0019.7587.4179.3795.46EUC, MINK, CAN

1.82620.5920.2587.1578.8595.46EUC, MAN, CAN

1.82620.5920.2587.1578.8595.46MAN, MINK, CAN

1.82620.5920.2587.1578.8595.46EUC, MAN, MINK, CAN

1.81418.9222.4785.9876.5095.46MAH, MAN, CAN

1.80317.5024.6984.8074.1595.46EUC, MAH, CAN

aThe best performing combination of the distance metrics is highlighted in bold.
bMAN: Manhattan.
cCAN: Canberra.
dMAH: Mahalanobis.
eEUC: Euclidean.
fMINK: Minkowski.
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Table 5. The characteristics of detection performance achieved by various ensembles of distance metric–based classifiers using the evaluation data set

and the independent data set. Ten combinations with the highest performance as determined by the criterion C2 are displayed.a

C2Precision
(%)

Error (%)Balanced accuracy
(%)

Accuracy (%)Specificity
(%)

Sensitivity
(%)

Combination of distance metrics

1.64950.0024.1479.2275.8672.7385.71MAHb , MANc , CANd

1.62746.1527.5976.9572.4168.1885.71CAN, EUCe, MAH, MAN, MINKf

1.62746.1527.5976.9572.4168.1885.71EUC, MAH, CAN

1.62746.1527.5976.9572.4168.1885.71MAH, MINK, CAN

1.62746.1527.5976.9572.4168.1885.71EUC, MAH, MAN, CAN

1.62746.1527.5976.9572.4168.1885.71EUC, MAH, MINK, CAN

1.62746.1527.5976.9572.4168.1885.71MAH, MAN, MINK, CAN

1.50362.5017.2478.9082.7686.3671.43MAH, MAN

1.48155.5620.6976.6279.3181.8271.43EUC, MAH

1.48155.5620.6976.6279.3181.8271.43MAH, MINK

aThe best performing combination of the distance metrics is highlighted in bold.
bMAH: Mahalanobis.
cMAN: Manhattan.
dCAN: Canberra.
eEUC: Euclidean.
fMINK: Minkowski.

Table 6. The characteristics of detection performance achieved by various ensembles of distance metric–based classifiers using the independent data

set only. Ten combinations with the highest performance as determined by the criterion C2 are displayed.a

C2Precision
(%)

Error (%)Balanced accuracy
(%)

Accuracy (%)Specificity
(%)

Sensitivity
(%)

Combination of distance metrics

1.71866.6713.7986.0486.2186.3685.71CANb

1.69560.0017.2483.7782.7681.8285.71MANc, CAN

1.67254.5520.6981.4979.3177.2785.71EUCd, CAN

1.67254.5520.6981.4979.3177.2785.71MINKe, CAN

1.67254.5520.6981.4979.3177.2785.71EUC, MAN, CAN

1.67254.5520.6981.4979.3177.2785.71EUC, MINK, CAN

1.67254.5520.6981.4979.3177.2785.71MAN, MINK, CAN

1.67254.5520.6981.4979.3177.2785.71EUC, MAN, MINK, CAN

1.62746.1527.5976.9572.4168.1885.71MAHf, CAN

1.60442.8631.0374.6868.9763.6485.71MAH, MAN, CAN

aThe best performing combination of the distance metrics is highlighted in bold.
bCAN: Canberra.
cMAN: Manhattan.
dEUC: Euclidean.
eMINK: Minkowski.
fMAH: Mahalanobis.

Discussion

Anomaly Detection Context and Experiment Summary
In the era of EDC, it has become particularly difficult to process
ever increasing data volumes in clinical registries. Data amount

together with structural complexity of these databases make the
task of anomaly detection, that may have a direct impact on the
health care system, very demanding. Anomaly detection is an
integral part of data analysis involving careful study of the
identified anomalies and determination of their origin (data
fraud, typing error, etc.), because it can significantly improve
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or negatively impact the subsequent analysis [19]. Even though
anomalies tend to be misleading, they may carry valuable
information [15,19]. For example, particular patient data may
indicate that the patient has a different diagnosis than he/she is
treated for, another anomalous pattern may indicate a new
disease or reveal that investigators may have misinterpreted
some questions. Therefore, detected anomalies need to be
subjected to a careful assessment to mitigate the risk of losing
valuable data by taking account of the unsuspicious ones, which
may compromise the results and, as a consequence, lead to
erroneous adjustments to clinical guidelines altering the current
health care standards.

In this study, anomalous data were simulated and then detected.
These operations were performed by a detection algorithm,
whose detection performance was subsequently validated. The
algorithm, running in a particular EDC system (Clade-IS), ends
when automatic queries, whose function is to notify data
managers and trial monitors of potentially anomalous data, have
been generated. There are 2 key requirements which need to be
met to implement such a detection algorithm in any EDC system
successfully: (1) the ability of the system to create custom data
views in the database and (2) the API able to react to data quality
issues by its response (eg, a query generator). In the given
settings, the accuracy was preferred over the algorithm execution
time, so there was no need to optimize the algorithm for online
use. A rapid online response is required when, for example, an
intrusion activity is detected. This section presents a thorough
description of (1) the detection algorithm running in the given
EDC system and of (2) the actual validation experiments
employing this algorithm together with the results interpretation.
The findings are discussed here in terms of their validity and
applicability (repeatability). The section is concluded with (3)
a relevant literature review.

The tables loaded with raw data from 2 clinical registries were
fed into the algorithm and a series of preprocessing steps, that
is, dropping, imputation, recoding, and normalization, resulting
in feature vectors were taken. These operations preceded the
data simulation and the algorithm training. In the process, it
was necessary to take account of data types which are supposed
to be dropped as the given algorithm has not been devised to
process all of them. Thus, some variables (texts, strings, and
some raw JSON data) were excluded from further analysis.
Although such an operation entails a significant information
loss, it also represents a possible solution to the issues related
to the “curse of dimensionality” (data reduction). One of the
most difficult tasks was to handle the multiple instance forms
supported by the Clade-IS. It means that the system allows not
only forms limited to 1 instance per patient to be created, but
also forms allowing more than 1 instance per patient. To tackle
the problem of multiple forms filled in for a patient, the
semiflattened tables have been introduced here. These tables
aid in performing meaningful analysis and keep input data for
each patient consistent, that is, with no blank attributes in places
where data are expected. However, this approach has 2
limitations. First, the anomaly detection cannot be computed at
the same time on all data available per patient. Instead, it is run
separately on several semiflattened tables, each including data
from 1 form structure instantiated multiple times. That said,

anomalies resulting from a combination of forms with distinct
form structures—the ones allowing multiple instances—could
remain undetected. Second, information concerning data
continuity (progression in time) that could possibly be filled in
multiple forms created in a logical order was not investigated.

Principal Results
The anomaly analysis was performed by calculating the distance
between a centroid and data points using several distance
metrics. There were 2 aspects assessed and recorded: (1) the
Boolean identifier able to identify whether a patient is
anomalous or not, and (2) the strength of anomaly evidence as
determined by the number of distance metrics that labeled a
patient as anomalous. The presented procedure could be
potentially further improved using the medoid instead of the
centroid. Medoids are robust cluster members that tend to be
less sensitive to distant observations than averaged centroids
are. When an anomaly is detected, the patient is labeled using
automatically generated queries, which enable a person in charge
to check this anomaly directly in a web application. Thus, the
individual query may serve as an opportunity to implement
appropriate corrective and preventive actions enhancing data
integrity on the part of data managers and may also notify trial
monitors of incorrect data entry in the initial phases of the study.
Here, 2 neuroscience-related data sets were used for the
algorithm validation; the first one served for training, thus
setting the appropriate values for the algorithm parameters
(distance metric thresholds); the second data set was used to
validate the algorithm detection capability. It means that the
preset detection algorithm was applied to the test data and its
repeatability and applicability were investigated in practice.
The percentile-based threshold could be set in 2 ways: (1) based
on expert knowledge in the field and (2) setting the thresholds
based on data. When percentage is defined by an expert, the
number of expected anomalies to be detected is rather
predictable and as such assists project managers in budget and
staffing allocations, making the anomaly checks procedure more
effective. The second, from our perspective a more sophisticated
approach, was proposed and carried out in this study.
Specifically, each distance metric threshold was identified using
a combination of overall accuracy (the ratio between correctly
classified anomalies and normal data) and measurements based
on ROC curves (Youden index and curve distance from the
upper-left corner). The optimal percentile threshold defined for
each metric then varied from 77.5% to 95.0%. Therefore, the
optimal number of patients to be investigated ranges between
5.0% and 22.5%, in order to uncover as many potential
anomalies as possible while no time is wasted on checking
normal data.

The experiment was performed on data set number 3, where the
optimal thresholds were found, and data set number 5, which
served for set up testing. The best result for data set number 3
employing a single distance metric was achieved by the
Manhattan metric that labeled 14.0% (57/405) of patients as
suspected to be anomalous: C1 (1.882), with sensitivity (81.8%)
and specificity (89.8%) greater than 80.0%. When the thresholds
(for each metric separately) were applied to the testing data set
(number 5), the Canberra distance metric yielded the best results
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but sensitivity was very low compared with specificity: C1 of
1.177, sensitivity of 57.1%, and specificity of 86.4%. This
suggests that, despite the high number of patients labeled as
suspected to be anomalous (meeting the low percentile threshold,
77.5% in the case of Canberra), it is still not guaranteed that
anomalous data will be detected. The other metrics had
sensitivity or specificity below 50.0% and so we conclude that
a single metric is insufficient to detect an anomaly.

Significantly better results were obtained when the distance
metrics were combined. In this scenario, a patient, whose data
were labeled as anomalous by at least one metric, was
considered as suspected to be anomalous. This suggests that the
proposed method reveals more suspicious data than methods
based on single metrics. Sensitivity results for data set number
3 (shown in Table 5) were better than those obtained by any
single metric alone (shown in Table 3). These results further
suggest that combining 2 metrics can significantly outperform
sensitivity of any single metric. Because none of the single
metrics had sensitivity greater than 82.0%, it also suggests that
the distance metrics complement each other when combined
because they label different patients as anomalous. As the best
results achieved by combining the metrics yielded the same
sensitivity (95.5%), specificity had the decisive power when
assessing the results. The best combination observed was that
of the Manhattan distance metric and the Canberra distance
metric, with specificity of 82.5%, accuracy of 83.2%, and C2

of 1.844. Combination of more than 2 metrics did not prove to
be more efficient. In the case of validation data set number 5,
the combination of 3 metrics (Mahalanobis, Manhattan, and
Canberra) yielded the best results—sensitivity improved by
almost 30% (85.7%), but specificity (approximately –14%;
72.7%) and overall accuracy (approximately –4%; 79.2%) were
lower compared with the best single-metric performance
(Canberra). These results also show that the threshold for the
anomaly detection algorithm (method parameter), which has
been set for 1 data set with a higher sample size (N), is possible
to be applied to another data set, still producing satisfying results
(Tables 4 and 5).

Limitations
It needs to be noted that the proposed algorithm for anomaly
detection is limited by the following: (1) clinical registries are
frequently incomplete, with large amounts of missing data (the
data sets studied here are not an exception). Because a
significant number of incomplete variables were removed in
the data preprocessing phase (method parameter set by data
manager), some valuable information could have been lost; (2)
only quantitative data (or recoded qualitative data) can be further
analyzed by the algorithm; (3) the detection algorithm is still
computationally intensive and requires long detection times
despite the fact that a large number of unfilled and unanalyzable
variables had been removed, together with 2 distance metrics
(Chebyshev and cosine). The most time-consuming part of the
algorithm run is data preprocessing which lasts tens of minutes.
The detection itself then takes less than 10 seconds per tested
registry. The preprocessing and analysis are run at regular
intervals and are not directly linked to the data entry action. The
time required to detect an outlier since its onset is dependent

on the interval, which is implementation dependent and usually
set to 24 hours; and (4) the algorithm was validated on
artificially simulated anomalies. Had the anomalous data been
generated by field experts, such an approach could have proved
effective in terms of expert-provided knowledge that would
have ensured authenticity of the anomalies, making the
validation more natural.

Comparison With Prior Work
There have been several research papers published on medical
anomaly detection–related topics, as outlier detection has been
widely applied in medical informatics for addressing different
issues. According to the reviews, there are several detection
techniques used in the field of medicine that can be divided into
the following categories, listed in descending percentage order
[15]: statistical (55.4%), clustering (15.2%), classification
(12.5%), and nearest neighbor (ie, distance based, 8.9%), etc.
As the numbers imply, statistic-based techniques tend to be
used most frequently; however, it is well-known that the
statistical assessment is not applicable to small sample sizes
[20], therefore anomaly detection performed in small-scale
studies or sites involving too few patients often leads to
increasing the false-positive rate. For more reviews on anomaly
detection in general, see [21] and for statistical monitoring
process suggestions, we recommend [20]. That paper involved
a multidisciplinary team of clinicians, statisticians, and data
managers, who created a study-specific algorithm to flag the
patients and sites with potentially fabricated data, which turned
out to be fabricated and implanted in 7 sites, totaling 43 patients
in 4 studies. Their algorithm for identifying sites with fabricated
data achieved slightly lower results—except for 1 study,
sensitivity and specificity were greater than 70%. In another
research work [22], the authors combined k-means and isolation
forest techniques, because the isolation forest–based methods
are capable of finding anomalous patients that are not situated
on the edge of a feature space. They, however, did not use ROC
curves to define thresholds, but instead [23] split their data set
into 2 subsets—first one consisted of only categorical variables
and the second one of only continuous variables. This approach
enabled them to work with each subset separately, searching
(1) for infrequent category combinations in the subset with the
categorical variables and (2) for distant objects defined by the
cosine distance from the global mean in the subset with
continuous variables. Then, they defined an anomaly score for
each data object in both subsets. Adopting this approach, that
is, splitting the data set into 2 subsets, could potentially improve
our results. However, there would be many other parameters to
be defined, such as the number of category combinations, that
would complicate the setting of our anomaly detection
algorithm. Estiri et al [24] used a different approach focusing
on implausible rather than outlier data. The authors proposed a
hierarchical k-means method to detect implausible observations,
regardless of their values, that flag sparse clusters as anomalous,
assuming no systematic errors. They also demonstrated that
their clustering approach outperformed the conventional
anomaly detection one that uses the standard deviation and
Mahalanobis distance for identifying implausible laboratory
data in the electronic health record. Although the authors
consider the Mahalanobis distance to be standard, it did not
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work so well for us, especially in comparison with the other
distance metrics (Table 3). To our knowledge, no paper
presenting an EDC system with a built-in anomaly detection
algorithm has been published to date.

Conclusions
We have proposed and described an algorithm for detection of
anomalous data in clinical registries, which has been
implemented in a particular EDC system. The algorithm has
proved to be capable of detecting anomalous data with

sensitivity greater than 85%. Besides, the detection results were
satisfactory for preset parameter settings derived from a different
data set which enabled the algorithm to be applied in practice.
In future work, we will inspect queries in real-world settings in
order to assess precision and usefulness of the proposed anomaly
detector from the viewpoint of data managers and also users
with other roles, such as site monitors and clinical investigators.
Other ideas for further research include an investigation into
expert-generated anomalies and finding ways to speed up the
detection algorithm.
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Abstract

Background: After determining the key childbirth monitoring items from experts, we designed an algorithm (LaD) to represent
the experts’ suggestions and validated it. In this paper we describe an abridged algorithm for labor and delivery management and
use theoretical case to compare its performance with human childbirth experts.

Objective: The objective of this study was to describe the LaD algorithm, its development, and its validation. In addition, in
the validation phase we wanted to assess if the algorithm was inferior, equivalent, or superior to human experts in recommending
the necessary clinical actions during childbirth decision making.

Methods: The LaD algorithm encompasses the tracking of 6 of the 12 childbirth parameters monitored using the World Health
Organization (WHO) partograph. It has recommendations on how to manage a patient when parameters are outside the normal
ranges. We validated the algorithm with purposively selected experts selecting actions for a stratified sample of patient case
scenarios. The experts’ selections were compared to obtain pairwise sensitivity and false-positive rates (FPRs) between them and
the algorithm.

Results: The mean weighted pairwise sensitivity among experts was 68.2% (SD 6.95; 95% CI 59.6-76.8), whereas that between
experts and the LaD algorithm was 69.4% (SD 17.95; 95% CI 47.1-91.7). The pairwise FPR among the experts ranged from 12%
to 33% with a mean of 23.9% (SD 9.14; 95% CI 12.6-35.2), whereas that between experts and the algorithm ranged from 18%
to 43% (mean 26.3%; SD 10.4; 95% CI 13.3-39.3). The was a correlation (mean 0.67 [SD 0.06]) in the actions selected by the
expert pairs for the different patient cases with a reliability coefficient (α) of .91.

Conclusions: The LaD algorithm was more sensitive, but had a higher FPR than the childbirth experts, although the differences
were not statistically significant. An electronic tool for childbirth monitoring with fewer WHO-recommended parameters may
not be inferior to human experts in labor and delivery clinical decision support.

(JMIR Med Inform 2021;9(5):e17056)   doi:10.2196/17056
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Introduction

From the late 20th century, there were concerted efforts to
improve pregnancy outcomes, with the World Health
Organization (WHO) partograph being the main labor
monitoring tool used globally [1-3]. Increasing and easing of
childbirth monitoring have been at the forefront of strategies
for better maternal and newborn outcomes [4-6]. A spiraling
increase in the number of caesarean sections due to prolonged
labor led to research that challenged the cervical dilatation rates
in the partograph [7-9]. Doubt arose on the validity of the
partograph and intrapartum guidelines with calls for their
re-evaluation [5,6,10]. Calls for more evidence-based care at
birth led to increased research for more practical labor
monitoring guidelines and tools [7,11-13].

In 2015, the American college of Obstetricians and the Society
for Maternal-Fetal Medicine issued new guidelines on labor
monitoring [14]. Later, the WHO released new recommendations
on partograph use including calls for more research on the most
appropriate paper-based or electronic tool to aid childbirth
decision making [12]. Before any electronic decision support
can be developed, an algorithm is needed outlining which
decisions to take at each potential situation along the birth of a
child. The algorithm is also preceded by a decision on which
input variables to use is needed. Among the problems with the
WHO partograph was a large number of variables to register
and it was regarded as labor intensive and unpractical for
low-resource settings [4,15]. We studied the labor monitoring
tool expectations of childbirth experts in Africa to generate
consensus on the most important parameters to monitor during
birth in low-resource settings [16,17]. The findings included a
reduction in the WHO-modified partograph items and several
suggestions on changing the frequency of monitoring the labor
items. The experts also expressed a need to adopt the
recommendation for raising the starting point of the partograph
from 4 cm of cervical dilatation.

In this paper, we describe the labor and delivery (LaD)
algorithm, its development, and validation. In the validation we
wanted to know if the algorithm is inferior, equivalent, or
superior to human experts in recommending the necessary
clinical actions during childbirth decision making.

Methods

Overview
We used the maternity experts’ recommendations and literature
findings to develop an alternative algorithm for labor and
delivery monitoring (the LaD algorithm). We conducted a
preliminary validation of its logic before fully implementing it.
Because of lack of a gold standard against which to compare
the logic, we compared it against opinions of experts in
childbirth monitoring. Comparison of results from medical
devices against experts is increasingly seen as the better
alternative when no gold standard exists and decisions are highly
dependent on opinions or anecdotal evidence [18-21].

Development of the LaD Algorithm
From our earlier studies [16,17], the key parameters to monitor
in childbirth were the fetal heart rate, amniotic fluid, cervical
dilatation, uterine contractions, maternal blood pressure, and
pulse rate. The suggested monitoring intervals ranged from 30
minutes to 4 hours. These are 6 of the 12 parameters in the
WHO-modified partograph [22]. We used these
recommendations and literature on the progress and outcomes
of monitoring various childbirth items to generate a parameter
list and monitoring intervals to include in the algorithm. Our
main adjustment to the experts’ suggestions was replacing the
maternal pulse with second-stage tracking of the fetal station
(a surrogate for fetal descent).

We used our acumen on labor progress and its monitoring
process to draw the LaD algorithm using the Microsoft Visio
2013. It was revised to the layout shown in Figure 1. It shows
the parameters to monitor at evidence-based time intervals.

For the algorithm to run on a computing device, we translated
it into a recursive (ie, a problem is divided into subproblems of
the same type. The solution to the problem is devised by
combining the solutions obtained from the simpler parts of the
problem) logic with 1152 possible patient scenarios and key
decision support actions. Any abnormality in labor monitoring
parameters is independently managed (as per local guidelines)
and the final labor management decision is based on the success
or failure in managing the subabnormalities. It is this logic that
we validated with another group of childbirth experts.
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Figure 1. The LaD algorithm for monitoring labor and delivery.

Validation of the LaD Algorithm
Between January and February 2019, 5 purposively selected
childbirth care experts (E1, E2, E3, E4, and E5) independently
answered a survey questionnaire covering 6 patient case
scenarios (P1, P2, P3, P4, P5, and P6). The 5 experts had a mean

experience of 17 years (SD 5.8 years) in medical practice and
an obstetric career length ranging from 5 to 17 years (mean 10.6
years [SD 5.1 years]). Most worked in a teaching hospital, with
their highest education level ranging from a master’s degree to
a Doctor of Philosophy (Table 1).
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Table 1. Summary characteristics of experts who participated in validation.

Mean (SD)Expert 5Expert 4Expert 3Expert 2Expert 1Characteristics

17 (5.8)2323111612Experience as a doctor (years)

10.6 (5.1)17145116Experience as an obstetrician (years)

39 (5.6)4635443436Number of times expert selected actions
in the 5 scenarios (maximum 80)

—PhDMaster’s degreePhD candidateMaster’s degreeMaster’s degreeHighest level of medical education

—Medical schoolNational hospitalMedical schoolMedical schoolMilitary hospitalPrimary workplace

The case scenarios were taken from childbirth scenarios in the
algorithm using stratified sampling. The cases were stratified
using the amniotic fluid status into 3 strata: membranes intact,
amniotic fluid clear, and amniotic fluid opaque or foul smelling.
An online random number generator [23] was used to randomly
select 2 cases from each stratum. The questionnaire had 15
labor-related conditions and 22 actions to consider. Each expert
was allowed to select up to 16 of the 22 actions per case
scenario, hence a maximum of 80 actions across 5 cases. The
actions recommended by the algorithm for the study case
scenarios were used to assess it.

We explained the survey procedure to the human experts before
asking them to study the case scenarios and the accompanying
set of possible actions to consider for managing each case. The
expert would then recommend the most important actions for
each case scenario given its conditions. The algorithm also
recommended actions to the same cases based on results of an
earlier study of a larger group of experts and literature. Experts
in this study, however, were not aware of the algorithm nor
other experts’ action recommendations. They were invited to
suggest possible modifications to the actions list for clarity and
to provide better decision support for the case conditions.

We analyzed data to determine the unadjusted and weighted
interexpert pairwise sensitivity [18,24], false-positive rates
(FPRs), and reliability coefficients. Pairwise sensitivity was
calculated for each pair of experts; for instance E3–E4 is the
sensitivity of E4 with respect to E3 as reference. The sensitivity
of the LaD algorithm versus each human reviewer (E–LaD) was
also calculated to determine how LaD–human expert scores
compare with interhuman expert pairwise (E–E) scores. FPRs

were calculated for the unadjusted scores. The weight assigned
to an action was determined by the number of experts that
selected that action for a given case scenario. That is, an action
weighed 1.0 if all 5 experts selected it as important, 0.6 if 3
selected it, and 0 if none selected it. Therefore, the weights were
assigned after data entry. We compared the LaD algorithm
scores with averages of the human pairwise scores for each case
and across all scenarios. To rank the algorithm and human
experts, we compared the lower border for the 95% CI of the
mean sensitivity and the upper border of its mean FPR
confidence interval with corresponding values for the experts.
A larger number of the lower limit border for the sensitivity
confidence interval and a smaller number of the upper limit for
the FPR confidence interval meant a superior rank [21].

Results

Overview of Case Scenarios
A total of 5 of the 6 case scenarios were managed by all experts
while the sixth was completed by 2 experts. The experts
articulated that the noncompleted case was similar to another
they had answered and saw no big difference in general
management.

As indicated in Table 2, for the 5 case scenarios together, the
experts selected an average of 39 actions of a possible 80.
Across the experts, case scenarios 1 and 5 received most actions
with an average of 11 each, whereas case scenario 2 needed the
fewest actions at 5. From the unadjusted data, unlike the experts,
the LaD algorithm had most actions for case scenario 3, but
there was no difference in the weighted scores.
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Table 2. Number of actions selected per patient (actual and adjusted values).

P5P4P3P2P1aEvaluator

Adjusted
value

ActionAdjusted
value

ActionAdjusted
value

ActionAdjusted
value

ActionAdjusted
value

Action

8113.46453.457.29E1b

683.654.883.456.88E2

9.4135.293.462.847.412E3

581.443.672.657.811E4

9.6144.693.653.458.813E5

7.6 (2.0)10.8 (2.8)3.6 (1.5)6.6 (2.3)3.9 (0.6)6.2 (1.3)3.1 (0.4)4.8 (0.4)7.6 (0.8)10.6 (2.1)Mean (SD)

5.683.875.4123.474.68Labor and delivery
algorithm (LaD)

bP: patient case scenario.
aE: expert.

Pairwise Sensitivity and FPRs for the Experts and the
LaD Algorithm
The interrater pairwise sensitivity for the experts and the LaD
algorithm is shown in Figure 2. The mean for unadjusted
pairwise sensitivity among experts (E–E) for all cases was
57.2% (SD 7.86; 95% CI 47.4-67.0), whereas the weighted
mean sensitivity was 68.2% (SD 6.95; 95% CI 59.6-76.8). The
difference between these means was significant (SD 11.0; 95%
CI 2.8-21.2, P=.01). With reference to the experts, the mean
sensitivity scores of the LaD algorithm (E–LaD) were 62.6%
(SD 17.01; 95% CI 41.5-83.7) and 69.4% (SD 17.95; 95% CI
47.1-91.7) before and after adjustment, respectively. The
difference of 6.8 in E–LaD means the 95% CI of –14.9 to 28.5

was not statistically significant, P=.32). As shown in Figure 3,
the weighted pairwise sensitivity for experts was significantly
higher (P=.02) and closer to the LaD sensitivity than the
unadjusted scores, especially when E4 was the reference expert.
The algorithm was more sensitive than E1, E4, and E5, but less
sensitive than E3.

For the 5 patient cases, the average FPR of experts ranged from
12% to 33% with a mean of 23.9% (SD 9.14; 95% CI 12.6-35.2),
whereas that for the E–LaD ranged from 18% to 43% with a
mean of 26.3% (SD 10.43; 95% CI 13.3-39.3). Table 3 shows
that case 2 was an outlier (in left tail) for the expert-to-expert
pairwise false-positive scores and case 3 was an outlier (right
tail) for the expert-to-algorithm FPR scores.
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Figure 2. The interrater pairwise sensitivity scores for the five cases.

Figure 3. Comparison of the overall weighted and unadjusted pairwise sensitivity scores.
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Table 3. Pairwise sensitivity and false-positive rates of experts and the labor and delivery (LaD) algorithm.

CI for difference
of 2 means

95% CI for meanMean (SD)P5P4P3P2P1aComparisons

–11.0 to 21.847.4 to 67.057.2 (7.86)62.845.655.056.565.9E–Eb pairwise sensitivity: un-
adjusted

41.5 to 83.762.6 (17.01)50.358.785.674.044.4E–LaD pairwise sensitivity:
unadjusted

–15.7 to 18.159.6 to 76.868.2 (6.95)71.957.368.667.275.9E–E pairwise sensitivity:
weighted

47.1 to 91.769.4 (17.95)54.071.092.180.849.3E–LaD pairwise sensitivity:
weighted

–9.8 to 14.612.6 to 35.223.9 (9.14)32.923.218.312.233.1E–E pairwise FPRc for an ac-
tion

13.3 to 39.326.3 (10.43)18.320.543.019.730.2E–LaD pairwise FPR for an
action

2.8 to 21.247.4 to 67.057.2 (7.86)62.845.655.056.565.9E–E pairwise sensitivity for
an action: unadjusted

59.6 to 76.868.2 (6.95)71.957.368.667.275.9E–E pairwise sensitivity for
an action: weighted

–14.9 to 28.541.5 to 83.762.6 (17.01)50.358.785.674.044.4E–LaD pairwise agreement
for an action: unadjusted

47.1 to 91.769.4 (17.95)54.071.092.180.849.3E–LaD pairwise agreement
for an action: weighted

aP: patient case scenario.
bE: expert.
cFPR: false-positive rate.

Determining the Rank of LaD Algorithm Among
Human Experts
The 95% CIs for the mean sensitivity scores of the algorithm
and the human experts showed that the LaD algorithm had a
higher upper limit before and after adjustment to the mean. By
contrast, the lower limit of the confidence interval for the expert
FPR mean was lower than that of the interval for the LaD

algorithm mean. There was a positive correlation (mean rselection

of 0.67 [SD 0.06]) in the actions that the expert pairs selected
for the different patient cases (Table 4) with a reliability
coefficient close to 1 (α=.91). This meant that the study experts
agreed on most actions necessary for the cases and the same
actions were likely to be recommended by these or other experts
for the given patient scenarios.

Finally, we needed to know whether the differences in the mean
sensitivity and FPR of the LaD algorithm and human experts
were significant. The difference in mean sensitivity was 5.4
(95% CI –11.0 to 21.8) for the unadjusted means and 1.2 (95%
CI –15.7 to 18.1, P=.57) for the weighted means. Because both
intervals crossed the null, there was no statistical difference in
the sensitivity of the experts and algorithm. In addition, the
mean FPR of the experts and the algorithm was not significantly
different with a 95% CI of –9.8 to 14.6 (P=.69).

On the basis of these sensitivity and false-positive scores, we
found no statistical difference between the LaD algorithm and
human experts recommending actions to childbirth monitoring
health workers.
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Table 4. Correlation and reliability coefficients of experts’ choices of actions for the cases.

Reliability coefficient,

αb
Selection correlation coefficient of actions selected by experts for each case, rselectionaComparisons

P5P4P3P2P1c

0.7220.6860.9130.7060.857E1–E2d

0.8770.7140.7050.9070.685E1–E3

0.4430.2750.6850.5380.703E1–E4

.9250.8440.6070.8480.7060.829E1–E5

0.7220.6860.9130.7060.857E2–E1

0.7720.8320.6440.5830.649E2–E3

0.5110.2670.6250.5380.751E2–E4

.9230.6850.7370.7701.0000.879E2–E5

0.8760.7130.7050.9080.685E3–E1

0.7720.8320.6440.5830.648E3–E2

0.6130.4450.6290.5930.720E3–E4

.9190.9270.7770.5140.5830.719E3–E5

0.4430.2750.7600.5380.703E4–E1

0.5110.2680.6260.5380.751E4–E2

0.6130.4450.6290.5930.720E4–E3

.8610.6640.1580.5000.5380.782E4–E5

0.8440.6070.8430.7060.829E5–E1

0.6850.7370.7701.0000.879E5–E2

0.9260.7770.5140.5830.719E5–E3

.9220.6640.1580.5000.5380.783E5–E4

.910 (0.027)0.706 (0.152)0.550 (0.237)0.687 (0.129)0.669 (0.159)0.757 (0.073)Mean (SD)

arselection is an extension to Pearson r = square root of (sensitivity AB × selectivity AB), where selectivity RT = sensitivity TR. This is the selectivity
for a test expert T against a reference expert R.
bα = kR/(1 + [k–1]R), where k is the number of experts and R is the average correlation of all expert pairs.
cP: patient case scenario.
dE: expert.

Discussion

Principal Findings
The search for an ideal labor and delivery monitoring decision
support tool is ongoing and this study was one of many attempts
to improve these tools. We have described the design of the
LaD algorithm and validated it through comparison of its logic
with human experts of childbirth monitoring. We found the
algorithm to be equivalent in sensitivity and FPRs to experts
with high reliability, that is, its action recommendations were
close to the clinically “correct” ones. In clinical situations, lack
of a gold standard against which to evaluate tools meant that
traditional device validation tests were inappropriate and so
childbirth experts had to act as the reference silver standard as
in most types of clinical decision making [20,24]. Like Scheuer

et al [21], we used the selection correlation coefficient rselection

(an extension to Pearson r) because clinical experts often agree
on many nonimportant actions for any patient case [18]. Most

childbirth actions are not selected independent of one another,
so our results would be less trustworthy if we used the kappa
or pi statistics for measuring agreement. Likewise, we could
not use Gwet AC statistic that necessitated assigning constant
weights based on gold standards to parameters for all the
patients, which would not be rational in our scenario [18,25].
The results of this study can be used to develop an abridged and
more appropriate paper- or computer-based labor monitoring
decision support tool that is less contentious than the
WHO-modified partograph.

Limitations
The main limitations to this study are as follows: First, the low
number of patient cases rated by the experts. Patient clinical
scenarios have subtle or major differences that it would be
virtually impossible to expect an exhaustive tool or validation.
The cases were few, but each contained 22 actions to be
considered; thus, the experts were not assessed on one
case/condition per se, but on a sum of actions for each case and
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then the average of the 5. Therefore, the experts and algorithm
were assessed on 110 instances summarized into 5 cases. This
approach was similar to that used by Scheuer et al [21] who had
over 5000 spike detections presented in under 40 scenarios [21].
Second, a total of 5 experts were not enough to tease out the
effect of fast or slow actors when deciding to intervene in a
clinical maternity setting. The fast actors tend to intervene too
soon and so too much, whereas the slow actors intervene too
late and so too late for good clinical outcomes, as expressed by
Miller et al [26]. Third, the algorithm was based on suggestions
from providers in low-income settings which are generally on
the “too little, too late” side, and hence we expected the
participants (E1, E4, and E5) to be more sensitive and E3 to be
slower at acting. The strength of the pairwise sensitivity and
the modified correlation we used is dampening the individual
effect/biases of participants such that we still found no statistical
differences between the group and the algorithm. Another
limitation could have been our set of candidate actions from

which experts selected. As was done by other researchers [18],
we provided experts with candidate actions (from other studies)
to encourage them to concentrate on relevant actions, but it
could have hindered participants with divergent opinions from
choosing their preferred actions. Following years of promoting
the WHO partograph, some childbirth experts have got so
engrained in it that any changes to its parameters could seem
unfounded and unacceptable [27-29]. With these limitations in
mind, we agreed that our validation results were preliminary
and more assessments of the LaD algorithm would be done after
its deployment and testing under more conditions.

Conclusions
The LaD algorithm was more sensitive but with a higher FPR
than the childbirth experts, although the differences were not
statistically significant. An electronic tool for childbirth
monitoring with fewer parameters than those in the modified
WHO partograph may not be inferior to human experts in labor
and delivery clinical decision support.
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Abstract

Background: Diagnostic neurovascular imaging data are important in stroke research, but obtaining these data typically requires
laborious manual chart reviews.

Objective: We aimed to determine the accuracy of a natural language processing (NLP) approach to extract information on the
presence and location of vascular occlusions as well as other stroke-related attributes based on free-text reports.

Methods: From the full reports of 1320 consecutive computed tomography (CT), CT angiography, and CT perfusion scans of
the head and neck performed at a tertiary stroke center between October 2017 and January 2019, we manually extracted data on
the presence of proximal large vessel occlusion (primary outcome), as well as distal vessel occlusion, ischemia, hemorrhage,
Alberta stroke program early CT score (ASPECTS), and collateral status (secondary outcomes). Reports were randomly split
into training (n=921) and validation (n=399) sets, and attributes were extracted using rule-based NLP. We reported the sensitivity,
specificity, positive predictive value (PPV), negative predictive value (NPV), and the overall accuracy of the NLP approach
relative to the manually extracted data.

Results: The overall prevalence of large vessel occlusion was 12.2%. In the training sample, the NLP approach identified this
attribute with an overall accuracy of 97.3% (95.5% sensitivity, 98.1% specificity, 84.1% PPV, and 99.4% NPV). In the validation
set, the overall accuracy was 95.2% (90.0% sensitivity, 97.4% specificity, 76.3% PPV, and 98.5% NPV). The accuracy of
identifying distal or basilar occlusion as well as hemorrhage was also high, but there were limitations in identifying cerebral
ischemia, ASPECTS, and collateral status.

Conclusions: NLP may improve the efficiency of large-scale imaging data collection for stroke surveillance and research.

(JMIR Med Inform 2021;9(5):e24381)   doi:10.2196/24381
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Introduction

Stroke is a leading cause of death and disability [1].
Neuroimaging study findings inform treatment and prognosis.
For example, recent clinical trials have demonstrated the efficacy
of endovascular thrombectomy, a mechanical clot-retrieval
procedure, in improving functional outcomes in patients with
acute ischemic stroke and proximal large vessel occlusion [2-5].
Data on efficacy of this procedure in patients with distal or
smaller vessel occlusion are currently lacking. Although large
health administrative databases have information on whether a
stroke was ischemic or hemorrhagic, detailed neuroimaging
findings are usually found in narrative diagnostic imaging
reports and obtained through resource-intensive manual chart
abstractions [6,7].

The lack of population-based neuroimaging data limits the
ability to characterize the prevalence of large vessel occlusion.
A recent meta-analysis of cohort studies of patients with
ischemic stroke found that the prevalence of large vessel
occlusion ranged widely, from 13% to 52% [8], suggesting that
smaller cohort studies can be vulnerable to selection bias.
Therefore, automating the extraction of information on vessel
occlusion from diagnostic imaging reports is needed for
population-based disease surveillance and clinical research.

Natural language processing (NLP) can convert large amounts
of free-text data into structured data and has been used to extract
information on stroke type and location from diagnostic imaging
reports [9-11]. However, its ability to characterize vascular
occlusions is not well understood. We aimed to determine the
accuracy of an NLP tool [12] in identifying the presence and
location of vascular occlusions and other stroke-related attributes
from neuroimaging reports of computed tomography (CT), CT
angiography (CTA), and CT perfusion (CTP) scans. We
hypothesized that an NLP tool can identify large vessel
occlusion with high accuracy.

Methods

Manual Chart Abstraction
We obtained full free-text reports of 1320 consecutive stroke
protocol imaging studies comprising CT, CTA, and CTP
imaging of the head and neck performed between October 2017
and January 2019 at a university-affiliated comprehensive stroke
center that provides consultation for endovascular thrombectomy
to a catchment area of 2.5 million people. A stroke specialist
and a trained research assistant manually extracted stroke-related
attributes from the reports. The primary outcome was the
presence of large vessel occlusion defined as occlusion in the

M1 segment of the middle cerebral artery (MCA-M1) or A1
segment of the anterior cerebral artery (ACA-A1) with or
without involvement of the carotid terminus because occlusion
at these sites is treatable with endovascular thrombectomy. We
chose this as the primary outcome because patients with this
type of occlusion can be treated with endovascular
thrombectomy. Isolated intracranial internal carotid artery
occlusion was not categorized as large vessel occlusion in this
study because the effectiveness of endovascular thrombectomy
has not been shown in this population [13].

Secondary outcomes included (1) the presence of cerebral
ischemia, (2) Alberta stroke program early CT score (ASPECTS)
[14], (3) the presence of any intracranial hemorrhage, (4) distal
anterior circulation occlusion defined as occlusion in the middle
or anterior cerebral arteries in the M2 or A2 segments or beyond,
(5) basilar occlusion, and (6) qualitative measure of collateral
status (ie, good, intermediate, or poor). The manually extracted
data were considered the reference standard. Duplicate chart
abstraction on 200 charts showed that the inter-rater reliability
was >96% for all attributes except for the presence of cerebral
ischemia for which it was 80%. We randomly split the reports
into training (n=921) and validation (n 399) sets.

CHARTextract NLP Tool
NLP rule sets for stroke attribute extraction from free-text
diagnostic imaging reports were created using CHARTextract
version 0.3.2, freely available online [12]. CHARTextract is a
rule-based information extraction tool that relies on regular
expressions and works at the sentence level to identify word
patterns. We opted to use a rule-based approach due to the small
sample size and the availability of domain experts to develop
and refine the rules.

We created information extraction pipelines by using an iterative
process where each rule was assigned a weight by the end-user
in the training set. For example, if a report contains the text
“presence of middle cerebral artery occlusion…,” the system’s
estimate of the probability of a large vessel occlusion increases;
however, if a report contains the text “no evidence of…,” it will
lower the system’s estimate of the probability. As shown in
Figure 1, the tool displays the discrepancies between the chart
abstractor label and the tool’s prediction, thus allowing for rapid
iterative refinement of the rules by the end user. Rules were
developed for each attribute through an iterative process by the
end-user (ZL, AY, and CP) by using the training set that was
validated in the validation set. For the presence of large vessel
occlusion (our primary outcome), we also recorded whether the
discrepancy between the chart abstractor and the NLP tool was
due to abstractor or tool error. The rules thus developed are
shown in Multimedia Appendix 1.
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Figure 1. Example 1 of a discrepancy between the chart abstractor and CHARTextract tool output. (A) Computed tomography angiography scan
showing loss of opacification in the left middle cerebral artery, involving the left M1 segment and extending into the M2 segment. (B) CHARTextract
tool output: the chart abstractor labeled that large vessel occlusion was present, but the CHARTextract tool determined this attribute to be absent. The
rules were revised to reflect that occlusion involving the “M1 segment” should be considered a large vessel occlusion even if the terms “MCA” or
“middle cerebral artery” were absent.

Statistical Methods
The stroke-related attributes identified by the NLP tool,
CHARTextract version 0.3.2, were compared to the reference
standard. The sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) were calculated
using this tool.

Ethics Approval
The study was approved by the Sunnybrook Health Sciences
Centre and Unity Health Toronto Research Ethics Boards with
a waiver of individual patient consent prior to data collection.

Results

Among the 1320 consecutive diagnostic imaging reports
manually reviewed, chart abstractors identified 184 large vessel
occlusions (MCA-M1, n=157; ACA-A1, n=27) in 161 (12.2%)
reports. Distal anterior circulation occlusion was reported in

188 (14.2%) scans, basilar artery occlusion in 26 (2.0%) scans,
established ischemia in 391 (29.6%) scans, and intracranial
hemorrhage in 139 (10.5%) scans. ASPECTS was reported only
in 384 (29.1%) reports (ASPECTS <5, n=40; ASPECTS ≥5,
n=344), and collateral status was described in 216 (16.4%)
reports (good, n=141; intermediate, n=26; poor, n=49).

Compared to the reference standard, the NLP tool identified
large vessel occlusion with an overall accuracy of 97.3% (95.5%
sensitivity, 98.1% specificity, 84.1% PPV, and 99.4% NPV).
Despite an iterative process to refine rules, some scenarios
remained challenging to translate into rules. Figure 2 illustrates
an example wherein the CHARTextract tool determined large
vessel occlusion to be present because the words “occlusion”
and “M1 segment” were detected in the same sentence, but the
report indicated that the occlusion was in the cavernous portion
of the internal carotid artery with reconstitution of blood flow
in the M1 segment. In another example illustrated in Figure 3,
the CHARTextract tool determined that large vessel occlusion
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was absent because the report indicated the presence of an
occlusion extending from the internal carotid artery to the M2
segment. Here, the tool only detected “internal carotid artery”
and “M2” as keywords and could not interpret the vascular
anatomy described in the report. Nevertheless, in the validation

set, the overall accuracy for large vessel occlusion was still high
at 95.2% (90.0% sensitivity, 97.4% specificity, 76.3% PPV,
and 98.5% NPV). We also found that two of the 25 discrepancies
between the abstractors and the NLP tool were due to chart
abstractor error.

Figure 2. Example 2 of a discrepancy between the chart abstractor and CHARTextract tool output. (A) Computed tomography angiography scan
showing near-occlusion of the cavernous internal carotid artery with reconstitution of the middle cerebral artery. (B) CHARTextract output: the abstractor
labeled that large vessel occlusion was absent, but the CHARTextract tool determined this attribute to be present because the words “occlusion” and
“M1 segment” were detected in the same sentence.

Figure 3. Example 3 of a discrepancy between the chart abstractor and CHARTextract tool output. The abstractor labeled that large vessel occlusion
was present because the abstractor was able to interpret that an occlusion from the internal carotid artery and extending to the M2 segment of the middle
cerebral artery involves the M1 segment, but the CHARTextract tool determined this attribute to be absent because the tool detects key words without
knowledge of vascular anatomy.
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The accuracy of the CHARTextract tool for the other stroke
attributes is presented in Table 1. The tool identified these other
attributes with moderately high accuracy except for presence
of established ischemia, which had a lower sensitivity and PPV
of 82.2% and 80.5%, respectively, in the derivation cohort and
80.8% and 64.1%, respectively, in the validation cohort. The

other exception was basilar occlusion, which was only present
in 2.0% (26/1320) of the reports. Although the sensitivity and
PPV for basilar occlusion were 100% and 95.0%, respectively,
in the derivation cohort, the corresponding values were lower
in the validation cohort (ie, 71.4% and 41.7%)

Table 1. Accuracy of the natural language processing tool CHARTextract to identify stroke-related attributes in diagnostic imaging reports.

Overall accura-
cy (%)

NPVb (%)PPVa (%)Specificity(%)Sensitivity (%)Attribute preva-
lence, n (%)

Cohort and stroke-related attribute

Derivation cohort (n=921)

97.399.484.198.195.5111 (12.1)Anterior proximal occlusion

97.398.988.198.092.9127 (13.8)Anterior distal occlusion

99.910095.099.910019 (2.1)Basilar occlusion

88.391.980.591.782.2287 (31.2)Presence of established ischemia

97.599.087.698.293.0114 (12.4)Presence of any hemorrhage

Validation cohort (n=399)

95.298.576.397.490.050 (12.5)Anterior proximal occlusion

95.597.186.497.783.661 (15.3)Anterior distal occlusion

97.799.541.798.271.47 (1.8)Basilar occlusion

83.292.564.185.180.8104 (26.1)Presence of established ischemia

95.599.259.596.088.025 (6.3)Presence of any hemorrhage

aPPV: positive predictive value.
bNPV: negative predictive value.

The metrics for ASPECTS and collateral status are shown
separately because data were incomplete (Table 2). Importantly,
we found that the NLP tool was able to identify the reports with
missing data with high accuracy. For example, information on
ASPECTS was absent in 71.8% (661/921) of the reports in the

derivation cohort and 68.99% (275/399) for the validation
cohort. The tool accurately identified that this attribute was
missing with a sensitivity and PPV of 99.7% and 99.7%,
respectively, in the derivation cohort and 99.3% and 98.6%,
respectively, in the validation cohort.
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Table 2. Accuracy of the natural language processing tool CHARTextract to identify Alberta stroke program early CT score (ASPECTS) and collateral
vascular status based on diagnostic imaging reports.

Overall accu-
racy (%)

NPVb (%)PPVa (%)Specificity (%)Sensitivity (%)Attribute preva-
lence, n (%)

Cohort and stroke-related attributes

Derivation cohort (n=921)

98.8ASPECTS

99.299.799.299.7661 (71.8)Not reported

99.980.699.296.730 (3.3)<5

98.999.199.796.5230 (25.0)≥5

98.4Collateral status

95.999.496.699.2774 (84.0)Not reported

99.810010094.134 (3.7)Poor

99.610010078.919 (2.1)Intermediate

99.690.198.896.894 (10.2)Good

Validation cohort (n=399)

98.5ASPECTS

98.498.696.899.3275 (68.9)Not reported

99.2100.010070.010 (2.5)<5

99.698.399.399.1114 (28.6)≥5

98.2Collateral status

98.498.291.399.7330 (82.7)Not reported

99.793.399.793.315 (3.8)Poor

99.510010071.47 (1.8)Intermediate

99.210010093.647 (11.8)Good

aPPV: positive predictive value.
bNPV: negative predictive value.

Discussion

Principal Findings
We showed that an NLP approach can automate data extraction
from neuroimaging reports with moderately high accuracy,
supporting its potential application for stroke surveillance, health
system planning, and population-based clinical research. The
PPV of CHARTextract to identify large vessel occlusion was
76.3%, meaning that of 100 reports identified to have a large
vessel occlusion, there were 24 false-positive cases, but the
sensitivity, specificity, and NPV were over 90%, indicating the
prevalence of fewer false-negative cases. Thus, NLP may be a
helpful screening tool for case finding purposed when using a
large dataset.

Although we did not formally record the time required for data
abstraction, the abstractors estimate an average review time of
5 minutes per chart, which adds to 110 hours of sustained
attention to review a total of 1320 charts. On the other hand,
once the rule sets have been developed, the NLP tool can extract
the requested variables within seconds.

Limitations
There are several limitations of NLP that are worth discussing.
First, the NLP approach can only extract information from the

radiologist’s reported interpretation of diagnostic images, and
it is not designed to be directly used for imaging interpretation
[4]. Although the tool was accurate in identifying which reports
had missing data on ASPECTS and collateral status, information
on these attributes was simply not obtainable without the direct
assessment of the images. Second, each rule is applied at a
sentence level so that the tool will not be able to capture
attributes if keywords occur across different sentences. Third,
the tool does not distinguish between homonyms in the English
language. For instance, we experienced challenges with the
word “ASPECT” used to describe the score and “aspect” used
to describe a facet of the brain or a component of a blood vessel.
Finally, the NLP approach is influenced by variations in
reporting practices to describe imaging findings. This was most
apparent in the evaluation of the presence of cerebral ischemia.
The terms used to describe this attribute were less predictable
and frequently contained ambiguous language such as “possible
subtle hypodensity” or “cannot rule out early ischemia.”
Interestingly, the cerebral ischemia attribute also had a lower
inter-rater reliability between the chart abstractors compared to
the other attributes evaluated. We noticed that the nonclinical
research assistant, who has extensive experience with chart
abstraction for stroke research, was more liberal in recording
ischemia, whereas the stroke specialist was more selective in
recording ischemia depending on the language used by the
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radiologist. In this situation, the application of NLP rule sets
may improve the standardization of data collection. Finally, the
current proof-of-concept study has a small sample size. External
validation of our methods with a larger sample of radiology
reports is needed to address the limitations arising from variation
in reporting practices.

Conclusions
NLP approaches can identify the presence of large vessel
occlusion with high accuracy and have the potential to improve
the efficiency of large-scale data collection from imaging
reports. External validation of our approach is needed.
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Abstract

Background: Drug prescriptions are often recorded in free-text clinical narratives; making this information available in a
structured form is important to support many health-related tasks. Although several natural language processing (NLP) methods
have been proposed to extract such information, many challenges remain.

Objective: This study evaluates the feasibility of using NLP and deep learning approaches for extracting and linking drug names
and associated attributes identified in clinical free-text notes and presents an extensive error analysis of different methods. This
study initiated with the participation in the 2018 National NLP Clinical Challenges (n2c2) shared task on adverse drug events
and medication extraction.

Methods: The proposed system (DrugEx) consists of a named entity recognizer (NER) to identify drugs and associated attributes
and a relation extraction (RE) method to identify the relations between them. For NER, we explored deep learning-based approaches
(ie, bidirectional long-short term memory with conditional random fields [BiLSTM-CRFs]) with various embeddings (ie, word
embedding, character embedding [CE], and semantic-feature embedding) to investigate how different embeddings influence the
performance. A rule-based method was implemented for RE and compared with a context-aware long-short term memory (LSTM)
model. The methods were trained and evaluated using the 2018 n2c2 shared task data.

Results: The experiments showed that the best model (BiLSTM-CRFs with pretrained word embeddings [PWE] and CE)
achieved lenient micro F-scores of 0.921 for NER, 0.927 for RE, and 0.855 for the end-to-end system. NER, which relies on the
pretrained word and semantic embeddings, performed better on most individual entity types, but NER with PWE and CE had the
highest classification efficiency among the proposed approaches. Extracting relations using the rule-based method achieved higher
accuracy than the context-aware LSTM for most relations. Interestingly, the LSTM model performed notably better in the
reason-drug relations, the most challenging relation type.

Conclusions: The proposed end-to-end system achieved encouraging results and demonstrated the feasibility of using deep
learning methods to extract medication information from free-text data.

(JMIR Med Inform 2021;9(5):e24678)   doi:10.2196/24678
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Introduction

Background
Electronic health records (EHRs) are a valuable source of
routinely collected health data that can be used for secondary
purposes, including clinical and epidemiological research [1].
They typically contain information on consultations, admissions,
symptoms, clinical examinations, test results, diagnoses,
treatments, and outcomes. Medication prescriptions are a key
source for understanding the effects of patient treatment. In
some settings (eg, general practitioners’ practices), they might
be recorded in a structured fashion through prescribing software
and would comprise, apart from drug names, medication
attributes such as dosage, frequency, and duration. Still, there
are often additional, free-text sources of prescription
information, such as clinic letters or discharge summaries,
particularly in secondary care. Extracting information from
free-text is challenging because much of the information is
provided in a narrative manner, and the text is often written in
haste and under considerable time pressure. There has been
strong interest among researchers in the use of natural language
processing (NLP) to extract information from clinical free-text
notes on a large scale [2-9], including a number of shared tasks
and benchmark data sets to assess and advance the
state-of-the-art in this domain, such as challenges in medication
extraction [7]; chemical and drug named entity recognition
(NER) [10]; drug-drug interaction extraction [11]; and extraction
of medications, indications, and adverse drug events (ADEs)
[12,13].

Medication prescription instructions are a specific clinical
sublanguage, where expressions are often abbreviated (eg, od
for once a day) and may contain spelling errors (eg, 20 mcg
evry othr wk) [14,15]. Existing approaches for extracting drugs
and associated attributes from the clinical text are diverse in
their methods, using various approaches including dictionary
lookup (ie, searching for matches from existing drug
dictionaries) [16-18], rule-based approaches (manually design
patterns, eg, regular expressions that can be searched in
free-text) [2-4,8,14,16,19-22], machine learning approaches
(training models on example data) [23-28], and hybrid
approaches that combine different methods [29-32]. Recently,
methods based on deep learning and neural networks, such as

convolutional neural networks and recurrent neural networks,
have been shown to be state-of-the-art in drug attribute
extraction tasks [33-41]. Deep learning methods take relevant
features (eg, orthographic and lexical features) as inputs and
produce labels as outputs. These manually constructed feature
vectors can then be replaced with, for example, word
embeddings (WE), character embeddings (CEs), and feature
embeddings. Embeddings are representations of tokens in an
n-dimensional space, typically learned over large collections of
unlabeled data through an unsupervised process (eg, word2vec
[42], Global Vectors for Word (GloVe) [43], and fastText [44]).
Recently, more advanced embedding methods and
representations (eg, Embeddings from Language Models
[ELMo] [45] and Bidirectional Encoder Representations from
Transformers [BERT] [46]) have further advanced
state-of-the-art clinical NLP.

Objectives
Although deep learning methods have been extensively used in
medication information extraction [13], the effects of various
architectures and token representations have not been widely
discussed. The purpose of this study is to provide a
comprehensive comparison of various representations used for
drug information extraction within the same settings. The main
contributions of our work are as follows:

• An investigation of the effect of various token
representations (ie, CE, WE, and semantic-feature
embeddings [SFEs]) on extracting medication information

• The comparison between a rule-based method and deep
learning approaches for identifying relations between drugs
and associated attributes.

Methods

Overview
The DrugEx system proposed here is composed of (1) an NER
method for extracting mentions of drug names and
drug-associated attributes and (2) a relation extraction (RE)
method for identifying relations between drugs and their
associated attributes. The NER task involves extracting 8 types
of entities: drug, strength, duration, route, form, dosage,
frequency, and reason of administration (see Textbox 1 for
definitions and examples of the extracted entities).

Textbox 1. Definitions and examples of entity types extracted by the DrugEx system.

• Drug: The chemical name of a drug or the advertised brand name under which a drug is sold (eg, aspirin)

• Dosage: The amount of medicine that the patient takes or should take (eg, 2 tablets, 5 mL)

• Strength: The amount of drug in a given dosage (eg, 200 mg)

• Frequency: The rate at which medication was taken or is repeated over a particular period (eg, daily, every 4 hours)

• Duration: The period of continuous medication taking (eg, pro re nata, for 5 days)

• Route: The path by which medication is taken into the body or the location at which it is applied (eg, topical, per os)

• Form: The form in which a medication is marketed for use (eg, tablet)

• Reason: The reason for medication administration (eg, for pain)

The scope of these entity types and the data sets that were used
for training and evaluation were provided as part of the 2018

National NLP Clinical Challenges (n2c2) shared task track 2:
ADEs and medication extraction in EHR challenge [13,47]. The
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data set consists of discharge summaries drawn from the Medical
Information Mart for Intensive Care III (MIMIC-III) clinical
care database [48]. It comprises 505 documents, of which 303
documents were used as the training set, and the remaining 202
documents were used as the test set. These data were annotated
by 7 domain experts, consisting of 4 physician-assistant students
and 3 nurses. Annotations included drug, strength, dosage,
frequency, duration, form, route, reason, and ADEs; ADEs
annotations have been omitted here as they are beyond the scope
of this study.

The annotations also included relations between drugs and other
attributes. Table 1 shows the descriptive statistics for the
associated drug attributes in the n2c2 data set and how often
each of them was linked to more than 1 drug. Noticeably, 17%

(1412/8579) of the reason entities were associated with more
than one drug; the maximum number of drugs associated with
a single reason was 10. For example, in “START: Guaifensin
with codeine QHS and Benzonatate as needed for cough,” the
reason cough is associated with 2 drugs: guaifenesin (with
codeine) and benzonatate. Table 2 shows the number of drug
entities participating in each link and the ratio of drugs with
more than one link. From a total of 11,028 form-drug relations,
4517 (41%) drugs that have been associated with the form
attribute has more than one association (ie, multiple forms
reported for a single drug entity), for example, “Bisacodyl 5
mg Tablet Sig: 1-2 Tablets PO once a day as needed for
constipation;” both mentions of tablets were annotated as form,
and they both associated to the bisacodyl drug.

Table 1. Descriptive statistics of entity types in the National NLP Clinical Challenges (n2c2) data set.

Maximum number of drug associationsLinks to multiple drugs, n (%)Links to 1 drug, n (%)Entities, n (%)Entity types

———a26,800 (32.57)Drug

248 (<1)10,980 (99.56)11,010 (13.38)Form

333 (<1)10,913 (99.70)10,921 (13.27)Strength

463 (1)10,281 (99.39)10,293 (12.51)Frequency

484 (1)9000 (99.08)8989 (10.92)Route

443 (1)6877 (99.38)6902 (8.39)Dosage

101421 (16.56)7158 (83.44)6400 (7.78)Reason

478 (7)991 (92.7)970 (1.2)Duration

aNot applicable.

Table 2. Descriptive statistics of relations between drugs and their associated attributes in the National NLP Clinical Challenges (n2c2) data set.

Drugs with more than 1 link, n (%)Drugs with 1 link, n (%)Relations, n (%)Relation type

307 (2.8)10,639 (97.20)10,946 (18.88)Strength-drug

290 (2.8)10,054(97.20)10,344 (17.84)Frequency-drug

181 (1.99)8903 (98.01)9084 (15.67)Route-drug

875 (10.2)7704 (89.80)8579 (14.80)Reason-drug

155 (2.2)6765 (97.76)6920 (11.94)Dosage-drug

4517 (40.96)6511 (59.04)11,028 (19.02)Form-drug

48 (5)1021 (95.51)1069 (1.84)Duration-drug

NER Method
All NER models rely on bidirectional long-short term memory
with conditional random fields (BiLSTM-CRF) architecture

(Figure 1), which is composed of 3 different layers: embedding
layer, bidirectional long-short term memory (BiLSTM) layer,
and conditional random fields (CRFs) layer.
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Figure 1. The architecture of bidirectional long-short term memory with conditional random field for the named entity recognition models. BiLSTM-CRF:
bidirectional long-short term memory with conditional random field; PWE+CE: pretrained word embeddings and character embeddings; PWE: pretrained
word embeddings; PWE+SFE: pretrained word embeddings and semantic-feature embeddings; RIWE: randomly initialized word embeddings; WE:
word embeddings.

Preprocessing
The data were first tokenized using spaCy, an open-source
library for NLP, with support for various languages. Then, as
target entities differ in length and may contain more than one
token, each token was annotated using the BIOES (Begin,
Inside, Outside, End, Single) tagging scheme to capture
information about the sequence of tokens. We further processed
the discharge summaries using the Clinical Language
Annotation, Modeling, and Processing Toolkit (CLAMP) [49]
and the Clinical Text Analysis and Knowledge Extraction
System (cTAKES) [50] to extract token-level clinical semantic
tags (eg, medication, disease disorder, and procedure; see the
section Embedding Layer for details), which were used for SFEs.

Embedding Layer
The embedding layer maps tokens into vectors of numbers that
represent their meanings. WEs provide dense representations
that make them capable of representing many aspects of
similarities between words, such as semantic relations and
morphological properties [51,52]. Several methods can be used
to initialize the values in WEs at the beginning of neural network
training. We examined the randomly initialized word
embeddings (RIWE) and the pretrained word embeddings
(PWE), where the latter has been pretrained on data from the
clinical (ie, target) domain.

Although WEs can capture tokens’ semantics, they might still
be affected by data sparsity and, therefore, cannot remediate
synonyms, out-of-vocabulary tokens, and misspellings. WE
may not be able to capture morphemes (such as prefixes and

suffixes) derived from classic Latin and ancient Greek roots,
which are often included in drug names and drug attributes.
Thus, we addressed these issues by using character feature
embeddings in addition to WEs. The concatenation of the PWE
with the CEs allows the model to learn subtoken patterns such
as morphemes and roots, thereby aiming to capture
out-of-vocabulary tokens, different forms, and any other
information not captured by WEs [53].

We also considered representations beyond tokens, aiming to
add clinical semantics to words. Specifically, the concatenation
of the PWE and SFEs was used to represent the clinical
categories of entities identified in the text, such as medical
problems, tests, or temporal information. Note that in this study,
we did not evaluate SFE without PWEs. Some entity types (such
as frequency or route) are not present among the semantic tags
we used, whereas other semantic tags (such as signs, symptoms,
disease, and disorder) are more frequent. Therefore, the
representations of semantic tags were learned simultaneously
with word representations and concatenated together to form
the final token representations. We used CLAMP [49] to extract
semantic tags (ie, problem, treatment, and temporal entities)
with associated assertion tag attributes (ie, present or absent).
We also used the default clinical pipelines in cTAKES [50] to
tag tokens with other semantic categories (ie, Medication,
DiseaseDisorder, and SignSymptom). In each pipeline, tokens
were tagged with the corresponding semantic features and
attributes (if available); otherwise, they were tagged with the
outside (ie, O) tag. Token-level semantic tags from both
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pipelines were then mapped and merged based on their types to create a set of semantic features (Figure 2).

Figure 2. Semantic-feature token embeddings. B-Drug: begin-drug; B-Temporal: begin-temporal; CLAMP: Clinical Language Annotation, Modeling,
and Processing Toolkit; cTakes: Clinical Text Analysis and Knowledge Extraction System; O: outside.

BiLSTM Layer
The BiLSTM layer takes the sequence of vectors (ie, token
representations) corresponding to a sequence of tokens (the
output from the embedding layer) and calculates the hidden
states by processing the sequence of token representations
forward and backward (ie, left-to-right and right-to-left) to learn
important token-level features. It then outputs the sequence of
vectors, including the probability of each label for each
corresponding token. The labels were either 1 of the 8 entity
types (Textbox 1) or none. The label assigned to the token is
the label with the highest probability from the predicted labels’
sequence (output from the BiLSTM layer).

CRF Layer
The BiLSTM output does not consider the dependencies
between neighboring labels when predicting the current label.
For example, it may be more likely to have a token labeled as
a drug name followed by a token labeled as strength than any
other entity type. Thus, to learn these dependencies, we added
a CRF layer that uses past and future labels to optimize
predictions and obtain the most probable sequence of predicted
labels. Finally, the labels (BIOES tags) were combined into
named entities by merging consecutive labeled B-, I-, E-, or
S-tags of the same class.

NER Models Training and Tuning of Hyperparameters
We used the standard data split established by the n2c2
organizers, using the training set for fitting models, tuning the
model parameters, and evaluating our best models on the test
set. As there is no official development set, we randomly
selected 9.9% (30/303) of the training documents for validation.
This data set was used to optimize the models’hyperparameters.

We trained all neural network models using stochastic gradient
descent, with a learning rate of 0.005. In the baseline model
(RIWE), we randomly selected 100-dimensional WEs. In other
models, we used pretrained 600-dimensional WEs [54], which
were trained on approximately 2 million discharge summaries
drawn from the MIMIC-III data [48] using the word2vec
continuous bag-of-words method [42]. CEs were 25-dimensional

vectors, whereas SFEs were 50-dimensional vectors. The
number of hidden states was set to 300 dimensions for running
the BiLSTM WEs and to 25-dimensions for running the
BiLSTM for learning CE. We also applied dropout to the token
embeddings at a rate of 0.5 to avoid overfitting. The number of
epochs was determined by an early stopping criterion (ie, after
10 epochs with no improvement) on the validation set, with the
maximum number of epochs set to 100. Finally, the batch size
was set to 32. These hyperparameters were optimized through
a random search of the validation set [55]. We tested WEs with
dimensions ranging from 100 to 600, CE and SFEs with 25, 50,
and 100 dimensions, and the dropout rate with values in the
range between 0 and 0.75.

RE Method
Once drugs and attributes are extracted, the subsequent step is
to link drug names to the corresponding attributes. For this task,
we experimented with a rule-based method engineered for the
task and a context-aware long-short term memory (LSTM)
model, where the positions of the involved entities were encoded
using marker embeddings.

Context-Aware LSTM
We used a context-aware LSTM [56] that considers other
relations in the sentential context while predicting the target
relation. It uses an LSTM-based encoder to jointly learn
representations for all relations in the text. Thus, the
representation of the target relation and representations of the
context relations are combined to make the final prediction.
Figure 3 presents the architecture of the LSTM model for RE.
It consists of an embedding layer, an LSTM layer, and a softmax
layer. The embedding layer maps a portion of the text that
contains a target entity pair into a high-level representation
vector. First, each token in the text is mapped to its WE vector.
Second, every 2 entities (ie, a drug and its associated attribute)
in the text are paired as candidate entities for a possible relation.
All other tokens are then marked as either belonging to a drug
(as the main actor of all relations) or not. Afterward, each
token’s marker embeddings are concatenated to the WEs to
generate a single vector. This vector is then passed to the LSTM,
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which calculates the hidden states by processing the sequence
of token representations. Finally, the LSTM layer’s output is
routed into the softmax layer to map the nonnormalized output

to the final output vector that contains the probability for each
relation type.

Figure 3. The architecture of context-aware long-short term memory for the relation extraction model. e: embedding; LSTM: long-short term memory.

Rule-Based Method
In this approach, we examined patterns of prescription
information in discharge summaries in the training set and
manually implemented a set of rules using regular expressions.
These regular expressions were designed and implemented in
the General Architecture of Text Engineering environment [57]
(Figure 4). First, the discharge summaries were split into
sentences. For sentences that include only one drug name D,
all drug attributes found in that sentence will be linked to drug
D. However, for sentences that include multiple drug names,

the sentences are split into several segments, where the
segment’s start offset is the beginning of the next drug name.

If a sentence does not include a drug name but contains other
entities, then the previous 2 sentences are checked. If they
contain a drug name, then the attributes are linked to the closest
drug name. For example, “Patient will be on Topiramate 25mg
PO BID until 22/3 PM. Then increase to 50mg po BID for seven
days. Then increase to 75mg ongoing”. All the italicized entities
are linked to the drug topiramate that appears in the first
sentence.

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e24678 | p.62https://medinform.jmir.org/2021/5/e24678
(page number not for citation purposes)

Alfattni et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Rule-based method for linking drug names to corresponding attributes in discharge summaries.

RE Model Training and Tuning of Hyperparameters
We used the same procedure and the same approach for
hyperparameter settings that we have used previously in the
NER models. Specifically, we trained the LSTM model using
the same hyperparameters that we have used previously in the
NER models. We used marker embeddings with 10-dimensional
vectors.

The regular expressions in the RE rule-based method were
implemented based on manual observation of the training set,
followed by an initial evaluation of the validation set. The
regular expressions were then refined based on an error analysis
of the output from the validation process, and the final
evaluation was performed on the official test set.

Evaluation
We considered the available annotations in the corpus as the
gold standard when evaluating the models. To assess the
performance of the proposed models, we performed hold-out
cross-validation (using training and testing sets) and used the
official n2c2 evaluation script provided with the data. It uses
standard evaluation methods in information retrieval (ie,
precision, recall, and F-score). We report the lenient micro-and
macroaveraging for each NER experiment. Lenient matches
refer to cases where the overlapped boundaries between the

gold standard and the system’s predictions are allowed.
Macroaveraging calculates the metrics on a per-document basis
and then averages the results. Microaveraging, on the other
hand, refers to the pooling of the results of all classified
instances into a single contingency table.

In addition, we evaluated the performance of the NER models
with the best-performing RE model as an end-to-end system.
This allows us to measure the effect of missing entities in the
NER models on the RE task. As shown in Table 1, attributes
could be associated with more than one drug. Thus, when an
NER model fails to recognize an entity (either drug or attribute),
then all of its semantic relations (ie, associations) will also be
missed. Finally, the best-performed end-to-end system was
chosen for our DrugEX system.

Results

NER Task
Table 3 shows the lenient precision, recall, and F-score for all
models in the NER task. The best result in the NER task was
achieved by PWE+CE embeddings (micro F-score of 0.921).
Interestingly, NER (PWE), which ranked second in F-score,
achieved a slightly higher precision, and NER (PWE+SFE)
achieved a higher recall than any other model. NER (PWE+SFE)
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also yielded a better balance between precision and recall.
Concerning individual F-scores, PWE performed better than
the baseline (RIWE) for every entity type. The SFEs with the
PWEs in NER (PWE+SFE) allow the model to perform better
than others on some individual entity types, especially
frequency, duration, and reason. An analysis at the per-entity

type level shows that most entity types (ie, drugs, strength, form,
dosage, frequency, and route) are associated with excellent
performance (F-scores above 0.90). Duration and reason,
however, are associated with lower performance. This might
be amplified by the fact that there were few examples of duration
and reason entities in the training data (Table 1).

Table 3. Evaluation results of the named entity recognition models on the test set (lenient evaluation).

(PWE+SFE)d(PWE+CE)cPWEbRIWEaEntity

F-scoreRecallPrecisionF-scoreRecallPrecisionF-scoreRecallPrecisionF-scoreRecallPrecision

0.950e0.9470.9520.9490.9530.9460.9460.9300.9630.9170.8920.942Drug

0.9770.9770.9770.9740.9760.9730.9750.9700.9790.9680.9590.977Strength

0.8400.7860.9030.7900.6980.9100.8180.7620.8830.7890.7060.893Duration

0.9480.9430.9530.9520.9480.9560.9510.9380.9640.9460.9280.964Route

0.9510.9320.9720.9560.9440.9690.9520.9400.9650.9490.9350.964Form

0.9300.9310.9280.9290.9280.9310.9310.9310.9320.9200.9120.928Dosage

0.9680.9680.9680.9560.9330.9800.9590.9520.9650.9350.9250.945Frequency

0.6370.6530.6210.5930.4520.8600.6200.4970.8210.5750.4580.771Reason

0.9200.9130.9270.9210.8940.9500.9210.8920.9510.9010.8630.943Micro

0.9100.9010.9230.9140.8840.9490.9100.8760.9510.8830.8400.936Macro

aRIWE: bidirectional long-short term memory with conditional random fields with random word embeddings.
bPWE: bidirectional long-short term memory with conditional random fields with pretrained word embeddings.
c(PWE+CE): bidirectional long-short term memory with conditional random fields with pretrained word embeddings and character embeddings.
d(PWE+SFE): bidirectional long-short term memory with conditional random fields with pretrained word embeddings and semantic-feature embeddings.
eThe best results for each metric are italicized.

To explore the complementarity of the methods, we created an
ensemble model using the outputs of all the proposed NER
models. The ensemble output for each task was generated using
a majority voting scheme. In addition to its type, the entire
named entity phrase is taken as 1 prediction instance. The
ensemble model showed precision, recall, and F-scores of 0.961,

0.884, and 0.921, respectively. As expected, the ensemble
showed performance gains in precision when compared with
the best individual models. This indicates that the 3 models did
not learn the same patterns from the data set. However, the
difference in recall and F-score is not evident, even for specific
attributes (Table 4).
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Table 4. Evaluation results of pretrained word embeddings+character embedding named entity recognition model, pretrained word embeddings+character
embedding named entity recognition model, and the ensemble model on the test set (lenient evaluation).

Ensemble(PWE+SFE)b(PWE+CE)aEntity

F-scoreRecallPrecisionF-scorePrecisionRecallF-scoreRecallPrecision

0.9500.9390.9620.950c0.9470.9520.9490.9530.946Drug

0.9770.9720.9810.9770.9770.9770.9740.9760.973Strength

0.8070.7200.9190.8400.7860.9030.7900.6980.910Duration

0.9530.9440.9630.9480.9430.9530.9520.9480.956Route

0.9550.9390.9720.9510.9320.9720.9560.9440.969Form

0.9360.9300.9430.9300.9310.9280.9290.9280.931Dosage

0.9460.9150.9790.9680.9680.9680.9560.9330.980Frequency

0.6130.4760.8580.6370.6530.6210.5930.4520.860Reason

0.9210.8840.9610.9200.9130.9270.9210.8940.950Micro

0.9110.8690.9620.9100.9010.9230.9140.8840.949Macro

a(PWE+CE): bidirectional long-short term memory with conditional random fields with pretrained word embeddings and character embeddings.
b(PWE+SFE): bidirectional long-short term memory with conditional random fields with pretrained word embeddings and semantic-feature embeddings.
cThe best results for each metric are italicized.

We further conducted paired t tests to determine whether the
differences between the models were statistically significant.
Differences were considered significant if the P value was <.05.
The samples used in this test were the microaverage F-scores
from each document in the test set (ie, document-level NER
performance). Table 5 shows the post hoc analysis of variance
for the NER task. The statistical significance test showed that
there were no statistically significant differences between any
of the models (PWE, PWE+CE, and PWE+SFE), despite the

presence of apparently important and computationally expensive
clinical information such as the type of entities (ie, problems,
signs, and symptoms) in some of the models. However, the 3
models (PWE, PWE+CE, and PWE+SFE) were statistically
significantly different from the baseline (ie, RIWE), where
random embeddings were used. This means that pretraining
embeddings on the target domain (ie, discharge summaries from
MIMIC-III) helped in comparison with the random initialization
of WEs.

Table 5. Post-hoc analysis of variance (ANOVA) of the named entity recognition models: P values of two-tailed paired t tests for each pair of models.a

PWE+SFEd, P valuePWE+CEc, P valuePWEb, P valueNamed entity recognition

<.001<.001<.001RIWEe

.99.94N/AfPWE

.95N/AN/APWE+CE

aRIWE is significantly worse than the rest of the models. At the same time, there is no statistically significant difference between PWE, PWE+CE, and
PWE+SFE.
bPWE: pretrained word embeddings.
cCE: character embedding.
dSFE: semantic-feature embeddings.
eRIWE: randomly initialized word embeddings.
fN/A: not applicable.

RE Models
Table 6 shows the performances of the RE models using the
gold-standard entities, whereas Table 7 shows the performances
of the RE model using the output from the NER models
(end-to-end). Using the gold-standard entities and using the
output from the best NER model (end-to-end), we achieved
micro F-scores of 0.927 for rules and 0.855 for
(PWE+CE)+rules, respectively. Thus, the traditional rule-based
method performed surprisingly well relative to the context-aware
LSTM for this task. Relations between form and frequency to

drugs are examples of such success: there was at least a 4%
improvement in F-score over the LSTM model. The
microaverage F-score for the end-to-end task was notably lower
than that for the NER tasks and RE using gold-standard entities.
This was expected because prediction in the end-to-end
compounded the errors in both the NER and RE steps. A major
factor behind the low score is the reasons-drug relation type,
which was often not recognized because the NER did not
recognize the reason attribute. However, the prediction of this
relation itself (ie, reason-drug) is also challenging, as evidenced
by the F-score of 0.734 in the RE task (rules) on the
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gold-standard entities. This might be because the text span
between 2 entities in this relation is often relatively long; thus,

none of the methods explored in this study could capture this.

Table 6. Evaluation results of the relation extraction models (using gold-standard entities) on the test set (lenient evaluation).

RulesbLSTMaRelation type

F-scoreRecallPrecisionF-scoreRecallPrecision

0.975c0.9880.9630.9670.9610.973Strength-drug

0.9660.9760.9560.9610.9580.963Dosage-drug

0.9100.8800.9420.9010.8920.909Duration-drug

0.9750.9880.9640.9320.9040.962Frequency-drug

0.9810.9920.9700.9490.9180.982Form-drug

0.9670.9720.9620.9460.9340.958Route-drug

0.7340.7040.7670.7830.8300.741Reason-drug

0.9270.9170.9370.9180.9130.922Micro

0.9170.9020.9350.9090.9100.914Macro

aLSTM: long-short term memory method.
bRules: rule-based method.
cThe best results for each metric are italicized.

Table 7. Evaluation results of the end-to-end models (ie, output from the best-performing named entity recognition and relation extraction models) on
the test set (lenient evaluation).

(PWE+SFE)d+rules(PWE+CE)c+rulesPWEb+rulesRIWEa+rulesRelation
type

F-scoreRecallPrecisionF-scoreRecallPrecisionF-scoreRecallPrecisionF-scoreRecallPrecision

0.956e0.9640.9480.9490.9500.9480.9470.9430.9520.9170.9140.919Strength-
drug

0.8950.8970.8940.8880.8840.8920.8890.8880.8900.8510.8530.848Dosage-drug

0.7590.6780.8600.7290.6170.8890.7410.6620.8420.7090.6150.837Duration-
drug

0.9400.9470.9340.9250.9020.9490.9250.9190.9310.8760.8740.878Frequency-
drug

0.9390.9200.9590.9310.9190.9440.9270.9150.9390.8910.8880.894Form-drug

0.9140.9080.9200.9110.9040.9190.9090.8950.9240.8750.8660.885Route-drug

0.4870.4720.5030.4700.3430.7440.4850.3710.7020.4370.3330.635Reason-drug

0.8500.8300.8710.8550.7970.9180.8520.8020.9090.8150.7700.865Micro

0.8210.8010.8490.8240.7650.9180.8240.7700.9020.7840.7330.859Macro

aRIWE: bidirectional long-short term memory with conditional random fields with random word embeddings.
bPWE: bidirectional long-short term memory with conditional random fields with pretrained word embeddings.
cPWE+CE: bidirectional long-short term memory with conditional random fields with pretrained word embeddings and character embeddings.
dPWE+SFE: bidirectional long-short term memory with conditional random fields with pretrained word embeddings and semantic-feature embeddings.
eThe best results for each metric are italicized.

The statistical significance test for the RE task showed that the
differences between the LSTM and rule-based models were
insignificant (P=.41). For the end-to-end task, similar to the
NER task, there was no statistically significant difference
between any of the models (PWE, PWE+CE, and PWE+SFE);

however, the 3 models were statistically significantly different
from the RIWE (Table 8). Accordingly, the best-performed
end-to-end system, (PWE+CE)+rules, was chosen for our
DrugEx system.
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Table 8. Post-hoc analysis of variance (ANOVA) of the end-to-end models: P values of two-tailed paired t tests for each pair of models.

(PWE+SFEc)+rules, P value(PWE+CEb)+rules, P valuePWEa+rules, P valueEnd-to-end models

.03.01.01RIWEd+rules

.99.99N/AePWE+rules

.99N/AN/A(PWE+CE)+rules

aPWE: pretrained word embeddings.
bCE: character embedding.
cSFE: semantic-feature embeddings.
dRIWE: randomly initialized word embeddings.
eN/A: not applicable.

Discussion

Principal Findings
The models explored in this study demonstrated high F-scores
of 0.921 for NER, 0.927 for RE, and 0.855 for the end-to-end
approach. The overall highest F-scores (achieved by different
teams) in the n2c2 challenge in the NER, RE, and end-to-end
tasks were 0.942, 0.963, and 0.891, respectively [13]. The
top-ranked NER used a BiLSTM-CRF with ELMo language
model [45], CFEs, and normalized section titles as features. The
top-ranked RE and end-to-end tasks used a joint concept-relation
extraction system that uses 2 layers of BiLSTM-CRFs [58].

The results for our NER models showed that PWE+CE had the
highest classification efficiency, followed by PWE and
PWE+SFE, which had similar scores among themselves and
above the baseline. RE models’ results showed that the
rule-based method achieved significantly higher accuracy than
the context-aware LSTM for most relation types. Interestingly,
the LSTM model performed notably better in the reason-drug
relations, which were missed more than all other relation types.

We observed that external resources (ie, SFEs) contributed to
the attribute extraction. Presumably, plentiful labeled data
already available and complementary information from these
external resources appear to have been helpful for performance.
Nevertheless, simpler methods, such as PWE and rule-based
methods, can match these sophisticated and expensive methods.

Error Analysis
We further analyzed false positives and false negatives from
the NER to obtain deeper insights into the common classification
errors. Note that the focus in the error analysis was on the NER
only, as it appears to be the main factor of the relatively low
F-score in RE.

To gain an insight into where errors are made and how models
can be improved, we manually reviewed false negatives (entities
identified in the gold standard but incorrectly rejected, ie,
missed, by the models) and false positives (entities identified
by the models when they are not in the gold standard) in the

best-performing model. Errors were then grouped into different
categories based on their causes, including (1) context error:
when an entity is captured as one of the drug-related attributes,
although it is not, or when an entity is missing because of the
context; (2) type error: when an attribute is extracted but with
an incorrect annotation type; and (3) gold-standard error:
possible error in the gold standard. We also generated a
confusion matrix to subdivide the errors made by the method
based on which type of mistake was made.

Context error was a major category of errors. These mostly
resulted from previously unseen information (eg, “He was given
a loading dose of amiodarone,” where the dosage loading dose
was missed), atypical expression formats (eg, “One (1) Tablet,”
where dosage one (1) was missing because of the parentheses),
and abbreviations (eg, “Dig level 2.1,” where drug dig—which
should be digoxin—was missed). Context errors may also result
from the complexity of language expressions; for example, 200
units in the phrase “was started on a 7d course of DRUG 200
units daily” could be a dosage when considered as a single
phrase, or it could be 2 concepts: 200 (a strength) and unit (a
form). Gold annotation preferred the latter, whereas our method
identified the former.

Another interesting cause of error is the ambiguity between
attributes, where an attribute is recognized, but the type is
incorrect. Figure 5 presents the confusion matrix for the
BiLSTM-CRF (PWE+CE) and indicates how often each entity
is predicted. The confusion of dosage for strength and strength
for dosage is the most frequent type of error, accounting for
28% ([66+126]/693) of the errors. The following example
illustrates this type of error: “Meropenem 500 mg Intravenous
every eight (8) hours.” The dosage 500 mg is wrongly predicted
as strength; usually, the mg unit is associated with strength. The
substitution of dosage for strength is a common error, and these
entities are often mislabeled as each other—both are often
numeric quantities and used in similar contexts. A common
solution for this issue is to merge these 2 types into 1 annotation
type [59]. However, extracting them separately may be
important for some applications.
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Figure 5. Confusion matrix (token-level) from the output of bidirectional long-short term memory with conditional random field (with pretrained word
embeddings and character embeddings) on the National NLP Clinical Challenges test set. The diagonal entries indicate labels that were correctly
predicted, and the off-diagonal entries indicate errors. The total number of errors (sum of off-diagonal cells) was 693.

The second most frequent type of this error, which accounts for
16% ([48+65]/693) of the errors, is the confusion of form for
route and route for form. These entities are often annotated as
the gold standard in various ways. For example, the word
injection is sometimes annotated as a form and sometimes as a
route; in the training set, it is annotated as a form 68 times and
as a route 53 times, which makes learning from these examples
challenging.

The confusion of drugs with general words is one of the other
sources of error. We found that there were several causes of
this confusion among drug names. These include (1) generic
drug names (eg, glucose, IVF, blood, D5W, and chemo)
corresponding to prescribed medications but not occurring in
expected contexts; (2) words such as pressor, fluids, agents, or
medication that may be considered to be underspecified, but
should be extracted, at least in this data set; (3) some classes of
drugs (eg, antiinflammatory drugs and hypertension
medications) missing in the training sources; (4) new drug names
that did not occur within an expected context or semantic
patterns (eg, Dig level 2.5), so they were not extracted by the
NER methods; and (5) abbreviations (eg, aspirin325 and ABX).

The analysis also showed a few potential omissions and
inconsistencies in human annotations. Gold-standard errors fall
into 2 different categories: missing in the gold standard and
potential problems in gold standards. The more common error
in this category is missing in the gold standard, where the
method annotates entities that are not annotated in the data set.
For example, four weeks in the phrase, “adding DRUG cover
for the first four weeks of treatment,” is not annotated as a
duration in the gold standard, whereas it appears to be a
potentially correct attribute. Inconsistency may also appear in
annotation spans; for example, dosage or strength, and form
were annotated separately sometimes and jointly in others.

Conclusions
In this study, we constructed an end-to-end system (DrugEx)
composed of bidirectional LSTM, CRF, and rule-based methods
for extracting drug-related information from free-text discharge
summaries. We studied various token representations (ie, WE,
CE, and SFE) for extracting drug attributes from free-text
discharge summaries. We also proposed a rule-based method
for relations between drugs and attributes and compared this
method with a context-aware deep learning method. The results
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showed that the proposed system can be used successfully for
extracting and linking drug attributes in discharge summaries,
although some attributes (ie, reason and duration) are still
challenging. The results also showed that domain-tailored
embeddings (ie, PWE) perform better than random embeddings
(RIWE) in this task. Concatenating PWE with CE or SE
achieved a comparable overall performance when compared
between themselves. NER (PWE+CE) ranked best in F-score
among other proposed models; however, NER (PWE+SE)
performed better on some individual entity types, especially
frequency, duration, and reason. Semantic embeddings also
yielded a better balance between precision and recall. However,
a simpler method (eg, WE and CE) can match these
sophisticated and expensive methods. Incorporating external
knowledge (eg, of a drug’s reason, proposed treatment, and a
drug’s reactions) and incorporating a larger context may improve
performance.

Concerning RE, the rule-based method achieved higher accuracy
than the context-aware LSTM for most relations. Interestingly,

the LSTM model performs notably better on some of the most
challenging relations (eg, reason-drug).

In future work, we aim to investigate contextual embeddings,
such as ELMo and BERT, which have been proven to provide
considerable improvements in other tasks that include complex
language structures, ambiguous word use, and unseen words in
training. We also consider assessing the performance and
transferability of the models across different biomedical data
sets and tasks.

Finally, the medication NER and RE tasks are important not
only from a research perspective but also because they have
applications as steps in practical information extraction
pipelines. The current level of performance indicates that these
models should be good enough for large-scale statistical and
epidemiological studies. However, applications that require
patient-specific information may need NER systems with even
higher recall and precision, ensemble and multiple-step systems
(ie, systems that combine the output of multiple classifiers), or
be subject to semiautomated verification.

 

Acknowledgments
This work was partially supported by the Saudi Arabian Ministry of Education, the Saudi Arabian Cultural Bureau in London,
and the Healthcare Text Analytics Network (Heal-tex, grant EP/N027280/1, funded by the UK Engineering and Physical Sciences
Research Council). The authors would like to thank Sumithra Velupillai and Natalia Viani (King’s College London) for their
discussions on the error analysis. The authors would also like to acknowledge the help from Haifa Alrdahi and Nikola Milosevic
(University of Manchester) during their participation in the n2c2 shared task.

Authors' Contributions
GA and MB conducted the experiments and analyzed their output. GA drafted the manuscript. NP and GN revised the manuscript.
All authors read and approved the final version of the manuscript. GN and NP supervised all steps of the work.

Conflicts of Interest
None declared.

References
1. Abhyankar S, Demner-Fushman D, Callaghan FM, McDonald CJ. Combining structured and unstructured data to identify

a cohort of ICU patients who received dialysis. J Am Med Inform Assoc 2014;21(5):801-807 [FREE Full text] [doi:
10.1136/amiajnl-2013-001915] [Medline: 24384230]

2. Evans DA, Brownlow ND, Hersh WR, Campbell EM. Automating concept identification in the electronic medical record:
an experiment in extracting dosage information. Proc AMIA Annu Fall Symp 1996:388-392 [FREE Full text] [Medline:
8947694]

3. Karystianis G. Extraction and representation of key characteristics from epidemiological literature. The University of
Manchester. 2014. URL: https://tinyurl.com/bv927sfthttps://tinyurl.com/645sksnd [accessed 2021-03-31]

4. MacKinlay AD, Verspoor KM. Extracting structured information from free-text medication prescriptions using dependencies.
In: Proceedings of the ACM sixth international workshop on Data and text mining in biomedical informatics. 2012 Presented
at: CIKM'12: 21st ACM International Conference on Information and Knowledge Management; October, 2012; Maui
Hawaii USA p. 35-40. [doi: 10.1145/2390068.2390076]

5. Sohn S, Clark C, Halgrim SR, Murphy SP, Chute CG, Liu H. MedXN: an open source medication extraction and normalization
tool for clinical text. J Am Med Inform Assoc 2014;21(5):858-865 [FREE Full text] [doi: 10.1136/amiajnl-2013-002190]
[Medline: 24637954]

6. Spasic I, Sarafraz F, Keane JA, Nenadic G. Medication information extraction with linguistic pattern matching and semantic
rules. J Am Med Inform Assoc 2010;17(5):532-535 [FREE Full text] [doi: 10.1136/jamia.2010.003657] [Medline: 20819858]

7. Uzuner Ö, Solti I, Cadag E. Extracting medication information from clinical text. J Am Med Inform Assoc 2010;17(5):514-518
[FREE Full text] [doi: 10.1136/jamia.2010.003947] [Medline: 20819854]

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e24678 | p.69https://medinform.jmir.org/2021/5/e24678
(page number not for citation purposes)

Alfattni et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://europepmc.org/abstract/MED/24384230
http://dx.doi.org/10.1136/amiajnl-2013-001915
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24384230&dopt=Abstract
http://europepmc.org/abstract/MED/8947694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8947694&dopt=Abstract
https://tinyurl.com/bv927sft
http://dx.doi.org/10.1145/2390068.2390076
http://europepmc.org/abstract/MED/24637954
http://dx.doi.org/10.1136/amiajnl-2013-002190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24637954&dopt=Abstract
http://europepmc.org/abstract/MED/20819858
http://dx.doi.org/10.1136/jamia.2010.003657
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20819858&dopt=Abstract
http://europepmc.org/abstract/MED/20819854
http://dx.doi.org/10.1136/jamia.2010.003947
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20819854&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


8. Xu H, Stenner SP, Doan S, Johnson KB, Waitman LR, Denny JC. MedEx: a medication information extraction system for
clinical narratives. J Am Med Inform Assoc 2010;17(1):19-24 [FREE Full text] [doi: 10.1197/jamia.M3378] [Medline:
20064797]

9. Yang H. Automatic extraction of medication information from medical discharge summaries. J Am Med Inform Assoc
2010;17(5):545-548 [FREE Full text] [doi: 10.1136/jamia.2010.003863] [Medline: 20819861]

10. Krallinger M, Leitner F, Rabal O, Vazquez M, Oyarzabal J, Valencia A. CHEMDNER: the drugs and chemical names
extraction challenge. J Cheminform 2015 Jan 19;7(S1). [doi: 10.1186/1758-2946-7-s1-s1]

11. Segura-Bedmar I, Martínez P, Herrero-Zazo M. SemEval-2013 Task 9 : extraction of drug-drug interactions from biomedical
texts (DDIExtraction 2013). In: Proceedings of the Seventh International Workhop on Semantic Evaluation (SemEval 2013)
and Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2. 2013 Presented at: Second
Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2 and Seventh International Workshop on
Semantic Evaluation (SemEval 2013); June, 2013; Atlanta, Georgia, USA p. 341-350.

12. Jagannatha A, Liu F, Liu W, Yu H. Overview of the first natural language processing challenge for extracting medication,
indication, and adverse drug events from electronic health record notes (MADE 1.0). Drug Saf 2019 Jan;42(1):99-111
[FREE Full text] [doi: 10.1007/s40264-018-0762-z] [Medline: 30649735]

13. Henry S, Buchan K, Filannino M, Stubbs A, Uzuner O. 2018 n2c2 shared task on adverse drug events and medication
extraction in electronic health records. J Am Med Inform Assoc 2020 Jan 01;27(1):3-12 [FREE Full text] [doi:
10.1093/jamia/ocz166] [Medline: 31584655]

14. Karystianis G, Sheppard T, Dixon WG, Nenadic G. Modelling and extraction of variability in free-text medication
prescriptions from an anonymised primary care electronic medical record research database. BMC Med Inform Decis Mak
2016 Mar 09;16:18 [FREE Full text] [doi: 10.1186/s12911-016-0255-x] [Medline: 26860263]

15. Leaman R, Khare R, Lu Z. Challenges in clinical natural language processing for automated disorder normalization. J
Biomed Inform 2015 Oct;57:28-37 [FREE Full text] [doi: 10.1016/j.jbi.2015.07.010] [Medline: 26187250]

16. Kolárik C, Hofmann-Apitius M, Zimmermann M, Fluck J. Identification of new drug classification terms in textual resources.
Bioinformatics 2007 Jul 01;23(13):264-272. [doi: 10.1093/bioinformatics/btm196] [Medline: 17646305]

17. Chhieng D, Day T, Gordon G, Hicks J. Use of natural language programming to extract medication from unstructured
electronic medical records. AMIA Annu Symp Proc 2007 Oct 11:908. [Medline: 18694008]

18. Sirohi E, Peissig P. Study of effect of drug lexicons on medication extraction from electronic medical records. Pac Symp
Biocomput 2005:308-318 [FREE Full text] [doi: 10.1142/9789812702456_0029] [Medline: 15759636]

19. Lowe DM, Sayle RA. LeadMine: a grammar and dictionary driven approach to entity recognition. J Cheminform 2015 Jan
19;7(S1). [doi: 10.1186/1758-2946-7-s1-s5]

20. Gold S, Elhadad N, Zhu X, Cimino JJ, Hripcsak G. Extracting structured medication event information from discharge
summaries. AMIA Annu Symp Proc 2008 Nov 06:237-241 [FREE Full text] [Medline: 18999147]

21. Hamon T, Grabar N. Linguistic approach for identification of medication names and related information in clinical narratives.
J Am Med Inform Assoc 2010;17(5):549-554 [FREE Full text] [doi: 10.1136/jamia.2010.004036] [Medline: 20819862]

22. Xu R, Morgan A, Das AK, Garber A. Investigation of unsupervised pattern learning techniques for bootstrap construction
of a medical treatment lexicon. In: Proceedings of the Workshop on Current Trends in Biomedical Natural Language
Processing. 2009 Presented at: BioNLP '09: Workshop on Current Trends in Biomedical Natural Language Processing;
June 4-5, 2009; Boulder, Colorado p. 63-70. [doi: 10.3115/1572364.1572373]

23. Patrick J, Li M. High accuracy information extraction of medication information from clinical notes: 2009 i2b2 medication
extraction challenge. J Am Med Inform Assoc 2010;17(5):524-527 [FREE Full text] [doi: 10.1136/jamia.2010.003939]
[Medline: 20819856]

24. Leaman R, Wei C, Lu Z. tmChem: a high performance approach for chemical named entity recognition and normalization.
J Cheminform 2015 Jan 19;7(S1). [doi: 10.1186/1758-2946-7-s1-s3]

25. Lu Y, Ji D, Yao X, Wei X, Liang X. CHEMDNER system with mixed conditional random fields and multi-scale word
clustering. J Cheminform 2015 Jan 19;7(S1). [doi: 10.1186/1758-2946-7-s1-s4]

26. Campos D, Matos S, Oliveira JL. A document processing pipeline for annotating chemical entities in scientific documents.
J Cheminform 2015 Jan 19;7(S1). [doi: 10.1186/1758-2946-7-s1-s7]

27. Lamurias A, Grego T, Couto FM. Chemical compound and drug name recognition using CRFs and semantic similarity
based on ChEBI. Washington, DC USA: BioCreative challenge evaluation workshop, vol. 2; 2013. URL: https://biocreative.
bioinformatics.udel.edu/media/store/files/2013/bc4_v2_9.pdf [accessed 2021-03-31]

28. Sikdar UK, Ekbal A, Saha S. Domain-independent model for chemical compound and drug name recognition. Washington,
DC USA: BioCreative Challenge Evaluation Workshop. Vol 2; 2013. URL: https://biocreative.bioinformatics.udel.edu/
media/store/files/2013/bc4_v2_22.pdf [accessed 2021-03-31]

29. Akhondi SA, Hettne KM, van der Horst E, van Mulligen EM, Kors JA. Recognition of chemical entities: combining
dictionary-based and grammar-based approaches. J Cheminform 2015 Jan 19;7(S1). [doi: 10.1186/1758-2946-7-s1-s10]

30. He L, Yang Z, Lin H, Li Y. Drug name recognition in biomedical texts: a machine-learning-based method. Drug Discov
Today 2014 May;19(5):610-617. [doi: 10.1016/j.drudis.2013.10.006] [Medline: 24140287]

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e24678 | p.70https://medinform.jmir.org/2021/5/e24678
(page number not for citation purposes)

Alfattni et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://europepmc.org/abstract/MED/20064797
http://dx.doi.org/10.1197/jamia.M3378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20064797&dopt=Abstract
http://europepmc.org/abstract/MED/20819861
http://dx.doi.org/10.1136/jamia.2010.003863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20819861&dopt=Abstract
http://dx.doi.org/10.1186/1758-2946-7-s1-s1
http://europepmc.org/abstract/MED/30649735
http://dx.doi.org/10.1007/s40264-018-0762-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30649735&dopt=Abstract
http://europepmc.org/abstract/MED/31584655
http://dx.doi.org/10.1093/jamia/ocz166
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31584655&dopt=Abstract
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-016-0255-x
http://dx.doi.org/10.1186/s12911-016-0255-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26860263&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(15)00150-1
http://dx.doi.org/10.1016/j.jbi.2015.07.010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26187250&dopt=Abstract
http://dx.doi.org/10.1093/bioinformatics/btm196
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17646305&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18694008&dopt=Abstract
http://psb.stanford.edu/psb-online/proceedings/psb05/abstracts/p308.html
http://dx.doi.org/10.1142/9789812702456_0029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15759636&dopt=Abstract
http://dx.doi.org/10.1186/1758-2946-7-s1-s5
http://europepmc.org/abstract/MED/18999147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18999147&dopt=Abstract
http://europepmc.org/abstract/MED/20819862
http://dx.doi.org/10.1136/jamia.2010.004036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20819862&dopt=Abstract
http://dx.doi.org/10.3115/1572364.1572373
http://europepmc.org/abstract/MED/20819856
http://dx.doi.org/10.1136/jamia.2010.003939
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20819856&dopt=Abstract
http://dx.doi.org/10.1186/1758-2946-7-s1-s3
http://dx.doi.org/10.1186/1758-2946-7-s1-s4
http://dx.doi.org/10.1186/1758-2946-7-s1-s7
https://biocreative.bioinformatics.udel.edu/media/store/files/2013/bc4_v2_9.pdf
https://biocreative.bioinformatics.udel.edu/media/store/files/2013/bc4_v2_9.pdf
https://biocreative.bioinformatics.udel.edu/media/store/files/2013/bc4_v2_22.pdf
https://biocreative.bioinformatics.udel.edu/media/store/files/2013/bc4_v2_22.pdf
http://dx.doi.org/10.1186/1758-2946-7-s1-s10
http://dx.doi.org/10.1016/j.drudis.2013.10.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24140287&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


31. Tikk D, Solt I. Improving textual medication extraction using combined conditional random fields and rule-based systems.
J Am Med Inform Assoc 2010;17(5):540-544 [FREE Full text] [doi: 10.1136/jamia.2010.004119] [Medline: 20819860]

32. Korkontzelos I, Piliouras D, Dowsey AW, Ananiadou S. Boosting drug named entity recognition using an aggregate
classifier. Artif Intell Med 2015 Oct;65(2):145-153 [FREE Full text] [doi: 10.1016/j.artmed.2015.05.007] [Medline:
26116947]

33. Liu Z, Yang M, Wang X, Chen Q, Tang B, Wang Z, et al. Entity recognition from clinical texts via recurrent neural network.
BMC Med Inform Decis Mak 2017 Jul 05;17(Suppl 2):67 [FREE Full text] [doi: 10.1186/s12911-017-0468-7] [Medline:
28699566]

34. Jagannatha AN, Yu H. Structured prediction models for RNN based sequence labeling in clinical text. Proc Conf Empir
Methods Nat Lang Process 2016 Nov;2016:856 [FREE Full text] [doi: 10.18653/v1/d16-1082] [Medline: 28004040]

35. Yang X, Bian J, Fang R, Bjarnadottir RI, Hogan WR, Wu Y. Identifying relations of medications with adverse drug events
using recurrent convolutional neural networks and gradient boosting. J Am Med Inform Assoc 2020 Jan 01;27(1):65-72
[FREE Full text] [doi: 10.1093/jamia/ocz144] [Medline: 31504605]

36. Wei Q, Ji Z, Li Z, Du J, Wang J, Xu J, et al. A study of deep learning approaches for medication and adverse drug event
extraction from clinical text. J Am Med Inform Assoc 2020 Jan 01;27(1):13-21 [FREE Full text] [doi: 10.1093/jamia/ocz063]
[Medline: 31135882]

37. Ju M, Nguyen NT, Miwa M, Ananiadou S. An ensemble of neural models for nested adverse drug events and medication
extraction with subwords. J Am Med Inform Assoc 2020 Jan 01;27(1):22-30 [FREE Full text] [doi: 10.1093/jamia/ocz075]
[Medline: 31197355]

38. Dai HJ, Su CH, Wu CS. Adverse drug event and medication extraction in electronic health records via a cascading architecture
with different sequence labeling models and word embeddings. J Am Med Inform Assoc 2020 Jan 01;27(1):47-55 [FREE
Full text] [doi: 10.1093/jamia/ocz120] [Medline: 31334805]

39. Oleynik M, Kugic A, Kasáč Z, Kreuzthaler M. Evaluating shallow and deep learning strategies for the 2018 n2c2 shared
task on clinical text classification. J Am Med Inform Assoc 2019 Nov 01;26(11):1247-1254 [FREE Full text] [doi:
10.1093/jamia/ocz149] [Medline: 31512729]

40. Christopoulou F, Tran TT, Sahu SK, Miwa M, Ananiadou S. Adverse drug events and medication relation extraction in
electronic health records with ensemble deep learning methods. J Am Med Inform Assoc 2020 Jan 01;27(1):39-46 [FREE
Full text] [doi: 10.1093/jamia/ocz101] [Medline: 31390003]

41. Kim Y, Meystre SM. Ensemble method-based extraction of medication and related information from clinical texts. J Am
Med Inform Assoc 2020 Jan 01;27(1):31-38 [FREE Full text] [doi: 10.1093/jamia/ocz100] [Medline: 31282932]

42. Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed representations of words and phrases and their
compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume
2. 2013 Presented at: 26th International Conference on Neural Information Processing Systems - Volume 2; December
2013; Lake Tahoe, Nevada, United States p. 3111-3119 URL: http://dl.acm.org/citation.cfm?id=2999792.2999959

43. Pennington J, Socher R, Manning C. GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP). 2014 Presented at: Conference on Empirical Methods
in Natural Language Processing (EMNLP); October, 2014; Doha, Qatar. [doi: 10.3115/v1/d14-1162]

44. Bojanowski P, Grave E, Joulin A, Mikolov T. Enriching word vectors with subword information. Trans Assoc Comput
Linguistics 2017 Dec;5:135-146. [doi: 10.1162/tacl_a_00051]

45. Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Lee K. Deep contextualized word representations. In: Proceedings
of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). 2018 Presented at: Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers); June, 2018; New Orleans,
Louisiana p. 2227-2237. [doi: 10.18653/v1/n18-1202]

46. Devlin J, Chang MW, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding.
arXiv. 2018. URL: https://arxiv.org/abs/1810.04805 [accessed 2021-03-31]

47. n2c2 NLP research data sets. Harvard Medical School. 2018. URL: https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
[accessed 2021-03-31]

48. Johnson AE, Pollard TJ, Shen L, Lehman LH, Feng M, Ghassemi M, et al. MIMIC-III, a freely accessible critical care
database. Sci Data 2016 May 24;3 [FREE Full text] [doi: 10.1038/sdata.2016.35] [Medline: 27219127]

49. Soysal E, Wang J, Jiang M, Wu Y, Pakhomov S, Liu H, et al. CLAMP - a toolkit for efficiently building customized clinical
natural language processing pipelines. J Am Med Inform Assoc 2018 Mar 01;25(3):331-336 [FREE Full text] [doi:
10.1093/jamia/ocx132] [Medline: 29186491]

50. Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, et al. Mayo clinical Text Analysis and Knowledge
Extraction System (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc
2010;17(5):507-513 [FREE Full text] [doi: 10.1136/jamia.2009.001560] [Medline: 20819853]

51. Kocmi T, Bojar O. SubGram: extending skip-gram word representation with substrings. In: Text, Speech, and Dialogue.
Switzerland: Springer; 2016:182-189.

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e24678 | p.71https://medinform.jmir.org/2021/5/e24678
(page number not for citation purposes)

Alfattni et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://europepmc.org/abstract/MED/20819860
http://dx.doi.org/10.1136/jamia.2010.004119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20819860&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0933-3657(15)00078-0
http://dx.doi.org/10.1016/j.artmed.2015.05.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26116947&dopt=Abstract
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-017-0468-7
http://dx.doi.org/10.1186/s12911-017-0468-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28699566&dopt=Abstract
http://europepmc.org/abstract/MED/28004040
http://dx.doi.org/10.18653/v1/d16-1082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28004040&dopt=Abstract
http://europepmc.org/abstract/MED/31504605
http://dx.doi.org/10.1093/jamia/ocz144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31504605&dopt=Abstract
http://europepmc.org/abstract/MED/31135882
http://dx.doi.org/10.1093/jamia/ocz063
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31135882&dopt=Abstract
http://europepmc.org/abstract/MED/31197355
http://dx.doi.org/10.1093/jamia/ocz075
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31197355&dopt=Abstract
http://europepmc.org/abstract/MED/31334805
http://europepmc.org/abstract/MED/31334805
http://dx.doi.org/10.1093/jamia/ocz120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31334805&dopt=Abstract
http://europepmc.org/abstract/MED/31512729
http://dx.doi.org/10.1093/jamia/ocz149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31512729&dopt=Abstract
http://europepmc.org/abstract/MED/31390003
http://europepmc.org/abstract/MED/31390003
http://dx.doi.org/10.1093/jamia/ocz101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31390003&dopt=Abstract
http://europepmc.org/abstract/MED/31282932
http://dx.doi.org/10.1093/jamia/ocz100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31282932&dopt=Abstract
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dx.doi.org/10.3115/v1/d14-1162
http://dx.doi.org/10.1162/tacl_a_00051
http://dx.doi.org/10.18653/v1/n18-1202
https://arxiv.org/abs/1810.04805
https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
https://doi.org/10.1038/sdata.2016.35
http://dx.doi.org/10.1038/sdata.2016.35
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27219127&dopt=Abstract
http://europepmc.org/abstract/MED/29186491
http://dx.doi.org/10.1093/jamia/ocx132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29186491&dopt=Abstract
http://europepmc.org/abstract/MED/20819853
http://dx.doi.org/10.1136/jamia.2009.001560
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20819853&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


52. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv. 2013. URL:
https://arxiv.org/abs/1301.3781 [accessed 2021-03-31]

53. Dernoncourt F, Lee JY, Uzuner O, Szolovits P. De-identification of patient notes with recurrent neural networks. J Am
Med Inform Assoc 2017 May 01;24(3):596-606 [FREE Full text] [doi: 10.1093/jamia/ocw156] [Medline: 28040687]

54. Luo Y, Cheng Y, Uzuner O, Szolovits P, Starren J. Segment convolutional neural networks (Seg-CNNs) for classifying
relations in clinical notes. J Am Med Inform Assoc 2018 Jan 01;25(1):93-98 [FREE Full text] [doi: 10.1093/jamia/ocx090]
[Medline: 29025149]

55. Bergstra J, Bengio Y. Random search for hyper-parameter optimization. J Mach Learn Res. 2012. URL: https://www.
jmlr.org/papers/v13/bergstra12a.html [accessed 2021-03-31]

56. Sorokin D, Gurevych I. Context-aware representations for knowledge base relation extraction. In: Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing. 2017 Presented at: Conference on Empirical Methods
in Natural Language Processing; September, 2017; Copenhagen, Denmark p. 1784-1789. [doi: 10.18653/v1/d17-1188]

57. Cunningham H, Tablan V, Roberts A, Bontcheva K. Getting more out of biomedical documents with GATE's full lifecycle
open source text analytics. PLoS Comput Biol 2013;9(2) [FREE Full text] [doi: 10.1371/journal.pcbi.1002854] [Medline:
23408875]

58. Xu J, Lee H, Ji Z, Wang J, Wei Q, Xu H. UTH_CCB system for adverse drug reaction extraction from drug labels at
TAC-ADR. 2017. URL: https://tinyurl.com/645sksnd [accessed 2021-03-31]

59. Demner-Fushman D, Mork JG, Rogers WJ, Shooshan SE, Rodriguez L, Aronson AR. Finding medication doses in the
liteature. AMIA Annu Symp Proc 2018;2018:368-376 [FREE Full text] [Medline: 30815076]

Abbreviations
ADE: adverse drug event
BERT: Bidirectional Encoder Representations from Transformers
BiLSTM: bidirectional long-short term memory
BiLSTM-CRF: bidirectional long-short term memory with conditional random field
BIOES: Begin, Inside, Outside, End, Single
CE: character embedding
CLAMP: Clinical Language Annotation, Modeling, and Processing Toolkit
CRF: conditional random field
cTAKES: Clinical Text Analysis and Knowledge Extraction System
EHR: electronic health record
ELMo: Embeddings from Language Models
LSTM: long-short term memory
MIMIC-III: Medical Information Mart for Intensive Care III
n2c2: National NLP Clinical Challenges
NER: named entity recognition
NLP: natural language processing
PWE: pretrained word embedding
RE: relation extraction
RIWE: randomly initialized word embedding
SFE: semantic-feature embedding
WE: word embedding

Edited by C Lovis; submitted 30.09.20; peer-reviewed by S Fu, M Torii; comments to author 03.11.20; revised version received
15.02.21; accepted 20.02.21; published 05.05.21.

Please cite as:
Alfattni G, Belousov M, Peek N, Nenadic G
Extracting Drug Names and Associated Attributes From Discharge Summaries: Text Mining Study
JMIR Med Inform 2021;9(5):e24678
URL: https://medinform.jmir.org/2021/5/e24678 
doi:10.2196/24678
PMID:33949962

©Ghada Alfattni, Maksim Belousov, Niels Peek, Goran Nenadic. Originally published in JMIR Medical Informatics
(https://medinform.jmir.org), 05.05.2021. This is an open-access article distributed under the terms of the Creative Commons

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e24678 | p.72https://medinform.jmir.org/2021/5/e24678
(page number not for citation purposes)

Alfattni et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://arxiv.org/abs/1301.3781
http://europepmc.org/abstract/MED/28040687
http://dx.doi.org/10.1093/jamia/ocw156
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28040687&dopt=Abstract
http://europepmc.org/abstract/MED/29025149
http://dx.doi.org/10.1093/jamia/ocx090
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29025149&dopt=Abstract
https://www.jmlr.org/papers/v13/bergstra12a.html
https://www.jmlr.org/papers/v13/bergstra12a.html
http://dx.doi.org/10.18653/v1/d17-1188
https://dx.plos.org/10.1371/journal.pcbi.1002854
http://dx.doi.org/10.1371/journal.pcbi.1002854
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23408875&dopt=Abstract
https://tinyurl.com/645sksnd
http://europepmc.org/abstract/MED/30815076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30815076&dopt=Abstract
https://medinform.jmir.org/2021/5/e24678
http://dx.doi.org/10.2196/24678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33949962&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete
bibliographic information, a link to the original publication on https://medinform.jmir.org/, as well as this copyright and license
information must be included.

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e24678 | p.73https://medinform.jmir.org/2021/5/e24678
(page number not for citation purposes)

Alfattni et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Original Paper

An Attention Model With Transfer Embeddings to Classify
Pneumonia-Related Bilingual Imaging Reports: Algorithm
Development and Validation

Hyung Park1*, MD; Min Song2*, PhD; Eun Byul Lee2, BA; Bo Kyung Seo2, BA; Chang Min Choi1,3, MD
1Department of Pulmonary and Critical Care Medicine, Asan Medical Center, Seoul, Republic of Korea
2Yonsei University, Seoul, Republic of Korea
3Department of Oncology, Asan Medical Center, Seoul, Republic of Korea
*these authors contributed equally

Corresponding Author:
Chang Min Choi, MD
Department of Pulmonary and Critical Care Medicine
Asan Medical Center
Olympic-ro 43-gil
Seoul, 05505
Republic of Korea
Phone: 82 2 3010 5902
Fax: 82 2 3010 6968
Email: ccm9607@gmail.com

Abstract

Background: In the analysis of electronic health records, proper labeling of outcomes is mandatory. To obtain proper information
from radiologic reports, several studies were conducted to classify radiologic reports using deep learning. However, the classification
of pneumonia in bilingual radiologic reports has not been conducted previously.

Objective: The aim of this research was to classify radiologic reports into pneumonia or no pneumonia using a deep learning
method.

Methods: A data set of radiology reports for chest computed tomography and chest x-rays of surgical patients from January
2008 to January 2018 in the Asan Medical Center in Korea was retrospectively analyzed. The classification performance of our
long short-term memory (LSTM)–Attention model was compared with various deep learning and machine learning methods.
The area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve, sensitivity, specificity,
accuracy, and F1 score for the models were compared.

Results: A total of 5450 radiologic reports were included that contained at least one pneumonia-related word. In the test set
(n=1090), our proposed model showed 91.01% (992/1090) accuracy (AUROCs for negative, positive, and obscure were 0.98,
0.97, and 0.90, respectively). The top 3 performances of the models were based on FastText or LSTM. The convolutional neural
network–based model showed a lower accuracy 73.03% (796/1090) than the other 2 algorithms. The classification of negative
results had an F1 score of 0.96, whereas the classification of positive and uncertain results showed a lower performance (positive
F1 score 0.83; uncertain F1 score 0.62). In the extra-validation set, our model showed 80.0% (642/803) accuracy (AUROCs for
negative, positive, and obscure were 0.92, 0.96, and 0.84, respectively).

Conclusions: Our method showed excellent performance in classifying pneumonia in bilingual radiologic reports. The method
could enrich the research on pneumonia by obtaining exact outcomes from electronic health data.

(JMIR Med Inform 2021;9(5):e24803)   doi:10.2196/24803

KEYWORDS

deep learning; natural language process; attention; clinical data; pneumonia; classification; medical imaging; electronic health
record; machine learning; model
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Introduction

Electronic health records (EHRs) have become increasingly
incorporated into clinical practices in hospitals over the past
few decades [1]. EHR data are voluminous and can be used as
real-world evidence if they are analyzed with proper methods
[2]. However, the data are not collected for research purposes
[2], and several rule-based methods are used to extract particular
outcomes from the data set. There have been numerous studies
where analyses were performed using EHR data with labels
such as sepsis defined by rule-based outcomes [3-6]. However,
defining outcomes other than laboratory findings is difficult
because the data are unstructured and written as natural
language. For this reason, a previous study that used the outcome
pneumonia defined pneumonia by its International Classification
of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM)
code [7,8]. However, the use of ICD codes as a label does not
contain temporal information, such as the exact time of diagnosis
during hospital admission, and it is hard to perform time series
analysis with this limited information.

Although medical imaging reports contain a great deal of
information regarding diagnosis and clinical features, it is hard
to analyze the information because they are formatted as
unstructured free text and are variably written depending on the
radiologist.[9] For this reason, medical imaging reports are
rarely used as outcomes in big data analysis [10]. However, as
long as pneumonia can be identified in radiologic reports, other
important information, such as the time of onset and the presence
of pneumonia during admission, can also be derived. Moreover,
labeled data are essential in deep learning because the analysis
requires millions of observations to reach acceptable
performance levels [11].

As of 2018, 43 studies using natural language processing for
the identification of chronic diseases in EHRs had been
published, and only recently have there been more studies
conducted on this topic using deep learning [12]. Especially in
deep learning, convolutional neural network (CNN)–based
models have shown significant accuracy in extracting pulmonary
embolism [10] and pulmonary infection from medical reports
[1]. The model can be used to classify diagnosis from whole
medical records even when they are written in the Chinese
language [13], and a recurrent neural network–based model has
been used for classifying stroke and identifying its location [14].
However, the use of bilingual clinical reports is common for
EHRs in non–English-speaking countries.

The purpose of our study was to classify reports of pneumonia
consisting of findings derived during the pre- and postoperative
period of a major surgery that were written as bilingual texts
(English and Korean). We compared the performance of
traditional models with deep learning models, with the latter
showing excellent performance in previous studies, and
identified the best performing model as an attention-based
bidirectional long short-term memory (Bi-LSTM) model neural
network.

Methods

Clinical Data
We retrospectively included radiology reports for chest
computed tomography (CT) and chest x-rays of surgical patients
from January 2008 to January 2018 in the Asan Medical Center
in Korea. The patients had undergone upper abdominal and
thoracic surgeries, as coded by the ICD-9-CM. Detailed criteria
for the surgery are described in Multimedia Appendix 1.

The radiology reports consist of chest CT and chest x-rays
(posteroanterior and anteroposterior) that are extracted by
radiology procedure codes. The chest x-ray reports have no
structured format and only contain descriptions. The chest CT
reports consist of the short history of the patients, the findings,
and a conclusion; however, the format varies depending on the
writing style of the radiologist. The conclusions in around half
of the chest CT reports were omitted due to the different writing
style of the radiologists. Therefore, we used only the findings
of chest CT and the descriptions of chest x-rays to classify the
labels, and all the annotation was based solely on the description
of each report.

Usually, the pneumonia incidence in surgical patients is around
1%, suggesting that reports of pneumonia are rare. To overcome
the imbalance of the positive and negative data sets, we only
included radiologic reports that contained pneumonia-related
words. The words representing pneumonia were as follows:
“pneumoni-,” “consolid-,” “infiltra-,” “bronchiole-,” “hazi-,”
“hazzi-,” “opacit-,” and “GGO”.

From a total of 1,088,680 radiology reports, 886,248 were
included after reports with inappropriate surgical procedures
were excluded. The detailed inclusion criteria of the appropriate
procedures have been described in a previous study [3]. After
extracting the pneumonia-related words, 23,377 reports were
included.

Report Annotation
Among the 23,377 reports, a total of 5450 annotated reports
were used to train our model. A clinician annotated the 5450
reports and used them for training and validation. After training
the model, 2 different clinicians, who worked independently
from the first clinician, annotated another 1000 reports for an
extra-validation set (Figure 1).

All document-level annotations by clinicians included 3
categories for pneumonia: negative, positive, and unclear
(obscure). The positive pneumonia reports included
postoperative infection reports and did not contain reports for
noninfectious diseases, such as organizing pneumonia or
interstitial lung disease, because the label was required to
represent pneumonia as a perioperative complication. The
excluded reports were labeled as negative reports. It was
observed that 895 reports were pneumonia positive, 4005 reports
were pneumonia negative, and 550 reports were obscure results.
In the extra-validation set, 2 clinicians independently labeled
the radiologic reports on the basis of the clinical importance of
the findings. To overcome the human error of the 2 clinicians,
the consensus label of the 2 clinicians was regarded as the
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reference standard. An interrater reliability (k score) was calculated by Cohen κ value.

Figure 1. Radiologic reports flowchart.

Ethics Approval
This study was approved by the ethics committee of the Asan
Medical Center (approval no. 2018-1122), and the need to obtain
informed consent was waived because of the retrospective
observational nature of the study. The clinical data that were
extracted using the Asan Biomedical Research Environment
system were indexed by deidentified encrypted patient ID
numbers so that the researchers would not be able identify the
patients [15,16].

Proposed Approach
As most of the verbs and adjectives in clinical reports are written
in Korean, and most of nouns (usually the names of the diseases)
are written in English, we had to consider 2 different languages.
Therefore, we proposed a new method for a bilingual clinical
data set based on the classification algorithm of combining
substring and translation embeddings (Kor2Eng) with an
attention-based Bi-LSTM neural network (LSTM-Attention).
Multimedia Appendix 1 Figure S4 shows the architecture of
our proposed model.

The proposed method includes 3 steps: (1) text preprocessing;
(2) word representation, which is composed of substring and
Korean-to-English (Kor2Eng) embeddings; and (3) training of
the classification model.

Our data set, which is a description of x-ray and CT, is
composed of a mix of Korean and English sentences. Therefore,
specific preprocessing is required before the statements are fed
into the classification model. The detailed methods for text
preprocessing and training are described in Multimedia
Appendix 1.

Kor2Eng Transfer Embedding
Training word vectors require a considerable amount of data
and time. Therefore, we applied embeddings by training them
independently on monolingual data and pretraining them with
Wikipedia data. However, due to the characteristics of data, the
text of the clinical notes was a mixture of English and Korean.
If a monolingual embedding were to be used for this data, one
side of the information would be lost. To reduce the loss of
information, we used a translation method that converts the
vector of Korean words into the vector of English words with
similar meanings. The unsupervised method of translating the
source language into the target language was proposed by
Lample et al [17]. In this method, the process of learning a
mapping occurs between the 2 sets of embedding in the shared
space. We trained the subword embedding model to learn
Korean-to-English mapping using the unsupervised method
without any parallel data.

Deep Learning–Based Classification Model
We built an attention-based deep neural network using LSTM.
LSTM is a recurrent neural network variant that alleviates the
vanishing gradient problem by learning and remembering
long-term dependencies [18] and consists of a cell memory state
and 3 gates.

The Bi-LSTM consists of a forward–backward LSTM layer
[19]. Both layers are connected to the same output layer. Our
classification model used Bi-LSTM with the attention
mechanism. This allowed the model to simultaneously handle
information from different positions.
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Figure 2 shows the architecture of the deep learning–based
classification model. First, the input is fed into the Bi-LSTM
layer. Second, the output of the Bi-LSTM layer is fed into the

attention layer (Bi-LSTM–Attention) for attending important
words. Finally, the output of the attention weight passes through
the softmax layer for classification.

Figure 2. The architectures of a deep learning-based classification model. Each input receives an embedding of English translated from Korean. In the
attention layer, each word has an attention weight which is translated into the importance for prediction. Bi-LSTM: bidirectional long short-term memory
model.

The performance metrics (ie, precision, recall [sensitivity], and
F1 score) were used to evaluate the models. The accuracy, area
under the receiver operating characteristic curve (AUROC),
and area under the precision-recall curve (AUPRC) were used
to compare the models. For analyzing the multilabel data set,
labels were treated as interested labels and other labels in
evaluating each metric. For example, when we treated the
precision for negative labels, only the true negative data were
treated as true labels while positive and obscure labels were
treated as false labels. F1 score is the weighted average of
precision and recall, and it is used to measure the performance
of a model when the data consist of uneven class distributions
[20]. The statistical analysis was performed on Python 3.7.6
(Python Software Foundation).

Results

In this section, we evaluated the performance of the various
classification models. To demonstrate the performance of our
method, we compare the proposed model with traditional
machine learning and other deep learning models. The machine
learning models included logistic regression [21], support vector
machine [22], Naïve Bayes regression [23], K-nearest neighbors
algorithm [24], decision tree [25], and random forest [26]. The
deep learning models included the word-to-vector representation
model (Word2Vec) [27], FastText [17], CNN [28], and LSTM
[29]. The details of each model are described in Multimedia
Appendix 1.

Out of 5450 data sets, 4005 did not contain pneumonia, 895
contained pneumonia, and 550 were obscure, with 80% being

used in the training set and the remaining 20% in test set. The
test set was composed of no pneumonia (n=801), pneumonia
(n=179), and obscure (n=110) classifications. The
extra-validation set was annotated by 2 independent clinicians.
Out of a total of 1000 radiologic reports, 803 labels were agreed
upon by 2 independent clinicians. Among these labels, 498 did
not contain pneumonia, 185 contained pneumonia, and 120
were obscure cases.

Accuracy of Our Model as Compared to Previous
Models
We evaluated the performance of the different models to find
the best model. As shown in Table 1, the prediction accuracy
changed depending on the model. The traditional models (ie,
support vector machine, Naïve Bayes, etc) achieved an accuracy
between 64.03% and 83.03%. The logistic regression showed
a reasonable performance with an accuracy of 83.03%
(Multimedia Appendix 1 Table S1).

The deep learning–based methods (ie, FastText, Word2Vec
with Bi-LSTM–Attention, and the proposed model)
outperformed the traditional models. The prediction accuracy
of the deep learning models was 90.00%, 88.99%, and 91.01%
for FastText, Word2Vec with Bi-LSTMAttention, and the
proposed model, respectively. These deep learning models
showed a 10% higher accuracy than did the traditional machine
learning methods because sentence classification required the
interpretation of complex features. The proposed model achieved
the highest performance compared to the other deep learning
models (Multimedia Appendix 1 Table S1).
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Model Accuracy Based on the Different Representation
Methods of Words
We evaluated the performance based on different methods of
word representation. The Word2Vec with Bi-LSTM–Attention
model is a more commonly used language representation model.
The model showed a higher accuracy and F1 score than did the
traditional models; however, the drawback associated with this
model is that the foreign language is not represented (Table 1).
We implemented another representation method with a substring
using the FastText model. This method involves slicing of words
to bunches of characters, which can be a better expression for
the foreign language. The substring with FastText model
achieved a precision of 93% for negative, 84% for positive, and
74% for obscure classifications; and a recall of 93% for negative,
84% for positive, and 47% for obscure classifications. The
substring with FastText model showed a better performance
than did the Word2Vec model according to F1 score.

Our proposed model (Kor2Eng) translated Korean to English
before the prediction process. The proposed model achieved a
precision of 96%, 86%, and 61%, and a recall of 97%, 80%,
and 64% for positive, negative, and obscure classifications,
respectively. The AUROC of the model was 0.98 for negative,
0.97 for positive, and 0.90 for obscure classifications, while the
AUPRC was 0.99 for negative, 0.87 for positive, and 0.62 for
obscure classifications (Multimedia Appendix 1 Figure S5).
Compared to the classification of the negative labels, which
was a relatively easy task (96% of negative), classifying positive
or obscure labels was a harder task and showed a rather lower
F1 score (83% for positive and 62% for obscure). For classifying
the obscure classification, our model showed the highest
performance among different representation methods (substring
with FastText, Word2Vec, and Kor2Eng).

Table 1. The detailed performance of the top 3 best-performing models.

AUPRCbAUROCaF1 score (%)Recall, n/N (%)Precision, n/N (%)Models

Substring+FastText [17]

0.920.8296776/801 (96.9)776/819 (94.7)Negative

0.340.7483153/179 (85.5)153/593 (25.8)Positive

0.220.715752/110 (47.3)52/73 (71.2)Obscure

Word2Vecc+Bi-LSTMd–Attention

0.980.9594772/801 (96.4)772/849 (90.9)Negative

0.870.9681153/179 (85.5)153/222 (68.9)Positive

0.510.884947/110 (42.7)47/80 (58.8)Obscure

Proposed model (Kor2Enge)

0.990.9896776/801 (96.9)776/809 (95.9)Negative

0.870.9783153/179 (85.5)153/182 (84.1)Positive

0.620.906270/110 (63.6)70/115 (60.9)Obscure

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.
cWord2Vec: the word-to-vector representation model.
dBi-LSTM: bidirectional long short-term memory model.
eKor2Eng: Korean to English.

Visualization of Relative Importance
We visualized the weighted words when the proposed model
classified the input data. In the attention model, the weight of
each word could be used for classifying the reports. Based on
the intensity of color, the importance of a word was indicated
when the proposed model determined the class of the input data.
Darker colors indicated a higher importance for classifying

pneumonia. Figure 3 shows the instances where the proposed
model predicted pneumonia reports correctly. For example, the
highlighted words “Peribronchial,” “infiltration,” “suspected,”
and “bronchopneumonia” indicate pneumonia (Figure 3a). In
the bilingual texts (Figure 3f), the following words are important
to classifying pneumonia-reports: “두드러져,”
“bronchopneumonia,” “aspiration,” and “pneumonia.”
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Figure 3. Visualization of the importance of words by attention weights.The darker the color is, the greater the importance of the words for predicting
the pneumonia label. High attention weight is depicted in the darker color. Words with high attention weights are shown.

Extra Validations
As an extra validation of our proposed model, 2 clinicians
labeled an additional data set. The data set was randomly
selected from the entire data set, excluding the previously trained
data. For precise labeling, 2 medical doctors each labeled the
records. Of the 1000 records, 803 were agreed upon by 2
independent physicians. The Cohen κ value of the clinicians’
label was 0.63 (95% CI 0.59-0.67). Table 2 shows the

performance results of the proposed model with the
extra-validation data set. The AUROC and AUPRC for positive
labels were slightly lower in the extra-validation set than in the
test set (Figure 4). The F1 score of positive labels was similar
to that of the training data; however, predicting negative and
obscure labels showed a relatively poor performance as
compared to the training data set according to F1 score. The
overall accuracy of our model was 80.0%.

Table 2. Extra validation of the proposed Korean-to-English (Kor2Eng) model.

AUPRCbAUROCaF1 scoreRecall, n/N (%)Precision, n/N (%)Class

0.940.9287%422/498 (84.7%)422/470 (89.8%)Negative

0.910.9684%142/185 (76.8%)142/155 (91.6%)Positive

0.420.8452%77/120 (64.2%)77/178 (43.3%)Obscure

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve
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Figure 4. AUROC and AUPRC of our proposed model in the extra-validation set. AUROC: area under the receiver operating characteristic curve;
AUPRC: area under the precision-recall curve.

Discussion

The purpose of the Kor2Eng model is to classify
pneumonia-related medical records written in Korean and
English. Our proposed model showed 91.01% accuracy in the
test set and 80.0% accuracy in the extra-validation set for
classifying pneumonia reports. Appropriate classification of
radiologic reports is mandatory for further analysis regarding
pneumonia through EMRs. As compared to other models, such
as CNN or traditional machine learning models, our model
showed better performance. The 3 best-performing models
(Word2Vec with Bi-LSTM–Attention, FastText, and the
proposed model) demonstrated better performance than did the
traditional and CNN models, and our proposed model provided
the highest AUROC and AUPRC among the top 3 models.
Because too many false-positives may lead to clinician
exhaustion, a model with excellent performance is desirable.
We consider that a model with an AUROC of at least 0.95 can
be used in clinical practice or for labeling the data set. The
false-positive results of pneumonia reports can be additionally
filtered with other clinical findings such as respiratory symptoms
or antibiotics use, as pneumonia is defined by respiratory
symptoms with radiologic findings [30].

The label balance of the data set was a consequence of excluding
irrelevant labels to our target. As the reports that do not have
pneumonia-related words can be considered pneumonia-negative
radiologic reports, the reports requiring classification must
contain at least one of the pneumonia-related words such as
“consolidation” or “haziness”. Excluding the irrelevant label is
clinically appropriate and balances the data set with each label,
with the balanced data set mitigating the overestimation of the
model. Furthermore, filtering radiologic reports containing
relevant words might make the data set rather homogenous,
which makes classification a hard task. Our model showed an
excellent performance in classifying pneumonia, and thus, it
can be used for auto-labeling in classifying pneumonia reports.

A notable observation is the discrepancy between the test and
extra-validation set. The model showed a rather similar

performance in classifying negative and positive cases and a
relatively poor performance in obscure cases. One reason for
this discrepancy might be that 2 different clinicians annotated
the entire extra-validation set. As some of the obscure cases are
classified by the nuance of the context, the 2 clinicians might
have differed in labeling the obscure cases. Therefore, the
labeling of the obscure classification in the extra-validation set
might have been different from that of the training set. The
pneumonia cases in the report should only be decided by clinical
situations, and thus, the importance of obscure cases should be
evaluated in subsequent studies.

Several studies have been conducted for classifying radiologic
reports as positive or negative for a given disease [1,10,31,32]
or for classifying various diagnoses from medical records written
in Chinese [13]. Most of the studies used a CNN-based model
and showed a better performance than did our model
[1,10,31,32]. In our study, we compared several deep learning
models from logistic regression to LSTM with attention. The
CNN model, which showed an excellent performance in
previous studies [1,10,31,32], was inferior to the attention-based
LSTM model in our data set. The reason for its relatively poor
performance might be explained by our data selection. We
selected radiologic reports that had at least one of the
pneumonia-related words. This selection made the radiologic
reports relatively homogeneous compared to those used in
previous studies, which might contain a wider variety of
radiologic reports. As we compared the performance with the
CNN model, our proposed model was found to be comparably
accurate with those of previous studies and showed better
performance.

Radiologic reports in this study consisted of 2 languages:
English and Korean. Compared to the English data set, the
Korean word data set has a lack of studies in embedding and
analyzing in deep learning. To overcome this limitation, we
used unsupervised translation of Korean words to English words,
which had pretrained embedding [17]. Compared to the
Word2Vec with Bi-LSTM–Attention model, the attention/LSTM
model with transfer embedding showed a better performance
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in classification, especially for obscure labels. This method
might be especially important in bilingual reports.

Our study has several limitations. First, we only included reports
from a single tertiary center of surgical in-patients. Our model
might be inaccurate in a reporting style different from the one
that we have incorporated. Thus, if the model used a data set
from another reporting style, the model would need to be
validated again. However, in this case, more labeled data might
be available, and thus the applied method would show better
performance in another data set, especially for bilingual text
reports. Second, we could not compare the exact same models
with the previous models that showed good performance.

However, we compared our model with various deep learning
models that were used in previous studies, which is sufficient
to compare the performance of different model structures.

In summary, our proposed model showed superior performance
as compared to other algorithms in the classification of
pneumonia from radiologic reports. In bilingual radiologic
reports, the proposed method of transferring and
Bi-LSTM–Attention model showed significant improvement
in performance than did the previous high-performing models.
We hope that this method could be used to enrich the research
about pneumonia by obtaining exact outcomes from electronic
health data.
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Abstract

Background: Data-driven medical health information processing has become a new development trend in obstetrics. Electronic
medical records (EMRs) are the basis of evidence-based medicine and an important information source for intelligent diagnosis.
To obtain diagnostic results, doctors combine clinical experience and medical knowledge in their diagnosis process. External
medical knowledge provides strong support for diagnosis. Therefore, it is worth studying how to make full use of EMRs and
medical knowledge in intelligent diagnosis.

Objective: This study aims to improve the performance of intelligent diagnosis in EMRs by combining medical knowledge.

Methods: As an EMR usually contains multiple types of diagnostic results, the intelligent diagnosis can be treated as a multilabel
classification task. We propose a novel neural network knowledge-aware hierarchical diagnosis model (KHDM) in which Chinese
obstetric EMRs and external medical knowledge can be synchronously and effectively used for intelligent diagnostics. In KHDM,
EMRs and external knowledge documents are integrated by the attention mechanism contained in the hierarchical deep learning
framework. In this way, we enrich the language model with curated knowledge documents, combining the advantages of both to
make a knowledge-aware diagnosis.

Results: We evaluate our model on a real-world Chinese obstetric EMR dataset and showed that KHDM achieves an accuracy
of 0.8929, which exceeds that of the most advanced classification benchmark methods. We also verified the model’s interpretability
advantage.

Conclusions: In this paper, an improved model combining medical knowledge and an attention mechanism is proposed, based
on the problem of diversity of diagnostic results in Chinese EMRs. KHDM can effectively integrate domain knowledge to greatly
improve the accuracy of diagnosis.

(JMIR Med Inform 2021;9(5):e25304)   doi:10.2196/25304

KEYWORDS

intelligent diagnosis; obstetric electronic medical record; medical knowledge; attention mechanism

Introduction

Intelligent diagnosis is a way to provide clinical decision support
for doctors by means of artificial intelligence technology. In
the clinic, intelligent diagnosis plays an important role and can
be applied to a variety of practical situations. Intelligent
diagnosis can help doctors diagnose a patient’s condition,

significantly improving the efficiency and accuracy of the
diagnosis, and the results can also become an important basis
for future diagnosis. The continuous development of modern
diagnosis and treatment technology has made medical
information increasingly complex. Doctors obtain a large
amount of clinical diagnostic information every day and need
to make comprehensive decisions based on a large amount of
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data representing clinical information [1]. In addition, the
occurrence of complications during pregnancy poses a challenge
to doctors.

Electronic medical records (EMRs) are the most detailed and
direct form of clinical medical activities [2]. With the rapid
growth of EMRs, many methods of intelligent diagnosis using
EMRs have become available, enabling significant progress in
this field. Early intelligent diagnosis works mainly relied on
artificially designed feature templates [3,4] or used single
traditional machine learning methods, treating intelligent
diagnosis as a classification problem. Goldstein et al [5] used
the Informatics for Integrating Biology & the Bedside 2008
dataset to train a classifier for each disease category to classify
obesity and 15 other complications. Medhekar et al [6]
developed a decision support system based on data mining that
used a naïve Bayes classifier to model heart disease. Roopa et
al [7] used principal component analysis to extract the
characteristics of a diabetes dataset and then used a linear
regression model to predict whether a patient had diabetes.
These methods promoted the application of machine learning
and natural language processing in intelligent diagnosis but are
still in the early stages (eg, using relatively simple classification
methods and a shallow analysis of the EMRs).

Recently, an increasing number of researchers have focused on
neural networks to model intelligent diagnosis and related tasks.
Yang et al [8] proposed a clinical assistant diagnosis method
based on a multilayer convolutional neural network [9]. This
method uses self-learning to automatically extract the high-level
semantic information from EMRs. Chen et al [10] used an
end-to-end hierarchical neural network to investigate breast
cancer problems using EMRs. Hao et al [11] used a deep belief
network [12] to integrate patients’ structured data characteristics
to predict the risk of cerebral infarction. Hao et al [13] proposed
a diagnostic modeling and reasoning system using the dynamic
uncertain causality graph and improved the diagnostic accuracy
of jaundice. Jeddi et al [14] applied the C5.0 algorithm to draw
a multibranch decision tree used to aid in the diagnosis of
complicated skin diseases.

When the scale of the training data is limited in a traditional
neural network, the advantage of using external knowledge is
more obvious. These methods ignore the fact that neural
networks and external knowledge can benefit from each other.

The rapid development of computer technology and
biotechnology has enabled the rapid growth of biomedical text
resources. These resources contain valuable knowledge that can
be used to promote the development of medical informatics. A
doctor’s diagnostic process is a combination of their own clinical
experience and general medical knowledge. Therefore, medical

knowledge is indispensable in the diagnosis process. Fang et al
[15] proposed a method to diagnose chronic obstructive
pulmonary disease based on a knowledge graph and integrated
models. Liang et al [1] designed a system framework for the
data mining of EMRs based on pediatric diseases. This
framework combines medical knowledge with a data-driven
model and uses logistic regression for the disease hierarchical
diagnosis. These efforts provide new methods for medical data
analysis, but intelligent diagnosis based on EMRs is still
hindered by the following problems:

• An EMR usually involves multiple diagnostic results, such
as normal diagnosis, pathological diagnosis, and
complications.

• In the aspect of external knowledge, the above methods
simply splice the knowledge with the model, which fails
to capture the key information well and requires a large
number of calculations.

• To achieve the most advanced performance, doctors not
only care about the diagnostic results but also need to know
what medical knowledge contributed to the diagnosis.

Therefore, in this paper, we design a novel intelligent diagnosis
model based on deep learning. Specifically, to capture the
important details of the original documents, we use bidirectional
gated recurrent units (Bi-GRUs) [16] with a hierarchical
attention mechanism to model the correlations among words
and sentences in EMRs and knowledge documents. Given an
analysis of the correlation between the EMRs and medical
knowledge documents, we select the most supportive external
knowledge to support intelligent diagnosis. Considering the
diversity of diagnostic results, we need to conduct intelligent
diagnosis in the multilabel classification paradigm. The major
contributions of this paper are summarized as follows:

• Knowledge-aware hierarchical diagnosis model (KHDM)
makes full use of the hierarchical deep language model to
encode the EMRs and external knowledge documents.

• Language model is enriched with high-quality knowledge,
combining the advantages of both to perform a
knowledge-aware diagnosis.

• Experimental results on real-word Chinese obstetric EMRs
achieve superior performance over baselines. In addition,
we discuss the importance and interpretability of external
medical knowledge.

Methods

Overview
KHDM contains the following steps, as depicted in Figure 1.
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Figure 1. Overview of knowledge-aware hierarchical diagnosis model.

1. Enter the EMR into the document encoder to obtain the
document embedding e and concatenate it with the
numerical features n to get the final EMR embedding e′.

2. Input the EMRs and external knowledge documents into
the knowledge filter for preliminary screening of the
external knowledge, and send the filtered knowledge
documents to the document encoder to obtain the knowledge
embedding k.

3. Input the EMR embedding and knowledge embedding
jointly into the knowledge aggregator. Through the
simultaneous analysis of the EMRs and knowledge
documents, our model learns a knowledge-side attention
component in order to carefully select the most supportive
knowledge document k′ from the external knowledge to
support intelligent diagnosis.

4. e′ and k′ are concatenated and passed to a sigmoid classifier
for the diagnosis. In this section, we introduce the document
encoder, knowledge attention module (including the
knowledge filter and knowledge aggregator), and output.

Document Encoder
The purpose of the document encoder is to encode the original
EMRs and knowledge documents into continuous
low-dimensional embeddings to capture semantic relationships.
EMRs and medical knowledge documents usually have potential
hierarchical structures. A document consists of several
sentences, and a sentence consists of several words. Intuitively,

the document embedding problem can be converted into two
sequence embedding problems [17]. Modeling the semantics
of the EMR and external knowledge by word-level and
sentence-level representations can fully capture the hierarchical
laws and dependencies.

The words and sentences in a document provide different
information and have different degrees of importance. Inspired
by Yang et al [18], we successively apply the attention
mechanism [19] at the word level and sentence level so that it
can differentiate more important information when constructing
the document representation. The attention mechanism not only
improves the performance of the deep learning model but also
intuitively shows the contributions of words and sentences to
the classification decision.

We use the Bi-GRU sequence encoder with an attention
mechanism to encode the EMRs and knowledge documents.
Numerical features, such as physiological indicators and
laboratory results, are also important in EMRs. To enable more
complete use of the EMRs, we separately extract the numerical
features and concatenate them with EMRs. Next, we introduce
the Bi-GRU sequence encoder, attention encoder, and numerical
features in detail.

Although the word-level and sentence-level encoders can have
different structures, we use the same structure here for
simplicity, as shown in Figure 2.
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Figure 2. Document encoder framework.

Bi-GRU Sequence Encoder
The importance of words and sentences is highly context
dependent. In other words, the same words or sentences may
have different degrees of importance in different contexts. We
model the semantics of EMRs and external knowledge
documents by including word-level and sentence-level
representations that can fully capture hierarchical dependencies.
Taking the word level as an example, we use Bi-GRU to make
a word compilation of the meaning of an entire sentence, where
the GRU uses a gate control mechanism to memorize the
information of the previous cells.

The GRU has two gates: the reset gate rt and the update gate zt.
The reset gate is used to determine the degree to which the
previous information is forgotten, and the update gate is used
to decide which information to forget and which new
information to enter. rt and zt jointly control the calculation from
hidden state ht–1 to hidden state ht. ht̃ is a candidate hidden
layer. At time t, the GRU is calculated as follows:

where W* is the weight matrix. xt is the sequence vector at time
t, and σ is the activation sigmoid function that converts the
values of each cell state into the range of 0 to 1 to act as a gate
signal. The reset gate rt receives the values of ht–1 and xt. If rt

is zero, then the previous state is not saved. In other words, at
this time, ht ̃ only contains the information of the current word.
Afterward, the update gate zt controls how much information
needs to be forgotten from the hidden state ht–1 at the previous
moment and how much hidden layer information ht ̃ needs to
be added at the moment. The final hidden layer information ht

can then be output.

Bi-GRU uses forward and backward GRUs to encode the
sequence in two directions so that the associations between

different words (sentences) are taken into account when

encoding. Specifically, consider an EMR e = [s1,s2,
...,sL], where

L is the number of sentences and si(1 ≤ I ≤ L) represents the ith

sentence in the document. For each sentence in the document

si = [wi1,wi2,
...,wiT], wim(1 ≤ m ≤ T) represents the mth word in

si. wim is the embedding representation of wim, and the encoding
method is to concatenate the feature representations of Bi-GRU;

that is, the forward hidden state hit
→ and backward hidden state

hit
← at time t are weighted sums:

Attention Encoder
Not all words have the same effect on the meaning of a sentence,
as is the case for sentences within documents. The attention
mechanism has become an effective mechanism for mining
local differences and highlighting vital elements of data.
Therefore, we add an attention mechanism at the word and
sentence levels to indicate their importance to the previous level.
Compared with the general word-level attention mechanism,
the sentence-level attention mechanism plays a more important
role in medical documents because certain domain phrases often
appear. At the word level, the attention mechanism is introduced
to extract those words that are important to the meaning of the
sentence, and the representations of these informative words
are aggregated to form a sentence vector. The final sentence
vector representation si is defined as follows:

where the weight ait indicates the importance of a word to the
meaning of the sentence. The context vector uw is an attention
matrix obtained by a random initialization method. It is a
cumulative sum of the different probability weights assigned
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by the attention mechanism and the performance of each hidden
layer state. We measure the importance of the word as similarity
of wit with a word-level context vector uw and get a normalized
importance weight αit through a softmax function. We use the
same method to obtain the context-level representation of us

and finally to obtain the document vector e:

Numerical Features
Numerical features are very important indicators in Chinese
obstetric EMRs. For example, physiological indicators such as
the age of the pregnant woman, the number of menopause
months, and the uterine height are important factors affecting
the clinical judgement. However, there are some cases where
the numerical units of EMRs are not uniform. Taking the number
of menopause months as an example, it is generally described
as “menopause X months,” but some EMRs also use the
description method “menopause Y weeks,” We unified the units
of this indicator as months, relying on the equation that “4
weeks” is approximately “1 month” in the feature extraction.
We also need to consider the validity of the data. According to
medical professional knowledge, numerical features have a
certain value range. For example, when extracting the
physiological parameters of a pregnant woman’s uterine height,
if a value is found to be “29 m,” it can be speculated that this
data point is incorrect, which will affect the experimental results.
This paper determines the accuracy of the data by setting
thresholds for each physiological index, and the error data are
directly deleted. Detailed thresholds descriptions are provided
in Multimedia Appendix 1. After extracting the numerical
features n, they are concatenated with the document vector e as
the final representation of the EMR:

Knowledge Attention Module
Integrating all the external knowledge into the model is very
time-consuming, and not all knowledge has enough discernment
to support the final classification. Our knowledge attention
module aims to alleviate these problems, ensuring that our model
can select reliable and useful knowledge for each candidate.
This module consists of a knowledge filter and knowledge
aggregator. The knowledge filter can preliminarily filter out
irrelevant knowledge documents, and the knowledge aggregator
uses the attention mechanism to select the most supported
knowledge. Considering that external knowledge has too much
noise, such an attention mechanism explores the correlation
between the EMRs and knowledge documents. KHDM mainly
uses this module to make a knowledge-aware diagnosis.

Knowledge Filter
We consider the task of the knowledge filter to be text similarity
calculation. By calculating the similarity between the input
EMRs and the medical knowledge documents, the knowledge
not related to the input EMRs will be filtered out. Due to the
special nature of medical texts, symptoms and diagnostic
methods vary by disease. Therefore, we use the term

frequency–inverse document frequency (TF-IDF) to extract the
text features of the EMRs and external knowledge. TF(x)
represents word frequency, which counts the frequency of each
word in an EMR. IDF(x) represents the inverse text frequency
and returns the frequency of word x in the corpus, reflecting
the importance of words in the text:

where N(x) represents the number of occurrences of word x in
the document, N is the total number of words in the document,
and D is the total number of documents. D(x) indicates how
many documents the word x appears in. Due to professionalism
in the medical field, the IDF is smoothed so that domain words
that do not appear in all documents can also obtain a suitable
IDF value:

The set of documents and knowledge is then viewed as a set of
vectors in a vector space. The cosine function is used to measure
the similarity between the document and any knowledge. If the
similarity score is less than 0.5, we consider these knowledge
documents irrelevant and vice versa. After that, we use the
document encoder mentioned above to encode the relevant
knowledge document. Finally, we obtain the relevant knowledge

vector representation: k = [k1,k2,
...,kj].

Knowledge Aggregator
This submodule aims to find further medical knowledge that
supports intelligent diagnosis and generates an aggregated
knowledge embedding k′. Therefore, we use the attention
mechanism to select the key knowledge documents that are the
most critical to the task objective. When generating an
aggregated knowledge embedding, more attention is paid to the
most important knowledge:

The attention weight αt generated by kt and e′ can be regarded
as the correlation between the external knowledge and the input
EMRs. The top k-related knowledge is selected according to
the attention weight after sorting. The number of related
knowledge documents less than k will be padded with zero
vectors. We define k as the average label number per document.

Output
To make the final diagnosis prediction, we first concatenate the
EMR embedding e′ and the knowledge embedding k′ and feed
it into two fully connected layers to generate a new vector,
which is then passed to a sigmoid classifier to produce the
predicted results. We consider that all diseases with an output
probability greater than τ are positive predictions. The input to
the first fully connected layer can also be only e′ or k′, which
means we use only EMRs or external knowledge to make the
diagnosis. The loss function for the training is the cross entropy:
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Results

Dataset Details
We collected 24,192 Chinese obstetric EMRs randomly selected
by multiple hospitals as the research material, and each EMR
corresponds to one patient. Due to the different writing habits
of doctors, there are many different forms of expression for the
same diagnostic results. Therefore, the medical thesaurus
International Classification of Diseases, Tenth Revision [20] is
used as the basis for the standardization of disease naming. To

protect the privacy of patients, personal identifying information
such names and ID numbers of patients was removed [21]. The
dataset focuses on inpatient department data and consists
primarily of structured and unstructured text data. Structured
data include the basic information on the patient such as age,
ethnicity, and laboratory examination data. Unstructured data
mainly refer to the patient’s main complaint, admission, and
physical examination. Detailed data descriptions are shown in
Figure 3. The dataset contains 59 types of disease diagnostic
results and is divided into 21,772 training sets and 2420 test
sets according to the results distribution.

Figure 3. Chinese obstetric electronic medical record sample.

For external knowledge, we collected descriptions of medical
concepts from the authoritative textbook Obstetrics and
Gynecology [22] and a medical encyclopedia. The medical
concepts mainly include the disease definition, symptoms, and
treatment methods. In the end, we collect a total of 72 medical
definition documents that make up our external knowledge. All
external knowledge was chosen under the guidance of medical
experts.

Hyperparameter Setting
Since all EMRs and external knowledge documents are written
in Chinese, we first use PKUSEG [23] to segment the document
and set the maximum document length to 1600 characters. We
use the GloVe [24] model to train word embedding on the corpus
of EMRs after word segmentation. The hidden state size of the
GRU is set to 100. For text convolutional neural network
(TextCNN), this paper sets the filter width to (2, 3, 4, 5), and
each filter size is 25 to maintain consistency. After the
connection, the representation size of our model becomes 200.
Finally, a 200 * c fully connected layer is added (c is the number
of labels).

Since we use the sigmoid function for classification, the
prediction threshold τ is set to 0.5. Average label number per
document k is 2.688, so we set k = 3. We use Adam [25] as the
optimizer. During the training period, EMRs are selected by

random sampling method. We set the learning rate to 0.001 and
the batch size to 32.

Performance on an Obstetric EMR Dataset
In multilabel learning, each sample may have multiple category
labels. Many evaluation metrics for multilabel learning have
been proposed [26]. We use the average precision, 1-error,
hamming loss, ranking loss, and coverage as evaluation metrics.
The following text classification models were used as baselines
for comparison:

• Classifier chains [27] integrate multiple single classification
methods into one model to solve the problem of multilabel
classification.

• Multilabel k–nearest neighbor [28] considers the k instances
with the smallest distance from the new instance in the
feature space as a set.

• Long short-term memory (LSTM) [29] uses the last hidden
state as the representation of the whole document.

• Bidirectional long short-term memory (Bi-LSTM) is a
bidirectional LSTM that can obtain long-term context
information in the direction of the input.

• TextCNN [9] uses multiple kernels of different sizes to
extract the key information in sentences to better capture
the local relevance.
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All text classification models are trained in the multilabel
framework. The experimental results on the Chinese obstetric

EMR dataset are summarized in Table 1.

Table 1. Comparative results on Chinese obstetric electronic medical record dataset.

CoverageRanking lossHamming loss1-errorAverage precisionMethod

19.79170.13660.03080.48800.5083CCa

10.23470.07090.02580.24880.6109ML-KNNb

4.46120.01900.01660.08360.8651LSTMc

4.46250.01860.01640.07750.8721Bi-LSTMd

4.60350.02030.01880.09610.8652TextCNNe

4.08330.01650.01560.07130.8929KHDMf

aCC: classifier chains.
bML-KNN: multilabel k–nearest neighbor.
cLSTM: long short-term memory.
dBi-LSTM: bidirectional long short-term memory.
eTextCNN: text convolutional neural networks.
fKHDM: knowledge-aware hierarchical diagnosis model.

According to the experimental results, compared with the
traditional machine learning methods, the neural network
method has achieved better results. The main reason is that the
neural network can capture richer features and deeper semantic
information. Considering the structured context information, a
bidirectional network can significantly improve the performance.
For example, Bi-LSTM gives an average precision of 0.8721,
while that of the LSTM is 0.8651. In addition, our model is
largely superior to other traditional neural network methods.
The TextCNN is usually connected to the pooling layer after
the convolution layer. Its operation logic is to retain the strongest
features from the feature vectors obtained from a convolution
kernel so it cannot retain the relative position information of
the original input, resulting in information loss. LSTM has a
sequence dependency problem and does not perform well when
the document is too long. Our model uses a hierarchical structure
to divide the document into sentences without the problems of
distance dependence and information loss. In general, our model
is much better than the other models in all of the evaluation
metrics applied, with improvements of 3% to 30%. Making full
use of the attention mechanism to integrate external medical
knowledge is undoubtedly an important way to improve the
effectiveness of intelligent diagnosis.

Performance on Public Dataset
This paper takes the obstetric intelligent diagnosis problem into
a multilabel classification framework. Therefore, we test the
classification effect on two public datasets: DeliciousMIL [30]
and Hep categories. The former consists of a number of tagged
pages on the social bookmarking site delicious.com, with
categories including programming, style, and reference, and the
latter is a public multilabel dataset available on Magpie, with
subject categories relevant to high-energy physics (HEP)
abstracts, including astrophysics, experiment-HEP, gravitation
and cosmology, phenomenology-HEP, and theory-HEP. Table
2 provides a brief description of each dataset. The selected
external knowledge k values of the two datasets are 3 and 1,
respectively.

The external knowledge data for the DeliciousMIL and Hep
categories datasets are derived from Wikipedia entry definitions.
Table 3 and Table 4 present the results. Similar to the results
on the obstetric EMR dataset, it can be clearly observed that
our model performs best in multilabel text classification, proving
that KHDM is universal for text classification tasks.

Table 2. Description of public datasets.

ALaLabelsInstancesFieldDataset

2.95742012,234Social networking sitesDeliciousMIL

1.192051000High-energy physicsHep categories

aAL: average label number per document.
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Table 3. Comparative results on public dataset DeliciousMIL.

CoverageRanking lossHamming loss1-errorAverage precisionMethod

12.92410.41830.20540.81340.3208CCa

11.02130.34880.47480.76210.3703ML-KNNb

6.99280.15180.16410.39470.5813LSTMc

6.96480.16150.16100.37860.5968Bi-LSTMd

6.06370.13440.17600.36390.6299TextCNNe

5.91010.12840.12550.33120.6386KHDMf

aCC: classifier chains.
bML-KNN: multilabel k–nearest neighbor.
cLSTM: long short-term memory.
dBi-LSTM: bidirectional long short-term memory.
eTextCNN: text convolutional neural networks.
fKHDM: knowledge-aware hierarchical diagnosis model.

Table 4. Comparative results on public dataset Hep categories.

CoverageRanking lossHamming loss1-errorAverage precisionMethod

1.94100.43810.29820.62900.5606CCa

2.23000.44330.34600.58000.5733ML-KNNb

0.96420.24370.27400.54220.6807LSTMc

0.94550.22510.22000.48160.7055Bi-LSTMd

0.62070.15500.24200.34290.7903TextCNNe

4.08330.01650.01560.07130.8929KHDMf

aCC: classifier chains.
bML-KNN: multilabel k–nearest neighbor.
cLSTM: long short-term memory.
dBi-LSTM: bidirectional long short-term memory.
eTextCNN: text convolutional neural networks.
fKHDM: knowledge-aware hierarchical diagnosis model.

Discussion

Ablation Test
KHDM is a combination of a knowledge attention mechanism
and external medical knowledge representation. We conducted
an ablation test to assess the contributions of these two

components in our model. Table 5 presents the performance of
our model and its ablations on the obstetric EMR dataset. w/o
Knowledge means using only the EMRs for the intelligent
diagnosis, and w/o Att means we remove the attention
mechanism and all the medical knowledge documents directly
concatenated with the EMRs and do not use the knowledge
attention module.
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Table 5. Results of the ablation test.

CoverageRanking lossHamming lossOne errorAverage precisionMethod

4.23640.02120.01840.10470.8789w/o Knowledge

4.32100.01810.01640.10220.8519w/o Atta

4.60350.02030.01880.09610.8652TextCNNb

4.35160.01990.01670.09120.8700TextCNN + knowledge

4.08330.01650.01560.07130.8929KHDMc

aAtt: attention.
bTextCNN: text convolutional neural networks.
cKHDM: knowledge-aware hierarchical diagnosis model.

From the experimental results, the following can be seen:

• When the external knowledge is not introduced or the
attention mechanism is not used, the model performance
deteriorates.

• The models incorporating knowledge are superior to
ordinary text classification models with a drop to 0.8789
of model w/o Knowledge after the supplementary knowledge
is removed. The effectiveness of using external knowledge
information is confirmed, and medical knowledge
contributes to intelligent diagnosis.

• When fusing the medical knowledge, performances of .w/o
Att and TextCNN + knowledge significantly increase by
simply concatenating the knowledge document.

However, these models do not use the knowledge attention
mechanism but directly concatenate with the external
knowledge, which will introduce a large amount of noise. We
can see KHDM improves more than 2 percentage points on
most evaluation metrics. These ablation test results reflect the

importance and rationality of using the attention mechanism to
capture the interactions between multiple inputs.

Interpretability of the Attention Mechanism
Interpretability is very important for model evaluation,
especially in the medical field, as it allows doctors to understand
the rationale behind the diagnostic results. To verify that our
model can capture the most important sentences and words in
a document, we first visualized the hierarchical attention
mechanism in the document encoder on the Chinese obstetric
EMR dataset.

As shown in Figure 4, every line is a sentence, and we normalize
the sentence weights and word weights to ensure that only the
important words in the most important sentences are
emphasized. Red denotes the weight of a sentence and blue
denotes the weight of a word, where the darker the color is, the
greater the weight. We know that doctors often diagnose patients
by analyzing their clinical symptoms and test results. Our model
accurately locates the words abdominal pain and no yellow stain
and their corresponding sentences.

Figure 4. Visualization of attention in document encoder (attention encoder).

Next, we choose a representative example to illustrate the role
of the attention mechanism in the knowledge aggregator. We

remove all attention values less than 10–3 from the visualization.
As can be seen in Figure 5, our model pays more attention to
the clinical symptom blood (red part) and site cervix (green

part) within the medical knowledge. The darker the color of
the line, the higher the attention. Similarly, medical concepts
are essential in clinical diagnosis, so medical knowledge with
a higher attention score through localization of symptoms and
sites will be selected.
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Figure 5. Visualization of attention in knowledge aggregator (knowledge attention).

Limitations
We used only external medical knowledge related to obstetric
diseases, but obstetric diagnosis also involves immunology,
cytology, genetics, pathology, and other multilevel knowledge.
For cardiovascular and cerebrovascular diseases requiring blood
pressure and routine blood tests, the numerical features are very
important for the diagnosis, and our proposed method provide
support. These numerical features are very important for the
diagnosis, and our proposed method can provide support. But
for diseases such as cancer, text data alone is not enough and
must be combined with other types of medical information such
as medical images and signals. To improve the interpretability
of intelligent diagnosis model, communication with the clinic
and selection of an appropriate interpretation method in terms
of complementing the doctor’s workflow and habits is still

necessary. Another limitation that needs to be addressed in
achieving intelligent diagnosis based on EMRs is imbalanced
datasets. This paper selects common diseases as the research
object. In future work, we will focus on diseases with lower
frequency.

Conclusions
In this paper, we propose KHDM that synchronously and
effectively uses Chinese obstetric EMRs and external
knowledge. Particularly, the use of the knowledge attention
module to selectively leverage medical knowledge not only
improves performance but also provides a basis for intelligent
diagnosis. The experimental results on a real obstetric EMR
dataset show that KHDM can effectively use external knowledge
to enhance the language model, thereby improving the
performance.
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Abstract

Background: Retinal vascular diseases, including diabetic macular edema (DME), neovascular age-related macular degeneration
(nAMD), myopic choroidal neovascularization (mCNV), and branch and central retinal vein occlusion (BRVO/CRVO), are
considered vision-threatening eye diseases. However, accurate diagnosis depends on multimodal imaging and the expertise of
retinal ophthalmologists.

Objective: The aim of this study was to develop a deep learning model to detect treatment-requiring retinal vascular diseases
using multimodal imaging.

Methods: This retrospective study enrolled participants with multimodal ophthalmic imaging data from 3 hospitals in Taiwan
from 2013 to 2019. Eye-related images were used, including those obtained through retinal fundus photography, optical coherence
tomography (OCT), and fluorescein angiography with or without indocyanine green angiography (FA/ICGA). A deep learning
model was constructed for detecting DME, nAMD, mCNV, BRVO, and CRVO and identifying treatment-requiring diseases.
Model performance was evaluated and is presented as the area under the curve (AUC) for each receiver operating characteristic
curve.

Results: A total of 2992 eyes of 2185 patients were studied, with 239, 1209, 1008, 211, 189, and 136 eyes in the control, DME,
nAMD, mCNV, BRVO, and CRVO groups, respectively. Among them, 1898 eyes required treatment. The eyes were divided
into training, validation, and testing groups in a 5:1:1 ratio. In total, 5117 retinal fundus photos, 9316 OCT images, and 20,922
FA/ICGA images were used. The AUCs for detecting mCNV, DME, nAMD, BRVO, and CRVO were 0.996, 0.995, 0.990, 0.959,
and 0.988, respectively. The AUC for detecting treatment-requiring diseases was 0.969. From the heat maps, we observed that
the model could identify retinal vascular diseases.

Conclusions: Our study developed a deep learning model to detect retinal diseases using multimodal ophthalmic imaging.
Furthermore, the model demonstrated good performance in detecting treatment-requiring retinal diseases.

(JMIR Med Inform 2021;9(5):e28868)   doi:10.2196/28868
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Introduction

Background
Retinal vascular diseases, including diabetic macular edema
(DME), neovascular age-related macular degeneration (nAMD),
myopic choroidal neovascularization (mCNV), and retinal vein
occlusion (RVO), highly affect visual function and lead to loss
of working ability and impaired life quality [1-4]. Anti–vascular
endothelial growth factor (VEGF) can improve visual outcomes
for patients with retinal diseases [5]. Early disease detection
and timely management can prevent disease progression and
advanced visual impairment.

With its advancement in recent years, artificial intelligence has
recently been used for several applications in the medical field,
including for disease monitoring, diagnosis, and treatment [6].
In ophthalmology, deep learning—an artificial intelligence
technique—can potentially detect eye diseases, such as diabetic
retinopathy, glaucoma, nAMD, and retinopathy of prematurity,
as well as refractive errors [7]. Different ocular pathologies can
be identified using different imaging modalities. Multiple
imaging modalities are available for retinal vascular disease
diagnosis. Although the use of retinal fundus photography for
diagnosis is feasible, robust diagnosis may require further
imaging, such as through the use of optical coherence
tomography (OCT), chorioretinal angiography (ie, fluorescein
angiography [FA] and indocyanine green angiography [ICGA]),
and optical coherence tomography angiography (OCTA). Deep
learning has been applied for various imaging techniques. In
addition to color fundus images, which are commonly used for
detecting eye diseases [7], other imaging modalities are useful
in deep learning–based applications. For example, OCT has
been used for diagnosis and referral in patients with retinal
diseases [8,9], and OCTA has been used for identifying
nonperfusion areas in the retina [10].

Objective
Multimodal imaging in ophthalmology could improve the
accuracy of disease diagnosis. The increased application of
multiple imaging modalities for disease detection has led to
advancements in deep learning–assisted disease diagnosis. An
et al [11] used OCT combined with retinal fundus photography
for glaucoma diagnosis. Meanwhile, Vaghefi et al [12]
demonstrated an increased accuracy when using multimodal
imaging to train an algorithm for OCT, OCTA, and retinal
fundus photography for detecting dry AMD. However, little
research has investigated the use of deep learning techniques
in multimodal imaging for determining retinal vascular diseases.
In our study, we developed a deep learning–based model for
detecting retinal vascular diseases and diseases requiring
anti-VEGF treatment through the use of multimodal retinal
imaging, including color fundus photography, OCT, and FA
with or without ICGA (FA/ICGA).

Methods

Study Participants
In this retrospective study, we included patients who underwent
clinical examinations involving retinal fundus photography,
OCT, and FA/ICGA from 2013 to 2019 at Chang Gung
Memorial Hospital, Linkou Medical Center, Taipei and Keelung
branches. The retinal fundus photos were obtained using 1 of
the 2 color fundus cameras (Topcon Medical Systems; digital
non-mydriatic retinal camera: Canon). OCT was performed
using OCT machines (Heidelberg Engineering Inc; Avanti,
Optovue Inc), and FA/ICGA images were obtained using fundus
angiography machines (Heidelberg Engineering, Inc). The study
protocol was approved by the Institutional Review Board of
Chang Gung Memorial Hospital (no. 201900477B0), and the
study adhered to the tenets of the Declaration of Helsinki.

Data Classification
In our study, we identified retinal vascular diseases, including
DME, nAMD, mCNV, branch retinal vein occlusion (BRVO),
and central retinal vein occlusion (CRVO). Patients without a
history of anti-VEGF treatment were included. After review of
the multimodal images of each eye, disease diagnoses and need
for anti-VEGF treatment were determined by 3 trained retinal
ophthalmologists (LY, CHW, and SYP, who had 20, 10, and 6
years of clinical experience, respectively). Eye images were
first reviewed by 2 of the retinal ophthalmologists (CHW and
SYP). The ophthalmologists (CHW and SYP) excluded images
with poor quality or nondifferentiable diagnosis. When the
disease labels assigned by the ophthalmologists differed, a
consensus was reached through discussion among all 3 retinal
ophthalmologists. The senior retinal ophthalmologist (LY) again
confirmed the image labels that were consistent in the first
labeling. The patients were classified into DME, nAMD, mCNV,
BRVO, and CRVO groups according to their disease diagnosis.
The retinal ophthalmologists further defined diseases as
anti-VEGF treatment requiring or non–treatment requiring.
Based on the published literature, the treatment requirement
was defined separately in each retinal vascular disease according
to the features in different images [1,2,13-15]. Moreover, in the
control group, we included patients who had undergone retinal
fundus photography, OCT, and FA/ICGA examination for
clinical purposes, but the examinations revealed no remarkable
lesions or only lesions not related to retinal vascular diseases.
For multimodal imaging, retinal fundus photos were macular
centered; OCT images were fovea centered; and FA/ICGA
images, which were randomly selected from different phases,
were macular centered.

Data Management
The data management and image processing were performed
on the same eye. We collected images of retinal fundus
photography, OCT, and FA/ICGA from each eye. The flowchart
of the image collection process is displayed in Figure 1. First,
images were evaluated by the detection model to select and crop
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for different image types. The detection model, Cascade R-CNN
[16], was trained with 599 images in different imaging
modalities. The isolated images were first resized to 256 × 256
pixels. Subsequently, isolated images were augmented by slight
adjustment of the brightness and contrast level, foggy masking,
compression, rotation, horizontal flipping, and the addition of
side lines. Then, 25 images were randomly selected from
different imaging modalities and assembled. At least one image

was required from each imaging modality. The assembled image
package consisted of 25 segmented images from the same eye
based on a combination of images with various augmentations
and components of fundus retinal photography, OCT, and
FA/ICGA. The size of the assembled images was 1280 × 1280
pixels, consisting of 25 images with a size of 256 × 256. Then,
the image package was sent to the model for prediction.

Figure 1. Flowchart of multimodal image management and processing. OCT: optical coherence tomography; FA/ICGA: fluorescein angiography with
or without indocyanine green angiography.

Model Architecture
In our study, EfficientNetB4 was used as the convolutional
neural network (CNN) for the classification model (Figure 2).
Because our goal was to aid disease diagnosis and the detection
of disease severity, the models had 2 outputs: (1) disease
classification and (2) treatment requirement determination.
However, features indicating severity may differ based on the
disease. Our model first delivered disease prediction for
differentiating different retinal vascular diseases. We then

designed a layer consisting of a fully connected, reshaped, and
weighted sum to facilitate the model classification of treatment
requirement partially according to the results from the disease
prediction part. In addition, to visualize the features for model
prediction, heat maps were generated using gradient-weighted
class activation mapping [17], which used the gradient based
on the output scores to show the activation map for the specific
image. The features of the heat maps were highlighted in a
lighter color.
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Figure 2. Architecture of the deep learning prediction model. CNN: convolutional neural network; FCL: fully connected layer; GAP: global average
pooling.

Model Training
Image packages were split into training, validation, and testing
data sets in a 5:1:1 ratio, respectively. The model was trained
based on noisy student [18] pretrained weight and optimized
using an AdamW optimizer [19]. The model was trained 3 times
with different combinations of training and validation data sets.
We also tested different parameters including learning rates of
1e-4, 1e-5, and 5e-5, and batch sizes of 8, 12, and 16.
Subsequently, the model with the best performance in the
training and validation data sets was selected and evaluated in
the testing data set (Multimedia Appendices 1 and 2). The
learning rate and batch size were set as 5e-5 and 16, respectively.
Data preprocessing and the training and evaluation of the model
were completed on a NVIDIA DGX-1 server with the Ubuntu

18.04 operating system. Image preprocessing, including
conversion, augmentation, and assembly, was conducted using
ImageMagick 7.0.10 [20]. Images were evaluated and cropped
using Mmdetection 1.0.0 [21] and Pytorch 1.4.0 [22], and the
bounding box was labeled using CocoAnnotator [23].
Tensorflow 2.2 [24] was used as the framework to train and
evaluate the deep learning model.

Statistical Analysis
Receiver operating characteristic (ROC) curves were used for
differentiating different retinal vascular diseases and
treatment-requiring diseases, and the area under the curve (AUC)
was measured for each ROC curve. Moreover, the sensitivity,
specificity, and accuracy of the model were calculated.
Regarding model performance in predicting different retinal
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diseases, the AUC, sensitivity, specificity, and accuracy were
based on a one-versus-rest comparison. Additionally, a
confusion matrix was created and demonstrated sensitivity in
disease prediction. Statistical analysis was performed using the
Sklearn 0.23.2 package in Python (Python Software Foundation).

Results

Study Participants and Data Distribution
In total, 2992 eyes of 2185 patients were included in our study.
In the first labeling of 2992 eyes, 212 (7.08%) were differently

labeled by CHW and SYP, and a consensus was reached after
discussion among all 3 retinal ophthalmologists. Among the
2780 eyes with consistent labels in the first step, 144 (5.18%)
eyes had different labels after review by LY, and a consensus
was reached after discussion among all 3 retinal
ophthalmologists. The distribution of the included eyes is shown
in Table 1.

Table 1. Number of eyes included in the control and disease groups.

Non–treatment-requiringTreatment-requiringTotalGroups

N/AaN/Aa239Control

4217881209DMEb

1998091008nAMDc

15556211mCNVd

45144189BRVOe

35101136CRVOf

85518982992Total

aN/A: not applicable.
bDME: diabetic macular edema.
cnAMD: neovascular age-related macular degeneration.
dmCNV: myopic choroidal neovascularization.
eBRVO: branch retinal vein occlusion.
fCRVO: central retinal vein occlusion.

The control, DME, nAMD, mCNV, BRVO, and CRVO groups
consisted of 239, 1209, 1008, 211, 189, and 136 eyes,
respectively. Among all the disease groups, 788, 809, 56, 144,
and 101 eyes required treatment in the DME, nAMD, mCNV,
BRVO, and CRVO groups, respectively. Subsequently, 2138,

427, and 427 eyes were assigned to the training, validation, and
testing data sets, respectively. We used 5117 retinal fundus
photos, 9316 OCT images, and 20 922 FA/ICGA images, and
the distribution of the images in different data sets is shown in
Table 2.

Table 2. Distribution of image number used in different modalities for different data sets.

Testing

(n=427)

Validation

(n=427)

Training

(n=2138)

Total

(n=2992)

Modality

74670936625117Retinal fundus photos

1340127267049316OCTa

303129591493220922FA/ICGAb

aOCT: optical coherence tomography.
bFA/ICGA: fluorescein angiography with or without indocyanine green angiography.

Model Performance
Model performance was evaluated using the testing data set.
ROC curves are illustrated in Figure 3, and the AUC for each
curve was determined. For disease identification, the overall
AUC was 0.987, and the AUC was the highest in the mCNV
(0.996) and control (0.996) groups, followed by the DME
(0.995), nAMD (0.990), CRVO (0.988), and BRVO (0.959)
groups. For predicting diseases requiring anti-VEGF treatment,
the AUC was 0.969. Details regarding the model sensitivity and

specificity are provided in Table 3. For retinal vascular disease
prediction, the sensitivity was the highest for the control (0.971)
group, followed by the nAMD (0.956), DME (0.940), and
mCNV (0.933) groups, whereas the sensitivity of RVO
identification was the lowest (0.690 for BRVO and 0.769 for
CRVO). Regarding the prediction of diseases requiring
anti-VEGF treatment, the sensitivity was 0.904 and specificity
was 0.945. The accuracy for disease prediction was the highest
in the control and mCNV (0.984) groups, followed by the BRVO
and CRVO (0.977), DME (0.967), and nAMD (0.963) groups.
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The accuracy for the detection of treatment-requiring diseases was 0.930. The confusion matrix is shown in Figure 4.

Figure 3. Receiver operating characteristic curves of the model performance for (A) predicting different retinal vascular diseases and (B) identifying
treatment-requiring diseases. AUC: area under the curve; BRVO: branch retinal vein occlusion; CRVO: central retinal vein occlusion; DME: diabetic
macular edema; mCNV: myopic choroidal neovascularization; nAMD: neovascular age-related macular degeneration.
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Table 3. Sensitivity, specificity, and accuracy of the model in the prediction of retinal vascular diseases and treatment-requiring diseases.

AccuracySpecificitySensitivityValue

0.9840.9850.971Control

0.9670.9880.940DMEa

0.9630.9660.956nAMDb

0.9840.9870.933mCNVc

0.9770.9970.690BRVOd

0.9770.9830.769CRVOe

0.9300.9450.904Treatment requirement

aDME: diabetic macular edema.
bnAMD: neovascular age-related macular degeneration.
cmCNV: myopic choroidal neovascularization.
dBRVO: branch retinal vein occlusion.
eCRVO: central retinal vein occlusion.

Figure 4. Confusion matrix demonstrating the performance of the prediction model in different retinal vascular diseases. BRVO: branch retinal vein
occlusion; CRVO: central retinal vein occlusion; DME: diabetic macular edema; mCNV: myopic choroidal neovascularization; nAMD: neovascular
age-related macular degeneration.

Heat Maps for Model Prediction
Heat maps for visual explanations of our model predictions
were generated using gradient-weighted class activation

mapping, and the samples are shown in Figure 5. In the heat
maps, the model could simultaneously identify the lesion in
different imaging modalities. Regarding different retinal vascular
diseases, the model had different weights in different image
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modalities. For example, in eyes with RVO, the model
highlighted the exudates and hemorrhage dot in retinal fundus
photos, ischemic area, and leaking point in FA/ICGA. In patients
requiring treatment for DME, the model highlighted retinal

vessels within the macula in retinal images, the central swelling
area in OCT images, and the leaking or staining lesions in
FA/ICGA images.

Figure 5. Sample heat maps generated by the prediction model in a true-positive patient with (A) treatment-requiring branch retinal vein occlusion,
(B) treatment-requiring diabetic macular edema, and (C) non–treatment-requiring age-related macular degeneration.
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Discussion

Main Findings
In this study, we used multimodal imaging to develop a deep
learning–based model for the prediction of retinal vascular
diseases, including DME, nAMD, mCNV, BRVO, and CRVO,
and to determine whether anti-VEGF treatment was required.
This model had average AUCs of 0.987 and 0.969 for predicting
retinal vascular diseases and for predicting treatment-requiring
diseases, respectively. The heat map shows that the model can
identify disease features through multimodal retinal imaging.

Ophthalmology Imaging in Deep Learning
Previous studies have proven the efficacy of using different
image modalities in deep learning–based models for predicting
retinal diseases. In addition to retinal fundus images for
identifying diabetic retinopathy, AMD, and glaucoma [7], a
deep learning model using OCT for retinal layer segmentation
and retinal disease identification was developed by the
DeepMind group [8]. Moreover, deep learning could help to
detect ischemic zones in retinal vascular diseases through the
use of ultra-wide-field FA [25]. The aforementioned studies
demonstrated that deep learning can be effectively applied for
a single retinal imaging modality. However, few investigations
have been conducted to study the application of deep learning
models for predicting diseases using more than one retinal
imaging modality. OCT and retinal fundus images have been
used concomitantly for dry AMD [26] and glaucoma [11]
diagnosis. However, previous studies have either used a single
imaging modality or focused on predicting a single retinal
disease. To date, few studies have evaluated the performance
of deep learning models with multimodal retinal imaging for
predicting multiple retinal vascular diseases.

Multimodal Imaging–Based Deep Learning Model for
Retinal Vascular Diseases
To our knowledge, this is the first study to use multimodal deep
learning–based architecture for detecting multiple retinal
vascular diseases. In our study, we used multiple image
modalities, including retinal fundus photography, OCT, and
FA/ICGA, for predicting neovascular retinal diseases, including
DME, nAMD, mCNV, and RVO [27]. Furthermore, this model
can identify diseases requiring anti-VEGF treatment. In clinical
settings, multimodal retinal images are crucial for
ophthalmologists to treat retinal diseases. Occasionally, a feature
in a retinal image modality may be shared by many retinal
diseases. For example, increased central retinal thickness in
OCT can be present in DME, nAMD, mCNV, and RVO, but
retinal fundus images may vary among these diseases. The
features of nAMD and mCNV may appear similar in retinal
fundus images, and an ICGA is needed for differentiating them
[2]. Therefore, multimodal imaging is required for the diagnosis
and treatment determination of different retinal diseases [28].
Our model with multimodal imaging was similar to real-world
ophthalmology practice with regard to the diagnosis for multiple
retinal diseases and determination of disease severity. In
real-world practice, the model may help with the screening of
the diseases and treatment-requiring status, saving
ophthalmologist’s time and effort on reviewing the images.

Although the AUC of different retinal vascular diseases
demonstrated excellent differentiation, defined as AUC > 0.8
[29], the RVO groups showed relatively low sensitivity. This
might be related to the low number of eyes used for model
training. In the future investigation, the generative adversarial
network may be implemented to synthesize ophthalmic images
and solve the problem of an inadequate number of images [30].

Detection of Treatment-Requiring Retinal Vascular
Diseases
Because expenses involved in using anti-VEGF drugs in the
treatment of retinal vascular diseases are high, patients being
administered these drugs may need to meet strict criteria to
claim reimbursement from insurance companies in many regions
[31]. In Taiwan, the use of intravitreal anti-VEGF treatment for
DME, nAMD, mCNV, and RVO requires prereview by members
of the Taiwan National Health Insurance program for
reimbursement [32,33]. An efficient and accurate method for
evaluating a patient’s retinal vascular disease status and disease
severity may be essential. Our model could not only aid
ophthalmologists in disease diagnosis and in determining the
need for anti-VEGF treatment for retinal vascular diseases but
also help with the prereview of anti-VEGF treatment.

Image Variability for the Model
The model developed in the present study is highly flexible in
terms of image input. It does not depend on a fixed image
distribution for different modalities. The only requirement is at
least one image for each imaging modality. We investigated the
model accuracy for packages with different numbers of images,
and 25 images in a 5 × 5 matrix had the highest performance.
Moreover, we tested different CNN models and different
compositions of imaging modalities to determine which could
achieve the highest accuracy (Multimedia Appendix 3). Using
the CNN of EfficientNetB4 with images of retinal fundus
photography, OCT, and FA/ICGA had the best performance.
The images from the same eye can be randomly arranged or
augmented during the preprocessing stage before being used in
the prediction model. The visualized heat maps show that the
model has the ability of simultaneous differentiation of retinal
diseases with the use of different imaging modalities. With
DME, for example, both the central retina in OCT and the
leaking points in FA had high weightage. For BRVO, the model
highlights areas with hemorrhage in retinal fundus images,
increased retinal thickness in OCT images, and nonperfusion
in FA images. These findings are compatible with the clinical
features of retinal diseases [34,35] and indicate that our model
produces reasonable and reliable predictions of retinal vascular
diseases.

False Prediction of the Model
Regarding false predictions of retinal diseases, sample heat
maps are presented in Figure 6. We observed that the model
provided wrong predictions mostly for eyes with advanced-stage
diseases or coexisting retinal diseases. Retinal vascular diseases
may share undistinguishable features in advanced stages. For
example, in an advanced stage of a disease, retinal hemorrhage,
retinal nonperfusion, and macular edema could appear to have
the same prominence in CRVO as in DME and advanced
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diabetic retinopathy [36,37]. The coexistence of diabetic
retinopathy with DME may produce clinical features similar to
those of RVO with macular edema [38]. Additionally, other
retinal disorders, such as central serous chorioretinopathy, may
display features similar to those of retinal vascular diseases and

lead to misdiagnosis by the model. As for diseases requiring
anti-VEGF treatment, false prediction was noted in cases with
borderline disease activity or other retinal disorders, such as
central serous chorioretinopathy and epiretinal membrane, for
which anti-VEGF treatment is not indicated.

Figure 6. Sample heat maps for false prediction of the model: (A) false prediction of treatment-requiring diabetic macular edema (DME) in a patient
with coexisting DME and central retinal vein occlusion (CRVO); (B) false prediction of treatment-requiring age-related macular degeneration (AMD)
in a patient with central serous chorioretinopathy; (C) false prediction of treatment-requiring DME in a patient with epiretinal membrane, lamellar
macular hole, and diabetic retinopathy; (D) false prediction of treatment-requiring DME in a patient with advanced CRVO.

Study Limitations
This study had some limitations. First, the model requires the
use of multiple image modalities, including OCT and FA/ICGA,
which some eye-care facilities may not be equipped with.
Although the study focused on deep learning–based prediction
with multimodal imaging, clinical application may require more
investigation. Second, images used in the study underwent
quality checks. The efficacy during application to a real-world
clinical setting may be affected by the patient’s condition and
the image quality [39]. Additionally, some ocular diseases
affecting image signal transmission could affect image quality
and retinal disease diagnosis [40,41]. Third, images from
different machine manufacturers not included in our study might
have affected the model accuracy. A transfer learning approach
could be adopted in cases where images are obtained from
different machine manufacturers. Fourth, we did not consider
other retinal vascular diseases, such as retinal neovascularization
caused by uveitis or infection. The model is inapplicable to
diseases not included in our study. Fifth, we only identified

disease statuses that may require anti-VEGF treatment. Disease
statuses requiring other treatments, such as laser therapy, were
not analyzed in the current study. Furthermore, images of the
most advanced disease stages with features such as severe
vitreous hemorrhage or diffused chorioretinal atrophy would
have been excluded due to nondifferentiable diagnosis. Sixth,
a relatively small number of eyes in the RVO groups led to
decreased accuracy in disease prediction and more data may be
needed for better model performance. Last, the study group only
included patients without previous anti-VEGF treatment. The
accuracy in patients with a history of anti-VEGF treatment needs
further investigation.

Conclusions
We developed a deep learning–based model using multimodal
imaging for predicting retinal vascular diseases and determining
whether anti-VEGF treatment is required. This model can
facilitate the differentiation of DME, nAMD, mCNV, BRVO,
and CRVO and help in determining the indication for anti-VEGF
treatment.
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Multimedia Appendix 2
Performance of the model trained with different (A) learning rates and (B) batch sizes. AUC: area under the curve.
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Multimedia Appendix 3
Performance of the model with different convolutional neural networks and composition of imaging modality. AUC: area under
the curve; CF: color fundus photography; CNN: convolutional neural network; FA/ICGA: fluorescein angiography with or without
indocyanine green angiography; OCT: optical coherence tomography.
[PNG File , 115 KB - medinform_v9i5e28868_app3.png ]

References
1. Tan GS, Cheung N, Simó R, Cheung GCM, Wong TY. Diabetic macular oedema. Lancet Diabetes Endocrinol 2017

Feb;5(2):143-155. [doi: 10.1016/S2213-8587(16)30052-3] [Medline: 27496796]
2. Cheung CMG, Arnold JJ, Holz FG, Park KH, Lai TYY, Larsen M, et al. Myopic choroidal neovascularization: review,

guidance, and consensus statement on management. Ophthalmology 2017 Nov;124(11):1690-1711. [doi:
10.1016/j.ophtha.2017.04.028] [Medline: 28655539]

3. Hayreh SS. Ocular vascular occlusive disorders: natural history of visual outcome. Prog Retin Eye Res 2014 Jul;41:1-25
[FREE Full text] [doi: 10.1016/j.preteyeres.2014.04.001] [Medline: 24769221]

4. Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY. Age-related macular degeneration. Lancet 2012 May
05;379(9827):1728-1738. [doi: 10.1016/S0140-6736(12)60282-7] [Medline: 22559899]

5. Kim LA, D'Amore PA. A brief history of anti-VEGF for the treatment of ocular angiogenesis. Am J Pathol 2012
Aug;181(2):376-379 [FREE Full text] [doi: 10.1016/j.ajpath.2012.06.006] [Medline: 22749677]

6. Amisha, Malik P, Pathania M, Rathaur VK. Overview of artificial intelligence in medicine. J Family Med Prim Care 2019
Jul;8(7):2328-2331 [FREE Full text] [doi: 10.4103/jfmpc.jfmpc_440_19] [Medline: 31463251]

7. Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, et al. Artificial intelligence and deep learning in
ophthalmology. Br J Ophthalmol 2019 Feb;103(2):167-175 [FREE Full text] [doi: 10.1136/bjophthalmol-2018-313173]
[Medline: 30361278]

8. De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, et al. Clinically applicable deep learning
for diagnosis and referral in retinal disease. Nat Med 2018 Dec;24(9):1342-1350. [doi: 10.1038/s41591-018-0107-6]
[Medline: 30104768]

9. Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H, Baxter SL, et al. Identifying medical diagnoses and treatable
diseases by image-based deep learning. Cell 2018 Feb 22;172(5):1122-1131.e9. [doi: 10.1016/j.cell.2018.02.010] [Medline:
29474911]

10. Guo Y, Hormel TT, Xiong H, Wang B, Camino A, Wang J, et al. Development and validation of a deep learning algorithm
for distinguishing the nonperfusion area from signal reduction artifacts on OCT angiography. Biomed Opt Express 2019
Jul 01;10(7):3257-3268 [FREE Full text] [doi: 10.1364/BOE.10.003257] [Medline: 31360599]

11. An G, Omodaka K, Hashimoto K, Tsuda S, Shiga Y, Takada N, et al. Glaucoma diagnosis with machine learning based
on optical coherence tomography and color fundus images. J Healthc Eng 2019;2019:4061313 [FREE Full text] [doi:
10.1155/2019/4061313] [Medline: 30911364]

12. Vaghefi E, Hill S, Kersten HM, Squirrell D. Multimodal retinal image analysis via deep learning for the diagnosis of
intermediate dry age-related macular degeneration: a feasibility study. J Ophthalmol 2020;2020:7493419 [FREE Full text]
[doi: 10.1155/2020/7493419] [Medline: 32411434]

13. Brand CS. Management of retinal vascular diseases: a patient-centric approach. Eye (Lond) 2012 Apr;26 Suppl 2:S1-16
[FREE Full text] [doi: 10.1038/eye.2012.32] [Medline: 22495396]

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e28868 | p.106https://medinform.jmir.org/2021/5/e28868
(page number not for citation purposes)

Kang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

medinform_v9i5e28868_app1.png
medinform_v9i5e28868_app1.png
medinform_v9i5e28868_app2.pdf
medinform_v9i5e28868_app2.pdf
medinform_v9i5e28868_app3.png
medinform_v9i5e28868_app3.png
http://dx.doi.org/10.1016/S2213-8587(16)30052-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27496796&dopt=Abstract
http://dx.doi.org/10.1016/j.ophtha.2017.04.028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28655539&dopt=Abstract
http://europepmc.org/abstract/MED/24769221
http://dx.doi.org/10.1016/j.preteyeres.2014.04.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24769221&dopt=Abstract
http://dx.doi.org/10.1016/S0140-6736(12)60282-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22559899&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0002-9440(12)00442-7
http://dx.doi.org/10.1016/j.ajpath.2012.06.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22749677&dopt=Abstract
http://www.jfmpc.com/article.asp?issn=2249-4863;year=2019;volume=8;issue=7;spage=2328;epage=2331;aulast=Amisha%2C
http://dx.doi.org/10.4103/jfmpc.jfmpc_440_19
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31463251&dopt=Abstract
http://bjo.bmj.com/cgi/pmidlookup?view=long&pmid=30361278
http://dx.doi.org/10.1136/bjophthalmol-2018-313173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30361278&dopt=Abstract
http://dx.doi.org/10.1038/s41591-018-0107-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30104768&dopt=Abstract
http://dx.doi.org/10.1016/j.cell.2018.02.010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29474911&dopt=Abstract
http://europepmc.org/abstract/MED/31360599
http://dx.doi.org/10.1364/BOE.10.003257
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31360599&dopt=Abstract
https://doi.org/10.1155/2019/4061313
http://dx.doi.org/10.1155/2019/4061313
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30911364&dopt=Abstract
https://doi.org/10.1155/2020/7493419
http://dx.doi.org/10.1155/2020/7493419
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32411434&dopt=Abstract
http://europepmc.org/abstract/MED/22495396
http://dx.doi.org/10.1038/eye.2012.32
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22495396&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


14. Flaxel CJ, Adelman RA, Bailey ST, Fawzi A, Lim JI, Vemulakonda GA, et al. Age-related macular degeneration preferred
practice pattern. Ophthalmology 2020 Jan;127(1):P1-P65. [doi: 10.1016/j.ophtha.2019.09.024] [Medline: 31757502]

15. Rehak M, Wiedemann P. Retinal vein thrombosis: pathogenesis and management. J Thromb Haemost 2010
Sep;8(9):1886-1894 [FREE Full text] [doi: 10.1111/j.1538-7836.2010.03909.x] [Medline: 20492457]

16. Cai Z, Vasconcelos N. Cornell University.: Delving into high quality object detection; 2017. URL: https://arxiv.org/abs/
1712.00726 [accessed 2021-01-02]

17. Selvaraju R, Das A, Vedantam R, Cogswell M, Parikh D, Batra D. Why did you say that? Visual explanations from deep
networks via gradient-based localization. arXiv. Cornell University. Grad-CAM; 2016. URL: https://arxiv.org/abs/1610.
02391v3 [accessed 2020-11-07]

18. Xie Q, Hovy E, Luong M, Le Q. Self-training with noisy student improves ImageNet classification. Cornell University.
2019. URL: https://arxiv.org/abs/1911.04252 [accessed 2020-11-07]

19. Loshchilov I, Hutter F. Decoupled weight decay regularization. Cornell University. 2017. URL: https://arxiv.org/abs/1711.
05101 [accessed 2020-11-07]

20. ImageMagick. ImageMagick. URL: https://imagemagick.org/ [accessed 2020-11-25]
21. Chen K, Wang J, Pang J, Cao Y, Xiong Y, Li X. Open MMLab detection toolbox and benchmark. Cornell University. 2019.

URL: https://arxiv.org/abs/1906.07155 [accessed 2020-12-01]
22. Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z. Automatic differentiation in PyTorch. OpenReview. URL:

https://openreview.net/forum?id=BJJsrmfCZ [accessed 2020-12-01]
23. Brooks J. COCOAnnotator. GitHub. 2019. URL: https://github.com/jsbroks/coco-annotator [accessed 2020-12-01]
24. TensorFlow. 2015. URL: https://www.tensorflow.org/ [accessed 2020-12-01]
25. Nunez do Rio JM, Sen P, Rasheed R, Bagchi A, Nicholson L, Dubis AM, et al. Deep learning-based segmentation and

quantification of retinal capillary non-perfusion on ultra-wide-field retinal fluorescein angiography. J Clin Med 2020 Aug
06;9(8):2537 [FREE Full text] [doi: 10.3390/jcm9082537] [Medline: 32781564]

26. Yoo TK, Choi JY, Seo JG, Ramasubramanian B, Selvaperumal S, Kim DW. The possibility of the combination of OCT
and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary
experiment. Med Biol Eng Comput 2019 Mar;57(3):677-687. [doi: 10.1007/s11517-018-1915-z] [Medline: 30349958]

27. Taban M, Sharma S, Williams DR, Waheed N, Kaiser PK. Comparing retinal thickness measurements using automated
fast macular thickness map versus six-radial line scans with manual measurements. Ophthalmology 2009 May;116(5):964-970.
[doi: 10.1016/j.ophtha.2008.12.033] [Medline: 19410954]

28. Novais EA, Baumal CR, Sarraf D, Freund KB, Duker JS. Multimodal imaging in retinal disease: a consensus definition.
Ophthalmic Surg Lasers Imaging Retina 2016 Mar;47(3):201-205. [doi: 10.3928/23258160-20160229-01] [Medline:
26985792]

29. Mandrekar JN. Receiver operating characteristic curve in diagnostic test assessment. J Thorac Oncol 2010 Sep;5(9):1315-1316
[FREE Full text] [doi: 10.1097/JTO.0b013e3181ec173d] [Medline: 20736804]

30. Odaibo S. Generative adversarial networks synthesize realistic OCT images of the retina. Cornell University. URL: https:/
/arxiv.org/abs/1902.06676 [accessed 2021-04-16]

31. Baker-Schena L. Expensive drugs. American Academy of Ophthalmology. URL: https://www.aao.org/eyenet/article/
expensive-drugs [accessed 2020-12-07]

32. Chou Y, Chen M, Lin T, Chen S, Hwang D. Priority options of anti-vascular endothelial growth factor agents in wet
age-related macular degeneration under the National Health Insurance Program. J Chin Med Assoc 2019 Aug;82(8):659-664.
[doi: 10.1097/JCMA.0000000000000138] [Medline: 31259835]

33. Tsai M, Hsieh Y, Peng Y. Real-life experience of ranibizumab for diabetic macular edema in Taiwan. Int Ophthalmol 2019
Jul;39(7):1511-1522. [doi: 10.1007/s10792-018-0970-7] [Medline: 29926364]

34. Kwan CC, Fawzi AA. Imaging and biomarkers in diabetic macular edema and diabetic retinopathy. Curr Diab Rep 2019
Aug 31;19(10):95. [doi: 10.1007/s11892-019-1226-2] [Medline: 31473838]

35. Jaulim A, Ahmed B, Khanam T, Chatziralli IP. Branch retinal vein occlusion: epidemiology, pathogenesis, risk factors,
clinical features, diagnosis, and complications. An update of the literature. Retina 2013 May;33(5):901-910. [doi:
10.1097/IAE.0b013e3182870c15] [Medline: 23609064]

36. Hayreh SS, Zimmerman MB. Fundus changes in central retinal vein occlusion. Retina 2015 Jan;35(1):29-42 [FREE Full
text] [doi: 10.1097/IAE.0000000000000256] [Medline: 25084156]

37. Viswanath K, McGavin DDM. Diabetic retinopathy: clinical findings and management. Community Eye Health
2003;16(46):21-24 [FREE Full text] [Medline: 17491851]

38. Schmidt-Erfurth U, Garcia-Arumi J, Gerendas BS, Midena E, Sivaprasad S, Tadayoni R, et al. Guidelines for the management
of retinal vein occlusion by the European Society of Retina Specialists (EURETINA). Ophthalmologica 2019;242(3):123-162
[FREE Full text] [doi: 10.1159/000502041] [Medline: 31412332]

39. Beede E, Baylor E, Hersch F, Iurchenko A, Wilcox L, Ruamviboonsuk P. A human-centered evaluation of a deep learning
system deployed in clinics for the detection of diabetic retinopathy. CHI'20 2020 Dec:1-12. [doi: 10.1145/3313831.3376718]

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e28868 | p.107https://medinform.jmir.org/2021/5/e28868
(page number not for citation purposes)

Kang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.1016/j.ophtha.2019.09.024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31757502&dopt=Abstract
https://doi.org/10.1111/j.1538-7836.2010.03909.x
http://dx.doi.org/10.1111/j.1538-7836.2010.03909.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20492457&dopt=Abstract
https://arxiv.org/abs/1712.00726
https://arxiv.org/abs/1712.00726
https://arxiv.org/abs/1610.02391v3
https://arxiv.org/abs/1610.02391v3
https://arxiv.org/abs/1911.04252
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://imagemagick.org/
https://arxiv.org/abs/1906.07155
https://openreview.net/forum?id=BJJsrmfCZ
https://github.com/jsbroks/coco-annotator
https://www.tensorflow.org/
https://www.mdpi.com/resolver?pii=jcm9082537
http://dx.doi.org/10.3390/jcm9082537
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32781564&dopt=Abstract
http://dx.doi.org/10.1007/s11517-018-1915-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30349958&dopt=Abstract
http://dx.doi.org/10.1016/j.ophtha.2008.12.033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19410954&dopt=Abstract
http://dx.doi.org/10.3928/23258160-20160229-01
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26985792&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1556-0864(15)30604-3
http://dx.doi.org/10.1097/JTO.0b013e3181ec173d
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20736804&dopt=Abstract
https://arxiv.org/abs/1902.06676
https://arxiv.org/abs/1902.06676
https://www.aao.org/eyenet/article/expensive-drugs
https://www.aao.org/eyenet/article/expensive-drugs
http://dx.doi.org/10.1097/JCMA.0000000000000138
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31259835&dopt=Abstract
http://dx.doi.org/10.1007/s10792-018-0970-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29926364&dopt=Abstract
http://dx.doi.org/10.1007/s11892-019-1226-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31473838&dopt=Abstract
http://dx.doi.org/10.1097/IAE.0b013e3182870c15
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23609064&dopt=Abstract
http://europepmc.org/abstract/MED/25084156
http://europepmc.org/abstract/MED/25084156
http://dx.doi.org/10.1097/IAE.0000000000000256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25084156&dopt=Abstract
http://europepmc.org/abstract/MED/17491851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17491851&dopt=Abstract
https://www.karger.com?DOI=10.1159/000502041
http://dx.doi.org/10.1159/000502041
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31412332&dopt=Abstract
http://dx.doi.org/10.1145/3313831.3376718
http://www.w3.org/Style/XSL
http://www.renderx.com/


40. Hsieh Y, Chuang L, Jiang Y, Chang T, Yang C, Yang C, et al. Application of deep learning image assessment software
VeriSee™ for diabetic retinopathy screening. J Formos Med Assoc 2021 Jan:165-171 [FREE Full text] [doi:
10.1016/j.jfma.2020.03.024] [Medline: 32307321]

41. Kang EY, Hsieh Y, Li C, Huang Y, Kuo C, Kang J, et al. Deep learning-based detection of early renal function impairment
using retinal fundus images: model development and validation. JMIR Med Inform 2020 Nov 26;8(11):e23472 [FREE Full
text] [doi: 10.2196/23472] [Medline: 33139242]

Abbreviations
AUC: area under the curve
BRVO: branch retinal vein occlusion
CNN: convolutional neural network
CRVO: central retinal vein occlusion
DME: diabetic macular edema
FA: fluorescein angiography
mCNV: myopic choroidal neovascularization
nAMD: neovascular age-related macular degeneration
OCTA: optical coherence tomography angiography
ROC: receiver operating characteristic
VEGF: vascular endothelial growth factor

Edited by G Eysenbach; submitted 17.03.21; peer-reviewed by YT Hsieh, A Staffini; comments to author 08.04.21; revised version
received 18.04.21; accepted 03.05.21; published 31.05.21.

Please cite as:
Kang EYC, Yeung L, Lee YL, Wu CH, Peng SY, Chen YP, Gao QZ, Lin C, Kuo CF, Lai CC
A Multimodal Imaging–Based Deep Learning Model for Detecting Treatment-Requiring Retinal Vascular Diseases: Model Development
and Validation Study
JMIR Med Inform 2021;9(5):e28868
URL: https://medinform.jmir.org/2021/5/e28868 
doi:10.2196/28868
PMID:34057419

©Eugene Yu-Chuan Kang, Ling Yeung, Yi-Lun Lee, Cheng-Hsiu Wu, Shu-Yen Peng, Yueh-Peng Chen, Quan-Ze Gao, Chihung
Lin, Chang-Fu Kuo, Chi-Chun Lai. Originally published in JMIR Medical Informatics (https://medinform.jmir.org), 31.05.2021.
This is an open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information,
a link to the original publication on https://medinform.jmir.org/, as well as this copyright and license information must be included.

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e28868 | p.108https://medinform.jmir.org/2021/5/e28868
(page number not for citation purposes)

Kang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://linkinghub.elsevier.com/retrieve/pii/S0929-6646(20)30118-2
http://dx.doi.org/10.1016/j.jfma.2020.03.024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32307321&dopt=Abstract
https://medinform.jmir.org/2020/11/e23472/
https://medinform.jmir.org/2020/11/e23472/
http://dx.doi.org/10.2196/23472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33139242&dopt=Abstract
https://medinform.jmir.org/2021/5/e28868
http://dx.doi.org/10.2196/28868
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34057419&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Original Paper

Pathway-Driven Coordinated Telehealth System for Management
of Patients With Single or Multiple Chronic Diseases in China:
System Development and Retrospective Study

Zheyu Wang1, BSc; Jiye An1, PhD; Hui Lin1, BSc; Jiaqiang Zhou2, MD; Fang Liu3, MSc; Juan Chen3, MD; Huilong

Duan1, PhD; Ning Deng1, PhD
1Ministry of Education Key Laboratory of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University,
Hangzhou, China
2Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
3General Hospital of Ningxia Medical University, Yinchuan, China

Corresponding Author:
Ning Deng, PhD
Ministry of Education Key Laboratory of Biomedical Engineering
College of Biomedical Engineering and Instrument Science
Zhejiang University
38 Zheda Rd, Zhouyiqing Bldg 512
Yuquan Campus
Hangzhou, 310027
China
Phone: 86 57122952693
Email: zju.dengning@gmail.com

Abstract

Background: Integrated care enhanced with information technology has emerged as a means to transform health services to
meet the long-term care needs of patients with chronic diseases. However, the feasibility of applying integrated care to the
emerging “three-manager” mode in China remains to be explored. Moreover, few studies have attempted to integrate multiple
types of chronic diseases into a single system.

Objective: The aim of this study was to develop a coordinated telehealth system that addresses the existing challenges of the
“three-manager” mode in China while supporting the management of single or multiple chronic diseases.

Methods: The system was designed based on a tailored integrated care model. The model was constructed at the individual
scale, mainly focusing on specifying the involved roles and responsibilities through a universal care pathway. A custom ontology
was developed to represent the knowledge contained in the model. The system consists of a service engine for data storage and
decision support, as well as different forms of clients for care providers and patients. Currently, the system supports management
of three single chronic diseases (hypertension, type 2 diabetes mellitus, and chronic obstructive pulmonary disease) and one type
of multiple chronic conditions (hypertension with type 2 diabetes mellitus). A retrospective study was performed based on the
long-term observational data extracted from the database to evaluate system usability, treatment effect, and quality of care.

Results: The retrospective analysis involved 6964 patients with chronic diseases and 249 care providers who have registered
in our system since its deployment in 2015. A total of 519,598 self-monitoring records have been submitted by the patients. The
engine could generate different types of records regularly based on the specific care pathway. Results of the comparison tests
and causal inference showed that a part of patient outcomes improved after receiving management through the system, especially
the systolic blood pressure of patients with hypertension (P<.001 in all comparison tests and an approximately 5 mmHg decrease
after intervention via causal inference). A regional case study showed that the work efficiency of care providers differed among
individuals.

Conclusions: Our system has potential to provide effective management support for single or multiple chronic conditions
simultaneously. The tailored closed-loop care pathway was feasible and effective under the “three-manager” mode in China. One
direction for future work is to introduce advanced artificial intelligence techniques to construct a more personalized care pathway.

(JMIR Med Inform 2021;9(5):e27228)   doi:10.2196/27228
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Introduction

Background
Chronic diseases are the most prevalent and costly health
conditions worldwide [1]. Patient self-management combined
with timely intervention from care providers are essential to
control the progression of chronic diseases [2]. However, within
traditional care settings, the disconnected and time-consuming
management procedure is unable to meet the long-term care
needs of patients [3,4]. Furthermore, several patients with
chronic diseases live with more than one chronic condition (ie,
multiple chronic conditions [MCC]), which create diverse, and
sometimes contradictory, needs for health services [5,6].

Integrated care has been proposed as a means to meet the above
challenges by transforming traditional health services [7]. In an
integrated care setting, health services are provided by a
coordinated multidisciplinary team of care providers. The core
objective is to implement patient-centered health systems
through comprehensive delivery of quality services across the
life course [8]. Further, the advent of information technologies
has promoted the delivery of integrated care services, which
can be understood from different scales. From an individual
scale, information technologies are crucial to facilitate the
development of shared care plans [7], which clearly articulates
the roles of care providers and patients in the care process to
deliver more personalized and targeted care [9]. From a group
scale, information technologies play a key role in achieving the
goals of bidirectional communication within care provider teams
and provision of continuous self-management support to patients
[10].

As practical applications of information technologies in the
health care domain, telehealth systems have demonstrated
potential to improve the outcomes of chronic disease
management [11-14]. Patient self-monitoring at home and
remote guidance from care providers can be realized with the
assistance of telehealth systems [15]. However, most of these
systems focus on a single chronic disease, and few studies have
attempted to integrate multiple types of chronic diseases into
one system [16-19]. A telehealth system designed for managing
multiple chronic illnesses simultaneously can not only support
the management of patients with MCC but can also reduce the
cost of developing multiple telehealth systems for managing
different chronic diseases.

In China, the current health service system is in a three-tier
form: community health service institutions at the bottom,
secondary hospitals in the middle, and tertiary hospitals at the
top [20]. General practitioners (GPs) are at the core of primary
health care (ie, community level), providing basic treatment
and long-term care for patients, especially in the management
of chronic diseases [21]. In response to the government policy
on promoting integrated care [22], specialists and case managers
(CMs) are gradually involved in the management to form a
coordinated multidisciplinary team called the “three-manager”
mode [23]. The specialists are mainly from secondary or tertiary

hospitals, providing more specialized and professional treatment
[21]. CMs are mainly composed of nurses who work together
with GPs to assist them in their daily work, similar to other
countries [24,25].

The “three-manager” mode has been implemented in several
provinces of China; however, there remain some practical
challenges, which result in a significant gap between standards
of care and medical practice [26-28]. First, current management
guidelines [29-31] do not clearly specify the responsibility of
each role in the “three-manager” mode. Second, the unbalanced
allocation of medical resources in China leads to a difference
in the abilities of primary care providers [32-34]. GPs and CMs
in remote areas may rarely perform comprehensive and effective
management following the guidelines.

Objectives
In this paper, we present the design, development, and
retrospective evaluation of a telehealth system that
simultaneously supports the management of single or multiple
chronic diseases. The proposed system aims to address the
existing challenges of the “three-manager” mode in China
through a tailored integrated care model, mainly focusing on
specifying the responsibility of involved roles and providing a
universal care pathway for common chronic diseases. Currently,
the system supports three main chronic conditions in China
[35]: hypertension (HTN), type 2 diabetes mellitus (T2DM),
and chronic obstructive pulmonary disease (COPD).

Methods

System Overview
Figure 1 illustrates the system architecture that consists of two
components: (1) a service engine for data storage and decision
support, and (2) clients for care providers and patients.
Concretely, the service engine is a web service deployed on the
cloud server, interacting with clients via several types of
application programming interfaces (APIs). The core of the
engine is a custom ontology called Universal Care Pathway
Ontology (UCPO), which represents the knowledge contained
in our pathway-driven integrated care model. Given specific
patient data, the engine will generate a small-scale knowledge
graph based on UCPO to provide personalized decision support.

The clients are represented in different forms for both care
providers and patients. For care providers, the client is in the
form of a website that can be accessed on their computers in
the hospital or health center. Care providers can utilize the client
to monitor patients and perform the intervention. For patients,
the client is in the form of a mobile app that can be downloaded
to their personal smartphones. Patients can use the client to
check their self-management plans, perform self-monitoring,
and receive health education. We provided three versions of
our app: native apps, including Android and iOS versions, for
patients who prefer a better user experience, and a WeChat mini
program for patients who are more familiar with WeChat.
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Figure 1. Architecture of the system. API: application programming interface; SWRL: Semantic Web Rule Language; UCPO: Universal Care Pathway
Ontology.

Service Engine for Decision Support

Pathway Construction
The implementation of the service engine was divided into three
steps. First, we constructed a pathway-driven integrated care
model for the management of common chronic diseases catering
to the “three-manager” mode in China. Figure 2 demonstrates
the diagram of the model. The tailored model was constructed
at an individual scale, mainly concentrating on two aspects: the
roles involved in the management process and their
responsibilities. According to the “three-manager” mode, four
roles participate in the management: specialists, GPs, CMs, and
patients. The responsibility of each role was specified through
a well-designed universal care pathway. To identify common
parts in the management procedures of different diseases, we
carried out a qualitative analysis on the management guidelines
of the three most prevalent chronic conditions in China: HTN
[29], T2DM [30], and COPD [31]. A total of 9 common tasks
were defined in the pathway for long-term out-of-hospital
management. Furthermore, we held several rounds of discussion
with experienced physicians to specify the detailed contents of
each task for specific diseases that are not mentioned in the
guidelines. Table 1 summarizes the general definition of each
task and their specific contents (adopted in our system) for the
above three diseases. The detailed description of each
disease-specific care pathway can be found in Multimedia
Appendix 1.

A practical guideline for effective implementation based on the
tailored integrated model can be described as a two-stage
process: stage 1 involves the generation of a management plan
and stage 2 involves the realization of long-term effective

management. In stage 1, a patient should first be diagnosed with
a specific disease (or multiple diseases) by specialists in
secondary or tertiary hospitals. An initial treatment plan will
be formulated for the patient, mainly focusing on drug therapy.
If the patient’s clinical situation is stable with no indication for
hospitalization, they will be sent to the affiliated primary care
clinic or health center. GPs and CMs work collaboratively to
perform the out-of-hospital management. The patient needs to
register in the corresponding institution (ie, patient archiving
in Figure 2) and undergo a risk assessment for the diagnosed
disease before starting routine management. GPs should evaluate
the associated risk factors of the patient to refine the treatment
plan. Subsequently, the patient will enter the initial management
period, during which CMs should help the patient to become
familiar with self-management tools (eg, the smartphone app).
Based on the self-monitoring records during this period as well
as the risk assessment results, the patient will be classified into
a specific level with a specific intensity of intervention
(follow-up). The management level will be dynamically adjusted
throughout the management process according to the up-to-date
health status of the patient. Given the personalized management
plan consisting of a treatment plan and follow-up plan, the
patient will enter the formal management period (stage 2).

In stage 2, the patient needs to follow self-management regimens
using the provided tools. GPs need to perform follow-ups
regularly to obtain a detailed understanding of the patient’s
situation (combined with their self-monitoring records) and
adjust the treatment plan if necessary. The follow-up schedule
should be adjusted according to the management level. CMs
need to supervise the patient’s self-monitoring records through
a telehealth terminal (eg, the web platform for care providers
in our system). Once an unexpected condition occurs, such as
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low compliance or abnormal self-monitoring data, CMs should
respond in a timely manner to the warning, including contacting
the patient and reporting the condition to GPs. If the condition
is out of control, GPs should suggest a referral for the patient

to receive further treatment from specialists. Moreover, CMs
also need to provide health education to improve patient
awareness and self-management abilities.

Figure 2. Pathway-driven integrated care model for the “three-manager” mode in China. CM: case manager; GP: general practitioner.
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Table 1. Common tasks extracted for out-of-hospital chronic disease management.

COPDaType 2 diabetesHypertensionGeneral definitionCommon tasks

Based on pulmonary func-
tion test

Based on clinical BGc measure-
ments

Based on clinical BPb mea-
surements

Diagnosis based on specific
indicators of specific dis-
eases

Diagnosis

Evaluate PEFd level and
scales about COPD-specific
health status (such as the

CATe)

Evaluate BP, BG, and blood
lipid levels

Evaluate

cardiovascular risk factors,
target organ damage, and co-
morbidity

Evaluate specific risk factors
of specific diseases to refine
the treatment plan

Risk assessment

Divide into 4 levels based
on the risk assessment re-
sults

Divide into 3 levels according
to whether the patients reach
target BG

Divide into 2 levels according
to whether the patients reach
target BP

Divide patients into different
levels to effectively utilize
existing resources

Hierarchical manage-
ment

Once every 2 weeks for each
level of patients

Once every 3 months for level
I, once every month for level
II, and once every 2 weeks for
level III

Once every 3 months for level
I and once every 2-4 weeks
for level II

Communicate with patients
regularly to perform inter-
vention

Regular follow-up

Evaluate single PEF values,
scale results, and acute exac-
erbations

Evaluate single BG values and
blood ketone levels

Evaluate single BP values and
weekly BP values

Emergency treatment for
abnormal self-monitoring
data

Abnormal condition in-
tervention

Select appropriate drugs

such as SABAf, LAMAg,

and LABAh

Select appropriate hypo-
glycemic drugs or insulin injec-
tion

Select appropriate antihyper-
tensive drugs for patients

Drug therapy for the specific
disease

Medication guidance

Avoid smoking, increase
regular exercise, and per-
form professional rehabilita-
tion exercises

Control body weight, balanced
diet, reduce sodium intake,
avoid smoking and drinking,
moderate exercise, and reduce
mental stress

Reduce sodium intake, control
body weight, avoid smoking
and drinking, increase exer-
cise, and reduce mental stress

Nondrug therapy for the
specific disease, generally
include diet, exercise, and
mentality

Lifestyle guidance

Provide basic knowledge
about COPD to patients

Provide basic knowledge about
diabetes to patients

Provide basic knowledge
about hypertension to patients

Provide knowledge of
chronic diseases to increase
patients’awareness and self-
management ability

Health education

Perform extra follow-ups for
patients with low self-man-
agement compliance

Perform extra follow-ups for
patients with low self-manage-
ment compliance

Perform extra follow-ups for
patients with low self-manage-
ment compliance

Enhance the motivation of
patients with low self-man-
agement compliance

Compliance manage-
ment

aCOPD: chronic obstructive pulmonary disease.
bBP: blood pressure.
cBG: blood glucose.
dPEF: peak expiratory flow.
eCAT: COPD Assessment Test.
fSABA: short-acting beta-agonists.
gLAMA: long-acting muscarinic antagonists.
hLABA: long-acting beta-agonists.

Ontology-Based Model Representation
To incorporate the proposed model into our system, we utilized
an ontological approach to implement pathway-driven decision
support. A custom ontology called UCPO was constructed to
represent the knowledge in our model, including structural
information (ie, relationships among model elements) and
medical knowledge (ie, task contents for a specific care
pathway). Structural information is represented through a class
hierarchy and based on the properties of ontology, whereas
medical knowledge is represented through an external rule set
compatible with ontology.

The construction of UCPO was divided into two phases. In the
first phase, we represented structural information of the model

following a widely used ontology engineering methodology
[36]. In short, we first specified the domain and scope of UCPO
using competency questions [37], and then defined the classes
and class hierarchy of UCPO through a top-down approach
based on existing ontologies and all terminologies contained in
the model. Subsequently, we defined the properties of classes
(including object properties and data properties) as well as
property restrictions to describe the internal structure and precise
semantics of concepts.

Figure 3 shows the class diagram and properties of the main
UCPO core. UCPO was built in three levels of abstraction,
inspired by a realistic ontology for diabetes treatment called
DMTO [38]. Level 0 included several top-level universals from
the most applicable top-level ontology (ie, basic formal ontology
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[39]). For all UCPO terms, subclasses of these universals were
included to improve the interoperability for future extension
and integration. Level 1 includes 5 terms that describe the core
concepts in our model: pathway task, management plan,
management role, patient profile, and management information.
Level 2 includes the detailed elements for each Level 1 class.

Classes are connected via various object properties. Several
existing relevant ontologies were reused in UCPO, such as
Ontology for General Medical Science [40] (for defining
disease-related processes) and Ontology of Adverse Events [41]
(for defining adverse events).

Figure 3. Class diagram of the main core of Universal Care Pathway Ontology (UCPO). BFO: basic formal ontology.

In the second phase, we incorporated medical knowledge of the
model using class instances combined with rule-based reasoning.
In this study, semantic web rule language (SWRL) [42] rules
were utilized to perform the complex deductive inference
required for decision support. The detailed description of UCPO
is provided in Multimedia Appendix 2. Based on the basic
UCPO and predefined SWRL rule set, a small-scale knowledge
graph would be generated to incorporate patient data into UCPO
for decision support. Figure 4 shows an illustrative example of
the decision support process. First, patient data (Patient A in
this example) are extracted from the database and then
transmitted anonymously to the UCPO to generate instances of
classes. Second, according to the disease type of Patient A, the
corresponding rule set of the disease would be invoked to make
an inference on properties of specific instances. By combining
the related instances with the inference results, an individualized
knowledge graph for Patient A would be established, which
contains various tasks following the corresponding care
pathway. Finally, the generated tasks would be converted to

executable management plans, including the doctor intervention
plan and patient self-management plan, via an independent rule
set. The doctor intervention plan mainly involves a follow-up
plan as well as intervention reminders for abnormal
self-monitoring data and low compliance, whereas the patient
self-management plan consists of a self-monitoring plan along
with prescriptions for medication and lifestyle.

Several characteristics related to the above decision support
process need to be mentioned. First, pathway tasks would be
updated regularly at a task-specific frequency according to the
patient data. A part of tasks will then be further assigned a valid
duration defined by the Time Ontology [43]. Therefore, an
incomplete subgraph might be established during a particular
decision support process due to the different trigger timing of
tasks. Moreover, the generation of one task might serve as a
triggering condition for another task generation rule. Second,
for patients diagnosed with multiple diseases, the rule set of
each single disease would be executed separately. In such a
case, an extra rule set for the corresponding MCC would be
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invoked to merge the management plans generated for different
single diseases. Furthermore, the system would automatically

deal with the potential redundancies and conflicts of properties
in the merged management plan.

Figure 4. Illustrative example of the decision support process. BP: blood pressure; CM: case manager; GP: general practitioner; SWRL: Semantic Web
Rule Language.

Engine Encapsulation
Finally, we encapsulated the engine based on UCPO to connect
to the database and interact with clients. Figure 5 shows a
schematic of the encapsulation. According to the different
characteristics of pathway tasks, we provided two types of web
services for the engine to interact with clients: WebSocket APIs
and RESTful APIs. The set of WebSocket APIs deals with the
scenario for timing push notifications (eg, patient stratification),
whereas the set of RESTful APIs deals with the scenario for
immediate feedback (eg, abnormal condition warning).
Specifically, the control layer of the engine serves as a transfer

station of client data, transmitting the data to the service layer
and the resource layer. Client data generally include patients’
self-monitoring data as well as intervention records from care
providers, which would first be saved to the client database and
then input into UCPO in different manners for different types
of APIs. For WebSocket APIs, client data would be extracted
regularly according to the task-specific frequency, whereas for
RESTful APIs, client data would be directly transmitted into
the ontology at the uploading time. All of the reasoning results
would be saved in the engine database separately, with a portion
of significant results also saved in the client database.
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Figure 5. Schematic of the engine encapsulation. API: application programming interface. KG: knowledge graph.

Web Platform for Care Providers
The implementation of the website for care providers followed
a widely used agile development methodology [44]. We
iteratively added functional modules to the platform according
to the proposed pathway-driven model. Figure 6 shows an
overview of the main functions in the web platform. The primary
users of the website are GPs and CMs. Specialists can also log
in to check the status of their patients. We provided four major
functional modules via tab-based navigation: patient registration,
patient warning, patient follow-up, and patient list. The patient
registration module is responsible for including new patients in
the management, which is mainly performed by CMs. As shown
in Figure 6, patients could formally receive the management
after providing several types of information, including basic
information (eg, demographics, phone number, ID number),
disease information (eg, main disease type, associated
symptoms), and the corresponding care provider information.
For patients who enter the management period, the timing of
intervention is determined by the other three major functional
modules: (1) the patient warning module displaying all of the

untreated warnings of patients’ self-monitoring data, with
different types of displayed information for different types of
warnings; (2) the patient follow-up module presented as a patient
list in order of the next follow-up date; and (3) the patient list
module, demonstrating information of patients with different
diseases also in the form of a list, mainly focusing on checking
compliance and searching for a specific patient.

Care providers could enter the interface of “patient information
and intervention” by clicking on the corresponding buttons in
the above three major functional modules. In this interface, care
providers could check various types of patient information,
including demographics, management plans, self-monitoring
records, warning history, follow-up records, and assessment
records. The platform supports three types of interventions for
care providers: complete follow-up via telephone or a clinic
visit, short message service text reminders, and message push
via the app. Various types of templates and options are provided
to simplify and normalize the intervention procedure. Moreover,
care providers could edit and push educational materials to
patients in another separate interface. The detailed screenshots
of the web platform can be found in Multimedia Appendix 3.
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Figure 6. Overview of the main functions in the web platform for care providers.

Mobile App for Patients
We utilized a goal-directed design [45] to develop the mobile
app for patients. Patients were engaged in the design process
to identify their needs. The concrete design process has been
described in our previous study [46]; Figure 7 shows an
overview of the main functions in the mobile app. Owing to the
distinction between the HTN and T2DM care pathway and the
COPD care pathway, we applied different user interface designs
to the app for HTN/T2DM and the app for COPD. The two apps
share the same underlying framework and provide similar
functional modules. As shown in Figure 7, the app includes 5
major functional modules that can be accessed from the main
interface: management plan, health checkup, health report,
reminder service, and health education. The management plan
module is the core function of the app that can be checked
directly in the main interface. Currently, the initial
self-management plan for patients is generated by the engine
based on the management level of patients, and is then manually

adjusted by care providers according to patients’ specific
conditions. The management plan on the patient app is shown
in the form of daily tasks along with control targets. Each task
is required to be accomplished at a designated time during each
day. Patients could click on the corresponding task and input
the required data in a new interface. The submitted data would
then be uploaded to the engine for further analysis.

The other four major functional modules were designed for
patients with different needs of self-management, aiming to
further improve their compliance. Concretely, the health checkup
module would analyze patients’ self-monitoring data, and
provide immediate and understandable feedback with the aid
of the engine; the health report module would summarize the
recent completion status of provided tasks and change trends
in health data; the reminder service module would set reminders
for the execution of daily tasks; and the health education module
would display various types of educational materials selected
by care providers. The detailed screenshots of the app can be
found in Multimedia Appendix 4.

Figure 7. Overview of the main functions in the mobile app for patients. COPD: chronic obstructive pulmonary disease; HTN: hypertension; T2DM:
type 2 diabetes mellitus; PEF: peak expiratory flow.
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Development Tools
The service engine was developed based on the Spring Boot
Framework, an open-source micro service framework for the
Java platform. The connected database uses MySQL 8.0, an
open-source relational database management system. The clients
were developed by a team of experienced programmers
collaboratively. All patients, specialists, GPs, and CMs have
unique IDs, and their login passwords are encrypted and kept
anonymous to the database administrator.

UCPO was constructed using the Protégé 5.5.0 open-source
ontology editor in W3C Web Ontology Language (OWL)
standard format (second edition). We integrated UCPO into the
service engine through the OWL API, a Java API
implementation for manipulating OWL ontologies. For the
rule-based reasoning, the SWRL Rule Engine Bridge in the
SWRL API [47] was used to invoke the execution of SWRL
rules through a third-party rule engine. The official
implementation currently adopts the Drools rule engine owing
to its good execution speed and compatibility with Java
programs.

Retrospective Study

Study Design
The first version of our system was deployed in Ningxia Hui
Autonomous Region in 2015, which only supported HTN
management at that time. Currently, the system supports
management of three single chronic diseases (HTN, T2DM,
and COPD) and one type of MCC (HTN with T2DM). To
investigate the effect of our system, we collected almost all of
the data generated through the system since its deployment in

2015. A retrospective analysis was then performed based on
the collected data to evaluate system usability, treatment effect,
and quality of care. Figure 8 illustrates the overall study design.
We first screened a portion of user accounts that had no
self-monitoring records or were created for testing purposes.
The remaining users for retrospective analysis consisted of 6964
patients with chronic diseases and 249 care providers. We then
performed three types of analyses: (1) descriptive statistical
analysis for user information and system usage, (2) treatment
effect estimation for patient outcome changes after receiving
the management, and (3) a regional case study for understanding
the work efficiency of care providers.

Specifically, for the descriptive statistics, we mainly analyzed
patient usage of the system and decision support abilities of the
engine. For the treatment effect estimation, physiological indices
from patients’ self-monitoring data were selected as patient
outcomes to evaluate the treatment effect. We first compared
the change of patient outcomes over different time spans from
a traditional statistical perspective, and then estimated the
average treatment effect (ATE) from a causal perspective. For
the case study, we selected several primary care institutions in
different districts of Ningxia Hui Autonomous Region to
evaluate the work efficiency of care providers over a long-term
horizon. Owing to the limitation of data acquisition, we only
analyzed the work efficiency of GPs for patients with HTN and
diabetes from two aspects: the frequency of follow-ups in one
day and the handling time of a follow-up request. The frequency
of follow-ups in one day demonstrates how our system reduces
the time cost of a single follow-up, whereas the response days
of a follow-up request represents the time duration before a
generated follow-up request is handled.

Figure 8. Overall retrospective study design. ATE: average treatment effect.

Informed Consent and Ethical Considerations
Patients registered in the telehealth system have signed inform
consent forms for accessing and using their personal data. The
care providers signed informed consent forms as well. All
procedures were performed in accordance with the ethical
guidelines for biomedical research involving human subjects
at Ningxia Medical University.

Data Analysis
Python 3.7 was used for data preprocessing, including data
extraction from the database and descriptive analysis. Statistical
analysis was performed using SPSS version 23.0. A paired
Student t test was used for analyzing changes in patient
outcomes. All statistical tests are reported at a two-sided
significance level of 5%. For the causal inference between
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pathway-driven intervention and patient outcomes, we adopted
DoWhy—an end-to-end Python library—to estimate the causal
effect of our intervention [48]. In short, DoWhy follows four
key steps to perform causal inference: (1) model the problem
as a causal graphical model based on user-defined assumptions;
(2) identify a desired causal effect estimand based on the model;
(3) estimate the identified causal effect using statistical methods
such as matching or stratification; and (4) verify the validity of
the estimate using a variety of robustness checks. In this study,
we adopted two classic causal inference methods to estimate
ATE: propensity score matching (PSM) [49,50] and propensity
score stratification (PSS) [51]. Both methods utilize propensity
scores to achieve comparability of treatment groups and control
groups in terms of their pretreatment covariates, thereby
eliminating confounding bias in estimating treatment effects
[52].

Results

Descriptive Statistics

User Statistics
As described above, since its deployment in 2015, a total of
6964 patients with chronic diseases and 249 care providers have
registered in our system and actually used the system. Table 2
summarizes the demographics of patients and the detailed
information of care providers. The average age of the patients
was 58 years. Among the 6964 patients, 55.41% (n=3859)
reported a relatively low educational level (high school and
below), and only approximately 20% had a college degree or

above; one-quarter of the patients did not provide their
educational attainment at the time of registration. In terms of
disease type, a substantial proportion of enrolled patients
(81.7%) were diagnosed with HTN, the majority of whom had
HTN alone with the remaining patients having coexisting
T2DM. The other patients had a clinical diagnosis of T2DM
(not with HTN) or COPD. The changing trends in the number
of patients with different diseases over time are shown in Figure
9. The care providers consisted of 56 specialists, 107 GPs, and
86 CMs from different departments in different levels of
hospitals.

Table 3 provides simple descriptive summary statistics of
patients’ self-monitoring data. Patients could submit various
types of records through the mobile app, mainly including
physiological indices, lifestyle records, medication, and
discomfort. Physiological indices included blood pressure (BP,
together with heart rates) for patients with HTN, blood glucose
(BG) for patients with diabetes, and peak expiratory flow (PEF)
for patients with COPD. All three indices could be measured
at home via different devices [53-55]. Patients who had
medication orders were required to record their medications
regularly. Patients with HTN and/or T2DM were recommended
to record their daily diet and exercise. For patients with COPD,
psychological conditions were monitored through several
validated scales [56,57]. From the statistical results, medication
records and BP records were the most frequently submitted data
by patients using the system. Moreover, for patients with
different diseases, the emphasis of their records was also
different, as shown in Table 4.

Figure 9. Changing trends in the number of patients with different diseases over time. COPD: chronic obstructive pulmonary disease; HTN: hypertension;
T2DM: type 2 diabetes mellitus.
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Table 2. Patient demographics and care provider information (N=6964).

ValueCharacteristics

Patient demographics

Sex, n (%)

3973 (57.1)Male

2991 (42.9)Female

58 (12.3)Age (years), mean (SD)

Educational level, n (%)

2988 (42.9)Secondary school and below

871 (12.5)High school

1388 (19.9)Graduate and above

1717 (24.7)Unknown

Disease type, n (%)

5384 (77.3)Hypertension (single)

901 (12.9)Type 2 diabetes (single)

306 (4.4)Hypertension with type 2 diabetes

373 (5.4)COPDa

Care provider information

Position, n (%)

56 (22.5)Specialist

107 (43)General practitioner

86 (34.5)Case manager

Department, n (%)

28 (11.3)Cardiology

15 (6.0)Endocrinology

13 (5.2)Pneumology

193 (77.5)General practice

aCOPD: chronic obstructive pulmonary disease.

Table 3. Descriptive statistics of patients’ self-monitoring data through the system.

Records, NPatients, NData type

Physiological indices

139,2346379Blood pressure

45991195Blood glucose

9511119Peak expiratory flow

Lifestyle records

46,246316Diet

50,7211430Exercise

11,900274Psychological status

222,0552260Medication

35,332493Discomfort

519,5986964Total counts
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Table 4. Self-monitoring data for patients with different diseases.

Records for patients with different diseases, n (%)Data type

COPDdHMcT2DMbHTNa

Physiological indices

0 (0)1423 (47.0)2299 (42.1)135,512 (36.4)Blood pressure

0 (0)1116 (36.8)3003 (55)480 (0.1)Blood glucose

9511 (6.8)0 (0)0 (0)0 (0)Peak expiratory flow

Lifestyle records

0 (0)27 (0.9)30 (0.5)46,189 (12.4)Diet

10,710 (7.7)18 (0.6)14 (0.3)39,979 (10.8)Exercise

11,900 (8.5)0 (0)0 (0)0 (0)Psychological status

72,221 (51.8)441 (14.6)102 (1.9)149,291 (40.2)Medication

34,984 (25.1)5 (0.2)8 (0.1)335 (0.1)Discomfort

aHTN: hypertension.
bT2DM: type 2 diabetes mellitus.
cHM: Hypertension with type 2 diabetes mellitus.
dCOPD: chronic obstructive pulmonary disease.

System Statistics
Table 5 presents an overview of intervention records through
the system following the four different care pathways. From
the perspective of engine workflow, we classified the records
in accordance with the proposed 9 common tasks (diagnosis
was not involved in the system) into three categories: automatic
evaluation, patient self-management support, and care provider
intervention. Automatic evaluation included risk assessment
and hierarchical management, which would be automatically
calculated by the engine. Patient self-management support
included lifestyle guidance and medication guidance, which
were initially formulated by the engine and can be adjusted by
care providers through the system (ie, the self-management
plan). Care provider intervention included regular follow-up
and abnormal condition intervention by GPs, as well as
compliance management and health education by CMs. The
engine would automatically schedule the follow-ups and detect
the abnormal condition or low compliance, and then care
providers would need to contact patients through the system to

deliver the actual intervention. Health education was performed
in the form of electronic materials on the patient app.

From the statistical analysis, the engine was able to generate
different types of records regularly according to the specific
care pathway. The content and frequency of each task were
different for different diseases. For example, patients with
COPD would directly be classified based on the risk evaluation
results without an extra classification task. For medication
guidance, we only counted the medication adjustment records
generated by the engine. Moreover, medication guidance for
patients with COPD have not yet been incorporated into the
engine (conducted manually by care providers). Since patient
compliance was updated every day by the engine, the number
of records was relatively larger than that for other types of
records. In terms of health education, we counted the number
of articles and videos that can be viewed on the patient app [58].
Notably, several types of interventions for the COPD care
pathway only involved a small number of patients due to
relatively late deployment of relevant functional modules.
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Table 5. Descriptive statistics of intervention records through the system following different care pathways.

Records generated by the engine, NPatients receiving intervention, NIntervention type

COPDHMT2DMHTNCOPDdHMcT2DMbHTNa

Automatic evaluation

46157889123933743068413372Risk assessment

NA15,2876356301,735NAe3069015383Hierarchical management

Patient self-management support

10651417185120,459303069015376Lifestyle guidance

NE49020485200NEf696091381Medication guidance

Care provider intervention

16212064298318,2173393048925322Regular follow-up

231731821883855994601657Abnormal condition intervention

6930175,538274,7182,099,894303069005379Compliance management

1151991991993733069015384Health education

aHTN: hypertension.
bT2DM: type 2 diabetes mellitus.
cHM: Hypertension with type 2 diabetes mellitus.
dCOPD: chronic obstructive pulmonary disease.
eNA: Not applicable in the current pathway.
fNE: Not currently incorporated into the engine.

Treatment Effect Estimation

Patient Outcome Comparison Over Multiple Time Spans
Self-measured physiological indices submitted by patients were
regarded as patient outcomes to evaluate the effect of our
system. Figure 10 shows the monthly records of different patient
outcomes during the most recent year. For BP, both systolic BP
(SBP) and diastolic BP are presented; for BG, the system
provided two options for BG self-monitoring: fasting blood
glucose (FBG) and postprandial blood glucose. Compared with
BP, the numbers of records for BG and PEF were relatively
small due to the large proportion of patients with HTN in our
system. From the trends of monthly mean value of these indices,
the BP value remained basically stable at a normal level,
whereas BG and PEF values fluctuated within a certain range.

We then compared the change of patient outcomes over different
time spans (from 1 month to 1 year). The mean value of an
outcome for a specific patient before and after a time span was
calculated based on the submitted records at the first 2 weeks
when the patient was enrolled and the 2 weeks after the specific
time span. In terms of BP and BG values, we only analyzed
SBP and FBG. From the comparison tests shown in Table 6,
there were significant differences in the change of SBP values
over all time spans, as well as a change of FBG values over 2
months. The change of FBG values over 1 month to 4 months
showed a nonstatistically but clinically considerable decrease.
No significant difference was found for the change of PEF
values in these comparisons. A detailed subgroup analysis on
patients with different diseases and in different age or gender
groups is provided in Multimedia Appendix 5.
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Figure 10. Monthly records of patient outcomes from October 2019 to October 2020. DBP: diastolic blood pressure; FBG: fasting blood glucose; PBG:
plasma blood glucose; PEF: peak expiratory flow; SBP: systolic blood pressure.
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Table 6. Comparison of patient outcomes over different time spans.

P valueMean value afterMean value beforePatients who have records, NPatient outcome

SBPa (mmHg)

<.001128.43132.13114030 days

<.001125.78128.77126360 days

<.001128.14130.52100890 days

<.001128.86132.56725120 days

<.001127.6130.8446150 days

<.001128.18130.94403180 days

.02128.23130.44214360 days

FBGb (mmol/L)

.326.768.347630 days

.0454.925.5345760 days

.316.586.745890 days

.246.777.1728120 days

.527.386.9412150 days

.556.787.1510180 days

.957.117.0810360 days

PEFc (L/min)

.67320.59315.785530 days

.84323.13320.514760 days

.98310.69325.774490 days

.95327.76326.6145120 days

.73309.55316.6740150 days

.86311.16314.8141180 days

.51299.04318.329360 days

aSBP: systolic blood pressure.
bFBG: fast blood glucose.
cPEF: peak expiratory flow.

Causality in ATE
For the observational data, treatment effect estimation may be
affected by the potential existing confounders. A confounder is
a type of covariate that affects both the treatment assignment
and the outcome. Spurious effect and selection bias are two
main challenges brought about by confounders [59]. To estimate
the true treatment effect behind our intervention, we utilized
several causal inference methods to eliminate the influence of
confounders. Concretely, we first constructed a causal graphical
model for our problem based on prior knowledge (confirmed
by physicians), as shown in Figure 11. Four confounders were
considered in this study: patient age, management level,
abnormal warning, and management time. The treatment
variable was the intervention performed by care providers,
mainly including regular follow-up and abnormal condition
interventions. The outcome variables were physiological indices
submitted by patients, including SBP, FBG, and PEF.

Based on the causal graph, we extracted a subdataset specifically
for causal inference. For the treatment group (ie, T=True), we
selected the mean value of patient outcomes within 1 month
after receiving the intervention as the potential outcome (ie, Y),
whereas for the control group (ie, T=False), we extracted the
records of patients who did not receive any intervention within
2 weeks and regarded the mean value of self-monitoring records
as the outcome. For the confounders, “management level” was
the latest level of the patient at the initial time point of the
record, “abnormal warning” was a Boolean variable
demonstrating whether the patient has reported any abnormal
condition during the corresponding period of the record, and
“management time” was the time since the patient started to
receive the management. The sizes of the screened dataset for
the three types of patient outcomes are listed in Table 7.

Subsequently, two propensity score-based methods were adopted
for evaluating the ATE, namely PSM and PSS. The estimated
results are also presented in Table 7. The value of the causal
estimate represents the change in the outcome value when
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performing the intervention (ie, if we change the treatment from
“False” to “True,” then the outcome value will change by the
value of “estimate”). A positive value means that the outcome
increases with treatment, whereas a negative value means that
the outcome decreases with treatment. As expected, the values
of SBP and FBG decreased significantly after receiving the

intervention. The value of PEF increased after the intervention,
which might be interpreted as an improvement in pulmonary
function. Further, we utilized multiple refutation methods to
validate the obtained estimates, which confirmed that our
assumptions and results were reliable. The detailed results of
refutation can be found in Multimedia Appendix 6.

Figure 11. Causal graphical model for average treatment effect.

Table 7. Causal inference with propensity score matching (PSM) and propensity score stratification (PSS) for different patient outcomes.

Estimated ATEaRecords for inference, NPatient outcome

PSSPSM

–5.51–5.2420,535SBPb (mmHg)

–1.27–1.821765FBGc (mmol/L)

2.3610.081196PEFd (L/min)

aATE: average treatment effect.
bSBP: systolic blood pressure.
cFBG: fast blood glucose.
dPEF: peak expiratory flow.

Regional Case Study
We selected three primary health care facilities that registered
in our system at the same time (in the first half of 2019) from
different districts of Ningxia Hui Autonomous Region. All three
institutions were staffed with one GP and one CM to participate
in the management. Moreover, several specialists from the
nearest secondary or tertiary hospitals aided with patient
diagnosis and recruitment. Figure 12 shows an overview of the
selected three facilities. Patients mainly comprised those with
HTN, with a small proportion of patients with diabetes. Patients
with COPD were not included in these three institutions.

GPs and CMs worked collaboratively to perform pathway-driven
management through the system. Table 8 presents the descriptive
statistics of the records of interventions performed by GPs and

CMs. Further, we calculated the work efficiency of GPs based
on their regular follow-up records, as shown in Figure 13. The
pie chart demonstrates the percentage of different numbers of
follow-up records in a day, whereas the box plot presents the
distribution of response days to a follow-up request per month.
From the pie charts, all three GPs performed less than 20
follow-ups in over 80% of the follow-up days, and the average
number of follow-ups in a day was 16.4, 10, and 5.3,
respectively. From the box plots, almost all of the medians of
monthly response days were maintained within 5 days, with a
couple of outliers in several months. As time progressed, the
trends of response days differed for different GPs. Due to the
pandemic outbreak of COVID-19 in China in early 2020 [60],
for this case study, we only evaluated the intervention records
in 2019 to ensure credibility of the results.
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Figure 12. Overview of the selected three primary health care facilities in different districts of Ningxia. HTN: hypertension; T2DM: type 2 diabetes
mellitus. HM: hypertension and diabetes.

Table 8. Descriptive statistics of records of interventions performed by care providers in the selected three institutions.

Compliance (CMb), NWarning intervention (GP), NRegular follow-up (GPa), NInstitution location

Xingqing district

82114116Patients

104148306Records

Hongsibu district

10348196Patients

11814954Records

Yuanzhou district

537369Patients

86301203Records

aGP: general practitioner.
bCM: case manager.
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Figure 13. Frequency of follow-ups in one day and response days to a follow-up request for the three general practitioners.

Discussion

Principal Findings
In this study, we designed and implemented a coordinated
telehealth system that supports the management of multiple
chronic diseases based on a tailored integrated care model for
the emerging “three-manager” mode in China. The system could
provide pathway-driven decision support throughout the

management process via an ontology-based approach. According
to the retrospective analyses on long-term system usage data,
our system was able to link patients’ self-management to care
providers’ interventions through semiautomatic decision support
following the predefined care pathway. Furthermore, patient
outcomes showed a certain degree of improvement after
receiving management through the system.

Several interesting aspects can be found from the system
evaluation results. First, in terms of patients’ self-monitoring
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data, the different emphasis of records for patients with different
diseases reflects the focus of out-of-hospital management
regimens on different chronic conditions. The management
regimen of HTN focuses on lowering BP through medication
and lifestyle changes simultaneously, whereas the management
regimen of T2DM tends to focus first on lifestyle intervention
instead of medication. Moreover, the management regimen of
COPD requires persistent medication and close attention to
acute exacerbation and mental condition of patients.

Second, in terms of comparison tests, the different levels of
statistical significance among patient outcomes could be mainly
attributed to the difference in cardinality among these three
types of records. Compared to patients with diabetes or COPD,
patients with HTN constituted the majority of the registered
patients. Moreover, the self-measurement of BG at home was
slightly more complicated than that for BP due to its
invasiveness [61], which would potentially lower patient
compliance. The self-monitoring of PEF relied on having a peak
flow meter that has not been massively promoted for patients
with COPD in China. Furthermore, from a clinical viewpoint,
both the SBP and FBG values showed an expected decrease
over most time spans, whereas the PEF value only increased
over short time periods (30 days and 60 days). We considered
that the relatively large SDs for the PEF value and the
irreversibility of pulmonary function for patients with COPD
might account for the absence of differences.

Third, in terms of causal effect estimation, the estimated ATE
for SBP and FBG was consistent with the comparison tests
(decreased after intervention), and the results derived by PSS
and PSM were similar. The SBP value showed a relatively
greater change than the FBG value under causality assumptions.
By contrast, the estimated effect of PEF by the two causal
inference methods showed a great degree of dissimilarity (a part
of refutation tests for PEF also showed sensitivity). A possible
explanation for this is that the distribution of outcomes and
selected confounders among patients with COPD had a large
discrepancy, which led to different intermediate results when
performing stratification and matching. Moreover, certain bias
might exist in the extraction strategy itself for causal data.
Therefore, the true effect of our intervention for patients with
COPD remains a question for further investigation. In another
prospective study, we found an improvement in COPD-specific
quality of life and mental health status of patients after 6-month
pathway-driven management, with no significant difference in
the mean PEF value [62].

Fourth, according to the regional case study, the system was
able to generate different intervention tasks based on patients’
health status, and then assigned them to the corresponding care
providers. In this case study, the intervention tasks referred to
regular follow-up and abnormal condition intervention
performed by GPs, as well as compliance intervention performed
by CMs. GPs and CMs were able to work with each other to
provide comprehensive management support for patients. In

terms of work efficiency, intuitively, the more follow-ups care
providers perform in one day and the less handling time a
follow-up request costs, the more effective their work will be.
However, in practice, considering the workload and work
arrangement of care providers, we believe that for one care
provider, approximately 10 to 20 follow-ups in a single day and
response within one work week to a follow-up request are
reasonable, and can guarantee the quality and timeliness of
follow-up. According to these criteria, the GP in Hongsibu
district did a good job from both aspects, whereas the GP in
Xingqing district had a relatively long duration of response to
follow-up requests in the last few months of 2019. The GP in
Yuanzhou district had a small average number of follow-ups
in a single day, which might be attributed to the small cardinality
of patients compared with the other two regions.

Comparison With Prior Work
To better delineate the contribution of this study, we compared
our work with prior research from multiple aspects. In terms of
model construction, the integrated care model proposed in this
study can be considered as an individual-level customization
of the well-known chronic care model (CCM) [63-66].
Interventions that incorporated one or more elements of the
CCM have shown benefits for primary care outcomes, with
large effect sizes for self-management support, delivery system
design, and decision support [2]. The core of our model is the
management plan combined with pathway-driven coordinated
intervention, which adequately represent the above three
elements. Further, the system itself is an implementation of the
clinical information system in the CCM. In addition, several
elements of other models can be found in our system, such as
a complete eHealth-based feedback loop between patients and
care providers mentioned in the eHealth Enhanced Chronic Care
Model [10], effective use of health care personnel mentioned
in the Innovative Care for Chronic Conditions model [67], and
utilization of remote patient monitoring mentioned in the
Transitional Care model [68,69].

We then compared our research with 4 prior studies that
explored the comanagement of multiple chronic diseases using
information technologies. The results are shown in Table 9.
Among these studies, three ([16,17] and our study) utilized
ontology to provide decision support abilities during the care
process. Four of the studies ([16-18] and ours) supported the
management of MCC through different mechanisms. Three
studies ([18,19] and ours) designed an individual platform for
both care providers and patients, respectively. In terms of
evaluation, Riaño et al [16], Lasierra et al [17], and Laleci et al
[18] only performed a technical evaluation or pilot application
on their solutions, whereas Omboni et al [19] and our study
deployed the system in a real-world setting for a relatively long
period to test the effectiveness. In addition, due to the limitations
of labor and time costs, our system currently only supports three
types of chronic conditions and one type of MCC.
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Table 9. Comparison of recent studies using information technologies on comanagement of multiple chronic diseases.

EvaluationSystem implementa-
tion

Approach for manage-

ment of MCCa
Disease
types

Technology for
decision support

Target usersCountryStudy

Multidimensional retro-
spective study

Full-featured tele-
health system (with
mobile app)

Automatic integration
via manually formulat-
ed extra rule set

3Ontology-based
rule reasoning
driven by the care
pathway

Patients and
care
providers

ChinaThis
study

Technical evaluation and
ground test involving
health care professionals

Wrapper system inte-
grated into the
K4CARE project

Semiautomatic integra-
tion of several individ-
ual plans

19Case profile ontol-
ogy combined

with SDAb dia-
gram

Care
providers

ItalyRiaño et
al [16]

Technical evaluation
without end users

Semantic autonomic
agent prototype

Manual specification
of multichronic pa-
tient profiles

11Ontology-driven
patient profile
specification

PatientsSpainLasierra
et al [17]

Usability studies involv-
ing patients and clini-
cians

C3-Cloud web plat-

form for both MDTd

and patients

Manually designed
reconciled rules

4Decision logic

encoded in GDLc

version 2

Patients and
care
providers

Spain, Swe-
den, and Unit-
ed Kingdom

Laleci et
al [18]

Different observational
studies in various settings

Web-based telehealth
platform in the con-

text of IoMTe (with
mobile app)

Not mentioned4Analysis algo-
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aMCC: multiple chronic conditions.
bSDA: state-decision-action.
cGDL: Guideline Definition Language.
dMDT: multidisciplinary care team.
eIoMT: Internet of medical things.

Compared with these prior studies, our study was innovative
from several aspects. To the best of our knowledge, this study
is the first to construct a theoretical model for care delivery
under the “three-manager” mode in China. The proposed model
utilizes the concept to address the challenges of the limited
ability of GPs and CMs in the primary care setting. Through
refinement of a universal care pathway and specification on
different chronic conditions, care providers from primary health
care facilities were able to perform effective management
following the practice of evidence-based medicine. Further, our
model fully embodies the characteristics of coordination and a
“closed loop.” Conclusively, the coordination was mainly
reflected in the cooperation of different management roles and
inherent associations among different pathway tasks (eg, the
frequency of regular follow-up is determined by the results of
hierarchical management). The “closed-loop” feature was
reflected in the feedback mechanism between patients and care
providers, which was implemented via dynamically adjustable
management plans with the aid of information technologies.

Based on the constructed model, we implemented a telehealth
system that is highly applicable for practical deployment in
Chinese rural areas. The system has been carefully designed
with comprehensive functions and a user-friendly interface.
Care providers and patients can easily grasp the operational
methods of the system after brief training. Moreover, we
evaluated our system through a multidimensional retrospective
study. Long-term observational data from the real world were
utilized to investigate the effect of our system from several
aspects, including system usability, clinical validity, and quality
of care.

Strengths and Limitations
Our study has several strengths. First, in terms of system
implementation, we provided two forms of mobile apps for
patients: the native app and the WeChat mini program. In
practical use, we found that compared with the native version,
the WeChat mini program did not require installation and was
easy to access from WeChat, which is one of the most frequently
used apps in China. A majority of enrolled patients (especially
elderly patients) tended to use the mini program, which we
believe might potentially improve their compliance. Second,
benefitting from the design of the universal care pathway, the
system can be readily generalizable to other chronic diseases
through modification of concrete task contents and definition
of the corresponding rule set. The backend service and user
interface also need to be updated to complete the full extension
of the system. Third, we explored a new approach for evaluating
patients’ long-term management effect based on causal inference
methods. Although the methods and assumptions adopted in
this study were preliminary, we believe that compared with
simple comparison tests, the evaluation methods from a causal
perspective might be more appropriate for long-term
observational data directly extracted from the real world instead
of clinical trials. Fourth, to evaluate the quality of care under
computer-based management, we proposed a simple assessment
method based on the timing and numbers of follow-ups
according to our previous study [70]. The proposed method is
a type of process measure for care providers from a system
usage perspective. The evaluation result was relatively objective
and could present a quick understanding of care providers’work
efficiency.
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Several potential weaknesses of this study also need to be
acknowledged. First, although the ontology-based
implementation of the pathway can represent the knowledge in
a shareable and elegant way, the adjustment and expansion of
ontology need to be completed by knowledge engineers. Care
providers encountered some degree of difficulty in
understanding the logical rules contained in the ontology.
Second, the number of current patients with MCC in our system
is relatively small, and we only provide support for one kind of
MCC (HTN with T2DM) in the current service engine. The
effect of our system on a large scale of patients with diverse
MCC requires further exploration. Moreover, several parts of
medical knowledge in the guidelines were not integrated in the
present management plan, such as proper handling methods for
severe acute complications and detailed drug dosage guidance.
Third, the long-term compliance remains low in patients. More
effective strategies need to be considered to enhance patients’
intrinsic motivation. The long-term work efficiency of care
providers also needs to be improved through further medical
education. Finally, the evaluation on work efficiency of care
providers only considered the regular follow-up task of GPs,
and the assessment method did not involve analysis on concrete
intervention content.

Future Work
In future work, we will keep optimizing the usability of the
system and support other common chronic conditions such as
asthma, stroke, and chronic kidney disease. More elements

concerned with health behavior theory (eg, behavior change
technologies [71]) could be incorporated into the system to
further improve patient compliance. We also plan to deploy our
system in more regions of China and perform the evaluation at
a larger scale. The evaluation methods will also be refined to
provide more comprehensive and credible evidence, such as
cost-effectiveness analysis. Another direction for future work
is to explore a more personalized care pathway for a specific
patient through advanced artificial intelligence technologies
such as using reinforcement learning techniques to schedule the
follow-up for patients and generate more precise
self-management suggestions based on their self-monitoring
data.

Conclusions
This study revealed the commonality in the management of
different chronic diseases and explored the feasibility of
integrating multiple chronic conditions into a single telehealth
system. Management models could be customized for specific
policy and challenges in different areas to maximize
effectiveness. The tailored closed-loop care pathway proved to
be feasible and effective under the “three-manager” mode in
China. A part of patient outcomes improved after receiving
management through the system, whereas the work efficiency
of care providers differed individually. Further research might
investigate the effect of such systems in a higher evidence level
or introduce state-of-the-art machine learning techniques for a
more individualized care pathway.

 

Acknowledgments
This study was supported by National Key Research and Development Program of China (2020YFC2006400), Key Research
and Development Program of Zhejiang Province of China (2021C03111), Key Research and Development Program of Guangxi
Zhuang Autonomous of China (2020AB33002), Fundamental Research Funds for the Central Universities (2021FZZX002-05),
and Alibaba Cloud.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Detailed description of each disease-specific care pathway.
[DOCX File , 1259 KB - medinform_v9i5e27228_app1.docx ]

Multimedia Appendix 2
Detailed information of the Universal Care Pathway Ontology.
[DOCX File , 720 KB - medinform_v9i5e27228_app2.docx ]

Multimedia Appendix 3
Detailed screenshots of the web platform for care providers.
[DOCX File , 1772 KB - medinform_v9i5e27228_app3.docx ]

Multimedia Appendix 4
Detailed screenshots of the mobile app for patients.
[DOCX File , 1468 KB - medinform_v9i5e27228_app4.docx ]

Multimedia Appendix 5

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e27228 | p.130https://medinform.jmir.org/2021/5/e27228
(page number not for citation purposes)

Wang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

medinform_v9i5e27228_app1.docx
medinform_v9i5e27228_app1.docx
medinform_v9i5e27228_app2.docx
medinform_v9i5e27228_app2.docx
medinform_v9i5e27228_app3.docx
medinform_v9i5e27228_app3.docx
medinform_v9i5e27228_app4.docx
medinform_v9i5e27228_app4.docx
http://www.w3.org/Style/XSL
http://www.renderx.com/


Subgroup analysis on patients with different diseases and in different age or gender for the comparison tests.
[DOCX File , 43 KB - medinform_v9i5e27228_app5.docx ]

Multimedia Appendix 6
Detailed results of refutation in causal inference.
[DOCX File , 21 KB - medinform_v9i5e27228_app6.docx ]

References
1. Global Status Report on Noncommunicable Diseases 2014. World Health Organization. 2014. URL: http://apps.who.int/

iris/bitstream/10665/148114/1/9789241564854_eng.pdf?ua=1 [accessed 2020-12-31]
2. Reynolds R, Dennis S, Hasan I, Slewa J, Chen W, Tian D, et al. A systematic review of chronic disease management

interventions in primary care. BMC Fam Pract 2018 Jan 09;19(1):11 [FREE Full text] [doi: 10.1186/s12875-017-0692-3]
[Medline: 29316889]

3. Bodenheimer T, Lorig K, Holman H, Grumbach K. Patient self-management of chronic disease in primary care. JAMA
2002 Nov 20;288(19):2469-2475. [doi: 10.1001/jama.288.19.2469] [Medline: 12435261]

4. Harris MF, Zwar NA. Care of patients with chronic disease: the challenge for general practice. Med J Aust 2007 Jul
16;187(2):104-107. [doi: 10.5694/j.1326-5377.2007.tb01152.x] [Medline: 17635094]

5. Piette JD, Richardson C, Valenstein M. Addressing the needs of patients with multiple chronic illnesses: the case of diabetes
and depression. Am J Manag Care 2004 Feb;10(2 Pt 2):152-162 [FREE Full text] [Medline: 15005508]

6. Starfield B, Lemke KW, Herbert R, Pavlovich WD, Anderson G. Comorbidity and the use of primary care and specialist
care in the elderly. Ann Fam Med 2005;3(3):215-222 [FREE Full text] [doi: 10.1370/afm.307] [Medline: 15928224]

7. Integrated Care Models: An Overview. WHO Regional Office for Europe. 2016. URL: https://www.euro.who.int/__data/
assets/pdf_file/0005/322475/Integrated-care-models-overview.pdf [accessed 2021-01-02]

8. Strengthening People-Centred Health Systems in the WHO European Region: Framework for Action on Integrated Health
Services Delivery. World Health Organization Regional Office for Europe. 2016. URL: https://www.euro.who.int/__data/
assets/pdf_file/0004/315787/66wd15e_FFA_IHSD_160535.pdf [accessed 2021-01-03]

9. Curry N, Ham C. Clinical and service integration: the route to improved outcomes. London: The King's Fund; 2010. URL:
https://www.kingsfund.org.uk/sites/files/kf/Clinical-and-service-integration-Natasha-Curry-Chris-Ham-22-November-2010.
pdf [accessed 2021-01-03]

10. Gee PM, Greenwood DA, Paterniti DA, Ward D, Miller LMS. The eHealth Enhanced Chronic Care Model: a theory
derivation approach. J Med Internet Res 2015 Apr 01;17(4):e86 [FREE Full text] [doi: 10.2196/jmir.4067] [Medline:
25842005]

11. Kumar N, Khunger M, Gupta A, Garg N. A content analysis of smartphone-based applications for hypertension management.
J Am Soc Hypertens 2015 Feb;9(2):130-136. [doi: 10.1016/j.jash.2014.12.001] [Medline: 25660364]

12. Quinn CC, Clough SS, Minor JM, Lender D, Okafor MC, Gruber-Baldini A. WellDoc mobile diabetes management
randomized controlled trial: change in clinical and behavioral outcomes and patient and physician satisfaction. Diabetes
Technol Ther 2008 Jun;10(3):160-168. [doi: 10.1089/dia.2008.0283] [Medline: 18473689]

13. Pfaeffli Dale L, Whittaker R, Jiang Y, Stewart R, Rolleston A, Maddison R. Text message and internet support for coronary
heart disease self-management: results from the Text4Heart randomized controlled trial. J Med Internet Res 2015 Oct
21;17(10):e237 [FREE Full text] [doi: 10.2196/jmir.4944] [Medline: 26490012]

14. Fernandez-Granero MA, Sanchez-Morillo D, Leon-Jimenez A. Computerised analysis of telemonitored respiratory sounds
for predicting acute exacerbations of COPD. Sensors (Basel) 2015 Oct 23;15(10):26978-26996 [FREE Full text] [doi:
10.3390/s151026978] [Medline: 26512667]

15. Hamine S, Gerth-Guyette E, Faulx D, Green BB, Ginsburg AS. Impact of mHealth chronic disease management on treatment
adherence and patient outcomes: a systematic review. J Med Internet Res 2015 Feb 24;17(2):e52 [FREE Full text] [doi:
10.2196/jmir.3951] [Medline: 25803266]

16. Riaño D, Real F, López-Vallverdú JA, Campana F, Ercolani S, Mecocci P, et al. An ontology-based personalization of
health-care knowledge to support clinical decisions for chronically ill patients. J Biomed Inform 2012 Jun;45(3):429-446
[FREE Full text] [doi: 10.1016/j.jbi.2011.12.008] [Medline: 22269224]

17. Lasierra N, Alesanco A, Guillén S, García J. A three stage ontology-driven solution to provide personalized care to chronic
patients at home. J Biomed Inform 2013 Jun;46(3):516-529 [FREE Full text] [doi: 10.1016/j.jbi.2013.03.006] [Medline:
23567539]

18. Laleci Erturkmen GB, Yuksel M, Sarigul B, Arvanitis TN, Lindman P, Chen R, et al. A collaborative platform for management
of chronic diseases via guideline-driven individualized care plans. Comput Struct Biotechnol J 2019;17:869-885 [FREE
Full text] [doi: 10.1016/j.csbj.2019.06.003] [Medline: 31333814]

19. Omboni S, Campolo L, Panzeri E. Telehealth in chronic disease management and the role of the Internet-of-Medical-Things:
the Tholomeus® experience. Expert Rev Med Devices 2020 Jul;17(7):659-670. [doi: 10.1080/17434440.2020.1782734]
[Medline: 32536214]

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e27228 | p.131https://medinform.jmir.org/2021/5/e27228
(page number not for citation purposes)

Wang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

medinform_v9i5e27228_app5.docx
medinform_v9i5e27228_app5.docx
medinform_v9i5e27228_app6.docx
medinform_v9i5e27228_app6.docx
http://apps.who.int/iris/bitstream/10665/148114/1/9789241564854_eng.pdf?ua=1
http://apps.who.int/iris/bitstream/10665/148114/1/9789241564854_eng.pdf?ua=1
https://bmcfampract.biomedcentral.com/articles/10.1186/s12875-017-0692-3
http://dx.doi.org/10.1186/s12875-017-0692-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29316889&dopt=Abstract
http://dx.doi.org/10.1001/jama.288.19.2469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12435261&dopt=Abstract
http://dx.doi.org/10.5694/j.1326-5377.2007.tb01152.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17635094&dopt=Abstract
https://www.ajmc.com/pubMed.php?pii=2516
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15005508&dopt=Abstract
http://www.annfammed.org/cgi/pmidlookup?view=long&pmid=15928224
http://dx.doi.org/10.1370/afm.307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15928224&dopt=Abstract
https://www.euro.who.int/__data/assets/pdf_file/0005/322475/Integrated-care-models-overview.pdf
https://www.euro.who.int/__data/assets/pdf_file/0005/322475/Integrated-care-models-overview.pdf
https://www.euro.who.int/__data/assets/pdf_file/0004/315787/66wd15e_FFA_IHSD_160535.pdf
https://www.euro.who.int/__data/assets/pdf_file/0004/315787/66wd15e_FFA_IHSD_160535.pdf
https://www.kingsfund.org.uk/sites/files/kf/Clinical-and-service-integration-Natasha-Curry-Chris-Ham-22-November-2010.pdf
https://www.kingsfund.org.uk/sites/files/kf/Clinical-and-service-integration-Natasha-Curry-Chris-Ham-22-November-2010.pdf
https://www.jmir.org/2015/4/e86/
http://dx.doi.org/10.2196/jmir.4067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25842005&dopt=Abstract
http://dx.doi.org/10.1016/j.jash.2014.12.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25660364&dopt=Abstract
http://dx.doi.org/10.1089/dia.2008.0283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18473689&dopt=Abstract
https://www.jmir.org/2015/10/e237/
http://dx.doi.org/10.2196/jmir.4944
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26490012&dopt=Abstract
https://www.mdpi.com/resolver?pii=s151026978
http://dx.doi.org/10.3390/s151026978
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26512667&dopt=Abstract
https://www.jmir.org/2015/2/e52/
http://dx.doi.org/10.2196/jmir.3951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25803266&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(11)00222-X
http://dx.doi.org/10.1016/j.jbi.2011.12.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22269224&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(13)00040-3
http://dx.doi.org/10.1016/j.jbi.2013.03.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23567539&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2001-0370(18)30350-7
https://linkinghub.elsevier.com/retrieve/pii/S2001-0370(18)30350-7
http://dx.doi.org/10.1016/j.csbj.2019.06.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31333814&dopt=Abstract
http://dx.doi.org/10.1080/17434440.2020.1782734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32536214&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


20. Xu J, Wang W, Li Y, Zhang J, Pavlova M, Liu H, et al. Analysis of factors influencing the outpatient workload at Chinese
health centres. BMC Health Serv Res 2010 Jun 05;10:151 [FREE Full text] [doi: 10.1186/1472-6963-10-151] [Medline:
20525381]

21. Zou Y, Zhang X, Hao Y, Shi L, Hu R. General practitioners versus other physicians in the quality of primary care: a
cross-sectional study in Guangdong Province, China. BMC Fam Pract 2015 Oct 09;16:134 [FREE Full text] [doi:
10.1186/s12875-015-0349-z] [Medline: 26452648]

22. World Bank Group, World Health Organization, Ministry of Finance, National Family and Health Planning Commission,
Ministry of Human Resources and Social Security, China Joint Study Partership. Deepening Health Reform In China:
Building High-Quality And Value-Based Service Delivery. Open Knowledge World Bank. 2016. URL: https://openknowledge.
worldbank.org/bitstream/handle/10986/24720/HealthReformInChina.pdf [accessed 2021-01-03]

23. Yang S. Introduction of general practitioner education and chronic disease management model in Xiamen. Chinese Gen
Pract 2017;20(202):2526-2527. [doi: 10.3969/j.issn.1007-9572.2017.20.020]

24. Bourgueil Y, Marek A, Mousques J. Practice, role and position of nurses in primary care in six European countries, in
Ontario and in Quebec. Rech Soins Infirm 2008 Jun(93):94-105. [Medline: 18678084]

25. van Dillen SME, Hiddink GJ. To what extent do primary care practice nurses act as case managers lifestyle counselling
regarding weight management? A systematic review. BMC Fam Pract 2014 Dec 10;15:197 [FREE Full text] [doi:
10.1186/s12875-014-0197-2] [Medline: 25491594]

26. Li X, Lu J, Hu S, Cheng KK, De Maeseneer J, Meng Q, et al. The primary health-care system in China. Lancet 2017 Dec
09;390(10112):2584-2594. [doi: 10.1016/S0140-6736(17)33109-4] [Medline: 29231837]

27. Li H. Hypertension management in primary care in China: still a long way to proceed. J Gen Pract 2015;04(02):2-3. [doi:
10.4172/2329-9126.1000238]

28. Li H, Wei X, Wong MC, Yang N, Wong SY, Lao X, et al. A comparison of the quality of hypertension management in
primary care between Shanghai and Shenzhen: a cohort study of 3196 patients. Medicine (Baltimore) 2015 Feb;94(5):e455.
[doi: 10.1097/MD.0000000000000455] [Medline: 25654383]

29. Joint Committee for Guideline Revision. 2018 Chinese Guidelines for Prevention and Treatment of Hypertension-A report
of the Revision Committee of Chinese Guidelines for Prevention and Treatment of Hypertension. J Geriatr Cardiol 2019
Mar;16(3):182-241 [FREE Full text] [doi: 10.11909/j.issn.1671-5411.2019.03.014] [Medline: 31080465]

30. Jia W, Weng J, Zhu D, Ji L, Lu J, Zhou Z, Chinese Diabetes Society. Standards of medical care for type 2 diabetes in China
2019. Diabetes Metab Res Rev 2019 Sep;35(6):e3158. [doi: 10.1002/dmrr.3158] [Medline: 30908791]

31. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for the Diagnosis, Management and
Prevention of COPD: 2020 Report. 2020. URL: https://goldcopd.org/wp-content/uploads/2019/12/GOLD-2020-FINAL-ver1.
2-03Dec19_WMV.pdf [accessed 2021-01-02]

32. Feng XL, Pang M, Beard J. Health system strengthening and hypertension awareness, treatment and control: data from the
China Health and Retirement Longitudinal Study. Bull World Health Organ 2014 Jan 01;92(1):29-41 [FREE Full text]
[doi: 10.2471/BLT.13.124495] [Medline: 24391298]

33. Hernandez J, Anderson S. Storied experiences of nurse practitioners managing prehypertension in primary care. J Am Acad
Nurse Pract 2012 Feb;24(2):89-96. [doi: 10.1111/j.1745-7599.2011.00663.x] [Medline: 22324864]

34. Zhou XM, Wu C, Zhao L, Gao YZ, Yuan Y, Xiao XX, et al. A cross-sectional survey of the knowledge on chronic obstructive
pulmonary disease in physicians of tertiary hospitals in Northern China. Zhonghua Nei Ke Za Zhi 2016 Sep 01;55(9):717-720.
[doi: 10.3760/cma.j.issn.0578-1426.2016.09.012] [Medline: 27586981]

35. Wang LM, Chen ZH, Zhang M, Zhao ZP, Huang ZJ, Zhang X, et al. Study of the prevalence and disease burden of chronic
disease in the elderly in China. Zhonghua Liu Xing Bing Xue Za Zhi 2019 Mar 10;40(3):277-283. [doi:
10.3760/cma.j.issn.0254-6450.2019.03.005] [Medline: 30884604]

36. Noy NF, McGuinness DL. Ontology Development 101: A Guide to Creating Your First Ontology. Standford University.
2001. URL: https://protege.stanford.edu/publications/ontology_development/ontology101.pdf [accessed 2021-01-03]

37. Grüninger M, Fox M, Gruninger M. Methodology for the design and evaluation of ontologies. 1995 Presented at: International
Joint Conference on Artificial Intelligence (IJCAI95); August 20-25, 1995; Montreal, Quebec p. 1-10.

38. El-Sappagh S, Kwak D, Ali F, Kwak K. DMTO: a realistic ontology for standard diabetes mellitus treatment. J Biomed
Semantics 2018 Feb 06;9(1):8 [FREE Full text] [doi: 10.1186/s13326-018-0176-y] [Medline: 29409535]

39. Arp R, Smith B, Spear A. Building Ontologies with Basic Formal Ontology. Cambridge, MA: MIT Press; 2015.
40. Scheuermann RH, Ceusters W, Smith B. Toward an ontological treatment of disease and diagnosis. Summit Transl Bioinform

2009 Mar 01;2009:116-120 [FREE Full text] [Medline: 21347182]
41. He Y, Sarntivijai S, Lin Y, Xiang Z, Guo A, Zhang S, et al. OAE: The Ontology of Adverse Events. J Biomed Semantics

2014;5:29 [FREE Full text] [doi: 10.1186/2041-1480-5-29] [Medline: 25093068]
42. Horrocks I, Patel-Schneider P, Boley H, Tabet S, Grosof B, Dean M. SWRL: A Semantic Web Rule Language Combining

OWL and RuleML. W3C Member Submission. URL: https://www.w3.org/Submission/SWRL/ [accessed 2021-01-03]
43. Hobbs J, Pang F. Time ontology in OWL. W3C Candidate Recommendation. 2006. URL: https://www.w3.org/TR/owl-time/

[accessed 2021-01-03]

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e27228 | p.132https://medinform.jmir.org/2021/5/e27228
(page number not for citation purposes)

Wang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-10-151
http://dx.doi.org/10.1186/1472-6963-10-151
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20525381&dopt=Abstract
https://bmcfampract.biomedcentral.com/articles/10.1186/s12875-015-0349-z
http://dx.doi.org/10.1186/s12875-015-0349-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26452648&dopt=Abstract
https://openknowledge.worldbank.org/bitstream/handle/10986/24720/HealthReformInChina.pdf
https://openknowledge.worldbank.org/bitstream/handle/10986/24720/HealthReformInChina.pdf
http://dx.doi.org/10.3969/j.issn.1007-9572.2017.20.020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18678084&dopt=Abstract
https://bmcfampract.biomedcentral.com/articles/10.1186/s12875-014-0197-2
http://dx.doi.org/10.1186/s12875-014-0197-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25491594&dopt=Abstract
http://dx.doi.org/10.1016/S0140-6736(17)33109-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29231837&dopt=Abstract
http://dx.doi.org/10.4172/2329-9126.1000238
http://dx.doi.org/10.1097/MD.0000000000000455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25654383&dopt=Abstract
http://europepmc.org/abstract/MED/31080465
http://dx.doi.org/10.11909/j.issn.1671-5411.2019.03.014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31080465&dopt=Abstract
http://dx.doi.org/10.1002/dmrr.3158
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30908791&dopt=Abstract
https://goldcopd.org/wp-content/uploads/2019/12/GOLD-2020-FINAL-ver1.2-03Dec19_WMV.pdf
https://goldcopd.org/wp-content/uploads/2019/12/GOLD-2020-FINAL-ver1.2-03Dec19_WMV.pdf
http://europepmc.org/abstract/MED/24391298
http://dx.doi.org/10.2471/BLT.13.124495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24391298&dopt=Abstract
http://dx.doi.org/10.1111/j.1745-7599.2011.00663.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22324864&dopt=Abstract
http://dx.doi.org/10.3760/cma.j.issn.0578-1426.2016.09.012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27586981&dopt=Abstract
http://dx.doi.org/10.3760/cma.j.issn.0254-6450.2019.03.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30884604&dopt=Abstract
https://protege.stanford.edu/publications/ontology_development/ontology101.pdf
https://jbiomedsem.biomedcentral.com/articles/10.1186/s13326-018-0176-y
http://dx.doi.org/10.1186/s13326-018-0176-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29409535&dopt=Abstract
http://europepmc.org/abstract/MED/21347182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21347182&dopt=Abstract
https://jbiomedsem.biomedcentral.com/articles/10.1186/2041-1480-5-29
http://dx.doi.org/10.1186/2041-1480-5-29
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25093068&dopt=Abstract
https://www.w3.org/Submission/SWRL/
https://www.w3.org/TR/owl-time/
http://www.w3.org/Style/XSL
http://www.renderx.com/


44. Dybå T, Dingsøyr T. Empirical studies of agile software development: A systematic review. Inf Softw Technol 2008
Aug;50(9-10):833-859. [doi: 10.1016/j.infsof.2008.01.006]

45. Cooper A, Reimann R, Cronin D, Noessel C. About Face: The Essentials of Interaction Design. Hoboken, NJ: John Wiley
& Sons; 2014.

46. Duan H, Wang Z, Ji Y, Ma L, Liu F, Chi M, et al. Using goal-directed design to create a mobile health app to improve
patient compliance with hypertension self-management: development and deployment. JMIR Mhealth Uhealth 2020 Feb
25;8(2):e14466 [FREE Full text] [doi: 10.2196/14466] [Medline: 32130161]

47. O'Connor M, Nyulas C, Shankar R, Das A, Musen M. The SWRLAPI: A Development Environment for Working with
SWRL Rules. 2008. URL: http://webont.org/owled/2008/papers/owled2008eu_submission_41.pdf [accessed 2021-01-03]

48. Sharma A, Kiciman E. DoWhy: An End-to-End Library for Causal Inference. arxiv. 2020. URL: http://arxiv.org/abs/2011.
04216 [accessed 2021-01-03]

49. Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika
1983;70(1):41-55. [doi: 10.1093/biomet/70.1.41]

50. Rosenbaum PR, Rubin DB. Constructing a control group using multivariate matched sampling methods that incorporate
the propensity score. Am Statistician 2012 Mar 12;39(1):33-38. [doi: 10.1080/00031305.1985.10479383]

51. Rosenbaum PR, Rubin DB. Reducing bias in observational studies using subclassification on the propensity score. J Am
Stat Assoc 1984 Sep;79(387):516-524. [doi: 10.1080/01621459.1984.10478078]

52. Ali MS, Prieto-Alhambra D, Lopes LC, Ramos D, Bispo N, Ichihara MY, et al. Propensity score methods in health technology
assessment: principles, extended applications, and recent advances. Front Pharmacol 2019;10:973. [doi:
10.3389/fphar.2019.00973] [Medline: 31619986]

53. Stergiou GS, Kario K, Kollias A, McManus RJ, Ohkubo T, Parati G, et al. Home blood pressure monitoring in the 21st
century. J Clin Hypertens (Greenwich) 2018 Jul;20(7):1116-1121. [doi: 10.1111/jch.13284] [Medline: 30003694]

54. Yoo E, Lee S. Glucose biosensors: an overview of use in clinical practice. Sensors (Basel) 2010;10(5):4558-4576 [FREE
Full text] [doi: 10.3390/s100504558] [Medline: 22399892]

55. Jackson H, Hubbard R. Detecting chronic obstructive pulmonary disease using peak flow rate: cross sectional survey. BMJ
2003 Sep 20;327(7416):653-654 [FREE Full text] [doi: 10.1136/bmj.327.7416.653] [Medline: 14500437]

56. Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med 2001
Sep;16(9):606-613 [FREE Full text] [doi: 10.1046/j.1525-1497.2001.016009606.x] [Medline: 11556941]

57. Spitzer RL, Kroenke K, Williams JBW, Löwe B. A brief measure for assessing generalized anxiety disorder: the GAD-7.
Arch Intern Med 2006 May 22;166(10):1092-1097. [doi: 10.1001/archinte.166.10.1092] [Medline: 16717171]

58. Wang Z, Huang H, Cui L, Chen J, An J, Duan H, et al. Using natural language processing techniques to provide personalized
educational materials for chronic disease patients in china: development and assessment of a knowledge-based health
recommender system. JMIR Med Inform 2020 Apr 23;8(4):e17642 [FREE Full text] [doi: 10.2196/17642] [Medline:
32324148]

59. Yao L, Chu Z, Li S, Li Y, Gao J, Zhang A. A survey on causal inference. arxiv. 2020. URL: http://arxiv.org/abs/2002.02770
[accessed 2021-01-03]

60. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, China Novel Coronavirus Investigating Research Team. A novel
coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020 Feb 20;382(8):727-733 [FREE Full text]
[doi: 10.1056/NEJMoa2001017] [Medline: 31978945]

61. Villena Gonzales W, Mobashsher AT, Abbosh A. The progress of glucose monitoring-a review of invasive to minimally
and non-invasive techniques, devices and sensors. Sensors (Basel) 2019 Feb 15;19(4):800 [FREE Full text] [doi:
10.3390/s19040800] [Medline: 30781431]

62. Deng N, Chen J, Liu Y, Wei S, Sheng L, Lu R, et al. Using mobile health technology to deliver a community-based
closed-loop management system for chronic obstructive pulmonary disease patients in remote areas of China: Development
and prospective observational study. JMIR Mhealth Uhealth 2020 Nov 25;8(11):e15978 [FREE Full text] [doi: 10.2196/15978]
[Medline: 33237036]

63. Wagner EH, Austin BT, Von Korff M. Organizing care for patients with chronic illness. Milbank Q 1996;74(4):511-544.
[Medline: 8941260]

64. Wagner EH, Austin BT, Davis C, Hindmarsh M, Schaefer J, Bonomi A. Improving chronic illness care: translating evidence
into action. Health Aff (Millwood) 2001 Nov;20(6):64-78. [doi: 10.1377/hlthaff.20.6.64] [Medline: 11816692]

65. Bodenheimer T, Wagner EH, Grumbach K. Improving primary care for patients with chronic illness. JAMA 2002 Oct
09;288(14):1775-1779. [doi: 10.1001/jama.288.14.1775] [Medline: 12365965]

66. Bodenheimer T, Wagner EH, Grumbach K. Improving primary care for patients with chronic illness: the chronic care
model, Part 2. JAMA 2002 Oct 16;288(15):1909-1914. [doi: 10.1001/jama.288.15.1909] [Medline: 12377092]

67. Innovative Care for Chronic Conditions: Building Blocks for Action. Noncommunicable Diseases and Mental Health World
Health Organization. 2002. URL: https://www.who.int/chp/knowledge/publications/icccglobalreport.pdf?ua=1 [accessed
2021-01-03]

68. Hirschman KB, Shaid E, McCauley K, Pauly MV, Naylor MD. Continuity of Care: The Transitional Care Model. Online
J Issues Nurs 2015 Sep 30;20(3):1 [FREE Full text] [Medline: 26882510]

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e27228 | p.133https://medinform.jmir.org/2021/5/e27228
(page number not for citation purposes)

Wang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.1016/j.infsof.2008.01.006
https://mhealth.jmir.org/2020/2/e14466/
http://dx.doi.org/10.2196/14466
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32130161&dopt=Abstract
http://webont.org/owled/2008/papers/owled2008eu_submission_41.pdf
http://arxiv.org/abs/2011.04216
http://arxiv.org/abs/2011.04216
http://dx.doi.org/10.1093/biomet/70.1.41
http://dx.doi.org/10.1080/00031305.1985.10479383
http://dx.doi.org/10.1080/01621459.1984.10478078
http://dx.doi.org/10.3389/fphar.2019.00973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31619986&dopt=Abstract
http://dx.doi.org/10.1111/jch.13284
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30003694&dopt=Abstract
https://www.mdpi.com/resolver?pii=s100504558
https://www.mdpi.com/resolver?pii=s100504558
http://dx.doi.org/10.3390/s100504558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22399892&dopt=Abstract
http://europepmc.org/abstract/MED/14500437
http://dx.doi.org/10.1136/bmj.327.7416.653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14500437&dopt=Abstract
https://onlinelibrary.wiley.com/resolve/openurl?genre=article&sid=nlm:pubmed&issn=0884-8734&date=2001&volume=16&issue=9&spage=606
http://dx.doi.org/10.1046/j.1525-1497.2001.016009606.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11556941&dopt=Abstract
http://dx.doi.org/10.1001/archinte.166.10.1092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16717171&dopt=Abstract
https://medinform.jmir.org/2020/4/e17642/
http://dx.doi.org/10.2196/17642
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32324148&dopt=Abstract
http://arxiv.org/abs/2002.02770
http://europepmc.org/abstract/MED/31978945
http://dx.doi.org/10.1056/NEJMoa2001017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31978945&dopt=Abstract
https://www.mdpi.com/resolver?pii=s19040800
http://dx.doi.org/10.3390/s19040800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30781431&dopt=Abstract
https://mhealth.jmir.org/2020/11/e15978/
http://dx.doi.org/10.2196/15978
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33237036&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8941260&dopt=Abstract
http://dx.doi.org/10.1377/hlthaff.20.6.64
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11816692&dopt=Abstract
http://dx.doi.org/10.1001/jama.288.14.1775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12365965&dopt=Abstract
http://dx.doi.org/10.1001/jama.288.15.1909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12377092&dopt=Abstract
https://www.who.int/chp/knowledge/publications/icccglobalreport.pdf?ua=1
http://nursingworld.org/MainMenuCategories/ANAMarketplace/ANAPeriodicals/OJIN/TableofContents/Vol-20-2015/No3-Sept-2015/Continuity-of-Care-Transitional-Care-Model.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26882510&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


69. Williams G, Akroyd K, Burke L. Evaluation of the transitional care model in chronic heart failure. Br J Nurs
2010;19(22):1402-1407. [doi: 10.12968/bjon.2010.19.22.1402] [Medline: 21139521]

70. Wang Z, Li C, Huang W, Chen Y, Li Y, Huang L, et al. Effectiveness of a pathway-driven eHealth-based integrated care
model (PEICM) for community-based hypertension management in China: study protocol for a randomized controlled trial.
Trials 2021 Jan 22;22(1):81 [FREE Full text] [doi: 10.1186/s13063-021-05020-2] [Medline: 33482896]

71. Michie S, Richardson M, Johnston M, Abraham C, Francis J, Hardeman W, et al. The behavior change technique taxonomy
(v1) of 93 hierarchically clustered techniques: building an international consensus for the reporting of behavior change
interventions. Ann Behav Med 2013 Aug;46(1):81-95. [doi: 10.1007/s12160-013-9486-6] [Medline: 23512568]

Abbreviations
API: application programming interface
ATE: average treatment effect
BG: blood glucose
BP: blood pressure
CCM: chronic care model
CM: case manager
COPD: chronic obstructive pulmonary disease
FBG: fasting blood glucose
GP: general practitioner
HTN: hypertension
MCC: multiple chronic conditions
OWL: W3C Web Ontology Language
PEF: peak expiratory flow
PSM: propensity score matching
PSS: propensity score stratification
SBP: systolic blood pressure
SWRL: semantic web rule language
T2DM: type 2 diabetes mellitus
UCPO: Universal Care Pathway Ontology

Edited by R Kukafka, G Eysenbach; submitted 17.01.21; peer-reviewed by LC Gradim, X Li, Z Feng; comments to author 10.02.21;
revised version received 22.02.21; accepted 16.04.21; published 17.05.21.

Please cite as:
Wang Z, An J, Lin H, Zhou J, Liu F, Chen J, Duan H, Deng N
Pathway-Driven Coordinated Telehealth System for Management of Patients With Single or Multiple Chronic Diseases in China:
System Development and Retrospective Study
JMIR Med Inform 2021;9(5):e27228
URL: https://medinform.jmir.org/2021/5/e27228 
doi:10.2196/27228
PMID:33998999

©Zheyu Wang, Jiye An, Hui Lin, Jiaqiang Zhou, Fang Liu, Juan Chen, Huilong Duan, Ning Deng. Originally published in JMIR
Medical Informatics (https://medinform.jmir.org), 17.05.2021. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The
complete bibliographic information, a link to the original publication on https://medinform.jmir.org/, as well as this copyright
and license information must be included.

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e27228 | p.134https://medinform.jmir.org/2021/5/e27228
(page number not for citation purposes)

Wang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.12968/bjon.2010.19.22.1402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21139521&dopt=Abstract
https://trialsjournal.biomedcentral.com/articles/10.1186/s13063-021-05020-2
http://dx.doi.org/10.1186/s13063-021-05020-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33482896&dopt=Abstract
http://dx.doi.org/10.1007/s12160-013-9486-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23512568&dopt=Abstract
https://medinform.jmir.org/2021/5/e27228
http://dx.doi.org/10.2196/27228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33998999&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Original Paper

Telemedicine for Follow-up Management of Patients After Liver
Transplantation: Cohort Study

Min Tian1, PhD, MD; Bo Wang1, PhD, MD; Zhao Xue2, PhD; Dinghui Dong1, MD; Xuemin Liu1, MD; Rongqian

Wu2, PhD; Liang Yu1, MD; Junxi Xiang1, PhD; Xiaogang Zhang1, PhD, MD; Xufeng Zhang1, PhD, MD; Yi Lv1,
PhD, MD
1Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
2National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China

Corresponding Author:
Yi Lv, PhD, MD
Department of Hepatobiliary Surgery
The First Affiliated Hospital of Xi’an Jiaotong University
No 277 West Yan-ta Road
Xi’an, 710061
China
Phone: 86 02985323900
Email: luyi169@126.com

Abstract

Background: Technical capabilities for performing liver transplantation have developed rapidly; however, the lack of available
livers has prompted the utilization of edge donor grafts, including those donated after circulatory death, older donors, and hepatic
steatosis, thereby rendering it difficult to define optimal clinical outcomes.

Objective: We aimed to investigate the efficacy of telemedicine for follow-up management after liver transplantation.

Methods: To determine the efficacy of telemedicine for follow-up after liver transplantation, we performed a clinical observation
cohort study to evaluate the rate of recovery, readmission rate within 30 days after discharge, mortality, and morbidity. Patients
(n=110) who underwent liver transplantation (with livers from organ donation after citizen's death) were randomly assigned to
receive either telemedicine-based follow-up management for 2 weeks in addition to the usual care or usual care follow-up only.
Patients in the telemedicine group were given a robot free-of-charge for 2 weeks of follow-up. Using the robot, patients interacted
daily, for approximately 20 minutes, with transplant specialists who assessed respiratory rate, electrocardiogram, blood pressure,
oxygen saturation, and blood glucose level; asked patients about immunosuppressant medication use, diet, sleep, gastrointestinal
function, exercise, and T-tube drainage; and recommended rehabilitation exercises.

Results: No differences were detected between patients in the telemedicine group (n=52) and those in the usual care group
(n=50) regarding age (P=.17), the model for end-stage liver disease score (MELD, P=.14), operation time (P=.51), blood loss
(P=.07), and transfusion volume (P=.13). The length and expenses of the initial hospitalization (P=.03 and P=.049) were lower
in the telemedicine group than they were in the usual care follow-up group. The number of patients with MELD score ≥30 before
liver transplantation was greater in the usual care follow-up group than that in the telemedicine group. Furthermore, the readmission
rate within 30 days after discharge was markedly lower in the telemedicine group than in the usual care follow-up group (P=.02).
The postoperative survival rates at 12 months in the telemedicine group and the usual care follow-up group were 94.2% and
90.0% (P=.65), respectively. Warning signs of complications were detected early and treated in time in the telemedicine group.
Furthermore, no significant difference was detected in the long-term visit cumulative survival rate between the two groups
(P=.50).

Conclusions: Rapid recovery and markedly lower readmission rates within 30 days after discharge were evident for telemedicine
follow-up management of patients post–liver transplantation, which might be due to high-efficiency in perioperative and follow-up
management. Moreover, telemedicine follow-up management promotes the self-management and medication adherence, which
improves patients’ health-related quality of life and facilitates achieving optimal clinical outcomes in post–liver transplantation.

(JMIR Med Inform 2021;9(5):e27175)   doi:10.2196/27175
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Introduction

In 1967, Thomas Starzl performed the first successful liver
transplantation [1]. Nearly half a century later, it has become a
widely accepted treatment for end-stage liver disease and
selected liver malignancies. Improvements in multiple
dimensions, including refinement of explanting and organ
preservation techniques, surgical techniques, perioperative care,
and the development of potent immunosuppressive drugs have
improved the outcomes of liver transplantation with 1-year
survival rates >85% [2,3] and the 5-year survival rate
approaching 75% [4]. The success of liver transplantation has
led to an expansion of indications [5-7]; however, the lack of
availability of the critical organ has prompted the use of edge
donor grafts [8], such as those donated after circulatory death,
from older donors, and from with hepatic steatosis [9,10]. In
the past 20 years, the capabilities for liver transplantation have
made remarkable progress in China. The perioperative mortality
rate has been reduced to <5%, and the postoperative survival
rates at 1, 5, and 10 years have reached 90%, 80%, and 70%,
respectively. In 2006, the liver transplantation team led by
Shu-sen Zheng at the First Affiliated Hospital, School of
Medicine, Zhejiang University proposed the Hangzhou criteria
[11]. Comparison of the 1-, 3-, and 5-year survival rates between
Milan criteria and Hangzhou criteria groups did not reveal any
statistical differences [12]. The technical capabilities for liver
transplantation in China, the postoperative graft survival rate,
and recipient survival rate are on par with those of the global
level [13].

The increasing complexities in the liver transplantation process
make it difficult to determine optimal clinical outcomes.
Textbook outcome is an emerging concept within multiple
surgical domains that defines a standardized composite quality
benchmark based on multiple endpoints perioperatively,
representing the ideal textbook hospitalization [14]. Although
the definition of textbook outcome varies, it frequently includes
the evaluation of morbidity, mortality, length of stay, and
hospital readmission. Moris et al [15] defined textbook outcome
as a metric of an ideal outcome in liver transplantation. The
textbook outcome for liver transplantation is based on the
exclusion of the following parameters: mortality within 90 days,
primary allograft nonfunction, early allograft dysfunction,
rejection of the graft within 30 days, readmission with 30 days,
readmission to the intensive care unit during hospitalization,
hospital length of stay >75th percentile of all liver
transplantation, red blood cell transfusion requirement >75th
percentile for all liver transplantation complications
(reintervention), and major intraoperative complications. We
speculate that the achievement of textbook outcome in liver
transplantation is a composite metric reflecting the quality of
perioperative care and cost-effective practice. Therefore, the
perioperative management and follow-up system in liver
transplantation are under intensive focus.

Telemedicine is the dissemination of health services over long
distances by health care providers using information and
communication technology [16]. eHealth is an efficient and
cost-e ective alternative to traditional health care that can be
used to improve patients’ health-related quality of life and
satisfaction [17]. Telemedicine is driven by rapid developments
in medicine, information, and communication technology. It
has been used for many diseases (chronic obstructive pulmonary
disease, asthma, heart failure) because it facilitates real-time
consultation between caregivers and patients to provide timely
and improved personalized care. Telemedicine also facilitates
diagnosis and treatment options when medical evacuation is
impossible due to acute medical emergencies, mass casualty
disasters, and public health measures (such as during COVID-19
pandemic restrictions) [18,19]. From a global health perspective,
telemedicine increases the availability and quality of health care
in remote areas and reduces medical inequalities between remote
and urban areas [20-24]. Changes in the medical field have
prompted concerns—how to achieve the optimal clinical
outcome (ie, textbook outcome) in liver transplantation? What
is required to establish a new model to meet the challenge of
the new era?

The greatest strength of telemedicine is to provide face-to-face
communication in over long distances for specialized health
care services, thereby eliminating the need for both the physician
and patient being in the same location. We aimed to investigate
the efficacy of a telemedicine follow-up management
intervention after liver transplantation on recovery, hospital
readmission, mortality, and morbidity.

Methods

Study Design and Participants
We conducted a clinical observation study. Between January
1, 2015 and September 30, 2018, a total of 340 patients
underwent orthotopic liver transplantation in the First Affiliated
Hospital of Xi’an Jiao Tong University, Shaanxi, China. The
livers were donated after citizen’s death. The patients were
eligible for inclusion in the study if they fulfilled the discharge
conditions for orthotopic liver transplantation (stable liver
function and immunosuppressant blood concentration, improved
diet and exercise), were willing to participate telemedicine-based
follow-up management, and provided written informed consent.
Patients were excluded from the study if they did not have a
wireless network at home.

Patients who were enrolled in this study were randomly assigned
after hospital discharge to either telemedicine-based follow-up
management for 2 weeks in addition to the usual care or usual
care follow-up only. All patients were followed up for 12
months, and long-term survival follow-up data were recorded
until December 31, 2020.

This study was approved by the First Affiliated Hospital of
Xi’an Jiao Tong University Ethics Committee
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(XJTU1AF2020LSK-171) and conducted in compliance with
the Declaration of Helsinki and the International Code of
Medical Ethics.

Patients, Health Care Professionals, and Facilities
Involved in the Telemedicine Follow-up Management
System
The telemedicine follow-up management system (Figure 1)
included doctor terminal app, patient terminal app, and
management platforms. The data acquisition equipment and
intelligent service robot were utilized to acquire blood pressure,
blood oxygen, temperature, and electrocardiography (ECG)
data. The data transmission between the monitoring equipment

and the robot used an Android Bluetooth interface.
Internet-based telecommunication with health care professionals
[25] used video or telephone links in real-time, and
store-and-forward technology was applied [26]. The transplant
specialist remotely controlled the intelligent robot face-to-face
communication with liver transplantation recipients using a
computer, mobile phone, or iPad. Patients’ physiological
parameters, such as respiratory rate, ECG, blood pressure,
oxygen saturation, blood glucose level, and feedback were
telemonitored via the wireless equipment [27]. The rehabilitation
programs were administered after liver transplantation with
home-based video conference supervised exercise, and
counseling by transplant professionals.

Figure 1. Schematic of the telemedicine follow-up management system. ① The telemedicine follow-up management system includes doctor-terminal,
patient-terminal, and management platform. ② The transplant specialist remotely controlled the intelligent robot “face-to-face” communication with
patients by a computer, mobile phone, and tablet from anywhere, such as monitoring vital signs and T tube drainage. ③ Based on Internet-based
telecommunication systems, the physiological parameters, such as respiratory rate, ECG, blood pressure, oxygen saturations processed, blood sugar or
authorized by transplant specialists with feedback to the patients, were telemonitored by wireless equipment. ④ The patients could communicate with
the transplant specialists about the examination results through the telemedicine follow-up management system in real-time or using store-and-forward
technology.

User Training
Before initiating this study, we piloted the telemedicine
follow-up management system in healthy volunteers to evaluate
the feasibility of the system. Both remote transplant specialists
and patients were trained to use this system. The average training
time for patients was 1 hour. The acceptance of this model was
based on the response to a yes or no questionnaire given to the
specialists and patients, and a criterion was defined that
acceptance should reach >95%.

Telemedicine Follow-up Management Intervention
Patients in this group received telemedicine follow-up
management in the first 2 weeks after hospital discharge.

Patients were discharged, and the telemedicine follow-up robot
was given to them to take home free-of-charge.

The transplant specialists called the patients to turn on the
telemedicine follow-up management robot at a specific time
every morning. The transplant specialist remotely controlled
the intelligent robot via face-to-face communication with liver
transplantation recipients using a computer, mobile phone, or
iPad. The patient used the equipment of the telemedicine
follow-up robot to capture their vital signs (respiratory rate,
ECG, blood pressure, oxygen saturation) and blood glucose
level.

While monitoring patients’ vital data, the transplant specialists
inquired about the medication of the immunosuppressive agents
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after discharge, daily diet, sleep, relief of the bowels, exercise,
and drainage of the T tube; provided guidance, and initiated
rehabilitation programs for the patients. Each daily session
lasted approximately 20 minutes.

The patient visited the outpatient service weekly during the 2
weeks for examination of immunosuppressant blood
concentration and biochemical indexes (such as liver function)
and for color doppler ultrasonography of the graft. The patients
could communicate with the transplant specialists about
examination results and drug adjustments through the
telemedicine follow-up management system. After the end of
the 2-week period, patients returned the telemedicine follow-up
robot to the hospital and continued routine outpatient follow-up.

Usual Care Follow-up
The patients in the usual care follow-up group attended
outpatient follow-up visits each week in the first month after
hospital discharge for examination of immunosuppressant blood
concentration and biochemical indexes (such as liver function)
and for color doppler ultrasonography of the graft. Outpatient
follow-up visits occurred every 2 weeks after the first month,
then every month in the first half-year, and thereafter, every 2
to 3 months.

Statistical Analysis
Continuous variables are reported as mean and standard
deviation. Categorical variables are presented as frequency and
percentages and were compared using one-way analysis of
variance. Survival was evaluated using Kaplan-Meier curves.
A P value <.05 was considered statistically significant. All
statistical analyses were performed using SPSS statistical
software (version 20; IBM Corp).

Results

Participants
A total of 340 patients underwent liver transplantation between
January 1, 2015 and September 30, 2018; 110 patients were
included in this study. A total of 60 patients were eligible for
inclusion in the telemedicine group, but 6 patients were excluded
from the study because they did not have a wireless network at
home, 2 patients did not start the program because they could
not use the telemedicine follow-up management system, and
the other 52 patients were included in the full analysis set; 50
patients in the usual care follow-up group were included in the
full analysis set. All patients were followed up for 12 months,
and long-term follow-up data were recorded (Figure 2).

Figure 2. Procedures and participants in the telemedicine follow-up management clinical observation study.
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Baseline Characteristics
Patient characteristics are reported in Table 1. Of the 102
patients, the mean age was 46.65 (SD 9.66) years, and 72
(70.6%) patients were male. Of the 52 patients in the
telemedicine group, the mean age was 45.35 (SD 10.44) years,
and 40 (76.9%) patients were male. Of the 50 patients in the
usual care follow-up group, the mean age was 48.00 (SD 8.68)
years, and 32 (64.0%) patients were male. No significant
differences were found for age (P=.17) and sex (P=.16) between
the two groups. Malignant tumor disease before liver

transplantation was observed in 20/52 (38.5%) patients in the
telemedicine group and in 19/50 (38.0%) patients in the usual
care follow-up group (P=.96). The model for end-stage liver
disease (MELD) score before liver transplantation in the
telemedicine group and the usual care follow-up group did not
differ significantly (P=.14). In further analysis, 38 (73.1%)
patients, 10 (19.2%) patients, and 4 (7.7%) patients in the
telemedicine group and 31 (62.0%) patients, 9 (18.0%) patients,
and 10 (20.0%) patients in usual care follow-up group had
MELD scores <20, 20-30, and ≥30, respectively, before liver
transplantation.

Table 1. Baseline characteristics.

P valueUsual care (n=50)Telemedicine manage-
ment intervention
(n=52)

Total (N=102)

.1748.00 (8.68)45.35 (10.44)46.65 (9.66)Age (years), mean (SD)

.16Sex, n (%)

32 (64.0)40 (76.9)72 (70.6)Male

18 (36.0)12 (23.1)30 (29.4)Female

.96Diagnosis, n (%)

19 (38.0)20 (38.5)39 (38.2)Malignant diseases

31 (62.0)32 (61.5)63 (61.8)Benign disease

.1419.34 (9.55)16.77 (7.86)18.03 (8.78)MELDa score, mean (SD)

.13MELD score, n (%)

31 (62.0)38 (73.1)69 (67.7)<20

9 (18.0)10 (19.2)19 (19.6)20-30

10 (20.0)4 (7.7)14 (12.7)≥30

.00851.12 (13.91)43.44 (14.51)47.21 (14.66)Donor age (years), mean (SD)

.003Donor age (years), n (%)

0 (0)3 (5.8)3 (2.9)<18

40 (80.0)47 (90.4)87 (85.3)18-65

10 (20.0)2 (3.8)12 (11.8)≥65

.516.40 (1.00)6.27 (1.01)6.33 (1.00)Orthotopic liver transplantation operation time (hours), mean (SD)

.071699.00 (1528.79)1234.62 (945.55)1462.26 (1280.54)Blood loss (mL), mean (SD)

.136213.84 (1960.49)5694.17 (1457.13)5948.92 (1733.48)Transfusion volume (mL), mean (SD)

.0319.12 (8.45)16.31 (3.57)17.69 (6.56)Length of initial hospitalization (days), mean(SD)

.049408190.11 (85904.13)382502.36 (35115.42)395094 (66101.04)Expense of initial hospitalization (Yuanb), mean (SD)

.020.24 (0.43)0.08 (0.27)0.16 (0.37)Readmission rate within 30 days after discharge, mean (SD)

.6545 (90.0)49 (94.2)94 (92.2)Survival rate (%) at 12-month visit, mean (SD)

aMELD: Model for End-Stage Liver Disease
bAn approximate exchange rate of 6.48 Yuan=US $1 was applicable at the time of publication.

Livers donation after citizen’s death are currently the primary
source of donors in China [28]. The donor age in the
telemedicine group was lower than that in the usual care
follow-up group (P=.008). Further analysis revealed that 2/52
(3.85%) in the telemedicine group, while 10/50 (20%) patients
in the usual care follow-up group were older adult (>65 years
old) donors.

Primary and Key Secondary Outcomes
No difference were found between the telemedicine and the
usual care follow-up group with respect to operation time
(P=.51), blood loss (P=.07), and intraoperative transfusion
volume (P=.13); the operation quality parameters of liver
transplantation in the two groups were similar. Nevertheless,
statistically significant differences were found in the length of
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initial hospitalization (telemedicine: mean 16.31, SD 3.57; usual
care: mean 19.12, SD 8.45; P=.03) and initial hospitalization
expense (telemedicine: mean 382502.36 Yuan, SD 35115.42;
usual care: mean 408190.11 Yuan SD 85904.13, an approximate
exchange rate of 6.48 Yuan=US $1 was applicable at the time
of publication; P=.049). The number of patients with MELD

score ≥30 before liver transplantation was greater in the usual
care follow-up group than that in telemedicine follow-up group.
Furthermore, the readmission rate within 30 days after discharge
was markedly lower in the telemedicine group than that in the
usual care follow-up group (telemedicine: mean 0.08, SD 0.27;
usual care: mean 0.24, SD 0.43; P=.02) (Figure 3).

Figure 3. The mean readmission rate within 30 days after discharge in the two groups. Readmission rate within 30 days after discharge in the telemedicine
follow-up group was markedly lower than that in the usual care follow-up group (telemedicine: mean 0.08, SD 0.27; usual care: mean 0.24, SD 0.43;
P=.02).

In the telemedicine group, 3 patients died before the 12-month
visit (vascular complications: n=1, pulmonary infection: n=1,
and tuberculosis infection: n=1); the postoperative survival rate
at 12 months was 94.2%. In the usual care follow-up group, 5
patients died (portal vein thrombosis that led to gastrointestinal
bleeding: n=1, severe abdominal infection: n=2, multiple organ
failure: n=2); the postoperative survival rate at 12 months was
90.0% (Figure 2). There was no significant difference in the
12-month cumulative survival rate between the two groups
(P=.65).

Major Complications After Liver Transplantation
Occurrences of significant complications, such as primary graft
failure, primary graft dysfunction, acute rejection reaction,
vascular complications, biliary complications, tumor recurrence,
and severe infection, after liver transplantation of patients at
the 12-month follow-up did not differ significantly between the
two groups (Table 2).

One patient in the telemedicine group (male; 37 years old;
acute-on-chronic liver failure, hepatitis B, and cirrhosis)
underwent liver transplantation on August 12, 2016. He had
severe postoperative complications, such as primary graft
dysfunction. The patient was treated with methylprednisolone
combined with multiple plasmapheresis, as well as anti-infection
and liver protection. The patient recovered, was discharged after
39 days of hospitalization, and enrolled in the telemedicine
group to gain guidance for postoperative rehabilitation and
follow-up. At the end of the study, he was alive and healthy.

Three (6.0%) patients in the follow-up group had portal vein
thrombosis, and underwent interventional thrombolysis and
portal vein stents immediately; however, these were not
effective, and 1 patient died of gastrointestinal bleeding.
Although portal vein thrombosis did not occur in any patients
in the telemedicine group, 3 patients exhibited portal vein
stenosis in the telemedicine group; thus, it was recommended
by the transplant specialists of the telemedicine follow-up
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management that these patients be readmitted; they were
readmitted for portal vein angiography and portal vein stent

implantation and survived.

Table 2. Major complications after liver transplantation of patients at the 12-month follow-up visit in the two groups.

P valueUsual care (n=50), n (%)Telemedicine management intervention (n=52), n (%)All (N=102), nGroups

N/Aa0 (0)0 (0)0Primary graft failure

.330 (0)1 (1.9)1Primary graft dysfunction

.743 (6.0)4 (7.7)7Acute rejection reaction

.682 (4.0)3 (5.8)5Hepatic artery thrombosis

.073 (6.0)0 (0)3Portal vein thrombosis

.317 (14.0)4 (7.7)11Severe biliary complications

.664 (8.0)3 (5.8)7Tumor recurrence

.972 (4.0)2 (3.9)4Serious infection

aN/A: not applicable.

The biliary complications were common complications of liver
transplantation and required repeated endoscopic retrograde
cholangiopancreatography procedures or preoperative biliary
drainage: 4 (7.7%) patients in the telemedicine group and 7
(14.0%) patients in the usual care follow-up group with benign
biliary stricture or bile leakage. We found that magnetic
compression anastomosis was a minimally invasive method of
performing choledochostomy for benign biliary stricture. One
patient in the telemedicine group had benign biliary stricture,
and hence, we attempted a variety of conventional treatments
that failed, following which, the patient underwent preoperative
biliary drainage before magnetic compression anastomosis. The
device consisted of a parent and a daughter magnet. The
daughter magnet was delivered via the preoperative biliary
drainage route to the proximal end of the obstruction, and the
parent magnet was delivered via endoscopic retrograde
cholangiopancreatography to the distal end of the obstruction.
After recanalization, the magnetic compression anastomosis
device was removed, and biliary stenting was performed for at
least 6 months with complete resolution of the condition [29,30].
Additionally, 2 patients with bile leakage detected at the

telemedicine follow-up management were admitted immediately
for endoscopic retrograde cholangiopancreatography and a
biliary stent implanted under the guidance of transplant
specialists.

Long-term Survival Analysis
Since the patients who encountered liver transplantation were
followed up for life, the two groups of patients in this study
were monitored continually. Long-term survival follow-up data
have been recorded up until December 31, 2020. 4 patients have
died in the telemedicine group, and 10 patients have died in the
usual care follow-up group. The majority of these patients
exhibited tumor recurrence and included other post–liver
transplantation complications, such as lymphoma and cholestatic
cirrhosis. None died in the perioperative period. The
postoperative survival rates in the telemedicine group at 1, 2,
and 3 years were 94.2%, 94.2%, and 65.4%, respectively. The
postoperative survival rates in the usual care follow-up group
at 1, 2, and 3 years were 90.0%, 84.0%, and 60.0%, respectively;
however, no significant differences were detected between the
cumulative survival curves of the two groups (P=.50) (Figure
4).
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Figure 4. The cumulative survival curves for both groups in the long-term follow-up. No significant difference was detected in the cumulative survival
rate between the two groups (P=.503).

Discussion

Principal Findings
Rapid recovery and lower readmission rate within 30 days after
discharge were evident for telemedicine follow-up management
of patients after liver transplantation. Furthermore, the warning
signs of complications (such as portal vein stenosis, bile leakage)
were discovered earlier in the telemedicine group, and the
patients received professional treatment in timely. There was
no significant difference in the cumulative survival curves;
however, there was a 2-year period of stability post–liver
transplantation in the telemedicine follow-up group, and the
cumulative survival rate was high (Figure 4). It might be
associated with enhanced patient self-management and
medication adherence through the telemedicine follow-up
management system. Thus, the telemedicine follow-up
management system could improve the patients’ health-related
quality of life and facilitate achieving long-term outcomes in
patients.

The influencing factors for long-term survival post–liver
transplantation are numerous, complicated, and frequently
associated with patient-specific risk factors (age, preoperative
complications, disease severity, and donor conditions).
Previously, being an older adult was considered to be a
contraindication for being a donor due to the increased risk of
poor graft function; however, subsequent studies [31] have
indicated that liver grafts from donors ≥70 years old have
outcomes similar to those of younger donors. Cumulative
experiences with advanced age donors report excellent outcomes

in this era of organ shortage and aging population. Moreover,
the study of ex vivo machine perfusion of the liver is under
investigation. Improvements in donor management, organ
preservation, and mitigation of ischemia and reperfusion injury
hold promise in allowing safe expansion of the donor pool and
improvement of outcomes in the liver transplantation [32,33].
Our study indicated that telemedicine follow-up management
system is closer to achieving textbook outcomes in liver
transplantation. In the modern era of rapidly developing liver
transplantation capabilities, we speculate that the textbook
outcome in liver transplantation is cost-effective and useful as
a composite metric to reflect the quality of perioperative care.
Patients with challenging perioperative courses can be helped
and might experience positive long-term outcomes. The
telemedicine follow-up management in liver transplantation
improved the quality of perioperative care and significantly
reduced the readmission rate within 30 days after discharge;
therefore, post–liver transplantation medical expenses were
lower.

Patients in the telemedicine group in our study were satisfied
with the telemedicine follow-up management system stating
that it enhanced the sense of security and medication compliance
after liver transplantation. It also saved costs and time in
outpatient follow-up. Furthermore, the telemedicine follow-up
management system saves time for transplant specialists,
optimizes the allocation of medical resources, and promotes the
early and rapid recovery of patients after liver transplantation.
The telemedicine follow-up management system is highly
beneficial to patients with poor recovery from severe
complications post–liver transplantation by helping transplant
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specialists to closely monitor the patients’ condition after
discharge and guide recovery.

Although no significant difference was detected in the diagnosis
and treatment of postoperative complications between the
telemedicine group and the usual care follow-up group, a large
number of patients in the telemedicine group showed improved
self-management and medication adherence. Additionally, early
warning signs of complications were detected, and the patients
received timely professional treatment. For example, a change
was detected in the drainage fluid through remote video
follow-up, the warning signs of portal vein stenosis were
detected early in the telemedicine group, and the patients
received professional treatment in a timely manner and improved
the quality of life. Portal vein stenosis occurs in approximately
3% of liver transplantations but occurs in approximately 3.4%
to 14% of split liver transplantations; early detection and
treatment are essential for long-term graft survival [34,35].
Recently, some studies [36-38] highlighted the key role of
interventional radiology in treating the stenosis safely and
successfully with balloon angioplasty with stenting. In addition,
patients could actively learn self-management and healthy
exercise after liver transplantation. Robust physical activity
after liver transplantation is a critical determinant of long-term
health, similar that of pretransplant activity, for withstanding
the immediate stress of transplantation [39].

Digital technology currently plays a major role in various fields.
Digitization in medicine has been implemented for remote health
monitoring, visual interactions between patient and doctor, and
visual interactions between doctors from different hospitals and
countries [40-42]. Increasing attention has been focused on the
sustainability of health care systems; telemedicine allows health
care providers to remotely diagnose and treat patients using
telecommunications as either an alternative to or along with
clinical visits [43,44]. Self-management support is one of the
mechanisms by which telemedicine interventions have been
proposed to facilitate the management of long-term conditions.
In the last decade, telemedicine supported self-management of
heart failure, asthma, chronic obstructive pulmonary disease,
and cancer [45]. The most prominent examples within telehealth
are related to pulmonary care: telemedicine with diagnosis at a
distance based on spirometry tracing, teleconsultation,
telemonitoring of biological signals, decision support systems,
telecare, telerehabilitation, and second-opinion calls [16]. While
telemedicine-mediated self-management was not consistently
superior to that of usual care in several studies [45], none of the
reviews reported negative effects, suggesting that it is a safe
option for the delivery of self-management support. The key to
optimizing the use of telemedicine is to correctly identify the
ideal candidates, durations, and time points for a specific need
[46].

In our study, the telemedicine follow-up management system
was customized for patient post–liver transplantation, and the
intervention administered for a short time after hospital
discharge, which has not previously been done. We also
emphasized the interaction between patient and transplant
specialists, and rehabilitation guidance was provided according
to the individual’s recovery early post–liver transplantation.

The increasing number of patients requiring organ transplants,
the complex landscape of liver transplantation, long distances,
and poor road infrastructure between doctors and patients create
barriers for the delivery of health care services, especially rural
regions, some of which can be addressed by telemedicine. The
telemedicine follow-up management system for liver
transplantation promoted innovative treatment by accelerated
exchange of patient data, and faster patient recovery is beneficial
to both doctors and patients.

The development of telemedicine has some limitations. The
most relevant factors in assessing the quality of telemedicine
management are correct imaging, correct medical history, and
the clinical skills of the physician. A 92% to 98％ diagnostic
conformity was detected between telemedicine assessment and
a face-to-face clinical assessment in a prospective pilot study
[47]. Second, the misuse of personal data and information from
patients’medical documents is a significant issue. Unfair access
to such personal and confidential information can be potentially
dangerous [41]. Therefore, it is necessary to strengthen digital
information security and formulate a relevant management
system.

Limitations
This study has several limitations. The follow-up intervention
duration was only 2 weeks, and the number of patients was
small. The generalizability of our results requires verification.
Additionally, we could not determine whether telemedicine
follow-up management differed between younger and older
patients. However, our telemedicine follow-up management
was customized in post–liver transplantation with emphasis on
the interaction between patient and transplant specialists. In
order to promote and apply to other fields, additional specific
components of follow-up are essential. The telemedicine
follow-up robot was inconvenient to carry; hence, a wireless
network is required; however, some patients may not have
access to a wireless network to be able to implement the
program. Therefore, further improvement is required (for
example, using 5G networks) to make it flexible and convenient.

Conclusion
We demonstrated that rapid recovery and low readmission rate
within 30 days after discharge were evident for telemedicine
follow-up management of patients in the early stage, post–liver
transplantation, which might be due to more efficient
perioperative follow-up management. Furthermore, warning
signs of complications were discovered early in the telemedicine
group, and the patients received professional and timely
treatment. The survival rate of patients in the telemedicine
follow-up group was high in the first 2 years post–liver
transplantation, which could be attributed to better patient
self-management and medication adherence through the
telemedicine follow-up management system. The telemedical
management system is crucial in improving the patients’
health-related quality of life and achieving long-term outcomes
in patients. Therefore, the intervention of the telemedicine
follow-up management system is beneficial to achieving optimal
clinical outcomes in liver transplantation.
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Abstract

Background: Due to the axial elongation–associated changes in the optic nerve and retina in high myopia, traditional methods
like optic disc evaluation and visual field are not able to correctly differentiate glaucomatous lesions. It has been clinically
challenging to detect glaucoma in highly myopic eyes.

Objective: This study aimed to develop a neural network to adjust for the dependence of the peripapillary retinal nerve fiber
layer (RNFL) thickness (RNFLT) profile on age, gender, and ocular biometric parameters and to evaluate the network’s performance
for glaucoma diagnosis, especially in high myopia.

Methods: RNFLT with 768 points on the circumferential 3.4-mm scan was measured using spectral-domain optical coherence
tomography. A fully connected network and a radial basis function network were trained for vertical (scaling) and horizontal
(shift) transformation of the RNFLT profile with adjustment for age, axial length (AL), disc-fovea angle, and distance in a test
group of 2223 nonglaucomatous eyes. The performance of RNFLT compensation was evaluated in an independent group of 254
glaucoma patients and 254 nonglaucomatous participants.

Results: By applying the RNFL compensation algorithm, the area under the receiver operating characteristic curve for detecting
glaucoma increased from 0.70 to 0.84, from 0.75 to 0.89, from 0.77 to 0.89, and from 0.78 to 0.87 for eyes in the highest 10%
percentile subgroup of the AL distribution (mean 26.0, SD 0.9 mm), highest 20% percentile subgroup of the AL distribution
(mean 25.3, SD 1.0 mm), highest 30% percentile subgroup of the AL distribution (mean 24.9, SD 1.0 mm), and any AL (mean
23.5, SD 1.2 mm), respectively, in comparison with unadjusted RNFLT. The difference between uncompensated and compensated
RNFLT values increased with longer axial length, with enlargement of 19.8%, 18.9%, 16.2%, and 11.3% in the highest 10%
percentile subgroup, highest 20% percentile subgroup, highest 30% percentile subgroup, and all eyes, respectively.

Conclusions: In a population-based study sample, an algorithm-based adjustment for age, gender, and ocular biometric parameters
improved the diagnostic precision of the RNFLT profile for glaucoma detection particularly in myopic and highly myopic eyes.

(JMIR Med Inform 2021;9(5):e22664)   doi:10.2196/22664
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Introduction

Glaucoma, as one of the most common causes of irreversible
vision impairment and blindness, is diagnosed by the
morphometric analysis of the optic nerve head including the
peripapillary retinal nerve fiber layer (RNFL) and by
psychophysical techniques such as perimetry [1-3]. These
routinely applied techniques decrease in their diagnostic
precision in myopic eyes and in particular, in highly myopic
globes [4,5]. Due to irregularities in the refractive error and
shape of the posterior part of the globe and due to high
myopia-associated morphological changes in the macular region,
perimetric defects lose their specificity for glaucoma and can
have a multitude of causes, in addition to glaucomatous optic
nerve damage [6]. Similarly, morphometric methods such as
assessment of the neuroretinal rim of the optic disc and
measurement of the peripapillary RNFL thickness (RNFLT)
become more limited with a greater axial length of the eyes
[7-11]. Furthermore, the prevalence of glaucomatous or
glaucoma-like optic neuropathy increases with longer axial
length, especially beyond an axial length of 26.5 mm, with odds
ratios ranging from 1.6 to 3.75 for all myopic eyes and from
3.3 to 4.6 for highly myopic eyes [12-14]. These findings show
the need to further improve the available methods to refine the
diagnosis of glaucomatous optic neuropathy in myopic eyes.

Previous studies have shown that the thickness profile of
peripapillary RNFL depends on systemic and ocular biometric
parameters [15-18]. The investigations revealed that the RNFLT
decreases with older age, parallel to a histomorphometrically
examined loss of retinal ganglion cell axons of 0.3% per year
of life, and that the peripapillary distribution of the RNFLT
depends on gender, axial length, the optic disc-fovea distance,
and the angle between the disc-fovea line and the horizontal
(“disc-fovea angle”). In recent years, the neural network
technique has been intensively studied and widely
applied in computer science, including artificial intelligence in
the fields of bioscience and clinical medicine [19-25]. Assuming
that a neural network can transform the RNFL profile and make
it comparable in eyes that differ in parameters influencing the
RNFL profile, in this study, we examined whether such
transformation of the RNFLT profile could improve the
diagnosis of glaucoma, with special emphasis on myopic and
highly myopic eyes.

Methods

Data Collection
Participants were randomly selected from the population-based
Beijing Eye Study 2011, in which 3468 participants with an age
≥50 years were enrolled. The Medical Ethics Committee of the
Beijing Tongren Hospital approved the study protocol, and all
study participants gave their written informed consent. The
study population and study design were described in detail
previously [26,27].

Due to the relatively small number of glaucoma patients in the
Beijing Eye Study, we additionally included another group of
glaucoma patients who were randomly selected from the study
population of the community-based Kailuan Study, which was
a prospective cohort study conducted in the industrial city of
Tangshan located 200 kilometers from Beijing [28]. The study
was approved by the Ethics Committees of Kailuan General
Hospital and followed the guidelines outlined in the Declaration
of Helsinki. All participants signed a written informed consent
form. Between June 2006 and October 2007, a total of 101,510
individuals (81,110 men) aged 18-98 years were recruited to
participate in the study, and the participants were re-examined
biannually [28]. In the re-examination period of 2014-2016, a
randomly selected group of 14,400 participants from the Kailuan
Study additionally underwent an ophthalmological examination
including fundus photography and optical coherence tomography
(OCT) of the peripapillary RNFL.

Glaucomatous optic neuropathy was defined by absolute criteria,
each of which was sufficient for the diagnosis of glaucoma, and
by relative criteria. The absolute criteria included a notch in the
neuroretinal rim in the temporal inferior region and/or the
tempora l  super io r  r eg ion ,  so  tha t  the
inferior-superior-nasal-temporal-rule of the neuroretinal rim
shape was not fulfilled; localized RNFL defects that could not
be explained by any other cause than glaucoma; and an
abnormally large cup in relation to the size of the optic disc.
Relative criteria for the diagnosis included a markedly thinner
neuroretinal rim in the inferior disc region; a diffuse decrease
in the visibility of the RNFL; a marked diffuse and/or focal
thinning of the retinal arteries if there was no other reason than
glaucoma for retinal vessel thinning; or an optic disc
hemorrhage, if there was no other reason for disc bleeding such
as retinal vessel occlusions. If none of the absolute glaucoma
criteria was fulfilled, the diagnosis of glaucoma required that
at least 2 relative criteria had to be fulfilled, among them had
to be a suspicious neuroretinal rim shape in eyes with an optic
cup large enough for the assessment of the rim shape or at least
2 relative criteria had to be positive including the occurrence
of an optic cup in a small optic disc, which usually would not
show cupping [29]. These criteria were similar to those
suggested by Foster and colleagues [30]. Using digital fundus
photographs, the assessment of glaucomatous optic neuropathy
was carried out by two senior graders (YXW, JBJ). In case of
disagreement, the optic disc photographs were re-assessed up
to 3 times, until eventually both graders agreed upon the
diagnosis.

All study participants (Beijing Eye Study and Kailuan Study)
underwent spectral domain OCT (Spectralis OCT; Heidelberg
Engineering, Heidelberg, Germany) including a circular B-scan
centered on the optic disc center with a diameter of 3.4 mm.
Fundus photographs of the macula and optic disc were
additionally taken (CR6-45NM Camera; Canon Inc, Ota, Tokyo,
Japan). Using optical low-coherence reflectometry (Lenstar 900
Optical Biometer; Haag-Streit, Koeniz, Switzerland), biometry
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of the right eyes was performed for measurement of the anterior
corneal curvature, central corneal thickness, anterior chamber
depth, lens thickness, and axial length. The disc-fovea distance
and the angle between the disc-fovea line and the horizontal
(“disc-fovea angle”) were measured on fundus photographs by
one grader (RAJ) [30,31]. The magnification was corrected
using the Littmann-Bennett method [31,32].

We used the Heidelberg Explorer (HEE, version 5.3; Heidelberg
Engineering, Heidelberg, Germany) for the automatic
segmentation of the RNFL and to calculate the RNFLT. The
upper border and the lower border of the RNFL were
automatically outlined and generated. In rare cases with obvious
misalignment, the RNFL were manually re-adjusted by trained
examiners (LZ). The data of 768 RNFLT measurements equally
spaced on the 360° circle were extracted, and the RNFLT profile
was composed. RNFL scans with a quality score less than 15
were excluded. The data for 1 eye per individual were used for
the statistical analysis.

Training of RNFL Profile Compensation
Based on the findings obtained in previous investigations, 5
parameters shown to be associated with the RNFLT profile were

chosen to be included in the present study: age, gender, axial
length, the disc-fovea distance, and the disc-fovea angle. These
parameters were used for the training of the RNFL profile
compensation [16,31-34]. The training was performed with the
images obtained from 2223 eyes from 2223 participants
randomly chosen from the control group. Due to the positive
correlation between older age and longer axial length, 2
independent phases were carried out. In the first phase, the
parameter of age was inputted as the only factor to compensate
the RNFLT vertically. Lagrange multiplier methods were
applied to optimize the variance between the compensated
RNFLT and the initial RNFLT, depending on the fact that each
point in the RNFL profile was interassociated with neighboring
points. In the second phase, the parameters of axial length,
disc-fovea distance, disc-fovea angle, and gender were included
in a fully connected network (FCN) for the RNFLT
compensation in both the vertical and horizontal directions. The
output from the FCN was further trained by a radial basis
function network (RBFN) embedded with a spatial correlation,
to optimize the variance between the compensated RNFLT data
(Figure 1). Details of the 2-phase compensation are described
in Multimedia Appendix 1.

Figure 1. Overview of the 2-phased process in retinal nerve fiber layer (RNFL) profile compensation and its validation in discriminating glaucoma,
which consisted of (A) applying the Lagrange multiplier, fully connected network (FCN), and radial basis function network (RBFN) to the training set,
composed of 2223 eyes from 2223 nonglaucomatous participants, for RNFL thickness (RNFLT) compensation based on the impact of axial length
(AL), age, disc-fovea angle (DFA), and disc fovea distance (DFD) and (B) evaluation of the performance of compensated RNFLT for glaucoma
discrimination by comparing with the performance of the original RNFL profile.

Validation
The validation was performed in a separate dataset containing
both glaucomatous and nonglaucomatous eyes in a relationship

of 1:1. The compensation algorithm was applied, and
discrimination between glaucoma versus no glaucoma was
carried out using either the original RNFLT profile or the
compensated RNFLT profile. An eye was marked as
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glaucomatous if the thickness values of continuous points in
the original RNFL profile or in the compensated RNFL profile
were located below the single-sided 95% confidence interval
of the original RNFL profile of the nonglaucomatous eyes or
the compensated RNFL profile of the nonglaucomatous eyes,
respectively. A receiver operating characteristic (ROC) curve
including the area under the ROC curve (AUROC) was
calculated to evaluate the performance of RNFLT data, in their
original form and in their compensated form, for the detection
of glaucoma. The accuracy, sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV)
were additionally analyzed.

Results

Among the 3654 participants in the Beijing Eye Study 2011,
2622 eyes from 2622 participants were randomly chosen,

including 2477 individuals for the control group and 145 patients
with glaucoma for the study group. After adding 109
glaucomatous eyes from 109 randomly selected patients from
the Kailuan Study, a total of 2731 eyes from 2731 participants
(2477 control and 254 glaucoma; men: 1214/2731, 44.5%) were
included, with a mean age of 63.0 (SD 9.2; range: 50-91) years.
Due to an insufficient scan quality, we excluded 26 eyes
(26/2731, 0.9%) from the analysis, so that the training data were
eventually composed of 2223 randomly selected control eyes,
and the validation group included 254 individuals in the
validation control group and 254 patients with glaucoma (Table
1). The glaucomatous eyes had a longer axial length (mean
23.77, SD 1.28 mm) as compared with the nonglaucomatous
eyes (mean 23.30, SD 0.96 mm) in the validation set (P<.001;
Figure 2).
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Table 1. Demographic and ocular parameters of the study population.

Mean RNFLTa

(µm), mean

(SD, range)

Disc-fovea angle
(°), mean

(SD, range)

Disc-fovea distance
(mm), mean

(SD, range)

Axial length
(mm), mean

(SD, range)

Gender

(male), n (%)

Age (years),

mean (SD, range)

Eye sets

101 (12, 32 to
147)

7.64 (3.51,

–16.64 to 23.25)

4.93 (0.39, 3.68 to
7.63)

23.23 (1.01,
18.96 to 28.87)

1214

(44.5)

63.0 (9.2,

50 to 91)

All (n=2731)

102 (11,

43 to 147)

7.59 (3.4,

–16.64 to 23.25)

4.88 (0.27,

3.68 to 5.99)

23.18 (0.96,

18.96 to 28.87)

1076

(43.4)

62.3 (8.9,

50 to 91)

Normal (n=2477)

85 (17,

33 to 122)

8.16 (4.36,
–13.14 to 22.59)

5.41 (0.82,

3.8 to 7.63)

23.77 (1.27,

19.59 to 28.84)

138

(54.3)

69.4 (9.3,

50 to 90)

Glaucoma (n=254)

Training set

102 (11,

43 to 141)

7.67 (3.42,

–16.64 to 23.25)

4.88 (0.27,

3.68 to 5.99)

23.16 (0.96,

18.96 to 28.87)

960

(43.2)

62.2 (8.9,

50 to 91)

All eyes (n=2223)

96 (10,

60 to 119)

7.49 (3.86,

–6.3 to 23.25)

4.86 (0.3,

3.86 to 5.99)

25.08 (0.77,

24.32 to 28.78)

145

(65.3)

63.5 (8.7,

50 to 85)

10% longest eyes (n=222)

98 (11,

43 to 124)

7.64 (3.55,

–6.3 to 23.25)

4.83 (0.28,

3.68 to 5.99)

24.56 (0.76,

23.83 to 28.87)

290

(65.3)

63.41 (8.77,

50 to 85)

20% longest eyes (n=444)

100 (11,

43 to 139)

7.62 (3.4,

–6.3 to 23.25)

4.84 (0.27,

3.68 to 5.99)

24.26 (0.75,

23.53 to 28.87)

408

(61.2)

63.3 (8.97,

50 to 90)

30% longest eyes (n=666)

Validation set

94 (17,

32 to 147)

7.54 (3.87,

–13.14 to 22.59)

5.14 (0.67,

3.8 to 7.63)

23.53 (1.15,

19.59 to 28.84)

254

(50. 0)

66.4 (9.6,

50 to 90)

All eyes n=508)

86 (17,

32 to 122)

8.16 (4.37,

–13.14 to 22.59)

5.41 (0.82,

3.8 to 7.63)

23.77 (1.28,

19.59 to 28.84)

138

(54.3)

69.4 (9.3,

50 to 90)

Glaucoma in all eyes
(n=254)

82 (16,

40 to 122)

8.44 (4.39,

–2.05 to 22.59)

5.3 (0.9,

4.05 to 7.63)

26.01 (0.89,

24.95 to 28.84)

32

(62.7)

68.3 (9.3,

50 to 90)

10% longest eyes (n=51)

80 (17,

40 to 122)

8.88 (4.92,

–2.05 to 22.59)

5.46 (0.99,

4.05 to 7.63)

26.2 (0.93,

24.95 to 28.84)

23

(62.2)

68.78 (9.8,

50 to 90)

Glaucoma in 10% longest
eyes (n=37)

88 (17,

38 to 122)

7.92 (3.99,

–2.05 to 22.59)

5.34 (0.85,

(4.05 to 7.63)

25.26 (0.99,

24.21 to 28.84)

66

(64.7)

67.8 (9.2,

50 to 90)

20% longest eyes (n=102)

83 (17,

38 to 122)

8.5 (4.43,

–2.05 to 22.59)

5.58 (0.95,

4.05 to 7.63)

25.44 (1.08,

24.21 to 28.84)

41

(62.1)

68.1 (9.2,

50 to 90)

Glaucoma in 20% longest
eyes (n=66)

90 (17,

38 to 147)

7.51 (4.18

(–13.14 to 22.59)

5.27 (0.77,

3.8 to 7.63)

24.86 (0.99,

23.92 to 28.84)

99

(64.7)

67.2 (9.0,

50 to 90)

30% longest eyes (n=153)

85 (17,

38 to 122)

7.91 (4.79,

–13.14 to 22.59)

5.5 (0.9,

3.8 to 7.63)

25.06 (1.11,

23.92 to 28.84)

57

(62.6)

67.8 (9.0,

50 to 90)

Glaucoma in 30% longest
eyes (n=91)

aRNFLT: retinal nerve fiber layer thickness.
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Figure 2. Distribution of axial length of the glaucomatous eyes and control eyes in the validation group.

The compensation-induced change in the RNFLT values in
height (vertical) and in location (horizontal) increased with
longer axial length (Figure 3). It was most marked in the eyes
with the longest axial length: The subgroup of eyes in the highest
10% percentile of the axial length distribution (mean axial length
25.08, SD 0.77 mm) had the highest compensation, followed
by the subgroup of eyes in the highest 20% percentile of the

axial length distribution (mean 24.56, SD 0.76 mm) and the
subgroup of eyes in the highest 30% percentile of the axial
length distribution (mean 24.26, SD 0.75 mm). The mean
difference between the uncompensated RNFLT values and the
compensated values was negligible in the eyes with an axial
length outside of the 30% percentile of the longest axial length
(mean axial length 23.16, SD 0.96 mm; Figure 3).
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Figure 3. The mean original retinal nerve fiber layer (RNFL) profile (blue) and the mean compensated RNFL profile (pink) of the 10% longest eyes,
20% longest eyes, 30% longest eyes, and all eyes.

Comparing the compensated RNFLT values with the
uncompensated RNFLT values revealed that the AUROC for
the detection of glaucoma increased from 0.70 to 0.84, from
0.75 to 0.89, from 0.77 to 0.89, and from 0.78 to 0.87, for eyes
within the 10% highest length percentile, eyes within the 20%
highest length percentile, eyes within the 30% highest axial
length percentile, and all eyes, respectively (Figure 4). The

relative increase was more pronounced in eyes with longer axial
length, with an increase by 19.8%, 18.9%, 16.2%, and 11.3%
in the highest 10% percentile subgroup, highest 20% percentile
subgroup, highest 30% percentile subgroup, and all eyes,
respectively. The accuracy, sensitivity, specificity, PPV, and
NPV of the original and compensated RNFL in subgroups are
shown in Table 2.
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Figure 4. Area under receiver operation curve (AUROC) for the detection of glaucoma in the validation data set before (blue line) and after (pink line)
the transformation, in eyes of the 10% longest axial length (mean 26.01 mm), 20% longest axial length (mean 25.26 mm), 30% longest axial length
(mean 24.86 mm), and all eyes (mean 23.53 mm).
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Table 2. Performance of the original retinal nerve fiber layer (RNFL) and the compensated RNFL to detect glaucoma in subgroups and all eyes of the
validating dataset.

Negative predictive valuePositive predictive valueSpecificitySensitivityAccuracyEye groups

10% longest eyes

0.5000.8290.5710.7840.073Original

0.5450.9310.8570.7300.077Compensated

20% longest eyes

0.5400.8460.7710.6570.140Original

0.7070.9020.8290.8210.165Compensated

30% longest eyes

0.6520.7980.7260.7360.220Original

0.7650.8820.8390.8240.250Compensated

All eyes

0.7680.7180.6890.7910.740Original

0.8050.7860.7790.8110.795Compensated

Discussion

Principal Findings
In our population-based study, the diagnostic precision of the
peripapillary RNFLT profile for the detection of glaucoma
increased when the dependence of the RNFLT profile on age
and the ocular biometric parameters of axial length, disc-fovea
distance, and disc-fovea angle were taken into account by
applying 2 neural networks. These networks, FCN and RBFN,
developed an algorithm by which the RNFLT profile was
transformed either horizontally or vertically. Applying the
algorithm increased the diagnostic performance of the RNFLT
profile, which was markedly better with longer axial length.
The improvement in relative percentage points as measured by
the AUROC was 19.8% in the subgroup of eyes within the
highest 10% percentile group, 16.2% in the highest 30%
percentile subgroup, and 11.3% in all eyes of the study
population.

Myopia-related changes in the appearance of the optic nerve
head can make the detection of additional changes caused by
glaucomatous optic neuropathy in myopic eyes difficult [5].
The parapapillary gamma zone and delta zone in myopic eyes
increase the brightness of the background so that the visibility
of the retinal nerve fiber layer upon ophthalmoscopy is reduced
due to a physical-optical effect. The presence of a gamma and
delta zone additionally leads to irregularities in the profile of
the tissues underlying the RNFL, so that the automatic
delineation of the inner retinal layer containing the retinal nerve
fibers from the subsequent layer gets more difficult. The axial
elongation–associated increase in the parapapillary region by
the development of the gamma and delta zone can lead to a
thinning of the RNFL due to geometric reasons. In moderate
myopia, the Bruch’s membrane opening as the inner opening
layer of the optic nerve head usually shifts temporally in the
direction of the fovea, leading to an overhanging of the Bruch’s
membrane at the nasal optic disc border and a lack of the
Bruch’s membrane at the temporal disc border (ie, gamma zone)

[35]. The resulting oblique course of the retinal ganglion cell
axons through the myopic optic nerve head canal as compared
to a perpendicular course in emmetropic eyes leads to a change
in the configuration of the neuroretinal rim in myopic eyes,
rendering the detection of glaucomatous rim changes more
difficult. The axial elongation–associated enlargement of the
optic disc is associated with a stretching of the lamina cribrosa
so that the depth of the optic cup may be reduced. It leads to
decreased spatial contrast between the height of the neuroretinal
rim and the depth of the optic cup and thus renders the
delineation of the rim from the cup more difficult.
Simultaneously, the color of the rim changes from pink in
direction to yellow, so that the color contrast between the rim
and optic cup decreases in myopic eyes, again rendering the
differentiation of the rim from the optic cup more difficult. As
also pointed out earlier in the paragraph, perimetric changes
also lose their specificity for glaucomatous optic nerve damage
as their cause. The axial elongation–associated changes can also
present with perimetric defects that mimic or cover a
glaucoma-related visual field defect. These changes might
include diffuse peripapillary and macular chorioretinal atrophy,
macular Bruch’s membrane defects, and scleral staphylomas.
Furthermore, the intraocular pressure in myopic eyes with
glaucomatous can be within the normal range since the
myopia-associated stretching and thinning of the lamina cribrosa
and peripapillary scleral flange may increase the pressure
susceptibility of the optic nerve fibers when passing through
the lamina cribrosa. These examples may demonstrate the need
for improved morphometric glaucoma diagnosis in myopic eyes
[4,5].

Previous studies showed that the thickness profile of the RNFL
depended on other morphologic parameters such as axial length,
the disc-fovea distance, and the disc-fovea angle [31,32]. The
longer the axial length and disc-fovea distance were, the smaller
the angle kappa between the temporal superior and temporal
inferior vascular arcade, which accompanies the RNFL branches.
The disc-fovea angle was a surrogate for sagittal rotation of the
optic nerve head, also influencing the location of the RNFLT
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profile. By taking these associations of the RNFLT profile into
consideration and adjusting for them using a compensation
algorithm, there was an improvement in the diagnostic precision
of the RNFLT profile for the detection of glaucoma (Figures 3
and 4). The improvement was more marked with more myopic
eyes.

The AUROC values found in our study population are roughly
comparable to those of previous investigations. To cite
examples, Shoji and colleagues [9,35] examined 31 patients
with high myopia and 51 patients with high myopia and
glaucoma and found that the peripapillary RNFLT had an
AUROC of 0.83 in the discrimination of normal eyes from
glaucomatous eyes. Kim and associates [36] reported that the
ability to detect glaucomatous changes in a highly myopic group
(n=45) by RNFL examination had an AUROC of 0.83. When
comparing the various studies, one may consider that they
markedly differed in the size and composition of their study
population. In particular, our study population was recruited in
a population-based manner. Subsequently, the glaucoma patients
showed all stages, including early stages, of glaucomatous optic
neuropathy. In addition, the nonglaucomatous group in our
study population included eyes with nonglaucomatous optic
nerve damage in addition to other pathological conditions like
retinal diseases, nonglaucomatous neuropathies, and cataract.
If we had included only eyes without any (nonglaucomatous)
optic nerve damage and without any retinal disease in the control
group, separating the glaucomatous study and control group
would have been easier, and the AUROC would have been
higher.

The findings that the height and profile of the peripapillary
RNFLT were associated with various ocular and systemic
parameters were also found in other investigations. Yamashita
and colleagues [37] noted that the position of the
superior-temporal RNFLT peak was associated with the location
of the papillomacular position, optic disc tilt, and body height,
while the inferior-temporal RNFL peak position was correlated
with corneal thickness and axial length. Leung et al [8]
investigated 189 myopic eyes and reported that the angle
between the superotemporal and inferotemporal RNFL bundles
decreased with longer axial length. Fujino et al [38] found that
a RNFLT profile correction based on the retinal vessel position
in all twelve 30° sectors was able to improve the
structure-function relationship in all sectors. Rho et al [39]
adjusted the 1% reference line of the RNFLT profile according
to the retinal vessel position, by which they obtained better
agreement with the standard diagnosis of glaucoma. These
previous studies on the dependence of the RNFLT profile on

other ocular parameters revealed, however, that these
associations with the RNFLT profile change were not linear
and that the effect of a correction by a linear mathematical
method was limited. In this study, the FCN and RBFN were
used to compensate the RNFLT profile in both the horizontal
direction (position shift) and vertical direction (thickness
change). Decreasing the systemic variability of the RNFLT
profile resulted in an improvement of the diagnostic performance
for glaucoma detection, especially in highly myopic patients.

Limitations
When discussing the results of our study, its limitations should
be taken into account. First, compensation of the RNFLT profile
was based on data from participants with an age ≥50 years, and
the performance of glaucoma detection was not validated in
younger participants. Second, the composition of the validation
dataset included a 1:1 ratio of glaucomatous eyes to
nonglaucomatous eyes. However, since the prevalence of
glaucoma increases with axial length, a relatively high
proportion of glaucomatous eyes in the validation set may reflect
the higher prevalence of glaucoma in eyes with myopia and
high myopia. The strengths of the study included that the large
population-based dataset offered an opportunity to observe the
diverse patterns of the nonlinear relationship between the
RNFLT profile and axial length. An RBFN with the advantages
of good generalization, strong tolerance to input noise, and
online learning ability made it possible to interpret the patterns
to a reliable compensation. Due to the population-based
recruitment of the study population, the validation group
included glaucomatous eyes of all glaucoma stages, so that the
results are more generalizable than in hospital-based studies
with a preponderance of advanced glaucoma stages in the study
groups.

Conclusion
Applying an algorithm to adjust the nonlinear dependence of
the RNFLT profile on age, axial length, disc-fovea distance,
and disc-fovea angle resulted in improved diagnostic precision
of the peripapillary RNFLT profile for the detection of glaucoma
in a population-based study population. The improvement in
the diagnostic precision of the compensated versus
uncompensated RNFLT profile data increased in relative terms
with longer axial length. With an increase of 20%, it was most
marked in the highly myopic group. The application of this
neural network–based RNFLT profile compensation may also
be helpful to improve glaucoma diagnosis in myopic eyes in
clinical practice.
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Details of the two-phase-compensation of retinal nerve fiber layer.
[PDF File (Adobe PDF File), 328 KB - medinform_v9i5e22664_app1.pdf ]

References
1. Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, Vision Loss Expert Group of the Global

Burden of Disease Study. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and
meta-analysis. Lancet Glob Health 2017 Dec;5(12):e1221-e1234 [FREE Full text] [doi: 10.1016/S2214-109X(17)30393-5]
[Medline: 29032195]

2. Bourne RRA, Flaxman SR, Braithwaite T, Cicinelli MV, Das A, Jonas JB, Vision Loss Expert Group. Magnitude, temporal
trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review
and meta-analysis. Lancet Glob Health 2017 Sep;5(9):e888-e897 [FREE Full text] [doi: 10.1016/S2214-109X(17)30293-0]
[Medline: 28779882]

3. Weinreb RN, Khaw PT. Primary open-angle glaucoma. The Lancet 2004 May 22;363(9422):1711-1720. [doi:
10.1016/S0140-6736(04)16257-0] [Medline: 15158634]

4. Chang RT, Singh K. Myopia and glaucoma: diagnostic and therapeutic challenges. Curr Opin Ophthalmol 2013
Mar;24(2):96-101. [doi: 10.1097/ICU.0b013e32835cef31] [Medline: 23542349]

5. Tan NYQ, Sng CCA, Jonas JB, Wong TY, Jansonius NM, Ang M. Glaucoma in myopia: diagnostic dilemmas. Br J
Ophthalmol 2019 Oct;103(10):1347-1355. [doi: 10.1136/bjophthalmol-2018-313530] [Medline: 31040131]

6. Weinreb RN, Leung CKS, Crowston JG, Medeiros FA, Friedman DS, Wiggs JL, et al. Primary open-angle glaucoma. Nat
Rev Dis Primers 2016 Sep 22;2:16067. [doi: 10.1038/nrdp.2016.67] [Medline: 27654570]

7. Kim NR, Lim H, Kim JH, Rho SS, Seong GJ, Kim CY. Factors associated with false positives in retinal nerve fiber layer
color codes from spectral-domain optical coherence tomography. Ophthalmology 2011 Sep;118(9):1774-1781. [doi:
10.1016/j.ophtha.2011.01.058] [Medline: 21550120]

8. Leung CK, Yu M, Weinreb RN, Mak HK, Lai G, Ye C, et al. Retinal nerve fiber layer imaging with spectral-domain optical
coherence tomography: interpreting the RNFL maps in healthy myopic eyes. Invest Ophthalmol Vis Sci 2012 Oct
17;53(11):7194-7200. [doi: 10.1167/iovs.12-9726] [Medline: 22997288]

9. Shoji T, Nagaoka Y, Sato H, Chihara E. Impact of high myopia on the performance of SD-OCT parameters to detect
glaucoma. Graefes Arch Clin Exp Ophthalmol 2012 Dec;250(12):1843-1849. [doi: 10.1007/s00417-012-1994-8] [Medline:
22555896]

10. Suwan Y, Rettig S, Park SC, Tantraworasin A, Geyman LS, Effert K, et al. Effects of Circumpapillary Retinal Nerve Fiber
Layer Segmentation Error Correction on Glaucoma Diagnosis in Myopic Eyes. J Glaucoma 2018 Nov;27(11):971-975.
[doi: 10.1097/IJG.0000000000001054] [Medline: 30113513]

11. Qiu K, Zhang M, Wu Z, Nevalainen J, Schiefer U, Huang Y, et al. Retinal nerve fiber bundle trajectories in Chinese myopic
eyes: Comparison with a Caucasian based mathematical model. Exp Eye Res 2018 Nov;176:103-109. [doi:
10.1016/j.exer.2018.07.002] [Medline: 30008388]

12. Xu L, Wang Y, Wang S, Wang Y, Jonas JB. High myopia and glaucoma susceptibility the Beijing Eye Study. Ophthalmology
2007 Mar;114(2):216-220. [doi: 10.1016/j.ophtha.2006.06.050] [Medline: 17123613]

13. Perera SA, Wong TY, Tay W, Foster PJ, Saw S, Aung T. Refractive error, axial dimensions, and primary open-angle
glaucoma: the Singapore Malay Eye Study. Arch Ophthalmol 2010 Jul;128(7):900-905. [doi:
10.1001/archophthalmol.2010.125] [Medline: 20625053]

14. Marcus MW, de Vries MM, Junoy Montolio FG, Jansonius NM. Myopia as a risk factor for open-angle glaucoma: a
systematic review and meta-analysis. Ophthalmology 2011 Oct;118(10):1989-1994.e2. [doi: 10.1016/j.ophtha.2011.03.012]
[Medline: 21684603]

15. Hoh S, Lim MCC, Seah SKL, Lim ATH, Chew S, Foster PJ, et al. Peripapillary retinal nerve fiber layer thickness variations
with myopia. Ophthalmology 2006 May;113(5):773-777. [doi: 10.1016/j.ophtha.2006.01.058] [Medline: 16650672]

16. Wang YX, Pan Z, Zhao L, You QS, Xu L, Jonas JB. Retinal nerve fiber layer thickness. The Beijing Eye Study 2011. PLoS
One 2013;8(6):e66763 [FREE Full text] [doi: 10.1371/journal.pone.0066763] [Medline: 23826129]

17. Knight OJ, Girkin CA, Budenz DL, Durbin MK, Feuer WJ, Cirrus OCT Normative Database Study Group. Effect of race,
age, and axial length on optic nerve head parameters and retinal nerve fiber layer thickness measured by Cirrus HD-OCT.
Arch Ophthalmol 2012 Mar;130(3):312-318 [FREE Full text] [doi: 10.1001/archopthalmol.2011.1576] [Medline: 22411660]

18. Yamashita T, Asaoka R, Kii Y, Terasaki H, Murata H, Sakamoto T. Structural parameters associated with location of peaks
of peripapillary retinal nerve fiber layer thickness in young healthy eyes. PLoS One 2017;12(5):e0177247 [FREE Full text]
[doi: 10.1371/journal.pone.0177247] [Medline: 28542289]

19. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and Validation of a Deep
Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 2016 Dec
13;316(22):2402-2410. [doi: 10.1001/jama.2016.17216] [Medline: 27898976]

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e22664 | p.157https://medinform.jmir.org/2021/5/e22664
(page number not for citation purposes)

Li et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

medinform_v9i5e22664_app1.pdf
medinform_v9i5e22664_app1.pdf
https://linkinghub.elsevier.com/retrieve/pii/S2214-109X(17)30393-5
http://dx.doi.org/10.1016/S2214-109X(17)30393-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29032195&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2214-109X(17)30293-0
http://dx.doi.org/10.1016/S2214-109X(17)30293-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28779882&dopt=Abstract
http://dx.doi.org/10.1016/S0140-6736(04)16257-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15158634&dopt=Abstract
http://dx.doi.org/10.1097/ICU.0b013e32835cef31
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23542349&dopt=Abstract
http://dx.doi.org/10.1136/bjophthalmol-2018-313530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31040131&dopt=Abstract
http://dx.doi.org/10.1038/nrdp.2016.67
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27654570&dopt=Abstract
http://dx.doi.org/10.1016/j.ophtha.2011.01.058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21550120&dopt=Abstract
http://dx.doi.org/10.1167/iovs.12-9726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22997288&dopt=Abstract
http://dx.doi.org/10.1007/s00417-012-1994-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22555896&dopt=Abstract
http://dx.doi.org/10.1097/IJG.0000000000001054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30113513&dopt=Abstract
http://dx.doi.org/10.1016/j.exer.2018.07.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30008388&dopt=Abstract
http://dx.doi.org/10.1016/j.ophtha.2006.06.050
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17123613&dopt=Abstract
http://dx.doi.org/10.1001/archophthalmol.2010.125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20625053&dopt=Abstract
http://dx.doi.org/10.1016/j.ophtha.2011.03.012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21684603&dopt=Abstract
http://dx.doi.org/10.1016/j.ophtha.2006.01.058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16650672&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0066763
http://dx.doi.org/10.1371/journal.pone.0066763
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23826129&dopt=Abstract
http://europepmc.org/abstract/MED/22411660
http://dx.doi.org/10.1001/archopthalmol.2011.1576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22411660&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0177247
http://dx.doi.org/10.1371/journal.pone.0177247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28542289&dopt=Abstract
http://dx.doi.org/10.1001/jama.2016.17216
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27898976&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


20. Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, et al. Development and Validation of a Deep Learning
System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With
Diabetes. JAMA 2017 Dec 12;318(22):2211-2223 [FREE Full text] [doi: 10.1001/jama.2017.18152] [Medline: 29234807]

21. Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, et al. Prediction of cardiovascular risk factors
from retinal fundus photographs via deep learning. Nat Biomed Eng 2018 Mar;2(3):158-164. [doi:
10.1038/s41551-018-0195-0] [Medline: 31015713]

22. Shibata N, Tanito M, Mitsuhashi K, Fujino Y, Matsuura M, Murata H, et al. Development of a deep residual learning
algorithm to screen for glaucoma from fundus photography. Sci Rep 2018 Oct 02;8(1):14665 [FREE Full text] [doi:
10.1038/s41598-018-33013-w] [Medline: 30279554]

23. Wisse RPL, Muijzer MB, Cassano F, Godefrooij DA, Prevoo YFDM, Soeters N. Validation of an Independent Web-Based
Tool for Measuring Visual Acuity and Refractive Error (the Manifest versus Online Refractive Evaluation Trial): Prospective
Open-Label Noninferiority Clinical Trial. J Med Internet Res 2019 Nov 08;21(11):e14808 [FREE Full text] [doi:
10.2196/14808] [Medline: 31702560]

24. Nam SM, Peterson TA, Butte AJ, Seo KY, Han HW. Explanatory Model of Dry Eye Disease Using Health and Nutrition
Examinations: Machine Learning and Network-Based Factor Analysis From a National Survey. JMIR Med Inform 2020
Mar 20;8(2):e16153 [FREE Full text] [doi: 10.2196/16153] [Medline: 32130150]

25. Guo Y, Hao Z, Zhao S, Gong J, Yang F. Artificial Intelligence in Health Care: Bibliometric Analysis. J Med Internet Res
2020 Jul 29;22(7):e18228 [FREE Full text] [doi: 10.2196/18228] [Medline: 32723713]

26. Jonas JB, Xu L, Wang YX. The Beijing Eye Study. Acta Ophthalmol 2009 May;87(3):247-261 [FREE Full text] [doi:
10.1111/j.1755-3768.2008.01385.x] [Medline: 19426355]

27. Yan YN, Wang YX, Xu L, Xu J, Wei WB, Jonas JB. Fundus Tessellation: Prevalence and Associated Factors: The Beijing
Eye Study 2011. Ophthalmology 2015 Sep;122(9):1873-1880. [doi: 10.1016/j.ophtha.2015.05.031] [Medline: 26119000]

28. Wang L, Cui L, Wang Y, Vaidya A, Chen S, Zhang C, et al. Resting heart rate and the risk of developing impaired fasting
glucose and diabetes: the Kailuan prospective study. Int J Epidemiol 2015 Apr;44(2):689-699 [FREE Full text] [doi:
10.1093/ije/dyv079] [Medline: 26002923]

29. Wang YX, Xu L, Yang H, Jonas JB. Prevalence of glaucoma in North China: the Beijing Eye Study. Am J Ophthalmol
2010 Dec;150(6):917-924. [doi: 10.1016/j.ajo.2010.06.037] [Medline: 20970107]

30. Foster PJ, Buhrmann R, Quigley HA, Johnson GJ. The definition and classification of glaucoma in prevalence surveys. Br
J Ophthalmol 2002 Mar;86(2):238-242 [FREE Full text] [doi: 10.1136/bjo.86.2.238] [Medline: 11815354]

31. Jonas RA, Wang YX, Yang H, Li JJ, Xu L, Panda-Jonas S, et al. Optic Disc-Fovea Distance, Axial Length and Parapapillary
Zones. The Beijing Eye Study 2011. PLoS One 2015;10(9):e0138701 [FREE Full text] [doi: 10.1371/journal.pone.0138701]
[Medline: 26390438]

32. Jonas RA, Wang YX, Yang H, Li JJ, Xu L, Panda-Jonas S, et al. Optic Disc - Fovea Angle: The Beijing Eye Study 2011.
PLoS One 2015;10(11):e0141771 [FREE Full text] [doi: 10.1371/journal.pone.0141771] [Medline: 26545259]

33. Mwanza J, Lee G, Budenz DL. Effect of Adjusting Retinal Nerve Fiber Layer Profile to Fovea-Disc Angle Axis on the
Thickness and Glaucoma Diagnostic Performance. Am J Ophthalmol 2016 Jan;161:12-21.e1. [doi: 10.1016/j.ajo.2015.09.019]
[Medline: 26387935]

34. Zhang Q, Xu L, Wei WB, Wang YX, Jonas JB. Size and Shape of Bruch's Membrane Opening in Relationship to Axial
Length, Gamma Zone, and Macular Bruch's Membrane Defects. Invest Ophthalmol Vis Sci 2019 Jun 03;60(7):2591-2598.
[doi: 10.1167/iovs.19-27331] [Medline: 31219533]

35. Shoji T, Sato H, Ishida M, Takeuchi M, Chihara E. Assessment of glaucomatous changes in subjects with high myopia
using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 2011 Mar 25;52(2):1098-1102. [doi:
10.1167/iovs.10-5922] [Medline: 21051712]

36. Kim NR, Lee ES, Seong GJ, Kang SY, Kim JH, Hong S, et al. Comparing the ganglion cell complex and retinal nerve fibre
layer measurements by Fourier domain OCT to detect glaucoma in high myopia. Br J Ophthalmol 2011 Aug;95(8):1115-1121.
[doi: 10.1136/bjo.2010.182493] [Medline: 20805125]

37. Yamashita T, Sakamoto T, Yoshihara N, Terasaki H, Tanaka M, Kii Y, et al. Correlations between local peripapillary
choroidal thickness and axial length, optic disc tilt, and papillo-macular position in young healthy eyes. PLoS One
2017;12(10):e0186453 [FREE Full text] [doi: 10.1371/journal.pone.0186453] [Medline: 29023585]

38. Fujino Y, Yamashita T, Murata H, Asaoka R. Adjusting Circumpapillary Retinal Nerve Fiber Layer Profile Using Retinal
Artery Position Improves the Structure-Function Relationship in Glaucoma. Invest Ophthalmol Vis Sci 2016 Jun
01;57(7):3152-3158. [doi: 10.1167/iovs.16-19461] [Medline: 27309619]

39. Rho S, Sung Y, Kang T, Kim NR, Kim CY. Improvement of diagnostic performance regarding retinal nerve fiber layer
defect using shifting of the normative database according to vessel position. Invest Ophthalmol Vis Sci 2014 Jul
29;55(8):5116-5124. [doi: 10.1167/iovs.14-14630] [Medline: 25074779]

Abbreviations
AUROC: area under the receiver operating characteristic curve

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e22664 | p.158https://medinform.jmir.org/2021/5/e22664
(page number not for citation purposes)

Li et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://europepmc.org/abstract/MED/29234807
http://dx.doi.org/10.1001/jama.2017.18152
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29234807&dopt=Abstract
http://dx.doi.org/10.1038/s41551-018-0195-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31015713&dopt=Abstract
https://doi.org/10.1038/s41598-018-33013-w
http://dx.doi.org/10.1038/s41598-018-33013-w
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30279554&dopt=Abstract
https://www.jmir.org/2019/11/e14808/
http://dx.doi.org/10.2196/14808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31702560&dopt=Abstract
https://medinform.jmir.org/2020/2/e16153/
http://dx.doi.org/10.2196/16153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32130150&dopt=Abstract
https://www.jmir.org/2020/7/e18228/
http://dx.doi.org/10.2196/18228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32723713&dopt=Abstract
https://doi.org/10.1111/j.1755-3768.2008.01385.x
http://dx.doi.org/10.1111/j.1755-3768.2008.01385.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19426355&dopt=Abstract
http://dx.doi.org/10.1016/j.ophtha.2015.05.031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26119000&dopt=Abstract
http://europepmc.org/abstract/MED/26002923
http://dx.doi.org/10.1093/ije/dyv079
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26002923&dopt=Abstract
http://dx.doi.org/10.1016/j.ajo.2010.06.037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20970107&dopt=Abstract
https://bjo.bmj.com/lookup/pmidlookup?view=long&pmid=11815354
http://dx.doi.org/10.1136/bjo.86.2.238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11815354&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0138701
http://dx.doi.org/10.1371/journal.pone.0138701
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26390438&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0141771
http://dx.doi.org/10.1371/journal.pone.0141771
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26545259&dopt=Abstract
http://dx.doi.org/10.1016/j.ajo.2015.09.019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26387935&dopt=Abstract
http://dx.doi.org/10.1167/iovs.19-27331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31219533&dopt=Abstract
http://dx.doi.org/10.1167/iovs.10-5922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21051712&dopt=Abstract
http://dx.doi.org/10.1136/bjo.2010.182493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20805125&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0186453
http://dx.doi.org/10.1371/journal.pone.0186453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29023585&dopt=Abstract
http://dx.doi.org/10.1167/iovs.16-19461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27309619&dopt=Abstract
http://dx.doi.org/10.1167/iovs.14-14630
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25074779&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


FCN: fully connected network
NPV: negative predictive value
OCT: optical coherence tomography
PPV: positive predictive value
RBFN: radial basis function network
RNFL: retinal nerve fiber layer
RNFLT: retinal nerve fiber layer thickness
ROC: receiver operating characteristic
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Abstract

Background: Hospital patient registries provide substantial longitudinal data sets describing the clinical and medical health
statuses of inpatients and their pharmacological prescriptions. Despite the multiple advantages of routinely collecting
multidimensional longitudinal data, those data sets are rarely suitable for advanced statistical analysis and they require customization
and synthesis.

Objective: The aim of this study was to describe the methods used to transform and synthesize a raw, multidimensional, hospital
patient registry data set into an exploitable database for the further investigation of risk profiles and predictive and survival health
outcomes among polymorbid, polymedicated, older inpatients in relation to their medicine prescriptions at hospital discharge.

Methods: A raw, multidimensional data set from a public hospital was extracted from the hospital registry in a CSV (.csv) file
and imported into the R statistical package for cleaning, customization, and synthesis. Patients fulfilling the criteria for inclusion
were home-dwelling, polymedicated, older adults with multiple chronic conditions aged ≥65 who became hospitalized. The
patient data set covered 140 variables from 20,422 hospitalizations of polymedicated, home-dwelling older adults from 2015 to
2018. Each variable, according to type, was explored and computed to describe distributions, missing values, and associations.
Different clustering methods, expert opinion, recoding, and missing-value techniques were used to customize and synthesize
these multidimensional data sets.

Results: Sociodemographic data showed no missing values. Average age, hospital length of stay, and frequency of hospitalization
were computed. Discharge details were recoded and summarized. Clinical data were cleaned up and best practices for managing
missing values were applied. Seven clusters of medical diagnoses, surgical interventions, somatic, cognitive, and medicines data
were extracted using empirical and statistical best practices, with each presenting the health status of the patients included in it
as accurately as possible. Medical, comorbidity, and drug data were recoded and summarized.
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Conclusions: A cleaner, better-structured data set was obtained, combining empirical and best-practice statistical approaches.
The overall strategy delivered an exploitable, population-based database suitable for an advanced analysis of the descriptive,
predictive, and survival statistics relating to polymedicated, home-dwelling older adults admitted as inpatients. More research is
needed to develop best practices for customizing and synthesizing large, multidimensional, population-based registries.

International Registered Report Identifier (IRRID): RR2-10.1136/bmjopen-2019-030030

(JMIR Med Inform 2021;9(5):e24205)   doi:10.2196/24205
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cluster analysis; hierarchical 2-step clustering; registry; raw data; hospital; retrospective; population based; multidimensional

Introduction

The transition from paper-based patient records to electronic
health records has provided unprecedented access to vast
amounts of diverse clinical and health data at the point of care
[1]. Undoubtedly, this transition offers a huge opportunity to
exploit patient registries for scientific, clinical, and health-policy
purposes. An electronic health record is the systematized
collection of patients’ digitally stored health information. The
term patient registry is generally used to distinguish registries
focused on health information from other data sets, but there is
currently no consistent definition in use [2]. The World Health
Organization (WHO) describes registries in health information
systems as “a file of documents containing uniform health
information about individual persons, collected in a systematic
and comprehensive way, in order to serve a predetermined
purpose” [3]. Properly designed and executed patient registries
can provide a real-world view of clinical practice, patient
outcomes, safety, and comparative effectiveness [4,5]. Several
national registries (eg, the National Committee on Vital and
Health Statistics, or the Agency for Healthcare Research and
Quality, both in the United States) are used for a broad range
of purposes in public health and medicine as part of “an
organized system for the collection, storage, retrieval, analysis,
and dissemination of information on individual persons who
have either a particular disease, a condition (eg, a risk factor)
that predisposes the occurrence of a health-related event, or
prior exposure to substances (or circumstances) known or
suspected to cause adverse health effects” [1]. Other terms used
to refer to patient registries are clinical registries, clinical data
registries, disease registries, and outcomes registries [5,6]. A
patient registry can be a powerful tool for observing the course
of a disease, understanding variations in treatment and outcomes,
examining factors that influence prognosis, describing care
patterns, including the appropriateness of care and disparities
in its delivery, assessing effectiveness, monitoring safety and
harm, and measuring some aspects of the quality of care [1,6].

National and international statistics document elevated rates of
hospitalization and emergency department admissions among
polymedicated, home-dwelling older adults with multiple
chronic conditions, and these are often caused by
medication-related problems (MRPs) [7-10]. However, the
determining factors of medication-related hospitalizations are
poorly understood and require more investigations based on
existing patient data [11]. The associations between age,
comorbidities, polypharmacy, and adverse effects on health
outcomes and health care consumption have been reported in

multiple studies of emergency departments and hospitals, but
the underlying mechanisms have often been unclear [12-14].
Several studies have demonstrated that one-quarter of the
emergency department admissions for polymedicated,
home-dwelling older adults are related to the inappropriate
prescription of medicines or unsatisfactory medication
management [15,16]. Poor medication management,
inappropriate medicine prescription, and drug–drug interactions
are frequent causes of admission [17,18]. The risk of MRPs
increases not only with old age and comorbidities but also with
the number of medications prescribed and with certain classes
of medicines, such as medicines for cardiovascular diseases and
diabetes [9,19]. The mechanisms behind those high rates of
hospitalization in relation to MRPs deserve more attention.
More knowledge and understanding of the factors predisposing
and precipitating hospitalization and MRPs among
polymedicated, home-dwelling older adults are needed too.

This paper aims to describe the method used to transform and
synthesize a raw, multidimensional, patient registry data set to
prepare it for exploitation as a database with which to examine
predictive and survival analysis among hospitalized older
inpatients.

Methods

Study Design
This multidimensional, retrospective, patient registry–based
study explored the methods required to transform and synthesize
a raw data set into a suitable database for further analysis of
descriptive, predictive, and survival statistics to identify the risk
factors that might induce MRPs among discharged,
polymedicated older inpatients.

Population and Sample
The multidimensional patient registry included 140 variables
routinely collected during hospital stays by older adult inpatients
aged 65 years old or more, living at home before hospitalization,
with at least five prescribed medicines at discharge from
hospital. The extracted data set was composed of a sample of
20,422 hospitalizations from 2015 to 2018, with similar numbers
of annual hospitalizations: 5134, 5095, 5125, and 5068,
respectively.

Medicines prescribed before hospital admission were not
considered in the analysis due to a lack of data accuracy and
validity. Indeed, information on medication at hospital admission
is often collected from patients themselves, who may not
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accurately report their prescriptions, particularly in cases of
unplanned hospitalization.

Data Set Extraction and Importing
The hospital data set was extracted from a public teaching
hospital’s registry, delivered to the investigators in a CSV (.csv)
format file via an encrypted email and saved on a secure server.
Finally, the data set was imported into the R statistical package
for cleaning, data transformation, and synthesis [20]. Routinely
collected data included information derived from patients’
medical and clinical statuses (patient-reported data, clinical
examination, medical diagnoses, or medicines prescribed). The
data set had to be cleaned up and synthesized to be suitable for
analyzing descriptive, predictive, and survival statistics.

Data Cleaning and Transformation
Clinical coding was carried out directly by health care
professionals during routine daily care, using a pre-established
drop-down menu. Official clinical coding of established medical
(10th revision of the International Statistical Classification of
Diseases and Related Health Problems [ICD-10]) and surgical
diagnostics (CHOP) is mandatory under Swiss Federal Office
of Public Health regulations. The variables represented by free
text in the original database were excluded.

The distributions of each variable in the data set were explored,
according to type (categorical and continuous variables), in
order to identify any extreme values and obtain a better view
of missing values and associations. Our data cleaning and
transformation were guided by a literature review on cleaning-up
large data sets, the quantity of information available to us, and
the study aim [21]. One major challenge was to find a way to
select or summarize a significant volume of information so that
further descriptive and predictive statistical analyses could be
performed (ie, summarize as many variables as possible, while
losing the least amount of information). The large number of
variables describing an inpatient’s somatic and cognitive status
and medical diagnoses represents a significant challenge: we
must find a balance between the variability of data and the
essential, detailed information they provide without losing the
ability to perform descriptive, predictive, and survival analyses
[22].

Presentation of the Data Set

Description of the Sociodemographic and Hospitalization
Data Set
The sociodemographic data set—almost exclusively composed
of ordinal variables—included just 2 categorical variables (sex
and place of discharge) and 1 continuous variable (age). There
were no missing sociodemographic variables except among the
place-of-discharge data.

The hospitalization data set included 2 continuous variables
(date of entry and discharge) and 1 categorical variable (the
personal identification data number [PID]). These 3 variables
enabled us to compute the length of stay (LOS) and the
frequency of hospitalization and rehospitalization, respectively.
Rehospitalization rates were important health status indicators
in relation to drug prescriptions. Many polymedicated,
home-dwelling older adults were hospitalized more than once

during the 4-year study period. Almost one-third (n=3678) of
older inpatients were rehospitalized 3 times or more; a small
fraction was hospitalized more than 9 times. We found 18
polymedicated, home-dwelling older adults who were
rehospitalized 17 times and considered them as outliers. Besides
computing the average age and hospital LOS, no other
interventions were necessary to clean up this section of the data
set. Our analyses found an almost equal distribution of men and
women, with an average age close to 79 (SD 7.7). Most older
inpatients were discharged home after an average LOS of about
10 days (Multimedia Appendix 1).

Description of the Somatic Data Set
Nurses routinely collect clinical data during hospitalization
using a drop-down menu, and the data set was composed of 18
categorical variables: 16 measured as ordinal variables (mobility,
changing position, falls in the last year, exhaustion, upper- and
lower-body care, upper- and lower-body [un]dressing, eating,
drinking, micturition and defecation-related movements, hearing,
vision, verbal expression, and pain intensity) and 2 measured
as nominal variables (altered gait and chronic pain). Missing
values in the data set were resolved by recoding them as “not
available” (NA; Multimedia Appendix 2).

Description of the Cognitive Data Set
Inpatients’ cognitive status was measured at an ordinal level
using 5 categorical variables. More than 72.60% (14,826/20,422)
of adults showed no deterioration in their cognitive status
(Multimedia Appendix 3).

Description of the Medical Diagnoses and Surgical
Interventions Data Set
This data set of medical information was composed of patients’
principal medical diagnosis and 4 secondary medical diagnoses
(active or passive comorbidities), based on the WHO’s ICD-10
adopted by Switzerland’s health care system [23]. This was
completed with the patient’s principal surgical intervention and
4 additional surgical interventions, based on Switzerland’s
surgical classification system (named CHOP) [24]. This data
set showed no missing values (Multimedia Appendix 4).

The data set has no specific coding for MRPs (the corresponding
ICD-10 is “Poisoning by drugs, medicaments and biological
substances”) [25].

Description of the Prescribed Medicines Data Set
The hospital data set showed that discharged patients had been
prescribed 2370 different medicines. This huge number of
medicines and their heterogeneous therapeutic focus needed a
structured classification built based on best practices
(Multimedia Appendix 5). Based on expert opinion and a
literature review on medicine classification systems, we chose
the Anatomical Therapeutic Chemical (ATC) classification
system’s 14 top-level codes to structure the set of prescribed
medicines [25,26] (Multimedia Appendix 6).

Synthesizing the Raw Data Set
Summarizing the data set was especially challenging because
most of the variables documented different parts of inpatients’
overall health status, with all the diverse dimensions of their
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somatic and cognitive conditions. Special attention was given
to the large data set of prescribed medicinal treatments. In many
fields, the most common means of coping with such difficulties
is the use of statistical clustering, a technique which combines
all the available information (all variables) to reveal one or
several underlying dimensions or health concepts.

In addition, the data set’s large number of variables and
dimensions made it extremely complex to investigate the
relationships and interactions between the different somatic and
cognitive variables. The data set should allow the analysis of
the risks of adverse health outcomes and their relationships with
the medicines prescribed. For this reason, computing every
variable in the same model may not be the optimal modeling
choice if we consider the multidimensional aspect and
dependency between those variables. This is especially true if
these variables are significant (P<.01) for the discrimination
and discovery of mechanisms leading to rehospitalization and
a nonreturn home due to medical conditions and MRPs. In the
absence of any scientific models, this study used an empirical
approach.

Data Clustering

Overview
Little research to date has explored specific combinations or
clusters of clinical data and health status. Our study’s objective
was to transform and synthesize valuable inpatient health
information (health concepts such as mobility), rather than to
reduce the dimensions of the data. It is, therefore, worth
considering a larger number of principal components in the
analysis to explain a larger part of the data variability. Almost
all the studies which have examined specific comorbidities start
from a specific disease rather than examining all the
co-occurring clinical and medical conditions [27,28]. Nosology
clusters groups of diseases, disorders, or syndromes with
meaningful associations into a type of classification, so that
diseases, for example, within a cluster, are very similar to one
another, but are dissimilar to diseases in other clusters [29].
Among older inpatients, some associations are useful for
identifying those at risk of in-hospital adverse clinical events
and death in relation to those disease or health-syndrome
clusters.

A large variety of clustering methods exist in the literature.
However, the majority are focused on either continuous or
nominal data alone. Only a limited number of techniques and
strategies manage to incorporate both variable types into the
same clusters [30].

Distance Measurement
This approach aims to create a measure of the distance between
individuals or sequences that includes nominal and continuous
variables. The Gower distance is the most widely used distance
measure, and it can be used to calculate the distance between 2
entities whose shared attribute has a mixture of categorical and
numerical values [31]. However, because it uses a range of
continuous variables to determine the distance and assumes that
nominal variables have a distance of either 0 or 1, the Gower
distance may underestimate the impact of continuous variables
because they are valued at 1 much less often than nominal

variables are. Furthermore, weightings are selected arbitrarily.
However, they define each data type’s contribution to the overall
distance. As with all distance measures, the Gower distance
should be used as an input for clustering methods, such as
k-means.

K-Means Method
The k-means algorithm is mainly used for continuous variables
[32]. Several other applications, such as the R statistical package
KAMILA [33], integrate different types of variables. In this
case, it uses the probabilities of a multinomial distribution for
the discrete variables. The continuous variable distribution is
estimated using univariate kernel densities [34]. The
probabilities resulting from both distribution types are added
together to obtain a measure of how close an observation is to
the center of each cluster.

K-Medoids Method
The k-medoids method is a more robust version of k-means
[35]. The difference is that in k-medoids real data points are
selected as cluster centers, whereas in k-means the centers are
the computed averages. The PAM function in the R statistical
package KAMILA is a popular application of this approach
[33,34].

Multiple Correspondence Analysis
The standard method for clustering factor variables is multiple
correspondence analysis [36]. This model is implemented in
the FactoMineR and PCAmixdata R packages. It splits all factors
into multiple binary variables and applies a type of principal
component analysis. The principal components obtained are
then usually clustered using a k-means algorithm.

Hierarchical Cluster Analysis
Our data analysis strategy applied a hierarchical cluster analysis,
using the ClustOfVar R package [37,38]. As with any statistical
analysis, results of a hierarchical cluster should not be accepted
as they first appear, but should be taken as suggestions or
questioned instead. When the final set of groups of variables
was defined, a statistical model to cluster the individuals within
each group was applied. This created one new variable for each
group, indicating the type of characteristics the individual
displayed in his/her health status assessment. For example, if
we separate the individuals into 3 groups according to their
cognitive status, we might obtain a variable indicating that a
person belongs to a group with significant, minor, or no
cognitive impairment. This type of aggregated variable was
used in our final analysis of risk factors.

Our analysis explored several different clustering methods.
However, the results displayed here most often used the
following variable clustering procedure. First, a one-factor
analysis model was typically used; second, the most important
latent factors were selected. At this stage, it was essential to
obtain accurate clustering rather than reduce the dimensionality,
which takes place in the final cluster partition. Third, these
factors were considered as variables and served as the input to
a k-means clustering algorithm. Finally, the number of clusters
was then selected using the Rousseeuw silhouette statistic, also
with regard to the interpretability of the resulting partition [39].
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Two-Step Clustering Framework
In this approach, n and p denote the numbers of the patients and
health conditions (indicators), respectively. The data can thus
be represented by an n × p matrix, where the observed value
for the ith column and the jth row of the data matrix is 1 or 0,
indicating the presence or absence of the ith health condition
for the jth respondent (i = 1,…, p; j = 1,…, n).

In the 2-step clustering approach, step 1 involves clustering the
p conditions into non-overlapping groups of clinical or health
conditions. Based on individual patterns in these groups of
clinical and medical conditions, step 2 involves clustering the
n respondents into clusters which correspond to different
patterns of clinical or health conditions.

To thoroughly analyze the data and identify the MRPs leading
to adverse health outcomes—such as rehospitalization, nonreturn
home, and early death [40,41]—among older adult inpatients,
a literature review was conducted [27].

Treatment of Missing Data
As in every real-life data collection exercise, missing values
are unavoidable, and it is important to define how these are
integrated into the study. Four approaches were considered:
ignoring all observations with 1 or more missing values; defining
“NA” as a separate potential variable value; replacing every
missing value by the mode of the corresponding variable; or
performing multiple imputations on the data set. The first
approach was obviously inappropriate, especially in cases where
the number of missing data was significant (P<.01). Considering
NA as a separate modality for each variable inflates the number
of modalities, but it reduces the possibility of bias due to
incorrect imputation methods. Nevertheless, for the sake of
comparison, it was also tempting to consider the 2 latter
approaches. Before choosing between simple replacement using
the variable’s mode value and multiple imputation, we had to
test for the type of missing data. If data are missing completely
at random, we can simply impute using the mode. However, if
this possibility is rejected, multiple imputation is theoretically
more appropriate. The Little test (1988) [42] examines the null
hypothesis H0: the data are missing completely at random. This
test was applied to all subclusters of variables and the null
hypothesis was rejected for every data set. This indicated that
multiple imputation could be performed as an optional solution
for estimating missing values.

Finally, defining NA values became our primary choice for the
treatment of missing values. By creating an NA variable (an
empty variable that does not influence the cluster result), all
observations with an NA variable were still taken into account
in the cluster analyses. This is why each cluster analysis contains
every hospitalization (N=20,422).

Ethical Considerations
The hospital data set was coded and its use was contractually
limited by the participating hospital center. Furthermore, because
the data sets included highly sensitive electronic patient records
from a hospital registry, ethical approval was sought before any
synthesis or analysis. Data were stored on a dedicated secure
data server, which included a log registry. Each access flow to

the secure data environment was documented, and each change
required approval. Only users working on the project and
requiring access to the data were allowed to use the selected
multifactor authentication mechanism in the secure environment.
The Human Research Ethics Committee of the Canton of Vaud
(CER-VD) (2018–02196) approved the study on February 1,
2019.

Results

Transformation of the Data Set
The original data set required some adjustments before our plan
of analysis could move forward. Four empty variables and 1
observation containing mostly 0 or unavailable values were
removed from the data set. The labels for all variables were
rewritten and clarified, and many medicine names in French
had accents and unreadable symbols corrected.

Missing Data
Tests made using both the BaylorEdPsych and RBtest R
packages confirmed that the missing-completely-at-random
hypothesis could be rejected [42]. Observations within each
subcluster of the data set that only contained missing values
were recoded as NA. Their presence might have been due to
incorrect inputs, human or software error, or unavailable parts
of some questionnaires. Missing data had very little impact on
the sample size, appeared to be random, and concerned the first
4300 observations, especially. After recoding these observations,
the cognitive status variables showed no more separate missing
observations, and we had a complete data set.

Clustering of Clinical and Medical Data
Most of the hospital variables were partially independent and
gathered into several groups according to the dimension of the
patient’s measured/assessed clinical and medical status. We
used an empirical approach suggested by health care experts
(FP, HV, and AvG) in an attempt to present homogenous groups
within the set of variables. In cases involving clear and
meaningful clustering, we relied on expert recommendations
or opinions taken from a comprehensive literature review
[27,33]. However, when evidence was scarce, we clustered
variables using statistical methods. The results from statistical
methods were compared against those from expert opinion,
which served as a validation tool for addressing any possible
subjectivity in those expert opinions [27,33].

Seven groups of clusters were developed: somatic/physical
health conditions (3 orange groups in Figure 1), cognitive health
conditions (green textbox in Figure 1), total number of
prescribed medications based on the ATC classification,
diagnoses based on the ICD-10 (yellow textbox in Figure 1),
and the surgical interventions based on CHOP (gray textbox in
Figure 1). Besides these more apparent distinctions between
variables, other underlying subclusters may be present within
these groups. This point is beyond the scope of this paper,
however, and will be documented elsewhere with a
complementary, within-group analysis (the presence of an
interpretable clustering of variables within a group before
clustering individuals). An examination of the place of discharge
variable confirms this: of 20,422 hospitalizations, only 131
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patients (<1%) were documented to have died during
hospitalization. Bearing in mind that there was no explicit
variable indicating this worst outcome, we developed indicators
that were suggestive of imminent death or a highly and
irreversibly deteriorated health condition. Based on a literature
review of polymorbidity, 6 clinical indicators from the data set
were associated with a functional deterioration leading to
progressive decline and poor health status [43]: (1) restricted
mobility, (2) incapacity to change position, (3) altered alertness,
(4) altered orientation, (5) altered gait, and (6) reduced or absent

cognitive skills necessary to carry out the activities of daily
living. Each of these variables indicated a deteriorating health
status. To ensure that only severely deteriorating health problems
were captured, we only considered patients to be endangered if
they had multiple problems. We therefore created a variable
indicating the number of problems present, with values ranging
from 0 to 6 (Multimedia Appendix 7). More than half of the
sample presented with at least one deteriorated health condition.
However, only a small fraction of the older adult patients had
4 or more deteriorated health conditions at discharge.

Figure 1. Structure and content of the data set clusters.

Cognitive Data Cluster

Overview
The cognitive data cluster (green textbox in Figure 1) was
composed of 5 variables indicating cognitive status level (Table
1). As with many other variables in the total data set, cognitive

data were considered nominal because they each had a small
number of modalities. The first 400 observations in the data set
were excluded from the cognitive status analysis because they
contained only missing values and were excluded from other
analyses for the same reason. These missing values were
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explained by the fact that new data variables were introduced
into the hospital register during the first semester of 2015.

Cognitive Status Clustering
The R ClustOfVar package was used to perform a hierarchical
clustering of the cognitive health variables to investigate any
possible relationships and the presence of subclusters within
these variables. The results did not suggest any clear
interpretable structure within the variables included, as
illustrated by the dendrogram (Figure 2). They indicated that
only single-variable clusters (singletons) could be separated,
one at a time, to form separate and not very distinct clusters.
This information failed to provide any useful solution to our
problem because it makes no sense to cluster individuals using
a single variable. This result, combined with the small total
number of 5 other data set clusters, led us to the conclusion that
the 6 data set clusters illustrating different cognitive conditions
should be considered together in the same clustering algorithm.

Multiple correspondence analysis was used to cluster individuals
according to their cognitive status because all the variables were
categorical. Even though the first 2 principal components do
not explain much of the data (5310/20,422, 26.00%), we were
able to discern the 4 most discriminant variables for clustering
(and the importance of their categories). For further analysis,

we selected numerous principal components (n=9) because of
their relatively low explanatory power (65% of the variance).
We found multiple different clustering partitions with respect
to the number of clusters. Some groups and features were found
systematically in all the partitions. This enabled us to make the
following generalizations about the results, regardless of the
number of clusters:

• The majority of observations indicated that cognitive status
was not altered at the time of the assessment. We found a
good solution and form in every cluster, including the
largest cluster.

• When increasing the number of clusters, observations with
average or poor cognitive status were split and nuanced.

• One group of individuals with mainly missing values was
excluded from the analysis.

The optimal number of clusters was determined using the
silhouette statistic (Figure 3). For each number of clusters, this
statistic measures how similar each observation is to its own
cluster in comparison to all other clusters, that is, the extent to
which observations are grouped together. The results indicated
that the 3-cluster solution would be the most appropriate in
terms of within- and between-cluster distances. However, a
partition using 2 clusters provided greater simplicity and also
had a statistically sustainable silhouette value.

Figure 2. Dendrogram of cognitive status variables.
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Figure 3. Silhouette statistics for choosing the optimal number of clusters: the two- or four-cluster solutions were suggested.

Two-Cluster Solution
Hierarchical clustering using 2 classes created a dominant group
of 18,339/20,422 (89.80%) older inpatients with full cognitive
ability and a smaller group of 2083/20,422 (10.20%) inpatients
with cognitive impairment. The 2-cluster solution was
differently distributed over the 5 variables and according to the
type of diagnoses (ICD-10; Table 1), and it was highly

significant (P<.001). Two other variables (number of
medications prescribed and primary diagnosis) were added to
the analysis for experimental purposes but were not included
in the clustering model. A difference was observed in the
average number of medications prescribed (9.63 vs 10.47;
P<.001) between groups, and the primary diagnosis also
appeared to be different (0.10 vs 0.08; P<.001; Table 1).

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e24205 | p.167https://medinform.jmir.org/2021/5/e24205
(page number not for citation purposes)

Taushanov et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Distribution of individuals in each group for all 5 cognitive status variables in the 2-cluster solution (N=20,422).

Cognitive statusCognitive status variables

Cognitive impairmentFull ability

Perception/Alertness a

0.851.00Alert

0.130.00Drowsy

0.010.00Stupor

0.010.00Coma

——NAb

2083 (10.20)18,318 (89.70)Distribution, n (%)

Orientationa

0.110.91Full ability

0.240.083 abilities

0.400.011–2 abilities

0.200.00Inability

0.060.00NA

2083 (10.20)18,319 (89.70)Distribution, n (%)

  Ability to learna

0.020.81Full ability

0.100.18Slightly reduced

0.670.02Severely reduced

0.210.00Inability

——NA

2083 (10.20)18,319 (89.70)Distribution, n (%)

Activities of daily livinga

0.030.83Full ability

0.160.15Slightly reduced

0.660.02Severely reduced

0.130.00Inability

0.010.00NA

2083 (10.20)18,319 (89.70)Distribution, n (%)

  Attention

0.360.98Unaffected

0.630.02Reduced

0.010.00NA

2083 (10.20)18,319 (89.70)Distribution, n (%)

Number of medicinesa

10.479.63Average number

ICD-10c main diagnosesa

0.540.52Systems

0.080.10Mental

0.010.01Cancers

0.370.37Other
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Cognitive statusCognitive status variables

Cognitive impairmentFull ability

——NA

2083 (10.20)18,339 (89.80)Distribution, n (%)

aVariables significantly different among clusters (χ2 tests and t tests, P<.01). Each line represents 1 cluster and adds up to 1 (100%).
bNA: not available.
cICD-10: 10th revision of the International Statistical Classification of Diseases and Related Health Problems.

Three-Cluster Solution
Hierarchical clustering using 3 classes created groups of
15,717/20,422 (76.96%) polymedicated older inpatients in full

cognitive health, 4290/20,422 (21.01%) with mild cognitive
impairment, and 415/20,422 (2.03%) with severe cognitive
impairment. The 3-cluster solution’s results were similar to
those of the 2-cluster solution (Table 2).
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Table 2. Distribution of individuals in each group for all 5 cognitive status variables in the 3-cluster solution (N=20,422).

Cognitive statusCognitive status variables

Severe cognitive impairmentMild cognitive impairmentFull ability

Perception/Alertnessa

0.610.931.00Alert

0.290.070.00Drowsy

0.060.070.00Stupor

0.0400.00Coma

———NAb

380 (1.86)2166 (10.61)17,855 (87.43)Distribution, n (%)

Orientationa

0.030.100.94Full ability

0.050.390.063 abilities

0.120.410.001–2 abilities

0.620.080.00Inability

0.180.020.00NA

380 (1.86)2166 (10.61)17,856 (87.44)Distribution, n (%)

Ability to learna

0.010.030.83Full ability

0.030.230.17Slightly reduced

0.090.700.01Severely reduced

0.870.050.00Inability

NA

380 (1.86)2166 (10.61)17,856 (87.44)Distribution, n (%)

Activities of daily livinga

0.010.060.85Full ability

0.020.290.13Slightly reduced

0.320.630.02Severely reduced

0.620.020.00Inability

0.030.000.00NA

380 (1.86)2166 (10.61)17,856 (87.44)Distribution, n (%)

Attentiona

0.110.490.99Unaffected

0.840.510.01Reduced

0.040.000.00NA

380 (1.86)2166 (10.61)17,856 (87.44)Distribution, n (%)

Number of medicinesa

10.3510.439.62Average number

ICD-10c main diagnosesa

0.570.540.52Systems

0.090.070.10Mental

0.000.010.01Cancers
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Cognitive statusCognitive status variables

Severe cognitive impairmentMild cognitive impairmentFull ability

0.330.380.37Other

———NA

380 (1.86)2166 (10.61)17,876 (87.53)Distribution, n (%)

aVariables significantly different among clusters (χ2 tests and t tests, P<.01). Each line represents 1 cluster and adds up to 1 (100%).
bNA: not available.
cICD-10: 10th revision of the International Statistical Classification of Diseases and Related Health Problems.

Somatic Variables and Their Clustering Into
Subclusters
Multiple variables showed modalities that did not correspond
exactly to those described in the list (Multimedia Appendices
1-6). The risk of falling variable in the list of somatic data
(orange textbox, Figure 1) is continuous, and it was thus recoded
into a 3-modality factor as no risk (0 falls), moderate risk (1-4
falls), and high risk (≥5 falls in the last year).

The number of somatic variables is large and heterogeneous,
making the direct clustering of individuals challenging. We
considered the hypothesis that there were probably
dissimilarities in this whole set of somatic variables, and starting
from this assumption, we split the variables into subclusters.

In the absence of any validated techniques, tools, or
evidenced-based literature, we developed an empirical subcluster
clustering strategy. The initial separation of the variables was
guided by information retrieved from a literature review of
communicable somatic diseases completed with the authors’
experiences and expertise in patterns of somatic illness [27,28].
Four subclusters of somatic variables were constructed: mobility,
health difficulties, capacities for the activities of daily living,
and other health risks (orange textbox in Figure 1). The mobility
subcluster was composed of the clinical variables of movement,
changing position, altered gait, balance disorders, and past and

recent falls. The general health status subcluster included
exhaustion, hearing, vision, verbal expression, drowsiness, sleep
rhythm, sleep impairment, pain intensity, and chronic pain. The
capacities for the activities of daily living subcluster were
composed of upper- and lower-body care, upper- and lower-body
(un)dressing, eating, drinking, and micturition- and
defecation-related movements. The other health risks subcluster
was composed of clinical variables assessing the risks of sores,
wounds, malnutrition, and falling during hospitalization. To
reinforce the authors’ opinions, a statistical validation model
of the variable clustering was computed using the hierarchical
clustering functions of the R ClustOfVar package (Figure 4).

Findings showed some differences between the authors’opinions
and the statistical model. To optimize the composition of
somatic health status variable subclusters, an adapted version
was selected for further data analysis following discussion and
a consensus agreement. Three subclusters of somatic variables
were considered. The mobility subcluster was composed of the
movement, changing position, and altered gait variables. The
general health impairments subcluster included exhaustion,
hearing, vision, verbal expression, risk of falling, chronic pain,
and pain intensity. The capacities for the activities of daily living
subcluster included upper- and lower-body care, upper- and
lower-body (un)dressing, eating, drinking, and micturition- and
defecation-related movements.
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Figure 4. Dendrogram of the somatic health status variables.

Grouping Individuals Within the Somatic Health
Status Subcluster
After separating the variables, the somatic health status
subclusters of mobility, health impairments, and capacities for
the activities of daily living were themselves partitioned, with
the aim of discovering any possible underlying groupings of
inpatients.

Mobility Subcluster
Using the silhouette statistic failed to give a clear optimal
number of subgroupings n (Figure 5).

Our analysis demonstrated similar and increasing average
silhouette widths as n increased. Consequently, we chose a

2-cluster partition, deciding that this best separated the variables
in terms of interpretability of results and a clear implicit
difference between the groups: a grouping of persons with
mostly full mobility (n=12,540) and a grouping with an impaired
mobility status (n=7,880). Roughly two-thirds of individuals
had few or no mobility problems (Table 3). The remaining
individuals exhibited problems in at least one of the three
variables. That number is large but not surprising when

considering the sample population’s advanced age. The χ2 tests
confirmed a clear difference between the groups across all
variables (Table 3). Our analysis highlighted that the group with
full mobility status was prescribed significantly fewer
medications (P<.01) than the group with impaired mobility
(9.07 vs 10.74).
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Figure 5. Average silhouette width for each number of sub-clusters in the mobility sub-cluster.

Table 3. Distribution of individuals in the 2-cluster solution for all mobility variables (N=20,422).

Mobility statusMobility variables

Poor mobilityFull mobility

Movementa

0.010.90Full ability

0.610.09Slightly reduced

0.300.00Severely reduced

0.080.00Inability

7878 (38.58)12,540 (61.40)Distribution, n (%)

Changing positiona

0.250.99Full ability

0.510.01Slightly reduced

0.210.00Severely reduced

0.040.00Inability

7878 (38.58)12,540 (61.40)Distribution, n (%)

Altered gait speeda

0.130.85No

0.820.15Yes

0.060.00Not available

7878 (38.58)12,540 (61.40)Distribution, n (%)

Number of medicinesa

10.749.07Average number

aVariables significantly different among clusters (χ2 tests and t tests, P<.01). Each line represents 1 cluster and adds up to 1 (100%).
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Health Impairments Subclusters
Calculating the silhouette statistic suggested that the 4-cluster
groupings solution was optimal, even though the results appear

very surprising. However, we decided on the 2-grouping
solution, mainly because it is easier to interpret (Figure 6 and
Table 4).

Figure 6. Health impairments sub-cluster: silhouette statistics for choosing the number of groupings suggested the four-cluster grouping solution.
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Table 4. Distribution of individuals in the 2-cluster solution for all health impairment variables (N=20,422).

Health statusHealth impairment variables

Impaired health statusGood health status

Hearinga

0.770.88Full ability

0.220.12Auditive problems

0.100.00Deaf

2465 (12.07)17,897 (87.64)Distribution, n (%)

  Visiona

0.730.92Full ability

0.270.08View problems

0.010.00Blind

2465 (12.07)17,897 (87.64)Distribution, n (%)

  Verbal expressiona

0.491.00Full ability

0.470.00Limited capacity

0.040.00Incapacity

2465 (12.07)17,898 (87.64)Distribution, n (%)

  Risk of fallinga

0.050.37No risk

0.340.63Moderate risk

0.610.00High risk

2464 (12.07)17,844 (87.38)Distribution, n (%)

  Chronic paina

0.840.90No pain

0.150.10Pain

0.010.00Not measurable

2462 (12.06)17,872 (87.51)Distribution, n (%)

  Pain intensitya

0.130.08No pain

0.290.26Improbable

0.010.01Low

0.010.00Moderate

0.010.00Intense

0.550.65Pain index

2462 (12.06)17,880 (87.55)Distribution, n (%)

aVariables significantly different among clusters (χ2 tests and t tests, P<.01). Each line represents 1 cluster and adds up to 1 (100%).

Capacities for the Activities of Daily Living Subcluster
The 2-cluster solution appeared appropriate and confirmed the
silhouette statistic, which highlighted the 2, 8, and 10-cluster
solutions (Figure 7). We distinguished 1 large cluster grouping
of 17,836/20,422 (87.34%) individuals composed of mainly
autonomous inpatients with almost full capacity to carry out

the majority of the activities of daily living. The second cluster
grouping of more dependent inpatients included 2573/20,422
(12.60%) individuals with at least one serious problem in
handling their activities of daily living. Overall, the partitioning
into 2 cluster groupings was relevant in light of our aim to
demonstrate that the observations were significantly different
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(P<.01) among the overall variables and in relation to the number of prescribed medications (Table 5).

Figure 7. Silhouette statistics for the sub-cluster of capacities for the activities of daily living.
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Table 5. Distribution of the capacities for the activities of daily living subcluster (N=20,422).

SubclustersActivities of daily living

Dependent groupingAutonomous grouping

Upper-body carea

0.030.77Full capacity

0.240.21Slightly reduced

0.470.02Severely reduced

0.260.00Incapacity

2573 (12.60)17,836 (87.34)Distribution, n (%)

Lower-body carea

0.000.61Full capacity

0.010.25Slightly reduced

0.180.12Severely reduced

0.810.01Incapacity

2573 (12.60)17,836 (87.34)Distribution, n (%)

Upper-body (un)dressinga

0.010.80Full capacity

0.160.18Slightly reduced

0.440.02Severely reduced

0.390.00Incapacity

2573 (12.60)17,836 (87.34)Distribution, n (%)

  Lower-body (un)dressinga

0.000.64Full capacity

0.010.22Slightly reduced

0.170.12Severely reduced

0.820.02Incapacity

2573 (12.60)17,836 (87.34)Distribution, n (%)

Eating-related movementsa

0.350.95Full capacity

0.380.05Slightly reduced

0.150.00Severely reduced

0.120.00Incapacity

2573 (12.60)17,836 (87.34)Distribution, n (%)

Drinking-related movementsa

0.560.97Full capacity

0.250.02Slightly reduced

0.120.00Severely reduced

0.080.00Incapacity

2573 (12.60)17,836 (87.34)Distribution, n (%)

Micturition-related movementsa

0.120.85Full capacity

0.190.11Slightly reduced

0.270.01Severely reduced
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SubclustersActivities of daily living

Dependent groupingAutonomous grouping

0.420.02Incapacity

2573 (12.60)17,836 (87.34)Distribution, n (%)

Defecation-related movementsa

0.180.88Full capacity

0.190.10Slightly reduced

0.330.02Severely reduced

0.30.01Incapacity

2573 (12.60)17,836 (87.34)Distribution, n (%)

Number of medicinesa

11.399.48Average number

aVariables significantly different among clusters (χ2 tests and t tests, P<.01). Each line represents 1 cluster and adds up to 1 (100%).

Synthesizing ICD-10 and CHOP Diagnoses
Clustering the large data set with more than 2000 different
ICD-10 and 800 different CHOP diagnoses into general clusters
was not interpretable. To make it suitable for further analysis,

the ICD-10 data set was recoded into 4 groups: physiological
systems, mental illnesses, oncological diseases, and others. The
CHOP diagnoses were also recoded into 4 groups: physiological
systems, sensorial, other, and measurement instruments for
diagnostics (Table 6).

Table 6. Distribution of the recoded data set using the ICD-10 and CHOP diagnoses (N=20,422).

Recoded data setDiagnosis data set

TotalFifthFourthThirdSecondFirst

ICD-10a diagnoses

50,7839,49510,03410,27710,31110,666Physiological systems

515246560985611812041Mental illnesses

405210751012974770221Oncological diseases

35,00457686609730878297490Others

7116361921581008331—No diagnosis

20,42220,42219,41520,42220,418Total

CHOP diagnostics

14,33912932049225536565086Physiological systems

457348974013701448526Sensorial

20,18815031964322249648535Other

46—12223—Measurement instruments

32854754686910,09114,147Total

17,13715,66813,55310,3316275No diagnosis/surgery

aICD-10: 10th revision of the International Statistical Classification of Diseases and Related Health Problems.

Summary of Synthesized Registry Data
The different clustering and recoding methods resulted in the
data set presented in Table 7.
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Table 7. Summary of the variables and clusters in the synthesized data set ready for further advanced statistical analysis.

Inpatients in each cluster, n
(%)

Recodinga cluster levelbVariables per cluster in the
synthesized database

Domain

20,422 (100.00)—6Sociodemographic characteristics (N=20,422)

18,318 (89.79) and 2083
(10.21)

2b5Cognitive status (green textbox in Figure 1; n= 20,401)

Somatic status (orange textbox in Figure 1)

12,540 (61.42) and 7878
(38.58)

2b3Mobility subcluster (n=20,418)

17,897 (87.89) and 2465
(12.11)

2b5Health impairments subcluster (n=20,362)

17,836 (87.39) and 2573
(12.61)

2b5Activities of daily living subcluster (n=20,409)

Not applicable4a2,800Medical condition ICD-10c and CHOP (gray and yellow
textboxes in Figure 1; N=20,422)

Not applicable14a2,370Medicines (blue textbox in Figure 1; N=20,422)

aCoded data.
bClustered data (ability/impairment).
cICD-10: 10th revision of the International Statistical Classification of Diseases and Related Health Problems.

Discussion

Principal Findings
This paper describes the rationale and methods used to
synthesize a large, routinely collected data set of clinical and
medical information concerning polymedicated home-dwelling
older adults during hospitalization. The electronic patient records
from a hospital center provided a valuable data resource for
researchers wishing to perform a variety of analyses to explore
health risk determinants, medication prescribing,
rehospitalization, and death rates. Prospectively collecting
research data is often time-consuming and expensive, resulting
in biased samples of highly selected individuals, who are often
unrepresentative of real-life patients [21]. Data that are already
available for use in anonymized electronic patient records
provide a valuable opportunity for a variety of different research
designs and are particularly useful in the design of registries
for evaluating patient outcomes [44]. In some situations, using
population-based registries is even preferable to collecting
primary data because selection bias due to nonresponders is not
a problem [21]. However, large patient registries are sometimes
also inconvenient as they frequently present raw data sets and,
for several different reasons, they may not be immediately
suitable for performing advanced statistical analyses [22]. Those
large data sets usually need to be transformed, cleaned-up, and
synthesized to be usable for advanced descriptive and predictive
statistical analyses.

Our 4-year population-based data set was composed of
polymedicated home-dwelling older inpatients with multiple
chronic conditions, hospitalized and perhaps rehospitalized in
a hospital center in the French-speaking part of Switzerland.
The data came from multiple data set sources and were not
easily exploitable for advanced statistical analyses, forcing the
research team to explore and develop a synthesizing strategy
for a large set of variables so as to respond to our research

question. Synthesizing a large number of heterogeneous
variables in a finite set of specific medical, clinical, and
medication data groups was carried out using the principles of
cluster methodologies [30,32] and following Olsen’s
recommendations for best practices in the analysis of
population-based registries [22]. Most of the variables
documenting patients’ health status fulfilled the criteria for
clustering into different groups according to the dimensions of
their health status. Despite the existence of a large number of
clustering algorithms, we observed that clustering variables
remains a challenge [37]. First, our data set covered a large
number of different domains, and it is often the case that
clustering algorithms must be applied to heterogeneous sets of
variables, creating an acute need for robust, scalable clustering
methods for mixed continuous and categorical-scale data [45].
Current clustering methods for mixed-type data are generally
unable to equitably balance the contributions of continuous and
categorical variables without strong parametric assumptions.
Second, stable cluster analysis is strongly dependent on the data
set, especially on how well separated and how homogeneous
the clusters are. In the same clustering exercise, some clusters
will be more or less stable than others [46]. To overcome this
challenge, our study used a combined empirical and statistical
approach. In the empirical approach, the variables in the clusters
and subclusters were selected following expert opinion (FP,
HV, and AvG), presenting the most homogeneous groups
possible within the set of variables described in the literature
[47]. In the statistical approach, we used the most appropriate
clustering methods and compared the results with the experts’
opinions, which served as a validation tool to address any
possible subjectivity in those opinions. Both methods were
implemented independently and compared. This approach was
similar to that used in 2 recent studies exploring frailty and
comorbidity patterns [27,28]. Although this study developed 6
clusters based on best practices and the previously mentioned
empirical statistical approach, other underlying subclusters
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could also be present within them. This was also noted in the
study by Newcomer et al [48] which used agglomerative
hierarchical clustering methods to identify clinically relevant
subclusters based on groupings of coexisting conditions in a
large sample of hospitalized adults.

This study demonstrated that constructing subclusters should
not rely solely on an explicit statement indicating the worst
outcome, such as death. Clinical indicators documenting
functional deterioration which led to a progressive decline and
a poor health status were integrated into the 7 clustered data
sets. A recent population-based registry study by Vuik et al [49]
confirmed the utility of this kind of approach and concluded
that health status could not only be based on sociodemographic
characteristics and medical diagnoses such as age or morbidity,
but should also consider specific assessments of clinical care
and patient function.

The procedure used in this study can be summarized as a 7-step
approach to transforming and synthesizing a raw,
multidimensional, hospital patient registry data set into an
exploitable database:

1. Write a protocol including a problem statement, research
questions or hypotheses, and data extraction methods
incorporating inclusion and exclusion criteria.

2. Explore the hospital register’s data catalog (content of
administrative, clinical, medical, and drug data; frequency
of assessment; types of measurement—health scores,
structured observations, free text—as well as the period of
data available) in collaboration with the hospital’s clinical
data warehouse.

3. Request ethical approval from an ethics committee for the
use/reuse of existing patient data.

4. Select the most appropriate data for responding to the
research questions/hypotheses.

5. Prepare the data set for further analysis by extracting
hospital register data into a CSV (.csv) or Excel (.xls)
format, cleaning the data in that format’s file and importing
the data set into a statistical package such as R, SPSS, or
STATA.

6. Analyze missing data and strategies to address missing
values based on best practice.

7. Synthesize the data with regard to the research questions
by recoding and clustering.

Strengths and Limitations
The strengths of our retrospective registry study lie in its huge
sample, allowing us to explore the data’s variability and
homogeneity in depth. Clustering data risks reducing their
variability and the information that can be extracted from them,
and some clinical variables showed a significant number of
missing values. This fact raises questions about the accuracy
and quality of the clinical data assessed, which would require
measures of interrater reliability among the health care
professionals inputting data into the registry. However, because
this was beyond the study’s aims, we did not explore interrater
scores of clinical assessments or health care professionals’
scoring of routinely assessed clinical data.

Another limitation to our study was that the sample was
restricted to inpatients aged 65 years or older. Because this
retrospective, register-based study was part of a larger project
[50] focused on medication management among polymedicated,
home-dwelling older adults with multiple chronic conditions,
we did not have the ethics committee’s approval to extend our
extraction of data from the hospital register to all hospitalized
adults. Furthermore, our analysis did not consider medicines
prescribed before hospital admissions due to a lack of data
accuracy and validity.

Finally, and surprisingly, our hospital data set revealed a low
mortality rate. Considering the incidence of death in the region,
our database showed that it was limited in its representativeness
of mortality. Older inpatients presenting with a severe functional
decline or at the end of their life probably left the hospital early
to die at home or in a nursing home/intermediate care clinic.

Research Perspectives
Transforming and synthesizing electronic health records is an
intermediate stage in the process of subsequently investigating
risk profiles and predictive and survival outcomes. Proceeding
to these types of analyses requires that each patient has a
personal identifier (PID) for computing survival, predictive risk
factors, re-admission rates, unplanned institutionalization, and
other clinical outcomes explored in cohort and case–control
studies. In addition, survival analysis must be performed up to
18 months after discharge—beyond our data analysis cut-off
point. Within the framework of a trajectory analysis of health
care, all the longitudinal data on 1 patient should be on the same
horizontal line in the spreadsheet used for calculations. To do
this, each patient must have a unique code allowing data to be
linked across multiple hospitalizations. Risk and predictive
analyses could be organized using multiple linear logistic
regression models (generalized estimating equation [GEE
statistics]).

In this study, the data synthesized to date will enable our
research to be completed with additional longitudinal survival
analyses. The construction of sequences of hospitalizations and
rehospitalizations will allow us to better understand the impact
of certain events from a longitudinal perspective. The registry
data have some limitations because observations are equally
spaced in time and all start from the same point, in 2015.
However, this study promises to provide valid and robust results,
because, despite the sample period, the next hospitalization may
in fact be the best measure of treatment impact. For instance,
the consequences of treatment decisions taken during one
hospitalization (such as medications prescribed or surgical
interventions) might only be measurable when the older inpatient
needs to be rehospitalized. Yet those unequal periods between
hospitalizations may actually prove to be advantageous because
they provide a period of effect—that is, a period selected
naturally by the evolving health status specific to each older
inpatient (eg, inappropriate treatments make inpatients return
to hospital at the exact moment their health worsens). A survival
analysis would need to be performed to measure the impact of
each important intervention (medical act or medication
prescription).
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Conclusions
This retrospective registry analysis study delivered a method
to transform and synthesize a large, raw data set, which included
patients’ health records with sociodemographic, clinical,
medical, health status, and medication data. Data were
cleaned-up and the most appropriate approach for managing
missing values was applied. The multicomponent data synthesis

strategy integrated recoding together with empirical and
evidence-based statistical clustering methods. Seven clusters
were constructed to present the health status of hospitalized
older adult inpatients. Medical status, comorbidity, and
medication data were recoded to summarize the large data set.
Finally, our overall strategy delivered an exploitable,
population-based database for the advanced analysis of
descriptive, predictive, and survival statistics for older inpatients.
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Abstract

Background: Patient monitoring is vital in all stages of care. In particular, intensive care unit (ICU) patient monitoring has the
potential to reduce complications and morbidity, and to increase the quality of care by enabling hospitals to deliver higher-quality,
cost-effective patient care, and improve the quality of medical services in the ICU.

Objective: We here report the development and validation of ICU length of stay and mortality prediction models. The models
will be used in an intelligent ICU patient monitoring module of an Intelligent Remote Patient Monitoring (IRPM) framework
that monitors the health status of patients, and generates timely alerts, maneuver guidance, or reports when adverse medical
conditions are predicted.

Methods: We utilized the publicly available Medical Information Mart for Intensive Care (MIMIC) database to extract ICU
stay data for adult patients to build two prediction models: one for mortality prediction and another for ICU length of stay. For
the mortality model, we applied six commonly used machine learning (ML) binary classification algorithms for predicting the
discharge status (survived or not). For the length of stay model, we applied the same six ML algorithms for binary classification
using the median patient population ICU stay of 2.64 days. For the regression-based classification, we used two ML algorithms
for predicting the number of days. We built two variations of each prediction model: one using 12 baseline demographic and vital
sign features, and the other based on our proposed quantiles approach, in which we use 21 extra features engineered from the
baseline vital sign features, including their modified means, standard deviations, and quantile percentages.

Results: We could perform predictive modeling with minimal features while maintaining reasonable performance using the
quantiles approach. The best accuracy achieved in the mortality model was approximately 89% using the random forest algorithm.
The highest accuracy achieved in the length of stay model, based on the population median ICU stay (2.64 days), was approximately
65% using the random forest algorithm.

Conclusions: The novelty in our approach is that we built models to predict ICU length of stay and mortality with reasonable
accuracy based on a combination of ML and the quantiles approach that utilizes only vital signs available from the patient’s
profile without the need to use any external features. This approach is based on feature engineering of the vital signs by including
their modified means, standard deviations, and quantile percentages of the original features, which provided a richer dataset to
achieve better predictive power in our models.

(JMIR Med Inform 2021;9(5):e21347)   doi:10.2196/21347
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Introduction

Background
Precision observation and assessment are crucial tasks for
“achieving an early diagnosis, informed planning, reflecting on
the suitability of treatment options, information exchanging,
and designing better health interventions” [1]. The use of
artificial intelligence–based solutions to improve health care
services is increasing [2] and patient monitoring is now an
integral part of clinical intelligence [3]. The intensive care unit
(ICU) is one of the most critical and resource-intensive units in
hospitals, and ICU patient monitoring and continuous clinical
surveillance have the potential to reduce morbidity and improve
the quality of care. Therefore, hospitals often seek solutions
that enable reducing waste and wait times, while increasing

service efficiencies, accuracy, and productivity [2]. One of the
issues in current monitoring approaches is that the data are
collected via sensing devices and sent to remote diagnostic
testing facilities for further, often manual or semiautomated,
interpretation by a health care professional. Thus, there is a need
for intelligent solutions for ICU patient monitoring that require
minimal human intervention and that can monitor the health
status of patients, and generate timely alerts, maneuver guidance,
and reports whenever adverse medical conditions are anticipated.

In our previous work [4], we proposed an Intelligent Remote
Patient Monitoring (IRPM) framework (Figure 1) that consists
of three modules: (i) an out-of-hospital module that utilizes data
collected via wearable devices (eg, Apple Watch and SleepO2);
(ii) a decision support module that generates reports; and (iii)
an intelligent ICU patient monitoring module, which utilizes
data collected from ICUs. We here focus on the latter module.

Figure 1. Intelligent Remote Patient Monitoring (IRPM) framework. IICUPM: intelligent intensive care unit patient monitoring.

The IRPM framework is intended to serve as a global web
service interface that exposes the different framework
functionalities to hospitals, hospital managers, insurance
companies, and other decision makers, including the host
organizations that operate and maintain the IRPM system. The
intelligent ICU patient monitoring functionality of the service
performs analytics of the data exchanged between ICUs and the
core IRPM system, and provides the different stakeholders with
the analysis results in the form of timely and early warnings.

Three main factors impact the quality of prediction models: (1)
the target patient population [5], (2) methods used for data
fusion, and (3) algorithm type. Different populations lead to

different prediction results. Moreover, different ways of
combining information from physiological variables lead to
various outcome measures. The IRPM framework is intended
to be hosted in the cloud since the intelligent ICU patient
monitoring module aims at applying machine learning (ML)
within an architecture that allows any user (regardless of whether
or not they are sick) as well as any hospital system to use the
framework. Since most of the used physiological variables are
often obtained inside and outside hospitals, the framework will
enable performing continuous patient monitoring. Therefore,
we built ML models by utilizing features that are easy to obtain
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outside the hospital setting, and we avoided features that are
sophisticated and require high-level medical equipment.

Related Works
There has been some research effort toward developing ML
models for predicting ICU-related outcomes [6-8]. McCarthy
et al [9] performed a study on ICU mortality prediction in which
they compared sliding-window predictors with recurrent
predictors to classify patient state of health from ICU
multivariate time-series data. They reported slightly improved
performance for the recurrent neural network. Moreover, Zhu
et al [10] proposed an ICU mortality prediction algorithm
combining the bidirectional long short-term memory (LSTM)
model with supervised learning. They trained and evaluated the
LSTM model using 4000 ICU patients. They also performed a
comparative analysis, which identified that their proposed
method significantly outperformed several baseline methods.

A few studies have also focused on developing and validating
ML models for predicting ICU-related outcomes using the
Medical Information Mart for Intensive Care (MIMIC) database.
Most of these works have used an exhaustive list of features to
achieve higher accuracy in their models. Johnson and colleagues
[11-13] developed models for predicting ICU mortality,
achieving an area under the receiver operating characteristic
(ROC) curve (AUROC) of 0.92 using a total of 148 features
[12] and an AUROC of 0.86 using a range of features, including
standard statistical descriptors [13]. Lehman et al [14] used
basic physiological variables and applied the Simplified Acute
Physiology Score (SAPS-I) algorithm to predict mortality, which
achieved an AUROC of 0.72. Using the Cohen standardized
mean and coefficient, Tyler et al [15] assessed the differences
between ICU lab values, which were used to predict ICU length
of stay (LOS) and mortality. Harutyunyan et al [16] selected
17 clinical variables to build a binary LOS model to predict
whether a patient will stay in the ICU for a long (≥7 days) or
short (<7 days) period with 84% accuracy. Gentimis et al [17]
used several inputs from seven tables to build an LOS model
to predict whether a patient will stay in the ICU for a long (>5
days) or short (≤5 days) period using neural networks, with
around 80% accuracy; they removed patients who stayed in the
ICU longer than 20 days. Bertsimas et al [18] used several static
and dynamic variables (eg, general admission data, lab results,
medical orders, pharmacy data, diagnosis codes, and notes) and
different classification methods to predict different LOS with
accuracy in the >80% range.

Some works have focused on developing ML models to be used
in clinical information systems that assist in ICU discharge
planning. Badawi and Breslow [19] developed and validated
two models for predicting risks of death and readmission within
48 hours of ICU discharge. They used eICU Research Institute
data from more than 400 ICUs and performed multivariate
logistic regression (MLR) with 59 different features, including
patient demographics, ICU admission diagnosis, admission
severity of illness, intensive care interventions, complications
occurring during the ICU stay, lab values, and physiological
variables recorded within the last 24 hours of the ICU stay.
They calibrated their models across deciles of risk, and their
mortality model accurately discriminated between patients who

would and would not experience a complication as early as 4
days before ICU discharge. However, to the best of our
knowledge, predicting the LOS based on the population’s
median ICU patient stay using only vital signs and demographic
attributes from MIMIC data has not been studied to date.

Objective
We here propose a new approach that focuses on the most
critical observations in a patient’s profile. The novelty of the
approach lies in its ability to predict outcomes with reasonable
accuracy by utilizing only vital signs that exist in the patient’s
profile without having prior knowledge about a patient’s medical
conditions or diagnoses. The approach enriches the original
vital sign measures by adding extra features pertaining to their
modified means, modified SDs, and quantile percentages. We
evaluated the proposed approach (ie, the quantiles approach) in
comparison to a baseline approach that uses the entire range of
observations. We then applied both approaches to develop and
validate two prediction models: (i) one focusing on classifying
ICU mortality rate (survival or no survival), and (ii) another
focusing on predicting the LOS in the ICU using public data
from the MIMIC database.

Methods

Study Population and Data Extraction
We used MIMIC-III (v1.4) [7], a publicly available ICU adult
patient database that spans 11 years between 2001 and 2012.
MIMIC-III has data for 53,423 distinct hospital admissions,
including nearly 500 million rows in 26 tables. The database
comprises features, including patient demographics, laboratory
test results, medical reports, and results from imaging studies.
To meet Health Insurance Portability and Accountability Act
requirements, approximate ages for patients who are more than
89 years are reported by shifting their date of birth.

Figure 2 illustrates the data extraction pipeline of ICU stays
data from the MIMIC database. We started with 61,532 total
ICU stay encounters. In each hospital admission, a patient could
have stayed in the ICU more than once. We performed this study
based on unique ICU stays rather than unique patient identifiers
since our goal was to predict mortality and LOS without having
prior knowledge about patients’medical conditions or diagnoses.

For patients who stayed in the ICU for at least 1 day, we
considered their data for only the first day. The population’s
median ICU LOS was 2.64 days, and therefore we discarded
data from patients who stayed in the ICU for less than 1 day,
which resulted in a total of 45,254 unique ICU stays. For each
ICU stay, we ran separate SQL queries to extract the patients’
vital sign measurements, and height and weight features from
the total 61,532 encounters. We focused on six vital sign features
(body temperature, heart rate, respiration rate, systolic blood
pressure, diastolic blood pressure, and oxygen saturation [SpO2])
along with glucose level. The total number of ICU stays for
which vital sign features were available was 59,241. We
extracted four demographic features (weight, height, age, and
gender). We then performed consecutive inner joins between
the results of the three queries; thus, the total ICU stays reduced
to 44,626 unique ICU stays.
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Figure 2. Data extraction pipeline from the Medical Information Mart for Intensive Care (MIMIC) database. ICU: intensive care unit.

Data Preprocessing
To enhance the accuracy of the predictive models, we eliminated
extreme, trivial, and negative observations within each vital
sign feature. The percentage of missing data was relatively low
(less than 1% for heart rate, respiration rate, systolic blood
pressure, diastolic blood pressure, SpO2, and glucose level, and
less than 2% for body temperature). Given the low percentage
of missing values and the fact that vital signs are numerical
values that are typically normally distributed [20], we filled
missing values of vital sign observations using the mean.

Model and Variable Selection
We built two main prediction models: in-hospital mortality and
LOS for each ICU admission. Table 1 defines the outcome
variables in both models. The outcome variable for the mortality
model was in-hospital mortality, which reduces to a binary
classification problem with two classes: predicting a patient to
survive or not. The dataset has a classification imbalance
problem since the in-hospital mortality percentage was 11.897%,

whereas the patient survival percentage was 88.103%. The
outcome for the LOS model was the number of days a patient
stayed in the ICU. Half of the population spent 2.64 days in the
ICU, which led us to follow two approaches for classification.
In the first approach, we followed a binary classification strategy
by defining two classes with an equal number of observations
by considering 2.64 as a threshold. The first class predicts that
a patient will stay in the ICU for 2.64 days or less, and the
second class predicts that a patient will stay in the ICU for more
than 2.64 days. In the second approach, we followed a
regression-based classification strategy by considering the
predicted outcome as a continuous variable.

We built two variations of each model: one using the baseline
approach and another using the proposed quantiles approach.
The models built with the baseline approach used the six vital
sign features, glucose, and the five demographic features as
predictor variables (Table 2). The models built with the quantiles
approach used the same 12 baseline predictor variables, and
augmented them with extra modified features. We discuss each
model variation separately below.
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Table 1. Descriptive statistics for outcome variables in the two models.

ValuesOperationalizationModel

0: 11.897%; 1: 88.10 3%0: survival; 1: nonsurvivalIn-hospital mortality (binary classification)

Length of stay (LOS)

0: 50%; 1: 50%0: LOS≤2.636 days; 1: LOS>2.636 daysBinary classification

Mean 4.74959 (SD 6.49982)Number of days in intensive care unitRegression-based classification

Table 2. Descriptive statistics for baseline model predictors (N=44,626).

ValueMeasurementInput variables

85.99 (15.59)Heart rate (beats/minute), mean (SD)HeartRate_mean

118.75 (16.90)Arterial systolic blood pressure (mmHg) mean (SD)sysbp_mean

60.47 (10.89)Arterial diastolic blood pressure (mmHg), mean (SD)diasbp_mean

18.93 (4.05)Respiratory rate (breaths/minute), mean (SD)RespRate_mean

36.84 (0.62)Body temperature (°C), mean (SD)Tempc_mean

97.27Peripheral oxygen saturation (%), meanSpo2_mean

138.74 (41.86)Blood glucose (mg/dL), mean (SD)Glucose_mean

64.35 (16.87)Age (years), mean (SD)Age

25,241 (56.56)Male population, n (%)GenderM

19,385 (43.44)Female population, n (%)GenderF

160.66 (11.76)Patient height (cm), mean (SD)Height

80.45 (23.47)Patient weight (kg), mean (SD)Weight

Baseline Approach
Table 2 shows the descriptive statistics for the predictor
variables used in the baseline approach: the patients’ vital signs
for the first day and the demographic variables. The population
had a slight majority of men with a mean age of 64.35 years.

Pearson correlation coefficients among the vital sign variables
in the baseline approach (Table 3) showed weak correlations
between the variables, except between systolic and diastolic
blood pressure.

Table 3. Pearson correlation coefficients among vital signs of the baseline model.

GlucoseSpO2
b

Body temperatureRespiration rateDiastolic BPSystolic BPaHeart rateVariable

0.063–0.0990.2680.3260.211–0.1041Heart rate

0.0630.0450.065–0.0320.5241–0.104Systolic BP

0.0142–0.01480.0650.025710.5240.211Diastolic BP

0.069–0.2590.11810.0257–0.0320.326Respiration rate

–0.0220.05110.1180.03350.0650.268Body temperature

–0.04810.051–0.259–0.01480.045–0.099SPO2

1–0.048–0.0220.0690.01420.0780.063Glucose

aBP: blood pressure.
bSpO2: oxygen saturation.

Quantiles Approach
When dealing with sequential data, observations that are far
from the median are often ignored. We argue that a patient’s
deteriorating condition often comes with a high or low level of
measurement. Thus, these observations are essential as they
report the point at which the patient’s health status changes
dramatically. We propose the notion of the “quantiles approach,”

in which we perform feature engineering by emphasizing the
high and low quantiles of a patient sample. Figure 3
demonstrates the steps performed in the feature engineering
pipeline of the quantiles approach.

First, for each patient sample, we extracted values of the 7 vital
sign features. Second, for each vital sign feature within that
patient sample, we calculated the mean and SD. Third, we
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normalized the observations within each vital sign feature using
the probability density function, and by passing the mean and
SD calculated in step 2 as parameters to that function. The blue

histograms in Figures 4 and 5 show the distribution of each vital
sign feature before normalization, and the red curves show the
distribution after normalization.

Figure 3. Feature engineering pipeline in the quantiles approach. MIMIC: Medical Information Mart for Intensive Care; ICU: intensive care unit; PDF:
probability density function; PPF: percent point function.

Fourth, we applied the percent point function (PPF) to each
normalized vital sign feature to calculate two discrete values
corresponding to the low and high values of that feature. The
low values correspond to observations of the feature that are
less than a given probability (the 25th percentile in our case)
and the high values correspond to observations of the feature
that are greater than or equal to a given probability (the 75th
percentile in our case). Thus, for each vital sign feature, we
calculated the values at which each percentage occurs.

Fifth, we used the calculated low and high values from step 4
to extract the observations of the vital sign features that occur
in only the first and fourth quantiles (ie, we ignored the second
and third quantiles). Sixth, we calculated the mean and SD of

the extracted observations. In the remainder of the paper, we
refer to these metrics as the modified mean and modified SD
to distinguish from the original mean and SD calculated in step
2.

The final step is to calculate the quantile percentage for the vital
sign feature by dividing the number of observations extracted
in step 5 (ie, those that occur in the first and fourth quantiles)
by the original number of observations (in all quantiles in the
entire patient sample). Note that since we normalized the
observations in the vital sign feature (step 3), the number of
observations in the first and fourth quantiles will vary and will
not always be 50% of the original observations.
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Figure 4. Distribution of a sample patient observation before and after applying the quantiles approach.
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Figure 5. Distribution of a sample patient observation before and after applying the quantiles approach (continued from Figure 4).

Patient Use Case
To demonstrate the quantiles approach, we provide an example
of a sample patient before and after applying the steps described
above. Figures 4 and 5 show distributions of the 7 vital signs
of the patient before (left) and (after) applying the quantiles
approach. The shaded areas in Figures 4 and 5 show where the
vital sign measurements are neglected. The right side of the

figure shows the modified patient’s observation after removing
the values in the shaded area. After applying the change, the
SD of the observation increased most of the time, whereas the
mean (the green vertical line) did not change significantly. Table
4 shows an example of individual patient data before applying
the quantiles approach. Table 5 demonstrates the features that
were engineered from the original 7 vital sign measures for that
patient sample.
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Table 4. Sample data from an individual patient before applying the quantiles approach.

Mean (SD)OperationalizationFeature

98.92 (27.89)Mean heart rate (beats/minute)HeartRate_mean

107.8 (21.26)Mean systolic blood pressure (mmHg)sysbp_mean

56.88 (10.00)Mean diastolic blood pressure (mmHg)diasbp_mean

17.29 (3.33)Mean respiration rate (breaths/minute)resprate_mean

37.08 (0.33)Mean body temperature (°C)tempc_mean

97.86 (3.57)Mean oxygen saturation (%)spo2_mean

206.0 (73.26)Mean glucose level (mg/dL)glucose_mean

Table 5. Sample of patient data from after applying the quantiles approach.

ValueOperationalizationFeature

Modified mean

103.59Mean of modified heart rate (beats/minute)HeartRate_mean_mod

109.34Mean of modified arterial diastolic blood pressure (mmHg)sysbp_mean_mod

57.03Mean of modified arterial systolic blood pressure (mmHg)diasbp_mean_mod

16.36Mean of modified respiratory rate (breaths/minute)resprate_mean_mod

37.12Mean of modified body temperature (°C)tempc_mean_mod

89.00Mean of modified peripheral oxygen saturation (%)spo2_mean_mod

214.46Mean of modified blood glucose level (mg/dL)glucose_mean_mod

Modified SD

35.76SD of modified heart rate (beats/minute)heartRate_std_mod

30.83SD of modified arterial diastolic blood pressure (mmHg)sysbp_std_mod

14.36SD of modified arterial systolic blood pressure (mmHg)diasbp_std_mod

5.49SD of modified respiratory rate (breaths/minute)resprate_std_mod

0.43SD of modified body temperature (°C)tempc_std_mod

8.74SD of modified peripheral oxygen saturation (%)spo2_std_mod

78.60SD of modified blood glucose level (mg/dL)glucose_std_mod

Modified quantiles

0.5522First and fourth quantiles percent of heart RateHeartRateQuantPer

0.4266First and fourth quantiles percent of arterial diastolic blood pressureSystolicQuantPer

0.4400First and fourth quantiles percent of arterial systolic blood pressureDiastolicQuantPer

0.3384First and fourth quantiles percent of respiratory rateRespRateQuantPer

0.5384First and fourth quantiles percent of body temperatureTempCQuantPer

0.0689First and fourth quantiles percent of peripheral oxygen saturationSPO2QuantPer

0.8125First and fourth quantiles percent of blood glucose levelGlucoseQuantPer

Table 6 lists additional features that were engineered from the
original 7 vital sign measures using the quantiles approach for
the entire patient population.

Pearson correlation analysis among the means of vital signs
samples after applying the quantiles approach (Table 7) showed
that there was no significant difference compared to the baseline
model (Table 3). This implies that the quantiles approach does
not considerably change the correlation between the variables.
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Table 6. Vital sign data after applying the quantiles approach for the entire patient population.

ValueOperationalizationFeature

Modified mean, mean (SD)

86.55 (15.8469)Mean of modified heart rate (beats/minute)HeartRate_mean_mod

119.06 (16.865)Mean of modified arterial diastolic blood pressure (mmHg)sysbp_mean_mod

61.2201 (11.4944)Mean of modified arterial systolic blood pressure (mmHg)diasbp_mean_mod

19.22 (4.1363)Mean of modified respiratory rate (breaths/minute)resprate_mean_mod

36.82 (0.67382)Mean of modified body temperature (°C)tempc_mean_mod

96.00 (5.28098)Mean of modified peripheral oxygen saturation (%)spo2_mean_mod

144.50 (48.3843)Mean of modified blood glucose level (mg/dL)glucose_mean_mod

Modified SD, mean (SD)

11.33 (6.02761)SD of modified heart rate (beats/minute)heartRate_std_mod

19.22 (7.64726)SD of modified arterial diastolic blood pressure (mmHg)sysbp_std_mod

13.21 (6.06014)SD of modified arterial systolic blood pressure (mmHg)diasbp_std_mod

4.96 (2.05444)SD of modified respiratory rate (breaths/minute)resprate_std_mod

0.61 (0.35567)SD of modified body temperature (°C)tempc_std_mod

2.53 (2.18251)SD of modified peripheral oxygen saturation (%)spo2_std_mod

34.69 (32.2924)SD of modified blood glucose level (mg/dL)glucose_std_mod

Modified quantiles, quantile percentage

51.63First and fourth quantiles percent of heart RateHeartRateQuantPer

50.49First and fourth quantiles percent of arterial diastolic blood pressureSystolicQuantPer

47.47First and fourth quantiles percent of arterial systolic blood pressureDiastolicQuantPer

49.02First and fourth quantiles percent of respiratory rateRespRateQuantPer

56.57First and fourth quantiles percent of body temperatureTempCQuantPer

46.26First and fourth quantiles percent of peripheral oxygen saturationSPO2QuantPer

57.04First and fourth quantiles percent of blood glucose levelGlucoseQuantPer

Table 7. Pearson correlation coefficients among the mean vital signs for a sample patient using the statistical model.

GlucoseSPO2
b

Body temperatureRespiration rateDiastolic BPSystolic BPaHeart rateVariable

0.053–0.0650.2360.3160.183–0.1031Heart rate

0.0690.0560.057–0.0340.5041–0.103Systolic BP

0.0290.0280.0310.03010.5040.183Diastolic BP

0.064–0.0950.12810.030–0.0340.316Respiration rate

–0.0280.01610.1280.0310.0570.236Body temperature

–0.02810.016–0.0950.0280.056–0.065SPO2

1–0.028–0.0280.0640.0290.0690.053Glucose

aBP: blood pressure.
bSpO2: oxygen saturation.

Inputs to the Baseline Approach Versus the Quantiles
Approach
The models built using the baseline approach used 12 predictor
variables (ie, 5 demographic attributes and 7 vital signs) (Table
2). The feature engineering step performed in the quantiles
approach augmented the original set of vital sign features with

21 extra features (ie, 7 variables corresponding to the mean of
each patient observation, 7 variables corresponding to the SD
of each patient observation, and 7 variables corresponding to
the quantile percentages). Thus, in addition to the original 12
variables used in the baseline, the models built through the
quantiles approach used the 21 engineered features.
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Classification Methods

Models Applied
We used supervised learning techniques in both models for both
variations because the model outputs were labeled accordingly.
We split the dataset randomly into 75% as the training set
(n=33,469 ICU stays) and 25% as the test set (n=11,157 ICU
stays). To avoid overfitting, we used 10-fold cross-validation
on the training set. We then trained both models using the
training set and we validated the performance of both models
using an unseen testing set.

We applied six commonly used ML algorithms for binary
classification in both the mortality and LOS models: linear
regression (LR), linear discriminant analysis, random forest
(RF), k-nearest neighbors (kNN), support vector machine
(SVM), and extreme gradient boosting (XGB). For the
regression-based classification in the LOS model, we applied
two ML algorithms to predict the number of days: MLR and
support vector regression (SVR).

RF is an ensemble ML algorithm that generates bootstrapped
samples from a dataset and uses the generated samples to
construct several decision trees. Majority voting is then
performed to decide the best classification of the generated
samples. To avoid high correlation between the constructed
trees, the algorithm uses a random subset of features to decide
at each split point. This feature randomness increases the
chances of having correct prediction results. Thus, one important
parameter required by the algorithm is the number of features
considered. In addition, choosing a high number of trees might
increase the execution time with no considerable performance
gain [21]. Therefore, another important parameter is the number
of decision trees needed to compose the RF.

Parameter Tuning for Mortality Classifiers
For the RF algorithm, we set the maximum number of features
to consider for finding a good split to 4, and we set the estimated
number of trees in an RF to 500. For SVM, we used the radial
basis function as a kernel type and we set the penalty parameter
of error C to 1.60.

Parameter Tuning for LOS Classifiers
For the RF algorithm, we set the maximum number of features
to consider in finding a good split to 4. We also set the estimated
number of trees in the RF to 400. For SVM, we used the radial
basis function as a kernel type and we set the penalty parameter
of error C to 0.90.

Model Calibration
To assess the goodness of fit in our models, we compared the
accuracy on the test set and the mean accuracy of the trained
model. We also used five metrics (accuracy, sensitivity,
specificity, negative predictive value, and positive predictive
value, along with corresponding 95% CIs) to validate the
classification models on an unseen test set from the same
population. We examined the difference in AUROC values
between the test and training sets. Finally, we examined
calibration across deciles using the sigmoid test supported with
a visual inspection of calibration curves.

Results

Mortality Prediction Model
Table 8 shows the performance of the mortality models on both
the training and test sets using the baseline and the quantiles
approach with the six different ML algorithms.

The RF algorithm achieved the highest accuracy (88.61%) in
predicting mortality on the test set using the quantiles approach,
followed by the XGB algorithm with an accuracy of 88.22%.
All models showed high specificity and low sensitivity,
indicating that our models performed very well at identifying
patients who will survive but not the opposite. XGB showed
the highest sensitivity rate (0.16), demonstrating the advantage
of using the XGB algorithm to identify patients who will not
survive.

We observed relatively low improvement in model accuracy
from the baseline approach to the quantiles approach. This can
be explained by the imbalanced classification problem in the
mortality model (ie, a low mortality rate of 11.89%). Another
possible reason is that the sample size was reduced after
applying the quantiles approach, which might have misled the
classifier. The original sample size (44,626 ICU stays
considering only the first day in the ICU) dropped by almost
by half since we included only the first and fourth quantiles for
each patient observation. The algorithm uses the PPF function
to return discrete values that are less than or equal to the given
probability, and the best probabilities achieved in our case were
at the 25th and 75th percentiles. We tried other probabilities,
but due to the small sample size, varying the PPF percent did
not have a significant improvement on the results. Figure 6
shows a visual comparison between the accuracy of the six ML
algorithms in the mortality model using the quantiles approach.
The box plots to the left show the model accuracy on the training
set using 10-fold cross-validation and the graph on the right
shows the one-time model accuracy on the testing set.
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Table 8. Mortality model results for six algorithms using different performance metrics.

Test set PPVb (95%
CI)

Test set NPVa (95%
CI)

Test set specificity
(95% CI)

Test set sensitivity
(95% CI)

Test set accuracy
(95% CI)

Training set accura-
cy, mean (SD)

Method and
algorithm

Baseline approach

0.6923 (0.688-
0.700)

0.8817 (0.875-
0.891)

0.9979 (0.991-
1.009)

0.0331 (0.033-
0.034)

0.8806 (0.874-
0.890)

0.8826 (0.0058)LRc

0.5182 (0.515-
0.524)

0.8833 (0.877-
0.893)

0.9932 (0.986-
1.004)

0.0523 (0.052-
0.053)

0.8788 (0.873-
0.888)

0.8817 (0.0058)LDAd

0.6710 (0.666-
0.679)

0.8898 (0.884-
0.899)

0.9923 (0.985-
1.003)

0.1127 (0.112-
0.114)

0.8854 (0.879-
0.895)

0.8846 (0.0061)RFe

0.4496 (0.447-
0.455)

0.8861 (0.880-
0.896)

0.9855 (0.978-
0.996)

0.0854 (0.085-
0.087)

0.8760 (0.870-
0.886)

0.8765 (0.0054)kNNf

0.7872 (0.782-
0.796)

0.8811 (0.875-
0.891)

0.9989 (0.992-
1.010)

0.0272 (0.027-
0.028)

0.8808 (0.875-
0.890)

0.8837 (0.0058)SVMg

0.5495 (0.546-
0.556)

0.8923 (0.886-
0.902)

0.9837 (0.977-
0.994)

0.1429 (0.142-
0.145)

0.8815 (0.875-
0.891)

0.8842 (0.0061)XGBh

Quantiles approach

0.6548 (0.650-
0.662)

0.8838 (0.878-
0.893)

0.9960 (0.989-
1.007)

0.0545 (0.054-
0.055)

0.8815 (0.875-
0.891)

0.8838 (0.0063)LR

0.5772 (0.573-
0.584)

0.8875 (0.881-
0.897)

0.9905 (0.983-
1.001)

0.0935 (0.093-
0.095)

0.8814 (0.875-
0.891)

0.8821 (0.0067)LDA

0.7756 (0.770-
0.784)

0.8876 (0.881-
0.897)

0.9964 (0.989-
1.007)

0.0891 (0.089-
0.090)

0.8861 (0.880-
0.896)

0.8859 (0.0064)RF

0.4395 (0.437-
0.445)

0.8836 (0.877-
0.893)

0.9895 (0.982-
1.000)

0.0589 (0.059-
0.060)

0.8764 (0.870-
0.886)

0.8802 (0.0060)KNN

0.7439 (0.739-
0.752)

0.8829 (0.877-
0.893)

0.9816 (0.991-
1.009)

0.0449 (0.045-
0.046)

0.8820 (0.876-
0.892)

0.8851 (0.0058)SVM

0.5533 (0.550-
0.560)

0.8945 (0.888-
0.904)

0.9816 (0.975-
0.992)

0.1643 (0.164-
0.167)

0.8822 (0.875-
0.891)

0.8844 (0.0061)XGB

aNPV: negative predictive value.
bPPV: positive predictive value.
cLR: logistic regression.
dLDA: linear discriminant analysis.
eRF: random forest.
fkNN: k-nearest neighbor.
gSVM: support vector machine.
hXGB: extreme gradient boosting.

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e21347 | p.196https://medinform.jmir.org/2021/5/e21347
(page number not for citation purposes)

Alghatani et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 6. Comparison of the mortality model results using the quantiles approach on the training set (left) and the test set (right). LR: logistic regression;
LDA: linear discriminant analysis; RF: random forest; KNN: k-nearest neighbor; SVM: support vector machine; XGB: extreme gradient boosting.

The ROC curve is commonly used to evaluate the performance
of an ML model by showing the relationship between the
false-positive and true-positive rates. The AUROC metric can
be used as a basis for comparison; higher values indicate that
a model can identify classes using a specific ML algorithm
better than another. In the case of the mortality model, the ROC
curve shows the relationship between survival cases that scored
as no survival and no survival cases that scored as no survival.

Table 9 shows the AUROC results of the mortality model on
both the training and test sets using the baseline and quantile
approaches for the different ML algorithms. Figure 7 shows the
ROC curves for the six ML algorithms for both the baseline
and the quantiles approach. XGB produced the highest AUROC
(0.79) for predicting mortality on the test set using the quantiles
approach (Table 9).

Table 9. Mortality model performance based on area under the receiver operating characteristic curve (AUROC).

Test set AUROCTraining set AUROC, mean (SD)Method and algorithm

Baseline approach

0.693130.702047 (0.015652)LRa

0.692470.701731 (0.016077)LDAb

0.767250.764875 (0.009214)RFc

0.631730.629262 (0.008944)kNNd

0.668000.653269 (0.011730)SVMe

0.769710.771187 (0.012094)XGBf

Quantiles approach

0.728100.727331 (0.014217)LR

0.726220.725909 (0.014758)LDA

0.782920.783696 (0.010503)RF

0.640870.631649 (0.010416)KNN

0.723330.719253 (0.008940)SVM

0.790360.788908 (0.010665)XGB

aLR: logistic regression.
bLDA: linear discriminant analysis.
cRF: random forest.
dkNN: k-nearest neighbor.
eSVM: support vector machine.
fXGB: extreme gradient boosting.
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Figure 7. Comparison of receiver operating characteristic curves in the mortality model using the baseline (left) and the quantiles approach (right).
LR: logistic regression; LDA: linear discriminant analysis; RF: random forest; KNN: k-nearest neighbour; SVM: support vector machine; XGB: extreme
gradient boosting.

LOS Prediction Model

Binary Classification Algorithms
Table 10 shows the performance of the binary classification
models for the LOS model on both the training set and test set

using the baseline and the quantiles approaches with the six
different ML algorithms.

Table 10. Length of stay model results for six algorithms using different performance metrics.

Test set PPVb (95%
CI)

Test set NPVa (95%
CI)

Test set specificity
(95% CI)

Test set sensitivity
(95% CI)

Test set accuracy
(95% CI)

Training set accura-
cy, mean (SD)

Method and
algorithm

Baseline approach

0.58 (0.57-0.58)0.57 (0.563-0.573)0.59 (0.58-0.59)0.56 (0.554-0.564)0.5715 (0.57-0.58)0.5787 (0.01)LRc

0.58 (0.57-0.58)0.57 (0.56-0.57)0.59 (0.58-0.59)0.56 (0.55-0.56)0.5710 (0.57-0.58)0.5787 (0.01)LDAd

0.63 (0.62-0.63)0.61 (0.61-0.62)0.63 (0.63-0.64)0.61 (0.60-0.61)0.6193 (0.62-0.63)0.6205 (0.01)RFe

0.58 (0.58-0.59)0.56 (0.559-0.569)0.62 (0.616-0.627)0.52 (0.520-0.529)0.5713 (0.57-0.58)0.5639 (0.01)kNNf

0.63 (0.63-0.64)0.60 (0.60-0.61)0.67 (0.66-0.68)0.56 (0.56-0.57)0.6141 (0.61-0.62)0.6228 (0.01)SVMg

0.62 (0.62-0.63)0.60 (0.60-0.61)0.64 (0.64-0.65)0.58 (0.58-0.59)0.6130 (0.61-0.62)0.6303 (0.01)XGBh

Quantiles approach

0.62 (0.62-0.63)0.61 (0.60-0.61)0.63 (0.629-0.640)0.59 (0.59-0.60)0.6131 (0.61-0.62)0.6126 (0.01)LR

0.62 (0.62-0.63)0.61 (0.60-0.61)0.64 (0.63-0.64)0.59 (0.59-0.60)0.6130 (0.61-0.62)0.6131 (0.01)LDA

0.65 (0.65-0.66)0.64 (0.64-0.65)0.66 (0.65-0.66)0.64 (0.63-0.66)0.6461 (0.64-0.65)0.6511 (0.01)RF

0.60 (0.59-0.60)0.56 (0.56-0.57)0.6681 (0.66-0.68)0.4865 (0.483-0.49)0.5768 (0.57-0.58)0.5748 (0.01)kNN

0.66 (0.65-0.66)0.63 (0.62-0.63)0.68 (0.68-0.69)0.5939 (0.59-0.60)0.6386 (0.63-0.65)0.6466 (0.01)SVM

0.64 (0.63-0.64)0.62 (0.62-0.63)0.65 (0.64-0.66)0.61 (0.60-0.62)0.6284 (0.62-0.64)0.6496 (0.01)XGB

aNPV: negative predictive value.
bPPV: positive predictive value.
cLR: logistic regression.
dLDA: linear discriminant analysis.
eRF: random forest.
fkNN: k-nearest neighbor.
gSVM: support vector machine.
hXGB: extreme gradient boosting.

The best accuracy of predicting ICU LOS on the test set was
64.64% using the RF algorithm in the quantiles approach,

followed by the SVM algorithm with an accuracy of 63.86%.
The improvement in model accuracy from the baseline approach
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to the quantiles approach was better when compared with that
found for the mortality model (Table 8). For example, the
difference in accuracy between the baseline and the quantiles
approach for the LOS model on the test set was 2.68% using
RF and was 2.45% using SVM. The RF algorithm achieved the
highest sensitivity (0.64), which indicates that the model using
the RF algorithm can identify patients who will stay in the ICU
for more than 2.64 days better than the other algorithms. SVM
achieved the highest specificity (0.68), which indicates that the
model using the SVM algorithm is better at identifying patients
who will stay in the ICU for 2.64 days or less compared with
the other algorithms. Figure 8 shows a visual comparison of the

accuracy of the six algorithms in the LOS model results using
the quantiles approach. The box plots on the left show the model
accuracy on the training set using 10-fold cross-validation and
the graph on the right shows the one-time model accuracy on
the testing set.

Table 11 shows the AUROC results of the LOS model on both
the training and test sets using the baseline and the quantiles
approach with the six ML algorithms. Figure 9 shows the ROC
curves for the algorithms in the baseline approach and the
quantiles approach, respectively. The RF algorithm using the
quantiles approach produced the highest AUROC (0.697) for
predicting the LOS on the test set (Table 11).

Figure 8. Comparison of the length of stay model results using the quantiles approach on the training set (left) and the test set (right). LR: logistic
regression; LDA: linear discriminant analysis; RF: random forest; KNN: k-nearest neighbor; SVM: support vector machine; XGB: extreme gradient
boosting.
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Table 11. Performance of the length of stay model results based on the area under the receiver operating characteristic curve (AUROC).

Test set AUROCTraining set AUROC, mean (SD)Method and algorithm

Baseline approach

0.608330.612883 (0.006047)LRa

0.608370.612776 (0.006058)LDAb

0.663250.664959 (0.006147)RFc

0.591100.583710 (0.006401)kNNd

0.661180.665992 (0.006041)SVMe

0.665860.677454 (0.007311)XGBf

Quantiles approach

0.654070.654390 (0.012180)LR

0.653840.654178 (0.012102)LDA

0.697820.705115 (0.010004)RF

0.605070.598228 (0.007539)kNN

0.692720.694473 (0.009834)SVM

0.696930.704889 (0.011338)XGB

aLR: logistic regression.
bLDA: linear discriminant analysis.
cRF: random forest.
dkNN: k-nearest neighbor.
eSVM: support vector machine.
fXGB: extreme gradient boosting.

Figure 9. Comparison of receiver operating characteristic curves in the length of stay model using the baseline (left) and quantiles (right) approaches.
LR: logistic regression; LDA: linear discriminant analysis; RF: random forest; KNN: k-nearest neighbor; SVM: support vector machine; XGB: extreme
gradient boosting.

Regression-Based Classifiers
As for the regression-based classifiers of the LOS model, we
report the error between the predicted values and actual values
in the test set using both the mean absolute error (MAE) and
the root mean squared error metrics. The minimum, mean, and

maximum LOS for the entire population was 1, 2.64, and 173.07
days, respectively. Table 12 shows the error value (per day)
using both error metrics for the LOS model. The lowest error
value obtained was 2.81 days using the MAE in the SVR
algorithm with the quantiles approach.
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Table 12. Regression error values of the length of stay model using the baseline and quantile approaches.

RMSEbMAEaMethod

Baseline approach

6.0293.509MLRc

6.2142.857SVRd

Quantiles approach

5.9613.446MLR

6.1372.810SVR

aMAE: mean absolute error.
bRMSE: root mean square error.
cMLR: multivariate linear regression.
dSVR: support vector regression.

Discussion

Principal Results
Our findings indicate that we can build prediction models for
ICU LOS and mortality with better accuracy using a
combination of ML and the quantiles approach including only
vital signs. Little improvement in the accuracy of the mortality
model was achieved, but improvement of approximately 2.7%

was achieved in the LOS model using the proposed quantiles
approach. We examined model calibration across deciles for all
six algorithms in both models. Figure 10 shows the probability
calibration curves of the mortality model using the six
algorithms. The six plots show good calibration of the models,
especially in the case of the RF algorithm. Figure 11 shows the
probability calibration curves of the LOS model using the six
algorithms. The six plots show good calibration of the models
except for the kNN algorithm.

Figure 10. Probability calibration curves of the mortality model for the six classification algorithms. LR: logistic regression; LDA: linear discriminant
analysis; RF: random forest; KNN: k-nearest neighbor; SVM: support vector machine; XGB: extreme gradient boosting.
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Figure 11. Probability calibration curves of the length of stay model for the six classification algorithms. LR: logistic regression; LDA: linear discriminant
analysis; RF: random forest; KNN: k-nearest neighbor; SVM: support vector machine; XGB: extreme gradient boosting.

One might argue that we included only the mean and not the
SD of the vital signs in the baseline approach when the
comparison was to a model including both the mean and SD in
the quantiles approach. Both the baseline and the quantile
approaches include the means of vital signs. The quantiles
approach includes an extra 21 features corresponding to
modified means and modified SDs of the original values in
addition to the quantile percentages. Had we chosen to include
both the mean and SD of the original vital sign observations in
the baseline approach, we would have also needed to include
the SD of the original vital sign observations in the quantiles
approach. In this case, we do not expect that there will be a
significant impact.

Moreover, based on the method of population selection, the
same patient could be in the training as well as in the test set
but for different ICU admissions at different time points. For
this study, we considered unique ICU admissions as opposed
to unique patient identifiers. The rationale for focusing on
unique admissions is that we sought to predict mortality and
LOS without having prior knowledge about a patient’s medical
conditions or diagnoses.

Qualitative Comparison With Other Approaches
For the mortality model, we were able to achieve approximately
89% accuracy and an AUROC of 0.78 using only 7 vital sign
features and 4 demographic attributes, along with 21 features
engineered from the original features. Other researchers have
used excessively more features to achieve similar or better
accuracies. For instance, Johnson et al [12] used a total of 148
features to achieve an AUROC of 0.92. Lehman et al [14]
applied the SAPS-I algorithm on commonly used physiological
data to predict mortality and achieved an AUROC of 0.72.

Johnson et al [13] used a range of features, including standard
statistical descriptors, to achieve an AUROC of 0.86.

For LOS models, most researchers used an exhaustive list of
features to achieve higher accuracy in their models, but they
did not report on whether they had balanced classification
problems. For example, Harutyunyan et al [16] achieved 84%
accuracy using 17 clinical variables and by considering a target
ICU LOS of 7 days. Gentimis et al [17] achieved 80% accuracy
using several inputs from seven tables to build the LOS model
with a target ICU stay of 5 days. Bertsimas et al [18] used
several static and dynamic variables, and achieved accuracy in
the >80% range. In our approach, we built balanced
classification models (using the median LOS of the entire
population) with minimal features. These two conditions made
it harder to achieve high accuracy, which reached only 65% in
the LOS model.

One contribution of our method is the unique combination of
ML with the quantiles approach. Other researchers have used
various techniques to assess a patient’s deteriorating conditions.
Tyler et al [15] found that the methods to normalize patients’
abnormal values are not thoroughly correct and might affect the
results negatively. Other researchers relied on scoring systems
(eg, centile-based early warning score, National Early Warning
Score, or SAPS) to estimate or recognize patients’deteriorating
conditions. We avoided relying on existing early warning
scoring systems since they vary from patient to patient, which
may lead to uncertain results.

Sensitivity Analysis
Since we considered unique ICU stays rather than individual
patients, the training set/testing set split was not performed at
the patient level. This might raise the concern that the vital signs
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and LOS measured at different ICU visits for the same patient
could be highly correlated. Thus, the mortality and the LOS
models might risk overestimation in predictive performance.
We mitigated this effect by performing a sensitivity analysis to
compare the results of the models after excluding patient overlap
to the results of the original model with the overlap included.
In the original model, the population size was 44,626
(corresponding to ICU stays), the training set size was 33,469
ICU stays (75% of the population), and the test set size was
11,157 ICU stays (25% of the population).

The patient overlap between the training and test sets was 3886
ICU stays (34.83% of the test set). The number of ICU stays
remaining in the test set after removing the patient overlap (ie,
3886) reduced to 7271 (65.17% of the original test set of size
11,157). Table 13 shows the results of the mortality model after
removing the overlap and Table 14 shows the results of the LOS
model after removing the overlap. There were no significant
changes compared to the model results shown in Table 8 and
Table 10, respectively.

Table 13. Mortality model results for six algorithms using different performance metrics.

Test set PPVb (95%
CI)

Test set NPVa (95%
CI)

Test set specificity
(95% CI)

Test set sensitivity
(95% CI)

Test set accuracy
(95% CI)

Training set accura-
cy, mean (SD)

Methods and
algorithm

Quantiles approach without overlap in the test set

0.7160 (0.711-
0.724)

0.8781 (0.872-
0.888)

0.9963 (0.989-
1.007)

0.0620 (0.062-
0.063)

0.87636 (0.870-
0.886)

0.88263 (0.0058)LRc

0.6275 (0.623-
0.635)

0.8817 (0.875-
0.891)

0.9914 (0.984-
1.002)

0.0974 (0.097-
0.099)

0.87663 (0.870-
0.886)

0.88171 (0.0058)LDAd

0.8396 (0.834-
0.849)

0.8820 (0.876-
0.892)

0.9973 (0.990-
1.008)

0.0952 (0.095-
0.097)

0.88145 (0.875-
0.891)

0.88458 (0.0061)RFe

0.5132 (0.510-
0.519)

0.8776 (0.871-
0.887)

0.9913 (0.984-
1.002)

0.0620 (0.062-
0.063)

0.87196 (0.866-
0.881)

0.87645 (0.0054)kNNf

0.8163 (0.811-
0.825)

0.8762 (0.875-
0.891)

0.9985 (0.991-
1.009)

0.0428 (0.042-
0.044)

0.87581 (0.870-
0.885)

0.88365 (0.0058)SVMg

0.6166 (0.612-
0.624)

0.8891 (0.883-
0.899)

0.9846 (0.978-
0.995)

0.1670 (0.166-
0.169)

0.87966 (0.873-
0.889)

0.88422 (0.0061)XGBh

Quantiles approach

0.6548 (0.650-
0.662)

0.8838 (0.878-
0.893)

0.9960 (0.989-
1.007)

0.0545 (0.054-
0.055)

0.88150 (0.875-
0.891)

0.88380 (0.0063)LR

0.5772 (0.573-
0.584)

0.8875 (0.881-
0.897)

0.9905 (0.983-
1.001)

0.0935 (0.093-
0.095)

0.88141 (0.875-
0.891)

0.88210 (0.0067)LDA

0.7756 (0.770-
0.784)

0.8876 (0.881-
0.897)

0.9964 (0.989-
1.007)

0.0891 (0.089-
0.090)

0.88608 (0.880-
0.896)

0.88586 (0.0064)RF

0.4395 (0.437-
0.445)

0.8836 (0.877-
0.893)

0.9895 (0.982-
1.000)

0.0589 (0.059-
0.060)

0.87640 (0.870-
0.886)

0.88018 (0.0060)KNN

0.7439 (0.739-
0.752)

0.8829 (0.877-
0.893)

0.9816 (0.991-
1.009)

0.0449 (0.045-
0.046)

0.88195 (0.876-
0.892)

0.88511 (0.0058)SVM

0.5533 (0.550-
0.560)

0.8945 (0.888-
0.904)

0.9816 (0.975-
0.992)

0.1643 (0.164-
0.167)

0.88222 (0.875-
0.891)

0.88443 (0.0061)XGB

aNPV: negative predictive value.
bPPV: positive predictive value.
cLR: logistic regression.
dLDA: linear discriminant analysis.
eRF: random forest.
fkNN: k-nearest neighbor.
gSVM: support vector machine.
hXGB: extreme gradient boosting.
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Table 14. Length of stay model results for six algorithms using different performance metrics.

Test set PPVb (95%
CI)

Test set NPVa (95%
CI)

Test set specificity
(95% CI)

Test set sensitivity
(95% CI)

Test set accuracy
(95% CI)

Training set accura-
cy, mean (SD)

Method and
algorithm

Quantiles approach without overlap in the test set

0.5957 (0.592-
0.602)

0.6292 (0.625-
0.636)

0.6267 (0.622-
0.634)

0.5983 (0.594-
0.605)

0.61312 (0.609-
0.620)

0.61262 (0.0117)LRc

0.5951 (0.591-
0.602)

0.6277 (0.624-
0.635)

0.6277 (0.624-
0.635)

0.5951 (0.591-
0.602)

0.61216 (0.608-
0.619)

61.307 (0.0112)LDAd

0.6304 (0.626-
0.637)

0.6643 (0.660-
0.672)

0.6550 (0.651-
0.662)

0.6400 (0.636-
0.647)

0.64778 (0.643-
0.655)

0.65108 (0.0081)RFe

0.5816 (0.578-
0.588)

0.5913 (0.587-
0.598)

0.6731 (0.669-
0.681)

0.4941 (0.491-
0.500)

0.58740 (0.583-
0.594)

0.57483 (0.0104)kNNf

0.6374 (0.633-
0.645)

0.6489 (0.645-
0.656)

0.6890 (0.684-
0.697)

0.5946 (0.591-
0.601)

0.64379 (0.639-
0.651)

0.64659 (0.0088)SVMg

0.6209 (0.617-
0.628)

0.6483 (0.644-
0.656)

0.6557 (0.651-
0.663)

0.6132 (0.609-
0.620)

0.63540 (0.631-
0.642)

0.64961 (0.0076)XGBh

Quantiles approach

0.6208 (0.617-
0.628)

0.6058 (0.602-
0.613)

0.6332 (0.629-
0.640)

0.5930 (0.589-
0.600)

0.61307 (0.609-
0.620)

0.61262 (0.0117)LR

0.6212 (0.617-
0.628)

0.6053 (0.601-
0.612)

0.6352 (0.631-
0.642)

0.5909 (0.587-
0.598)

0.61298 (0.609-
0.620)

0.61307 (0.0112)LDA

0.6516 (0.647-
0.659)

0.6408 (0.636-
0.648)

0.6549 (0.650-
0.662)

0.6374 (0.633-
0.645)

0.64614 (0.642-
0.653)

0.65108 (0.0081)RF

0.5974 (0.593-
0.604)

0.5624 (0.559-
0.569)

0.6681 (0.664-
0.676)

0.4865 (0.483-
0.492)

0.57677 (0.573-
0.583)

0.57483 (0.0104)KNN

0.6553 (0.651-
0.663)

0.6245 (0.620-
0.632)

0.6838 (0.679-
0.691)

0.5939 (0.590-
0.601)

0.63861 (0.634-
0.646)

0.64659 (0.0088)SVM

0.6367 (0.632-
0.644)

0.6206 (0.617-
0.628)

0.6484 (0.644-
0.656)

0.6085 (0.604-
0.615)

0.62839 (0.624-
0.635)

0.64961 (0.0076)XGB

aNPV: negative predictive value.
bPPV: positive predictive value.
cLR: logistic regression.
dLDA: linear discriminant analysis.
eRF: random forest.
fkNN: k-nearest neighbor.
gSVM: support vector machine.
hXGB: extreme gradient boosting.

The total number of ICU stays was 44,626 and the total number
of patients was 33,466. We calculated the frequency of ICU
stays for the entire patient population. We found that 80% of
the population visited the ICU only once and 20% visited the
ICU more than once. Moreover, the MIMIC database includes
data for patients who might have stayed in different ICU types
(eg, general, cardiac) and due to different health conditions. In
addition, a patient might have visited one ICU more frequently
than another, and the time period between consecutive visits
within a single ICU might be several years. The sensitivity
analysis findings in our case might be due to the fact that our
approach focused on the visits rather than the patients and
ignored the details mentioned above.

Limitations
Admittedly, this study lacks quantitative comparisons with
previous research on the same topic owing to substantial

differences between the research questions tackled previously,
and the associated data extraction pipelines and assumptions.
We mitigated this limitation by providing a qualitative
comparison between our models and previous models.

Previous research based on data from the MIMIC database likely
demonstrated higher accuracy since excessively more features
were used than applied in this study. We believe that it is
difficult to achieve high model accuracy using a limited number
of features.

Additionally, as in any ML-based method, our approach might
have some limitations. In this study, we used the MIMC
database, which represents a patient population from a single
hospital in Boston, and does not generalize to other populations
or hospital systems in other areas across the United States or
the rest of the world. Future research will focus on applying our
approach to other patient populations.
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Moreover, we ran the models using only the vital signs to
measure the impact of the demographic attributes. We found
that the effects of demographic attributes on the results were
low. For example, age did not have a considerable effect since
we were only using adult patient data in the MIMIC database.
The accuracy of the mortality model without the age feature
using RF in the quantiles approach was 88.536%, which is very
close to the model result obtained when including age. The
mortality model achieved an AUROC of 0.77 without using
age and 0.78 with age included. The accuracy of the LOS model
without including the age feature using RF and the quantiles
approach was 64.39%, which is very close to the result obtained

with the age feature included. Table 15 also shows that the
differences in AUROC and positive predictive value were not
significant between the mortality and LOS models both
including and excluding the age feature using the RF algorithm
and the quantiles approach. This would be different in pediatrics
and adolescent populations, for whom vital measurements are
more age-sensitive. In addition, in the MIMIC database, the
ages for patients older than 89 years are not accurate; we used
90 years as a dummy value for all of these patients. Another
potential reason for the low impact of including the demographic
attributes is the lack of variation in height due to missing values
that had to be imputed using the population mean.

Table 15. Model results including and excluding the age feature.

PPVb (95% CI)AUROCaAccuracyModel

Mortality

0.7468 (0.742-0.755)0.7674088.536Without age

0.7756 (0.770-0.784)0.7829288.608With age

Length of stay

0.6487 (0.644-0.656)0.6943364.390Without age

0.6516 (0.647-0.659)0.6978264.614With age

aAUROC: area under the receiver operating characteristic curve.
bPPV: positive predictive value.

Clinical Implications
Health professionals (ie, physicians, nurses, ICU specialists)
can benefit from the advanced accurate predictive capabilities
of the intelligent ICU patient monitoring module to help make
better decisions regarding major challenges in health care,
including bed management, patient flow, stock management,
and effective provision of medical supplies. Poor bed
management may result in the rejection of new patients, and a
reduction in hospital revenue and overall quality of health
services [22]. Patient flow involves making decisions regarding
admissions, transfers, and referrals. Hospital administration
needs solutions that enable reducing waste and wait times, and
to increase service efficiency and productivity. Such tools need
to consider the uncertainty of patients’ recovery status. Poor
stock management results in resource shortage or expiration,
especially in the ICU where care should be delivered promptly.
Thus, integrating the predictive functionalities of the intelligent
ICU patient monitoring module within existing decision support
platforms and clinical workflows may have several practical
implications for improving the quality of care and reducing
costs.

Conclusions
In this article, we proposed a novel approach for predictive
modeling with reasonable performance based on a combination
of ML algorithms and the quantiles approach that utilizes only
vital signs available in the patient’s profile without having to
use external features. Using this quantiles approach, we
engineered additional features by calculating the modified
means, SDs, and quantile percentages from the baseline vital

sign measures, which provided us with a richer dataset to
achieve better predictive power in our models. We applied our
approach to build two prediction models: one for mortality
prediction and another for ICU LOS. Although the accuracy of
the mortality model showed minimal improvement, we achieved
better results in the LOS model by around 2.7%.

Intelligent ICU patient monitoring is a promising solution that
will improve clinical workflows and enable hospitals to deliver
higher-quality, cost-effective patient care, and to improve the
overall quality of medical services in the ICU. The solution will
support ICUs to put steps ahead and “nudge” health care
providers to prepare for unexpected general health conditions
of patients and better manage ICU facilities [23]. By relying on
a minimal set of features that can be continuously collected
from both inside and outside hospital systems and without
requiring sophisticated medical devices, our predictive models
can be used in cloud-based IRPM systems (see Exhibit X [24],
a short video demonstrating the tool in action).

Relying on fewer features will be more feasible for realizing
ML algorithms in real-world settings. Future directions of this
research will involve adding more predictive modeling
capabilities to the intelligent ICU patient monitoring module,
including ICU readmission, severity level, and next-day patient
vital sign measurements. We are currently working on applying
this approach to a wider range of hospital systems within
different geographic locations. Integrating intelligent ICU patient
monitoring within existing clinical workflows and decision
support platforms can support many hospitals in improving the
quality of care and reducing costs.
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Abstract

Background: Though shock wave lithotripsy (SWL) has developed to be one of the most common treatment approaches for
nephrolithiasis in recent decades, its treatment planning is often a trial-and-error process based on physicians’subjective judgement.
Physicians’ inexperience with this modality can lead to low-quality treatment and unnecessary risks to patients.

Objective: To improve the quality and consistency of shock wave lithotripsy treatment, we aimed to develop a deep learning
model for generating the next treatment step by previous steps and preoperative patient characteristics and to produce personalized
SWL treatment plans in a step-by-step protocol based on the deep learning model.

Methods: We developed a deep learning model to generate the optimal power level, shock rate, and number of shocks in the
next step, given previous treatment steps encoded by long short-term memory neural networks and preoperative patient
characteristics. We constructed a next-step data set (N=8583) from top practices of renal SWL treatments recorded in the
International Stone Registry. Then, we trained the deep learning model and baseline models (linear regression, logistic regression,
random forest, and support vector machine) with 90% of the samples and validated them with the remaining samples.

Results: The deep learning models for generating the next treatment steps outperformed the baseline models (accuracy = 98.8%,
F1 = 98.0% for power levels; accuracy = 98.1%, F1 = 96.0% for shock rates; root mean squared error = 207, mean absolute error
= 121 for numbers of shocks). The hypothesis testing showed no significant difference between steps generated by our model
and the top practices (P=.480 for power levels; P=.782 for shock rates; P=.727 for numbers of shocks).

Conclusions: The high performance of our deep learning approach shows its treatment planning capability on par with top
physicians. To the best of our knowledge, our framework is the first effort to implement automated planning of SWL treatment
via deep learning. It is a promising technique in assisting treatment planning and physician training at low cost.

(JMIR Med Inform 2021;9(5):e24721)   doi:10.2196/24721

KEYWORDS

nephrolithiasis; extracorporeal shock wave therapy; lithotripsy; treatment planning; deep learning; artificial intelligence

Introduction

Shock wave lithotripsy (SWL, or extracorporeal shock wave
lithotripsy) has been considered as a safe and effective
noninvasive treatment option for nephrolithiasis since its
introduction in early 1980s [1]. Reported SWL stone-free rates

approach 74%-88% [2,3]; however, it is not without risk.
Common contraindications to SWL include pregnancy,
coagulopathy or use of platelet aggregation inhibitors, aortic
aneurysms, severe untreated hypertension, and untreated urinary
tract infections [4]. Failure of SWL treatment results in
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unnecessary exposure to various complications, such as loin
pain, dysuria, analgesia, hematuria, and infection [3,5].

Given such risks, previous studies have identified proper patient
selection, modifications in treatment technique, and employment
of adjunctive measures as elements to improve SWL outcomes
[6]. The treatment outcomes are strongly affected by a variety
of preoperative patient characteristics (PPC), including BMI
[7-9], stone location, overall stone burden [4], skin-to-stone
distance [10,11], stone composition [12,13], stone density
[14-17], and variation coefficients of stone density [18]. Various
studies have also demonstrated that precise targeting [19,20]
and tight coupling [21,22] increase fragmentation probability.

Appropriate control over shock wave delivery has a strong
impact on treatment success and minimal complications. A
treatment plan for shock wave delivery is a series of shock wave
delivery steps with a specified power level, shock rate, and
number of shocks; a successful sample SWL treatment plan is

shown in Table 1. A plan precisely specifies step-by-step power
levels, shock rates, and number of shocks. Each treatment step
has a single power level, a constant shock rate, and shocks
usually between 500-2500 [23-28]. Physicians are obliged to
design plans that both deliver sufficient energy for breaking
stones and minimize damage to body tissues. While the range
of shock rates is typically 30-180 shocks/minute, a shock rate
of 60-90 shocks/minute has been shown to improve efficacy
[29-31] and decrease potential injury risks. The main reason is
that the slower shock rate of 60-90 shocks/minute allows time
for cavitation bubbles caused by the shock to disperse before
the next shock arrives. Physicians can check stone fragmentation
via x-ray. If the fragments of treated stones are ≤4 mm, they
typically pass on their own without further treatment. An SWL
treatment has to be stopped to reduce risks of tissue damage
when the shock number reaches the maximum limit, even though
the treated stone has not broken up.

Table 1. A sample shock wave lithotripsy (SWL) treatment plan.

Number of shocksShock rate (per minute)Power levelShock wave delivery steps

1001201Step 1

1001202Step 2

1001203Step 3

1001204Step 4

1001205Step 5

1001206Step 6

1001207Step 7

23001208Step 8

Effective fragmentation leads to fewer shocks overall and
therefore less damage to tissue [32,33]. In order to maximize
treatment effect and control tissue damage, ramping protocols
have been developed. The low-energy pretreatment allows for
better pain management, thus preventing movement and
subsequent decoupling of the shock head [34]. Clinical trials
support that stepwise voltage ramping is associated with less
tissue damage compared with a fixed maximal voltage protocol
[23,25,26,35].

Although the strength, rates, and total number of shock waves
are identified as the important factors of SWL treatment
outcomes, there is no case-by-case guideline for physicians to
optimize shock wave delivery protocols that take into account
patient demographics and stone characteristics. The optimal
energy delivery strategy remains controversial. In vitro and in
vivo studies suggest that the strategy of ramping up shock wave
energy is beneficial to improve fragmentation and stone
clearance and limit renal damage, but clinical results are
discordant [6,23]. In the current planning process, physicians
adopt a trial-and-error approach to tune treatment plans. This
approach involves nonintuitive iterations based on physicians’

subjective decisions. Inexperienced physicians using this method
may be more apt to produce inefficient or ineffective treatment
plans. Such dependence on physicians’ unique experience also
leads to significant variability in the quality and consistency of
treatment delivery. Moreover, different types of machines have
different designs and different sources for generating shock
waves. Therefore, an effective treatment plan for one machine
may not transfer to a different machine.

As a result, SWL success rates are significantly different among
physicians. Table 2 shows the percentiles of success rates of
171 physicians who recorded outcomes in the International
Stone Registry, a database of accumulated treatment records
for all patients treated within a national network of SWL
services provided by Translational Analytics and Statistics, a
lithotripsy service provider. Here, treatment success is defined
as treated stone fragments ≤4 mm that typically pass on their
own without further treatment. The top 20% of physicians have
success rates higher than 94.3%, while the success rates of the
bottom 20% of physicians are lower than 79.1%. Such variation
indicates that the inexperience with and subjectivity of SWL
treatment could lead to unnecessary damage to patients.
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Table 2. Percentiles of treatment success rates.

Treatment success rates, %Percentiles

54.5Minimum

74.810th percentile

79.120th percentile

82.630th percentile

84.740th percentile

86.650th percentile

88.960th percentile

91.470th percentile

94.380th percentile

10090th percentile

100Maximum

Machine learning techniques have been applied in the planning
process of high-quality personalized treatments, such as
radiation therapies [36-39], chemotherapies [40,41] and diabetes
treatments [42]. Most machine learning models only take
independent vectors as inputs, so they are not suited to the
sequential nature of SWL treatment plans. However, recurrent
neural networks (RNNs) are naturally suited to temporal
sequence inputs. Several variants like long short-term memory
(LSTM) [43] and gated recurrent unit [44] have been developed
for sequential features and applied to disease diagnosis [45,46].
Following these recent works, we aimed to validate the deep
learning approach to generate next SWL treatment steps by
learning the practices of top physicians and, based on the deep
learning approach, develop a system to automatically produce
personalized, unbiased, and consistent SWL treatment plans.
The generated treatment plans can help physicians minimize
the trial-and-error process and develop evidence-based
personalized treatment based on PPC, including patient
demographics and stone characteristics. An additional benefit
is that this treatment planning framework can be generalized to
different machine types, so physicians can easily adapt to new
generations of SWL machines.

Methods

Data
To train and evaluate our models, we used a dataset of renal
treatments with Storz SLX-T from the International Stone
Registry provided by Translational Analytics and Statistics.
Each treatment consisted of PPC and several treatment steps
(ie, ternaries of a power level, a shock rate, and number of
shocks). The power level ranged from 1 to 9. The options for
shock rates were 60, 90, 120, and 180 shocks per minute. The
maximum number of shocks was typically set at 3000 for renal
stones. The PPC in our dataset included patient gender, age,
stone location (one-hot encoding), stone size, mean arterial
pressure before treatment, anticoagulant use, sedation use,
whether multiple stones existed, and whether strapping was
applied.

Our deep learning models were trained with the best treatment
plans for obtaining the best planning capability. We selected
54 physicians in the top quartile of treatment success rates.
These physicians had more than 91.4% treatment success rates.
Then, we selected their successful treatment cases with no
reported complications, in which they were stone free or had
fragments ≤4 mm and typically passed on their own without
further treatment. We identified 1216 cases in total and assumed
these cases are the best practices in SWL treatment planning.

We then built the step dataset from the identified successful
cases to train and evaluate the step generation model. We
identified steps by power level change or shock rate change and
limited the number of shocks to 1000 for each step, a natural
step length in previous literature [25]. If more than 1000 shocks
were delivered under the same power level and the same shock
rate, we broke them into multiple steps with 1000 shocks
maximum.

Then, we exhaustively decomposed each case into samples by
step for the step generation task, where the ternary of each step
was generated by its previous steps and PPC. An n-step
treatment case was decomposed into n – 1 samples: we used
the first i step(s) and PPC as the model inputs and the power
level, shock rate, and number of shocks in the (i + 1)th step as
the model outputs, where 0 < i < n. For example, the SWL
treatment case in Table 1 that consisted of 10 steps after the last
2300 shocks at power level 8 was split into 3 steps: (1) power
level = 8, shock rate = 120, number of shocks = 1000; (2) power
level = 8, shock rate = 120, number of shocks = 1000; and (3)
power level = 8, shock rate = 120, number of shocks = 300.
Then, we decomposed this case into 9 samples: (1) The input
is the first step (power level = 1, shock rate = 120, number of
shocks = 100) and PPC, and the output is the second step (power
level = 2, shock rate = 120, number of shocks = 100); (2) the
input is the first 2 steps and PPC, and the output is the third step
(power level = 3, shock rate = 120, number of shocks = 100);
…; and (9) the input is the first 9 steps and PPC, and the output
is the last step (power level = 8, shock rate = 120, number of
shocks = 300).
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At last, we constructed 8583 samples for step generation. We
randomly chose 90% of the samples for model training and used
the remaining samples for validation. In the data split, we
enforced that samples from the same treatment case were only
contained within the same split.

Deep Learning for Step Generation
We first built deep neural networks to separately generate power
levels, shock rates, and numbers of shocks for the next steps,
given previous steps and PPC (Figure 1). Most off-the-shelf
machine learning models only take inputs represented as
independent vectors rather than a sequence of previous steps.

However, RNNs are naturally suited to temporal sequence
inputs, so we adopted an RNN variant, the LSTM model [43],
which can keep track of arbitrary long-term dependencies in
the input sequences, to encode the treatment sequences to
vectors. More specifically, assume the i-th step is encoded as a
vector xi, then the LSTM model is defined iteratively as follows:

where the initial values c0 and h0 are zero vectors, ° denotes the
element-wise product, σ is the sigmoid function, and h1 is the
representation of the first i treatment steps.

Figure 1. The framework for automated shock wave lithotripsy (SWL) treatment planning. LSTM: long short-term memory; PPC: preoperative patient
characteristics; ReLU: rectifier linear unit.

Then, the encoded previous steps were concatenated to PPC
vectors and fed to deep neural networks. In our implementation,
we used 2 fully connected layers with a rectifier linear unit
(ReLU) function as activation functions, because ReLU
functions are nonsaturated and make the model less likely to
overfit [47]. At last, we used different classifiers or regressors
to generate power levels, shock rates and shock numbers. The
formula are as follows.

where hn is the n previous steps encoded by LSTM, and p
denotes the PPC vector. The classifiers at the end of the
networks were softmax functions for generating power level
and shock rate because they are categorical, and we used
categorical cross-entropy as the loss functions; for shock number
generation in which the output is an integer, we used ReLU as
the regressor and mean squared error (MSE) as the loss function.
For all the deep neural networks, we chose the Adam SGD
optimizer [48,49] in model training.

Statistical Analysis
We hypothesized that the deep learning approach is comparable
to the treatment practices of top physicians and that it
outperforms machine learning models which do not take
treatment sequences as inputs. Thus, we compared the
performance of the deep learning model and other up-to-date
machine learning models.

Three classical machine learning approaches were selected as
baselines for generating power level, shock rate, and number
of shocks, respectively. We used logistic regression, random
forest classifier (RFC), and support vector classifier (SVC) as
the baseline models for power level generation and shock rate
generation. We chose linear regression, random forest regression
(RFR), and support vector regression (SVR) as the baseline
models to generate the number of shocks. As these baseline
models could not be fed with sequential data directly, the
features for the baseline models were (1) the average power
level, average shock rate, and average number of shocks in
previous steps; (2) the power level, shock rate, and number of
shocks in the last step; and (3) PPC.
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We trained the deep learning models and baseline models with
90% of the samples. Then, we validated them with the remaining
samples and calculated evaluation metrics. In the multiclass
tasks of power level generation and shock rate generation, we
used accuracy, macro-averaged precision, macro-averaged
recall, and macro-averaged F1 score as the evaluation metrics
[50,51]. Accuracy was defined as a ratio of correctly generated
observations to the total observations. Suppose the number of
categories is n and the confusion matrix of a classifier is a n x
n matrix C, where Ci j is the number of samples that is labeled
as i but generated as j, then the accuracy is defined as

The precision and recall of category k are defined as

Macro-averaged precision and recall are the average of
precisions and recalls for all categories:

The F1 score of category k is defined as the harmonic mean of
precision and recall of category k

and macro-averaged F1 score is defined as the average of F1
scores for all categories:

Because the number of shocks is an integer, we used the root
mean squared error (RMSE) and mean absolute error (MAE)
as the metrics to evaluate the models generating the number of
shocks and to measure the average magnitude of errors. At last,
we conducted paired t test to detect the difference between
treatment steps generated by machine learning models and
treatment practices of top physicians.

Results

The deep learning models generated high-quality treatment
steps and outperformed the baselines, as summarized in Tables
3-5. In power level generation (Table 3), the accuracy of the
deep learning model was 0.988, and the precision, recall, and
F1 scores were all 0.980. The best baseline was the SVC, for
which the accuracy was 0.981, precision was 0.969, recall was
0.976, and F1 score was 0.972, lower than the performance of
the deep learning model. For shock rate generation (Table 4),
our model achieved an F1 score of 0.960 along with an accuracy
of 0.981, precision of 0.963, and recall of 0.957. Among the
baseline models, the logistic regression performed the best in
accuracy and precision, at 0.978 and 0.932, respectively, while
the RFC had the best recall and F1 score, at 0.986 and 0.956,
respectively. Though the recall of the RFC and the logistic
regression was better than that of the deep learning model, the
accuracy, precision, and F1 score of our proposed model
outperformed all the baseline models. The RMSE of the
generation of the number of shocks (Table 5) by the deep
learning model was 207, about 19% less than the best baseline
model RFR. The MAE of the deep learning model was 121,
about 23% less than the best baseline model.

Table 3. Model performance in power level generation.

P valuet statisticF1RecallPrecisionAccuracyModel

.4800.7070.9800.9800.9800.988Deep learning

.2091.2570.9640.9640.9640.974Logistic regression

<.0014.9760.8030.8590.8230.708RFCa

.0282.2050.9720.9760.9690.981SVCb

aRFC: random forest classifier.
bSVC: support vector classifier.

Table 4. Model performance in shock rate generation.

P valuet statisticF1RecallPrecisionAccuracyModel

.7820.2770.9600.9570.9630.981Deep learning

.0202.3310.9450.9600.9320.978Logistic regression

.0392.0640.9560.9860.9300.952RFCa

.0122.5100.9390.9560.9260.976SVCb

aRFC: random forest classifier.
bSVC: support vector classifier.
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Table 5. Model performance in shock number generation.

P valuet statisticMAEbRMSEaModel

.7270.350121207Deep learning

.3590.917206265Linear regression

.5300.628158255RFRc

<.0019.427173350SVRd

aRMSE: root mean squared error.
bMAE: mean absolute error.
cRFR: random forest regression.
dSVC: support vector regression.

The analysis also tested the difference between the generated
step and the ground truth. In the paired t test result, there was
no evidence indicating a difference between the generated steps
of the deep learning model and treatment steps planned by top
physicians, while the outputs of some baseline models
significantly deviated from the ground truth. The power levels
generated by the RFC and SVC, the shock rates generated by
all the baseline models, and the numbers of shocks generated
by the SVR were significantly different from the treatment steps
in the successful SWL cases of top physicians.

Furthermore, we analyzed the performance of the deep learning
models on samples of various treatment sequence lengths to
gain a better understanding of how the treatment sequence
information could aid decision making. We partitioned the
validation dataset into 9 sets by the number of previous
treatment steps and summarized the validation results in Tables
6-8. As shown in Table 6, the deep learning model was able to
perfectly generate power levels when previous treatment steps
were fewer than 6. As the number of previous treatment steps
increases, the treatment becomes more complicated and leads
to lower performance of power level generation by the deep
learning model. The deep learning model reached the lowest

accuracy (accuracy = 0.875) and lowest recall (recall = 0.500)
in samples containing 9 previous treatment steps and the lowest
precision (precision = 0.873) and lowest F1 score (F1 = 0.888)
in samples containing 8 previous treatment steps. Similarly, the
deep learning model generated highly accurate shock rates in
samples with previous treatment steps fewer than 6; the model
reached the lowest accuracy (accuracy = 0.889), lowest precision
(precision = 0.857), and lowest recall (recall = 0.631) in samples
containing 7 previous treatment steps and the lowest F1 score
(F1 = 0.861) in samples containing 6 previous treatment steps
(Table 7). For the performance of generating the number of
shocks (Table 8), the RMSE and MAE generally increased as
the number of previous treatment steps increased, and the
maximum number of errors appeared in samples with 5 previous
treatment steps (RMSE = 365; MAE = 310). The results show
the excellent performance of deep learning models in step
generation in the first 4-6 steps, where most successful cases
end. It reflects the reliability of deep learning models in aiding
treatment decision making. Longer treatment lengths typically
indicate treatment difficulties; even our deep learning models
cannot generate treatment steps with high accuracy in these rare
cases.

Table 6. Power level generation performance in samples containing different numbers of previous treatment steps.

F1RecallPrecisionAccuracyNumber of previous treatment steps

1.0001.0001.0001.0001

1.0001.0001.0001.0002

1.0001.0001.0001.0003

1.0001.0001.0001.0004

1.0001.0001.0001.0005

0.9800.9800.9800.9836

0.9250.9390.9150.9267

0.8880.9140.8730.8898

0.9330.5000.8750.8759
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Table 7. Shock rate generation performance in samples containing different numbers of previous treatment steps.

F1RecallPrecisionAccuracyNumber of previous treatment steps

1.0001.0001.0001.0001

0.9840.9720.9970.9922

1.0001.0001.0001.0003

1.0001.0001.0001.0004

0.9850.9740.9970.9925

0.8610.8020.9760.9756

0.8880.6310.8570.8897

0.9020.6420.8640.9178

1.0001.0001.0001.0009

Table 8. Performance of the generation of the number of shocks in samples containing different numbers of previous treatment steps.

MAEbRMSEaNumber of previous treatment steps

25311

17322

24343

601394

3103655

2333176

1902737

2422758

76999

aRMSE: root mean squared error.
bMAE: mean absolute error.

The validation showed that the capability of the deep learning
model for step generation is on par with that of top physicians.
Based on the high-quality step generation, we generated
treatment plans by iteratively generating steps with the trained
models (Figure 1). We started from an empty treatment
sequence. We fed PPC and the current treatment sequence into
the step generation model. The generated next step was then
added to the current treatment sequence. We repeated such a
process until the total number of shocks reached the upper limit.
If a physician confirms stone fragmentation via x-ray before
reaching the maximum limit of the number of shocks, they can
stop immediately; if the number of shocks reaches the maximum
limit, the physician has to stop for risk control. Thus, the
generated treatment sequence is enough to guide practice. The
specifications of individual lithotripters limit the maximum
number of shocks per session to 2000-4500 [4], and for the
majority of treatments of upper ureteral and renal stones, the
range is 2000-3500 [52]. We used 3000 as the upper limit in
our implementation, which is a typical shock limit in renal stone
treatment practices and can be adjusted according to shock wave
generating machines.

Discussion

Principal Findings
Previous literature has shown a series of work on standardizing
SWL treatment [2,53]; however, energy delivery is still
controversial and unclear [4,6], relying on physicians’subjective
judgement. Manual treatment design is significantly affected
by nonstandardizable radiographic appearance of stones, bias
to a low power level for fear of complications, and preconceived
expectations. Our study utilized deep learning to generate
treatment steps and developed a framework for automated SWL
treatment planning.

The analysis results revealed that deep learning models for
treatment step generation effectively learn from SWL treatment
plans and achieve the step generation capability of top
physicians. The performance comparison indicated that
utilization of a previous treatment sequence in deep learning
improves the quality of generated steps. By iteratively generating
treatment steps, our automated planning framework can avoid
human biases and generate personalized, high-quality, and
consistent SWL treatment plans based on PPC, including patient
demographics and stone characteristics. With the help of these
automatically generated treatment plans, physicians can
minimize the trial-and-error process and implement
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evidence-based personalized treatment. This framework can be
generalized to different machine types, so physicians can easily
adapt to new generations of SWL machines.

Limitations
Our proposed model only learns and imitates the best practices,
but cannot perform better than them. Even the best physician
cannot plan successful SWL treatment plans for all cases, so
successful difficult cases, including those requiring long
treatment sequences, are rare for model training. Therefore, our
model may be good at planning easier cases, but less adept in
rare difficult cases, similar to physicians’ actual practice. As
the treatment cases, especially successful difficult cases,
accumulate, our model is likely to gain an expert-level planning
capability to handle difficult cases.

Due to data limitations, we were only able to consider a small
set of patient demographics and stone characteristics. However,
our framework can be easily extended to utilize a larger set of
parameters than has previously been used. Moreover, the data
are retrospective. Therefore, clinical studies are warranted to
confirm the effectiveness and efficiency of this framework.

Conclusions
To the best of our knowledge, our framework is the first effort
to implement automated planning of SWL treatment via deep
learning. Its assistance for inexperienced urologists in designing
SWL treatment plans is useful in both SWL treatment planning
and physician training. While the applications of machine
learning in diagnosis are becoming more mature, few studies
exist in automated treatment plan generation. Our approach is
a step forward in exerting the potential of machine learning in
medical sciences.
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Abstract

Background: Diabetic kidney disease (DKD) is one of the most crucial causes of chronic kidney disease (CKD). However, the
efficacy and biomedical mechanisms of Chinese herbal medicine (CHM) for DKD in clinical settings remain unclear.

Objective: This study aimed to analyze the outcomes of DKD patients with CHM-only management and the possible molecular
pathways of CHM by integrating web-based biomedical databases and real-world clinical data.

Methods: A total of 152,357 patients with incident DKD from 2004 to 2012 were identified from the National Health Insurance
Research Database (NHIRD) in Taiwan. The risk of mortality was estimated with the Kaplan-Meier method and Cox regression
considering demographic covariates. The inverse probability of treatment weighting was used for confounding bias between
CHM users and nonusers. Furthermore, to decipher the CHM used for DKD, we analyzed all CHM prescriptions using the Chinese
Herbal Medicine Network (CMN), which combined association rule mining and social network analysis for all CHM prescriptions.
Further, web-based biomedical databases, including STITCH, STRING, BindingDB, TCMSP, TCM@Taiwan, and DisGeNET,
were integrated with the CMN and commonly used Western medicine (WM) to explore the differences in possible target proteins
and molecular pathways between CHM and WM. An application programming interface was used to assess these online databases
to obtain the latest biomedical information.

Results: About 13.7% (20,947/131,410) of patients were classified as CHM users among eligible DKD patients. The median
follow-up duration of all patients was 2.49 years. The cumulative mortality rate in the CHM cohort was significantly lower than
that in the WM cohort (28% vs 48%, P<.001). The risk of mortality was 0.41 in the CHM cohort with covariate adjustment (99%
CI 0.38-0.43; P<.001). A total of 173,525 CHM prescriptions were used to construct the CMN with 11 CHM clusters. CHM
covered more DKD-related proteins and pathways than WM; nevertheless, WM aimed at managing DKD more specifically. From
the overrepresentation tests carried out by the online website Reactome, the molecular pathways covered by the CHM clusters
in the CMN and WM seemed distinctive but complementary. Complementary effects were also found among DKD patients with
concurrent WM and CHM use. The risk of mortality for CHM users under renin-angiotensin-aldosterone system (RAAS) inhibition
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therapy was lower than that for CHM nonusers among DKD patients with hypertension (adjusted hazard ratio [aHR] 0.47, 99%
CI 0.45-0.51; P<.001), chronic heart failure (aHR 0.43, 99% CI 0.37-0.51; P<.001), and ischemic heart disease (aHR 0.46, 99%
CI 0.41-0.51; P<.001).

Conclusions: CHM users among DKD patients seemed to have a lower risk of mortality, which may benefit from potentially
synergistic renoprotection effects. The framework of integrating real-world clinical databases and web-based biomedical databases
could help in exploring the roles of treatments for diseases.

(JMIR Med Inform 2021;9(5):e27614)   doi:10.2196/27614

KEYWORDS

association rule mining; Chinese medicine network; social network analysis; survival

Introduction

Diabetic kidney disease (DKD) is one of the most crucial causes
of chronic kidney disease (CKD) and end-stage renal disease
(ESRD) at the final disease stage, especially when the
prevalence of DKD keeps increasing yearly [1]. It has been
reported that about one-third of DKD patients may experience
ESRD during their lifetime [2]. Owing to the high prevalence
and severe consequences, DKD has become a vital health care
problem and causes tremendous financial burden [3-5]. The
pathogenesis of diabetic nephropathy is complicated; however,
the treatment modalities are still limited and need to be explored.
Glomerular hyperfiltration, podocyte dysfunction, basement
membrane thickening, mesangial cell proliferation, and collagen
deposition with glomerular sclerosis are extensively reported
[6-8]. Additionally, several precipitating factors have been
identified, including hyperglycemia, advanced glycation end
products, activation of the renin-angiotensin-aldosterone system
(RAAS), decreased expression of nephrin and integrin,
activation of cytokines, profibrotic elements, inflammation,
oxidative stress, and vascular growth factors [9-12].

Although there are many Western medicine (WM) options for
DKD, only blockade of the RAAS has been identified as an
effective treatment, and the agents include
angiotensin-converting enzyme inhibitors (ACEis), angiotensin
receptor blockers (ARBs), and direct renin inhibitors (DRIs)
[13-18]. Several notable novel agents have been recently
reported to have benefits for reducing progression to DKD
among diabetes mellitus (DM) patients, and these agents include
sodium-glucose cotransporter 2 inhibitors (SGLT2is),
glucagon-like peptide-1 (GLP-1) agonists, a selective
endothelin-1 receptor antagonist, and a nonsteroidal
mineralocorticoid receptor antagonist. However, the
effectiveness of these agents among DM patients who are
already diagnosed with DKD remains unclear, and some clinical
trials are ongoing to address these issues [19-22]. Only GLP-1
agonists and SGLT2is have been found to be beneficial in DKD
patients [23,24]. These novel agents inspire researchers to study
other medications with similar effects on similar pathways and
new therapeutic agents for CKD/DKD [16].

Complementary and alternative medicine may be another
treatment option to relieve DKD in addition to WM. Several
treatment modalities, including Chinese herbal medicine (CHM)
and acupuncture, have been reported to have potential
therapeutic benefits for DKD [25-28]. Moreover, some
medications may be used to relieve proteinuria and ameliorate

renal dysfunction, such as Astragalus membranaceus (Fisch.)
and Liu-Wei-Di-Huang-Wan [29-31]. The potential mechanisms
include anti-inflammation, antifibrosis, antioxidation,
immunomodulation, and regulation of podocyte dysfunction
[30-36]. Besides, some CHMs have been found to have effects
on tubular cell cycle modulation [37]. However, only some of
the abovementioned herbs/ingredients have been examined in
terms of the clinical efficacy in treating DKD, and, on the other
hand, only a small proportion of CHMs used in clinical trials
have been examined in terms of the possible mechanisms in
treating DKD owing to the high heterogeneity in used CHMs
for DKD [31,38]. Additionally, the CHM prescriptions used for
diseases are usually complicated in the clinical setting, and we
previously found that the use of four to five kinds of CHMs in
one prescription is not uncommon [39]. A comprehensive
summary of the efficacy of CHM prescriptions becomes crucial
to understand the effects of CHM for DKD [40,41].

Several methods have been proposed to extract valuable
information from complicated CHM prescriptions, such as
association rule mining, clustering, and decision tree [42]. In
recent years, network pharmacology based on web-based
biomedical resources has become one of the most critical tools
to analyze CHM prescriptions [43-45]. However, the integration
of these techniques with real-world clinical data has been
lacking. For DKD, Zhang et al reported the potential effects of
six representative compounds in the Gandi capsule (a mixture
of several CHMs with fixed proportions) for 99 potential
DKD-related target proteins [46]. Moreover, Shi et al tried to
use the molecule-protein docking method to predict the possible
mechanisms of Bushenhuoxue formula for treating CKD. They
identified the potential of tanshinone IIA, rhein, curcumin,
calycosin, and quercetin to act on CKD-related proteins, which
may be related to the regulation of coagulation and fibrinolytic
balance, aberrant extracellular matrix accumulation, and
inflammation [47]. However, owing to the lack of clinical data,
the effectiveness of these CHM formulae for DKD and the
interactions between these CHMs and WMs remain unclear
[48]. Besides, the interactions between CHMs and WMs are
essential to understand the role of CHM in the modern health
care system and the unexpected effects of CHM on DKD from
the perspective of molecular medicine. For the above reasons,
an integrative analysis on real-world data and web-based
biomedical resources with the long-term effects of CHM and
synergistic effects of CHM and WM is demanded and necessary
for the management of DKD.
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In our previous findings, DKD patients who received all kinds
of Traditional Chinese medicine (TCM) treatments, including
CHM, acupuncture, and moxibustion, had a better prognosis,
which raised our interest in CHM use for DKD patients and the
possible effective biomedical pathways [41]. In our previous
successful integration of the most up-to-date web-based
biomedical databases and real-world prescription databases, we
identified the synergistic effects of CHM and WM for allergic
rhinitis [40]. This study aimed to analyze the outcomes of DKD
patients with CHM-only management and elucidate the roles
of CHM and WM for DKD using an integrative platform with
clinical and web-based biomedical databases.

Methods

Data Source and Study Design
The National Health Insurance Research Database (NHIRD),
with high coverage (>99%) of all medical records in Taiwan,
was used as a prescription data source for this study. The clinical
data were preprocessed in our previous reports, including patient
demographic features and prescriptions, and the protocol was
approved by the Institutional Review Board of Chang Gung
Memorial Foundation (number: 103-1259B) [41]. DKD patients
were identified with a diagnosis of CKD after DM. From
January 1, 2004, to December 31, 2012, DM patients were
recognized by using International Classification of Diseases 9,
Clinical Modification (ICD-9-CM) codes 250.0-250.9 and
antidiabetic medications, including insulin and biguanides
sulfonylurea, an alpha-glucosidase inhibitor, thiazolidinediones,
and DDP-4 inhibitors. Furthermore, CKD was recognized by
using ICD-9-CM codes 580.X-588.X, 250.4x, 274.1x, 283.11,
403.x1, 404.x2, 404.x3, 440.1, 442.1, 447.3, 572.4, 642.1x, and
646.2x. To recognize incident DKD patients, any subjects with
previous CKD records or renal transplantation were excluded.
Additionally, any visits with the use of acupuncture, massage,
or other TCM modalities were excluded. In Taiwan, the
diagnosis of DKD is consistent with the guidelines, and
detection of diabetic nephropathy (DN) subjects by ICD-9-CM
codes was consistent with previous studies [29,41]. CHM users
were defined as DN patients who used CHM at least twice for
DN from 2004 to 2012, and all CHM prescriptions were
collected to build up the Chinese Herbal Medicine Network
(CMN) with the integration of web-based biomedical databases.

Bias Assessment
This data set was unique and particularly suitable for CHM
prescription analysis owing to its high coverage of Taiwan’s
general population and unbiased selection of CHM as a
treatment option [39,49]. Possible selection bias and referral
bias could be avoided as much as possible with a nationwide
database than with a hospital-based database [50]. Additionally,
the exclusion of acupuncture, moxibustion, or manual therapy
is helpful to avoid confounding bias with possible influence on
CHM prescriptions. Moreover, because there is no
recommendation for initiation of CHM treatments, we found
that the mean interval from diagnosis of DKD to initiation of
CHM use was about 240 days among CHM users (data not
shown), and immortal time bias may occur [51,52]. To overcome
this problem, a 1-year landmark design was used to avoid the

potential immortal time bias. Thus, the study index date was
set as 1 year after DKD diagnosis for each patient, and patients
who died within 1 year after DKD diagnosis were excluded as
well. Moreover, to eliminate the possible baseline differences
between CHM users and nonusers, inverse probability treatment
weighting (IPTW) according to all assessable covariates
described below was used [53].

Study Covariates and Outcome
Patient gender, age, comorbidities, medications, prior experience
of CHM use, geolocation, and insured level were used as
covariates in this study. The Charlson comorbidity index (CCI)
and Diabetes Complications Severity Index (DCSI), with
reduction of two factors (albuminuria and serum creatine) as a
modification, were calculated as a summary of DKD-related
comorbidities [54,55]. The identification of specific
comorbidities was based on ICD-9-CM codes for diseases,
including cerebrovascular disease (ICD-9-CM codes 430-432
and 433-435), heart failure (ICD-9-CM code 428), ischemic
heart disease (IHD; ICD-9-CM codes 411, 413, and 414),
hypertension (ICD‐9‐CM codes 401‐405), and
hyperlipidemia (ICD‐9‐CM code 272). Only patients with
at least two diagnosis codes in the outpatient service or one
during the hospitalization 1 year before the DKD diagnosis were
confirmed as having comorbidities. We also analyzed
medications, including insulin; other antihyperglycemic agents;
antihypertensive agents; antilipid agents; RAAS blockers,
including ACEis, ARBs, and DRIs; aspirin; and nonsteroidal
anti-inflammatory drugs (NSAIDs). Only medications with a
cumulative duration of more than 30 days were included in the
analysis. All-cause mortality was the outcome of this study, and
it was recognized when patients permanently withdrew from
the insurance program [56,57]. All enrolled DKD patients were
followed up from the DKD starting point to the endpoint or the
end of 2012.

CHM Prescriptions in the Database
Traditionally, the medicines used by TCM doctors include not
only herbal plants, but also insects, animals, and minerals. In
this study, we collectively referred to all medicines recorded in
the database as CHM. There are two kinds of CHMs used in
clinical practice, namely herbal formula (HF) and single herb
(SH). SH is the extract or crude powder of a part of a herbal
plant, insect, animal, or mineral and is made following ancient
classics’ process methods. On the other hand, HF is composed
of more than one SH with the same proportion as recorded in
TCM classics and is premixed in the pharmaceutical factory
before marketing. More than 600 kinds of SHs and HFs are
available for TCM doctors to choose freely, and all SHs and
HFs are manufactured in a Good Manufacturing Practice
pharmaceutical factory with strict regulation regarding the
concentrations of heavy metals and pesticides.

Statistical Analysis: Outcome Evaluation and Online
Pathway Analysis on the CMN
The first part of the statistical analysis was survival analysis.
Descriptive statistics were used for CHM users’ demographic
characteristics, such as age, gender, comorbidities, insured level,
living locations, previous medical use, and prescribing patterns.
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After applying IPTW to balance the differences between CHM
users and nonusers, survival analysis was carried out by
performing a Kaplan-Meier estimation with the log-rank test.
Additionally, Cox regression with adjustment of the
abovementioned assessable covariates was used to estimate the
adjusted hazard ratio (aHR) for CHM users. Furthermore, to
ensure the analysis results, subgroup analysis was conducted
based on age, gender, and comorbidities. Sensitivity tests were
also performed with 1:1 matching on CHM users and nonusers,
and different study populations.

Second, CHM prescription analysis with integration of the CMN
and online biomedical databases was performed to reveal the
potential molecular pathways of CHM for DKD. In this step,
the application programming interface (API) was used to assess
the biomedical databases to obtain the latest information about
WM and CHM. As described in our previous studies about
CHM prescription analysis, the CMN was constructed by
applying association rule mining (ARM) and social network
analysis (SNA) on CHM prescriptions for DKD [39,58,59].
Briefly, ARM on CHM prescriptions used for DKD could find
out the CHM-CHM combinations commonly used for DKD.
These CHM combinations could be connected to form the CMN
for DKD, and SNA with these combinations could put CHMs
used concurrently into the same cluster. CHM indications
acquired from the Chinese Pharmacopoeia (2015 edition) were
used to summarize the CHM clusters from TCM viewpoints
[39]. On the other hand, four types of WMs used for DKD were
proposed in this study, including ACEis, ARBs, GLP-1 agonists,
and SGLT2is. Other possible molecular pathways could be
obtained based on these CHM clusters and WMs by connecting
WMs and CHM clusters to online biomedical databases [40].
Since biomedical databases contained only information about
SHs, every HF in the CMN was disassembled to SHs according
to the compositions provided by the Department of Chinese
Medicine and Pharmacy of the Ministry of Health and Welfare,
Taiwan [60]. Next, the ingredients of each SH were obtained
from TCMSP [61], TCM-ID [62], and TCM@Taiwan [63], and
the information was cross-validated with the Chinese
Pharmacopoeia (2015 edition). Each ingredient’s characteristics
were also acquired from PubChem, such as oral bioavailability,
XlogP, drug likeness, molecular weight, topological polar
surface area (TPSA), and simplified molecular input line entry
specification (SMILES). This information was crucial to realize
the similarities between the ingredients of WMs and CHMs
[48].

Moreover, to acquire each ingredient’s possible target proteins
for both WM and CHM, the Search Tool for Interacting

Chemicals (STITCH) [64,65] was queried. STITCH is a
well-developed database composed of known and predicted
connections between a chemical compound and target proteins
derived from genomic context predictions, high-throughput lab
experiments, gene coexpression databases, text mining in journal
databases, and previous knowledge from other databases [66].
Up to January 2021, STITCH contained 9,643,763 proteins,
2,031 organisms, and over 430,000 chemical compounds as
ingredients in CHMs. Inferred chemical-target protein
connections from experiments involving species other than
humans and a scoring system to describe the confidence of the
connections in this database could be used to explore the
connections between chemical compounds and target proteins.
The scoring system, ranging from 0 to 1, summarizes the
probability of connection occurrence by combining the
probability from individual data sources, such as experiments
from mice and text mining from journal databases, in a native
Bayesian fashion. A higher score symbolizes more substantial
confidence in the connection between chemical compounds and
target proteins. To select the most confident connections
between drug ingredients and target proteins, a threshold of
0.950 was considered.

Furthermore, to assess the molecular pathways for CHMs in
the CMN and WMs, the target proteins were sent to the
Reactome pathway database via API, where overrepresentation
tests were performed to disclose the potential acting pathways
of CHMs and WMs [67-69]. Reactome is a freely accessible
web resource to estimate, interpret, and visualize the molecular
pathways of given groups of genes or proteins. A total of 15
species pathways were included in the Reactome pathway
database, and there were 10,929 proteins, 13,534 reactions, and
2477 pathways for humans (last assessed date: January 2020).
The overrepresentation analysis was carried out on the
hypothesis that if a molecular pathway is relevant, the pathway’s
proteins should be more than randomly expected. The false
discovery rate (FDR), calculated using the Benjamini-Hochberg
approach, was used to demonstrate each pathway’s statistical
significance. Pathways with an FDR ≤0.05 were considered.

Figures 1 and 2 demonstrate the data processing flow of this
study. The freeware KNIME (version 4.0) was used to deal with
the clinical and web-based biomedical databases. NodeXL was
used to build up the networks and perform SNA [70]. The
commercial statistical software STATA (Release 16, StataCorp)
was used to carry out survival analysis on core CHMs. A P
value ≤.05 was considered significant.
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Figure 1. Flow diagram. DKD: diabetic kidney disease.

Figure 2. Data processing framework. API: application programming interface; DKD: diabetic kidney disease.
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Results

Baseline Characteristics of CHM Users Among DKD
Patients
Table 1 shows the demographic features of the CHM and WM
cohorts. Except for the use of cyclooxygenase-2 inhibitors, these
two cohorts were quite different. DKD patients who were
female, aged 41 to 60 years, lived in urban areas, and had higher
income were more commonly seen among CHM users.
Regarding underlying diseases, less DKD-related comorbidities,

such as hypertension, hyperlipidemia, heart failure, IHD, and
cerebrovascular disease, and DM-related complications were
found among CHM users. Regarding medications, except
NSAIDs and acetaminophen, drugs to control hypertension,
IHD, heart failure, hyperlipidemia, and DM were more
commonly seen in the WM cohort. On applying the IPTW
method, the baseline demographic features of the CHM and
WM cohorts were well balanced (all standardized mean
differences were within 10% among the CHM and WM cohorts;
Multimedia Appendix 1).
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Table 1. Characteristics of the Chinese herbal medicine and Western medicine cohorts among incident diabetic kidney disease patients from 2004 to
2012.

P valueWMb cohort (n=131,410), n (%) or mean (SD)CHMa cohort (n=20,947), n (%) or mean (SD)Characteristic

<.001Gender

55,546 (42.3%)9298 (44.4%)Female

75,864 (57.7%)11,649 (55.6%)Male

<.001Age (years)

4437 (3.4%)991 (4.7%)≤40

41,605 (31.7%)9388 (44.8%)41-60

85,368 (65.0%)10,568 (50.5%)≥61

Comorbidities

<.00189,219 (67.9%)12,489 (59.6%)Hypertension

<.00152,805 (40.2%)7748 (37.0%)Hyperlipidemia

<.00110,053 (7.7%)1023 (4.9%)Heart failure

<.00124,820 (18.9%)3674 (17.5%)IHDc

<.00112,765 (9.7%)1379 (6.6%)CVDd

<.00114,477 (11.0%)1999 (9.5%)Hyperuricemia

<.0013.4 (1.2)3.3 (1.2)Modified DCSIe score, mean (SD)

Medications

Diabetic drugs

<.00123,197 (17.7%)2674 (12.8%)Insulin analogs

<.00197,077 (73.9%)14,487 (69.2%)OHAsf

Lipid-lowering agents

<.00157,001 (43.4%)8139 (38.9%)Statin/fibrate

Antihypertensives

<.00179,763 (60.7%)10,820 (51.7%)ACEig/ARBh

<.00199,808 (76.0%)15,443 (73.7%)Others

Analgesics/aspirin

<.00133,540 (25.5%)6783 (32.4%)NSAIDsi

0.869931 (7.6%)1576 (7.5%)COX-2j inhibitors

<.00128,702 (21.8%)5767 (27.5%)Acetaminophen

<.00143,116 (32.8%)6356 (30.3%)Aspirin

<.001Insured level (NTDk,l/month)

105,987 (81.0%)15,802 (75.0%)0-20,000

17,366 (13.0%)3441 (16.0%)20,001-40,000

8057 (6.0%)1704 (8.0%)≥40,001

<.001Geolocation

92,967 (70.7%)15,437 (73.7%)Urban

38,443 (29.3%)5510 (26.3%)Rural

<.0010 (0.0%)11,161 (53.3%)Previous TCMm users

aCHM: Chinese herbal medicine.
bWM: Western medicine.
cIHD: ischemic heart disease.
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dCVD: cerebral vascular disease.
eDCSI: Diabetes Complications Severity Index.
fOHA: oral hypoglycemic agents.
gACEi: angiotensin-converting enzyme inhibitor.
hARB: angiotensin receptor blocker.
iNSAID: nonsteroidal anti-inflammatory drug.
jCOX-2: cyclooxygenase-2.
kNTD: new Taiwan dollar.
l1 NTD=0.033 USD.
mTCM: traditional Chinese medicine.

Risk of Mortality Among CHM Users
At the end of 2012, the median follow-up duration of all patients
was 2.49 years, and the cumulative mortality among the CHM
cohort was significantly lower than the WM cohort (28% vs
48%, P<.001; Figure 3). On adjusting age, gender,
socioeconomic status, comorbidities, DM-associated
complications, and medications, the risk of mortality was 0.41
among the CHM cohort (99% CI 0.38-0.43; P<.001).
Furthermore, it seemed that prolonged use of CHM for DKD
is safe. The risk of mortality reduced as the duration of CHM
increased; DKD patients with CHM use less than 180 days had
twice the risk of mortality than patients with CHM use more

than 180 days (aHR 0.51 vs 0.25; both P<.001 compared to the
WM cohort; Table 2). The sensitivity tests including propensity
scores with 1:1 matching and the CHM cohort without late users
demonstrated similar results (Multimedia Appendix 2).
Moreover, when considering the influence of ESRD on DKD,
patients in the CHM cohort had lower risk of mortality on either
excluding ESRD patients (aHR 0.38, 99% CI 0.36-0.41; P<.001)
or including ESRD patients (aHR 0.45, 99% CI 0.41-0.50;
P<.001) (Multimedia Appendix 2). Moreover, the subgroup
analysis on mortality risks using multivariate Cox regression
showed reduced risks among CHM users stratified by age,
gender, and comorbidities.

Figure 3. Overall survival benefit among patients using Chinese herbal medicine (CHM) for diabetic kidney disease. Kaplan-Meier curves by patient
groups. WM: Western medicine.
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Table 2. Association of Chinese herbal medicine for diabetic kidney disease with lower mortality probability.

P value99% CIaHRaDeaths, nSubjects, nVariable

N/AN/Ab1 (reference)28,324131,410WM cohort

CHM duration

<.0010.48-0.540.51209313,670<180 days

<.0010.22-0.270.256697277≥180 days

aaHR: adjusted hazard ratio.
bN/A: not applicable.

CMN for DKD
A total of 173,525 CHM prescriptions were analyzed during
the study period. There were 661 kinds of CHMs used (69.5%
of all kinds of CHMs available in Taiwan), and about 5.7 CHMs
were used in each prescription on average.
Ji-Sheng-Shen-Qi-Wan was used most commonly (22.9%)
(Multimedia Appendix 3). Figure 4 demonstrates the CMN for
DKD, which was constructed by summarizing the CHM-CHM
combinations selected by the ARM from all CHM prescriptions
(the top 10 combinations listed in Multimedia Appendix 4). By
using SNA to assemble the CHMs commonly used together, a
total of 11 clusters could be defined, and the CHMs contained
in each cluster are listed in Multimedia Appendix 5. A higher
resolution of the CMN graph is provided online as well [71].
The within-cluster CHMs had closer relations than CHMs
between clusters, which meant the CHMs in the same cluster
were more commonly coprescribed. The network also revealed
that other intracluster CHMs frequently connected some CHMs

among clusters composed of more than two CHMs, such as
Ji-Sheng-Shen-Qi-Wan in cluster 1, Astragalus membranaceus
(Fisch.) Bge. in cluster 2, Salvia miltiorrhiza Bge. in cluster 3,
Epimedium sagittatum (Sieb. et Zucc.) Maxim. in cluster 4,
Dipsacus asperoides C. Y. Cheng at T. M. Ai in cluster 5, and
Aconitum carmichaelii in cluster 6. In their clusters, other CHMs
seemed to have to be used with these CHMs as adjuvants.
Moreover, some between-cluster relations could be found as
well (Figure 4), such as cluster 1-cluster 2, cluster 1-cluster 5,
cluster 2-cluster 3, cluster 1-cluster 3, and cluster 1-cluster 11,
which adequately represent the complexity of CHM
prescriptions in the clinical setting. Taking these prescription
patterns together, when dealing with DKD, TCM doctors may
use CHM combinations in the same cluster and sometimes more
than one cluster. The potential effects of each cluster were
assessed, and the trends of reduced risks of mortality were
similar among each cluster compared to CHM nonusers (Table
3).

Figure 4. Chinese Herbal Medicine Network (CMN) for diabetic kidney disease. Relations are indicated by grey lines connected to the center of clusters.
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Table 3. Cox regressions for mortality and 1-year landmark analysis among Chinese herbal medicine and Western medicine cohorts.

AdjustedbUnadjustedClustera

P value99% CIaHRe,fP value99% CIHRc,d

<.0010.36-0.440.40<.0010.35-0.430.39Cluster 1 (n=5272)

<.0010.32-0.440.37<.0010.32-0.430.37Cluster 2 (n=2275)

<.0010.34-0.460.39<.0010.33-0.450.38Cluster 3 (n=2139)

<.0010.16-0.350.24<.0010.15-0.360.23Cluster 4 (n=905)

<.0010.27-0.440.34<.0010.26-0.430.33Cluster 5 (n=1144)

<.0010.29-0.510.38<.0010.28-0.500.38Cluster 6 (n=665)

<.0010.30-0.760.48<.0010.25-0.740.43Cluster 7 (n=173)

<.0010.11-0.470.23<.0010.10-0.490.22Cluster 8 (n=375)

<.0010.20-0.500.32<.0010.19-0.540.32Cluster 9 (n=243)

<.0010.21-0.480.32<.0010.20-0.530.33Cluster 10 (n=286)

<.0010.29-0.690.45<.0010.27-0.730.45Cluster 11 (n=196)

aEach cluster contained patients who took different groups of Chinese herbal medicines.
bGender, age, geolocation, insured level, comorbidities, and medications were used as covariates in the adjusted regression models.
cHR: hazard ratio.
dThe hazard ratio of each cluster was estimated after inverse probability treatment weighting in contrast to the Western medicine cohort.
eaHR: adjusted hazard ratio.
fThe adjusted hazard ratio was calculated by a Cox regression model considering patient gender, age, comorbidities, medications, insured level, and
geolocation. Inverse probability treatment weighting was estimated from the same covariates to relieve the accessible confounding bias between Chinese
herbal medicine users and nonusers.

Web-Based Molecular Pathway Exploration Regarding
CHM Clusters and WMs
Figure 5 shows the associations between DKD-related proteins
and CHM clusters or WMs on searching potential target proteins
for clinically commonly used CHMs and WMs in a web-based
database as mentioned above. The examples of connections
between CHMs, CHM ingredients, and target proteins are listed
in Multimedia Appendix 6. There were 767 ingredients

contained in CHMs in the CMN and 37 WMs in four types of
WMs. The physiochemical characteristics of CHMs and WMs
were quite different (Multimedia Appendix 7 and Multimedia
Appendix 8). Figure 5 reveals CHM clusters often covering
more DKD-related proteins than WMs commonly used for
DKD; however, we also found that CHM clusters often covered
much more DKD-unrelated target proteins than WMs (Figure
6).
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Figure 5. The proportion of DKD-related proteins covered by WM and CHM. A higher proportion of DKD-related proteins is covered by CHM clusters.
ACEi: angiotensin-converting enzyme inhibitor; ARB: angiotensin receptor blocker; CHM: Chinese herbal medicine; DKD: diabetic kidney disease;
GLP-1: glucagon-like peptide-1; SGLT2i: sodium-glucose cotransporter 2 inhibitors; WM: Western medicine.

Figure 6. The proportion of proteins covered by CHM or WM specific to DKD. WM aimed more specifically at DKD-related proteins. ACEi:
angiotensin-converting enzyme inhibitor; ARB: angiotensin receptor blocker; CHM: Chinese herbal medicine; DKD: diabetic kidney disease; GLP-1:
glucagon-like peptide-1; SGLT2i: sodium-glucose cotransporter 2 inhibitors; WM: Western medicine.

Moreover, it was notable that Figure 7 shows the diverse
molecular pathways covered by CHM clusters and WMs. CHM
clusters potentially covered more pathways than WMs. The
pathways in CHM clusters, which include GPCR ligand blinding
and GPCR downstream signaling, overlapped with ARB
pathways. On the contrary, pathways of ACEis, GLP-1 agonists,
and SGLT2is had no intersection with CHM clusters. Moreover,
many CHM cluster pathways were not covered by WMs, such

as cell cycle, gene regulation, and metabolism pathways. Table
4 shows the possibly complementary effects of WMs and CHMs,
since their molecular pathways seemed rather distinctive. DKD
patients with hypertension, HF, and IHD who used RAAS
blockers and CHMs had lower risks of mortality than those who
used RAAS blockers alone (aHR 0.47, 99% CI 0.45-0.51;
P<.001; aHR 0.43, 99% CI 0.37-0.51; P<.001; and aHR 0.46,
99% CI 0.41-0.51; P<.001, respectively).
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Figure 7. Summary of biomedical pathways covered by clusters of Chinese herbal medicine (CHM) and Western medicine (WM). Pathway
overrepresentation analysis and classification was performed by assessing the online Reactome database, and only pathways with a false discovery rate
≤0.05 were considered.

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e27614 | p.230https://medinform.jmir.org/2021/5/e27614
(page number not for citation purposes)

Wu et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 4. Risks of mortality among Chinese herbal medicine users with chronic heart failure, hypertension, and ischemic heart disease under
renin-angiotensin-aldosterone system inhibition therapy.

P value99% CIaHRb,cCHM usersCHMa nonusersDisease in patients who received renin-an-
giotensin-aldosterone system inhibition blockers

Subjects, nEvents, nSubjects, nEvents, n

<.0010.45-0.510.4710,814181378,93518,310Hypertension

<.0010.37-0.510.4397726993693876Chronic heart failure

<.0010.41-0.510.46296760021,3596408Ischemic heart disease

<.0010.45-0.510.4811,240191982,11019,225Hypertension, chronic heart failure, or ischemic
heart disease

aCHM: Chinese herbal medicine.
baHR: adjusted hazard ratio.
cThe aHR was calculated by a Cox regression model considering patient gender, age, comorbidities, medications, insured level, and geolocation. Inverse
probability treatment weighting was estimated from the same covariates to relieve the accessible confounding bias between Chinese herbal medicine
users and nonusers.

Discussion

Principal Findings
This is the first study to analyze CHM prescriptions for incident
DKD patients. Potential survival benefits and molecular
pathways present the potential complementary roles of CHMs
in managing DKD. We previously proposed a framework to
connect clinical databases to web-based biochemical and
pathway databases to predict the efficacy of using CHM, and
we reported the possible acting pathways of CHM for DKD
with the same framework [40]. The different pathways among
CHM and WM may have synergistic effects for DKD. By
integrating web-based biomedical databases with the CMN, we
found several clusters after analyzing the common use of CHM
in the NHIRD, which reflected the TCM viewpoints and
prescription patterns for DKD. The lower mortality risks among
CHM clusters for DKD revealed the potential usefulness of
CHM among DKD patients.

Most importantly, by using the web-based Reactome pathway
database, the pathways of CHM could be comprehensively
overviewed. There are many pathways covered by CHM
clusters, but which are not seen in WM. Furthermore, the
complementary effects could be validated by clinical data. The
framework of cross-utilization of clinical and web-based
biochemical databases showed the possibility to decipher CHM
treatments for diseases.

Antihypertensive medicines, such as ACEis and ARBs, are
recommended in patients with DKD. They are proven to reduce
mortality rates and prevent cardiovascular morbidity. In addition,
they can slow the degeneration of kidney function in patients
with hyperalbuminuria and pre-ESRD [72-74]. Some studies
have declared that simultaneous use of more than one drug is
a good strategy for treating DKD patients because of different
mechanisms [75-77]. However, whether CHM should be used
with ACEis or ARBs remained unexplored, even though use of
CHM with ACEis or ARBs simultaneously may improve blood
pressure control among hypertension patients [78]. Our study
reported the rationale of combining an ACEi or ARB with CHM
for DKD patients by presenting the long-term benefits and the
different coverage of DKD-related proteins and molecular

pathways. Notably, CHM clusters used for DKD often cover
more DKD-related proteins and pathways than WMs. Most
pathways overrepresented by CHM are different from those
related to ACEis or ARBs, such as cell cycle and gene
regulation.

Cell cycle and gene regulation seemed to be the most different
covered pathways between CHM and WM. A previous study
found that specific CHMs are involved in DKD-related
modulation of microRNA [79]. Besides, the importance of cell
cycle arrest in treating CKD seems to be increasing in recent
years [80-84]. Cell division involves the following four phases:
G0-G1, S, G2, and M. To repair the injured tissue ultimately,
DNA is replicated and divided in the process of the cell cycle.
Checkpoints play an important role in the quality assurance
process during cell division [85]. It is reported that proximal
tubular cells arrested in the G2/M phase after an injury are
responsible for the fibrotic response, which leads to CKD
[83,84,86]. Hence, helping cells abrogate the G2/M arrest and
preventing profibrotic growth factor release are new strategies
for avoiding renal fibrosis [81,87]. According to our results,
several pathways related to the cell cycle may be covered by
CHM clusters, especially in pathways related to G2/M
checkpoints. With probable regulation in the cell cycle, CHM
may target specific sites and participate in cellular repair. Owing
to multiple targets in CHM, the simultaneous use of CHM and
WM provides a complementary treatment and another
perspective in patients with DKD under ACEi or ARB therapy.

In addition to the pathways proposed by integrating biomedical
databases with clinical databases, the CMN also revealed TCM
viewpoints on managing DKD. TCM doctors categorize diseases
into different specific patterns according to the patients’
symptoms and clinical conditions. This characteristic approach
to personalized diagnosis and treatment is named
“bian-zheng-lun-zhi.” In our study, 11 clusters according to the
frequency and coprescription of CHMs were classified. These
clusters with specific features explain that “bian-zheng-lun-zhi”
has meticulous assessment and better outcomes.
Ji-Sheng-Shen-Qi-Wan, which was used most commonly in our
study, is the prescription to treat a patient with DKD diagnosed
as having “Kidney-Yang Deficiency” in TCM. In TCM theory,
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“Kidney-Yang” indicates that the functions of the reproductive,
endocrine, and urinary systems are normal, and “Kidney-Yang
Deficiency” indicates hypofunctioning of these systems [88].
Several molecular pathways, such as cell cycle, gene regulation,
signal transduction, immune system, and metabolism, were
found to be involved in “Kidney-Yang” [89,90]. These pathways
are similar to the pathways in which Ji-Sheng-Shen-Qi-Wan in
cluster 1 is overrepresented. Therefore, the associations of
DKD-related mechanisms and specific patterns of TCM are
revealed by this framework.

Safety is one of the outcomes that cannot be ignored. Specific
CHMs have been banned because they were proven to cause
damage to the kidney, such as aristolochic acid–containing herbs
[49,91]. We used the cohort from 2004 to exclude any potential
adverse effects of aristolochic acid–containing herbs, and it
helped us evaluate patient outcomes when using CHMs.
Furthermore, we proved that using CHMs might be safe and
beneficial for DKD patients in the long term. Our study indicates
that more prolonged use of CHM among DKD patients reduces
the mortality rate, especially in DKD patients who use CHM
for more than 180 days.

Limitations
There are some limitations in this study. First, the severity and
stage of DKD could not be analyzed owing to the lack of clinical
information, such as glycemia, blood pressure, complete blood
count, and biochemistry. The actual quality of control in DM
and hypertension is crucial to patients with DKD. While this
study aimed to compare mortality between WM and CHM, and
explore the use of CHM, quite a few patients used CHM for

nonfatal conditions that involved serious effects on quality of
life, such as diabetic ophthalmopathy and limb necrosis. Future
studies should focus on comparisons in such nonfatal conditions.
Second, data about self-paid CHM and folk medicine were
absent because only reimbursed CHM treatments were included.
In Taiwan, most CHM treatments are fully reimbursed and
convenient. Therefore, our study results would not be greatly
affected by the use of self-paid CHM and folk medicine. Third,
new oral hypoglycemic agents, such as SGLT2is, were not
included in the analysis. These agents have the advantage of
lowering mortality rates and cardiovascular morbidity among
DKD patients [77]. Although they were not included in this
study owing to approval in Taiwan in 2014, more studies about
combined therapy involving SGLT2is are important in the
future, since the pathways covered by SGLT2is were found to
be quite different in our study.

Conclusion
By integrating clinical and biomedical databases, lower mortality
rates among CHM users were found, and the complementary
roles of CHM and WM may be the reason. Since CHM has
complementary effects and proven safety, it may be beneficial
to consider TCM treatment in DKD patients under WM therapy.
Our study’s main advantage is the clarification of the summary
of the mechanisms of CHM for DKD in the real world, which
may broaden the horizon for DKD and facilitate the development
of new drugs from active ingredients in CHM. Further studies,
including those involving more detailed information about
patients’ conditions and analysis of prescribed CHMs, are
required.
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Abstract

Background: Federated learning is a decentralized approach to machine learning; it is a training strategy that overcomes medical
data privacy regulations and generalizes deep learning algorithms. Federated learning mitigates many systemic privacy risks by
sharing only the model and parameters for training, without the need to export existing medical data sets. In this study, we
performed ultrasound image analysis using federated learning to predict whether thyroid nodules were benign or malignant.

Objective: The goal of this study was to evaluate whether the performance of federated learning was comparable with that of
conventional deep learning.

Methods: A total of 8457 (5375 malignant, 3082 benign) ultrasound images were collected from 6 institutions and used for
federated learning and conventional deep learning. Five deep learning networks (VGG19, ResNet50, ResNext50, SE-ResNet50,
and SE-ResNext50) were used. Using stratified random sampling, we selected 20% (1075 malignant, 616 benign) of the total
images for internal validation. For external validation, we used 100 ultrasound images (50 malignant, 50 benign) from another
institution.
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Results: For internal validation, the area under the receiver operating characteristic (AUROC) curve for federated learning was
between 78.88% and 87.56%, and the AUROC for conventional deep learning was between 82.61% and 91.57%. For external
validation, the AUROC for federated learning was between 75.20% and 86.72%, and the AUROC curve for conventional deep
learning was between 73.04% and 91.04%.

Conclusions: We demonstrated that the performance of federated learning using decentralized data was comparable to that of
conventional deep learning using pooled data. Federated learning might be potentially useful for analyzing medical images while
protecting patients’ personal information.

(JMIR Med Inform 2021;9(5):e25869)   doi:10.2196/25869

KEYWORDS

deep learning; federated learning; thyroid nodules; ultrasound image

Introduction

Deep neural networks for image classification, object detection,
and semantic segmentation have been proven to be high
performance, surpassing human-level performance in some
fields [1]. Deep learning for computer aided diagnosis has been
frequently reported using various medical imaging modalities,
such as ultrasound images, computed tomography, and magnetic
resonance imaging. As in other fields, the ability for deep
learning using medical images to surpass human-level
performance is dependent on the volume and quality of data
[2,3].

There are several challenges in the implementation of deep
learning in the clinical environment. To obtain a sufficient
number of medical images for high performance, medical images
must be collected from multiple institutions. Personal
information protection may be violated during the data collection
process. Heterogeneity of data between contributing institutes
is another issue that can negatively influence the performance
of a deep learning network. Distribution of data varies
considerably between institutions in terms of disease entities,
as does the volume, location, and characteristics of medical
images; this influences the performance of deep learning
networks.

Federated learning is a technique used to build learning networks
without the need for centralized data that is hugely advantageous
in a health care context where data protection and patient
confidentiality are paramount. Federated learning mitigates
many systemic privacy risks by sharing with each local data
source only the model and trained parameters for network
training, without the need to export existing medical data sets.
Network parameters that are trained with data from each local
data source are aggregated in one place and are updated and
sent back to each local data source. The network is trained as
this process is repeatedly executed.

Although federated learning does not require the exchange of
local data (ie, each medical institution’s data), it’s performance
is similar to that of conventional deep learning. Federated
learning has been applied to multiple open data sets such as
Modified National Institute of Standards and Technology
(MNIST) [4], Canadian Institute for Advanced Research
(CIFAR-10) [4], and Brain Tumor Segmentation challenge

(BraTS) 2018 [5,6] data sets. Various methods [4,6] have been
applied to optimize the performance of federated learning. The
application of federated learning for personal health information
from wearable devices has also been reported [7]. These studies
[4-7] demonstrated that federated learning is similar in
performance to conventional deep learning (ie, data centralized
training) approaches; however, they used either general image
data, or if used, medical image data were few in number (for
example, open medical image data sets such as BraTS 2018
contain only a few hundred images). In addition, the images
were from one institution, and only one deep learning network
was used. In real-world health care environments, when deep
learning is applied, data distributions are frequently unbalanced.

In this study, we collected thyroid ultrasound images from
medical institutions to evaluate the feasibility and performance
of federated learning.

Methods

Thyroid Nodule Clinical Data Collection
The institutional review boards at all participating institutions
(Seoul Metropolitan Government Seoul National University
Boramae Medical Center, Gangnam Severance Hospital, Seoul
National University Bundang Hospital, Catholic University of
Korea Incheon St. Mary’s Hospital, Catholic University of
Korea Seoul St. Mary’s Hospital, and Korea Cancer Center
Hospital) approved this study. Representative institutional
review board approval was granted by Seoul Metropolitan
Government Seoul National University Boramae Medical Center
(H-10-2020-195).

Images were collected from 6 medical institutions in captured
DICOM file format (Figure 1). Of the 6 institutions, 3 used
iU22 systems (Philips Healthcare), one used EPIQ 5G (Philips
Healthcare), one used Prosound Alpha 7 (Hitachi Aloka), and
one used Aplio 500 Platinum (Toshiba Medical Systems).
Experienced surgeons at each institution labeled the images as
benign (fine-needle aspiration cytology Bethesda Category II
or benign surgical histology) or malignant (fine-needle
aspiration cytology Bethesda Category V/VI or surgical
histology of thyroid carcinoma). The images were cropped into
299×299 pixels to include typical thyroid features. The images
were not augmented.
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Figure 1. Thyroid ultrasound image data collected from 6 medical institutions to verify federated learning.

Table 1 summarizes details of the thyroid ultrasound images
used in this experiment. We used 80% of each institution’s data
as training data and the remaining 20% as test data. We used
stratified random sampling to select the test data set. There was
a total of 4300 malignant images and 2465 benign images in
the total training data set and a total of 1075 malignant images

and 617 benign images in the test data set. For external
validation, 100 thyroid ultrasound images (50 malignant image
data and 50 benign) were provided by a medical institution in
Japan. We were blinded to the labeling (malignant or benign)
of the images.

Table 1. Thyroid ultrasound image data from 6 medical institutions used to validate federated learning.

Total, nInstitution 6, nInstitution 5, nInstitution 4, nInstitution 3, nInstitution 2, nInstitution 1, nClass

53752779910646931911233Malignant

430022279853752553986Training

107555202194638247Test

3082324100100102912257Benign

2466259808082331806Training

616652020258451Test

In addition, to verify the performance of federated learning with
external data, we collected an external test data set, which
consisted of 50 malignant and 50 benign ultrasound images
taken using a TUS-A500 system (Toshiba Medical System)
from Kuma Hospital.

Federated Learning System Design in a Real Health
Care Environment
We conducted federated learning experiments (Figure 2) with
each institution’s serverworker (a computer system that can
train deep learning algorithms with local data in the federated
learning process) and the coordinator of Seoul National
University Hospital to validate federated learning in a real health

care environment (serverworker system at each institution: Intel
4-core 2.3 GHz i5-8259U processor, 16 GB DDR4 RAM
memory, and 11 GB Nvidia RTX 2080 Ti graphics; coordinator
system: 2.3 GHz i5-8259U processor, 16 GB DDR4 RAM, and
8 GB Nvidia GTX 1080). Network training was performed on
the serverworkers, and then each serverworker was configured
with a high-memory graphic process unit. We configured the
system using the processor and external graphics processing
unit for system portability. All versions of software (Python
version 3.6.5; PyTorch version 1.4.0; PySyft version 0.2.5) were
identical between institutions. We installed Ubuntu 18.04 LTS
version on each serverworker and the coordinator system.
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Figure 2. Federated learning procedure in a real-world health care environment. (A) The serverworker from each medical institution (upper 6 medical
institutions) was trained with local data from their corresponding medical institution. (B) Trained parameters were sent from each institution to the
coordinator. (C) The coordinator averaged the parameters received from each institution. (D) The average value was sent back to each serverworker.

Deep Learning Algorithm
We used 5 deep neural network classifiers for thyroid ultrasound
image analysis: VGG19 [8], ResNet50 [9], ResNext50 [10],
SE-ResNet50, and SE-ResNext50 [11]. We also used these 5
models to verify federated learning.

Stochastic optimization (ADAM) was used with the following

parameters: β1=0.9, β2=0.999,  =10–8 [12]. The initial learning
rate was 0.001 which was reduced by half every 30 rounds. The
mini-batch size was 32. We used a binary cross-entropy loss
function to train all networks. We trained the network for 120
rounds. We used PyTorch [13] and PySyft [14] to implement
and train all networks with federated learning.

Conventional Deep Learning Using Pooled Data
After removing all patient identifying information, images from
each participating institution were collected at Seoul National
University Hospital to create a pooled data set. We used the
pooled data set to conduct conventional deep learning. All
settings were the same as those for federated learning, with the

exception of those used in PySyft, and the same equipment,
with the same specifications as those of the serverworker, was
used. Only training data from each hospital used in the federated
learning were pooled and used for conventional deep learning.
The test data set was the same as that used for federated learning.

Results

Federated Learning Performance
For the internal test data set, consisting of 1691 images (1075
malignant and 616 benign), and federated learning–trained deep
learning algorithms, the accuracies of VGG19, SE-ResNet50,
ResNet50, SE-ResNext50, and ResNext50 were 79.5%, 77.9%,
77.4%, 77.2%, and 73.9%, respectively (Table 2; Table S1 in
Multimedia Appendix 1). Figure 3 shows the receiver operating
characteristic curve [15] of each network for the internal test
data set. Area under the receiver operating characteristic
(AUROC) curve values of SE-ResNext50, ResNext50, VGG19,
SE-ResNet50, and ResNet50 were 87.6%, 86.0%, 82.0%, 79.9%,
and 78.9%, respectively.

Table 2. Thyroid classification results with federated learning with internal test data.

AUROC (%)F1 score (%)NPVb (%)PPVa (%)Sensitivity (%)Specificity (%)Accuracy (%)Deep learning algorithm

82.084.575.781.288.264.379.5VGG19

78.983.374.378.688.657.877.4ResNet50

86.082.791.171.598.231.573.9ResNext50

79.983.876.878.390.256.377.9SE-ResNet50

87.684.490.074.697.342.177.2SE-ResNext50

aPPV: positive predictive value.
bNPV: negative predictive value.

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e25869 | p.242https://medinform.jmir.org/2021/5/e25869
(page number not for citation purposes)

Lee et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Receiver operating characteristic curves of each deep learning network for the internal test data set.

For the external test data set and federated learning model, the
accuracies of ResNet50, SE-ResNet50, VGG19, SE-ResNext50,
and ResNext50 were 76.0%, 73.0%, 69.0%, 60.0%, and 56.0%,
respectively (Table 3; Table S2 in Multimedia Appendix 1).

AUROC curve values of SE-ResNet50, SE-ResNext50,
ResNext50, ResNet50, and VGG19 were 86.7%, 83.4%, 83.0%,
81.0%, and 75.2%, respectively.

Table 3. Thyroid classification results with federated learning with external test data.

AUROC (%)F1 score (%)NPVb (%)PPVa (%)Sensitivity (%)Specificity (%)Accuracy (%)Deep learning algorithm

75.273.578.864.286.052.069.0VGG19

81.079.790.669.194.058.076.0ResNet50

83.069.410053.210012.056.0ResNext50

86.778.496.065.398.048.073.0SE-ResNet50

83.471.410055.610020.060.0SE-ResNext50

aPPV: positive predictive value.
bNPV: negative predictive value.

Performance of Conventional Deep Learning Using
Pooled Data
For each deep learning algorithm trained with the pooled data,
the accuracies of VGG19, ResNet50, ResNext50, SE-ResNet50,
and SE-ResNext50 were 81.5%, 78.7%, 85.2%, 83.2%, and
85.2%, respectively (Table 4; Table S3 in Multimedia Appendix
1). The AUROC curve values of VGG19, ResNet50, ResNext50,

SE-ResNet50, and SE-ResNext50 were 87.6%, 82.6%, 91.0%,
84.5%, and 91.5%, respectively.

For conventional deep learning using the pooled external test
data set, the accuracies of VGG19, ResNet50, ResNext50,
SE-ResNet50, and SE-ResNext50 were 71.0%, 77.0%, 80.0%,
66.0%, and 76.0%, respectively (Table 5; Table S4 in
Multimedia Appendix 1). The AUROC curve values of VGG19,
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ResNet50, ResNext50, SE-ResNet50, and SE-ResNext50 were 79.3%, 81.2%, 89.7%, 73.4%, and 91.0%, respectively.

Table 4. Thyroid classification results with conventional deep learning using pooled internal test data.

AUROC (%)F1 score (%)NPVb (%)PPVa (%)Sensitivity (%)Specificity (%)Accuracy (%)Deep learning algorithm

87.686.583.081.092.762.081.5VGG19

82.683.974.680.587.762.878.7ResNet50

91.088.884.785.592.572.585.2ResNext50

84.582.781.284.190.770.083.2SE-ResNet50

91.589.086.284.993.570.985.3SE-ResNext50

aPPV: positive predictive value.
bNPV: negative predictive value.

Table 5. Thyroid classification results with conventional deep learning using pooled external test data.

AUROC (%)F1 score (%)NPVb (%)PPVa (%)Sensitivity (%)Specificity (%)Accuracy (%)Deep learning algorithm

79.374.880.066.286.056.071.0VGG19

81.278.180.074.582.072.077.0ResNet50

89.781.585.775.988.072.080.0ResNext50

73.471.275.061.884.048.066.0SE-ResNet50

91.079.790.669.194.058.076.0SE-ResNext50

aPPV: positive predictive value.
bNPV: negative predictive value.

Discussion

Principal Results
The goal of this study was to verify the performance of federated
learning in a real-world health care environment. We first
collected thyroid nodule data from 6 institutions and designed
a federated learning system using these data. We trained each
deep learning algorithm (VGG19, ResNet50, ResNext50,
SE-ResNet50, and SE-ResNext50) with the federated learning
system. We also trained the same deep learning algorithms using
conventional deep learning techniques and compared the
performance of federated learning with that of conventional
deep learning.

Comparison With Prior Work
The medical vision community is currently actively conducting
diagnosis using computer-aided diagnosis [16]. To improve the
performance of computer-aided diagnosis, several deep learning
algorithms have been developed and applied [17-20]. Various
challenges for deep learning with open data sets have been
identified [21,22]. In particular, due to health care data privacy
regulations, most open data sets only have a small amount of
data collected from a single institution. When training and
validation are carried out with only a small volume of data, the
performance of a deep learning model cannot be properly
evaluated, and generality cannot properly be validated. Federated
learning, which can train a deep learning model without
centralized data, offers a training strategy that addresses these
challenges.

There have been several recent reports of the use of federated
learning trained with general images [4] and medical imaging

[5,6]. McMahan et al [4] published a study using federated
learning with federated averaging and reported that the average
parameters trained from each serverworker each round
performed similarly to those of conventional deep learning and
better than those of federated stochastic gradient descent;
however, the study used a relatively simple model and general
image data sets (MNIST and CIFAR-10). Sheller et al [5]
compared federated learning, institutional incremental learning
(IIL), and cyclic IIL using the BraTS 2018 data set [21]. IIL is
a collaborative learning process that trains a network with data
from one institution and then continues training with another
institution’s data successively. One disadvantage of this model
is that when the network is trained using data from another
institution, the patterns trained from the previous institutions’
data are disregarded. To compensate for this shortcoming,
Sheller et al [5] proposed cyclic IIL which repeats the IIL
process. They used U-Net architecture [17] for brain tumor
segmentation with federated learning, IIL, and cyclic IIL and
demonstrated that the performance of federated learning was
superior to those of IIL and cyclic IIL; however, the study
applied federated learning but did not address the class
imbalance or data volume imbalance problems associated with
federated learning. Li et al [6] also used the BraTS 2018 data
set to compare federated learning and centralized data training;
they found no significant difference in performance between
federated learning and centralized data training. Most federated
learning studies compare federated learning with conventional
deep learning only, and there are no studies using clinical data
from a real-world health care environment.

The application of federated learning in our study shows that
this technology has substantial potential applicability in clinical
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environments. First, federated learning showed performance
comparable with that of conventional deep learning, despite an
extremely uneven distribution of data volume from each
institution. The difference between the hospital with the most
data and the hospital with the least data was 17.5 fold. Moreover,
the distribution of benign and malignant images was also
skewed. For example, the ratio of malignant to benign images
was 47:1 for institution 3, whereas it was 1:2 for institution 1.
Because data distributions between hospitals are diverse, the
conditions presented in this study demonstrated the applicability
of federated learning in the real world and its ability to facilitate
collaboration between different size institutions.

In medical image analysis, if the amount of data is insufficient,
overfitting (learning from noise in data) often occurs. In such
cases, only the accuracy of the internal data set is high, and deep
learning algorithms cannot be rigorously evaluated. We were
able to overcome the issue of overfitting by collecting images
from multiple institution and by performing external validation
using images from an institute in a different country. We
demonstrated that federated learning is able to maximize the
efficiency of medical resources and generalizability of deep
learning algorithms using data from different size medical
institutions (with various imaging devices and different patient
groups). This represents scenarios in real-world health care
environments [23-26].

In our study, federated learning training took at least 4 times
longer than that of conventional deep learning. The training
time for federated learning varied depending on the peripheral
environment such as internet speed and temperature of graphics
process unit. The performance of federated learning may be
enhanced with more images or data augmentation. The ideal
volume of data and the distribution of data contributed by each
institution for peak performance of federated learning is also
not yet known. Further investigation into the optimal training
environment, training time, data volume, data distribution, and

state-of-the-art deep learning algorithms is required for federated
learning.

As shown in Table 5, we noted that when thyroid nodules were
classified by a conventional deep learning model, the number
of malignant calls was extremely high. The same trend is
frequently observed in the literature [20,27-29]. As shown in
Table 3, we also found this trend to be prominent in federated
learning. Because deep learning is a black box [30], we were
unable to determine the potential reasons for this tendency, but
we plan to investigate this phenomenon in the future.

Limitations
This study has several limitations. First, we presented the results
of federated learning used in a specific context in terms of the
number of participating institutions, and the number and ratio
of benign and malignant images. Thus, the generalizability of
the results in terms of the performance of federated learning is
not known and warrants further investigation. We also used
thyroid ultrasound images, which are relatively easy to analyze
compared to those from computed tomography, magnetic
resonance imaging, and histopathology sections. Results may
not be generalizable across different imaging modalities. In
future work, comparisons of federated learning with unequal
data distribution, data augmentation, one-shot learning are
required to explore the implications of data imbalance.

Conclusions
We demonstrated that the performance of federated learning
using a shared training model and parameters from 6 institutions
was comparable with that of conventional deep learning using
pooled data. Federated learning is highly generalizable because
it can effectively utilize data collected from different
environments despite data heterogeneity. Federated learning
has the potential to mitigate many systemic privacy risks by
sharing only the model and parameters for training without the
need to export existing medical data sets.
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Abstract

Background: The increasing number of patients treated with peritoneal dialysis (PD) and their consistently high rate of hospital
admissions have placed a large burden on the health care system. Early clinical interventions and optimal management of patients
at a high risk of prolonged length of stay (pLOS) may help improve the medical efficiency and prognosis of PD-treated patients.
If timely clinical interventions are not provided, patients at a high risk of pLOS may face a poor prognosis and high medical
expenses, which will also be a burden on hospitals. Therefore, physicians need an effective pLOS prediction model for PD-treated
patients.

Objective: This study aimed to develop an optimal data-driven model for predicting the pLOS risk of PD-treated patients using
basic admission data.

Methods: Patient data collected using the Hospital Quality Monitoring System (HQMS) in China were used to develop pLOS
prediction models. A stacking model was constructed with support vector machine, random forest (RF), and K-nearest neighbor
algorithms as its base models and traditional logistic regression (LR) as its meta-model. The meta-model used the outputs of all
3 base models as input and generated the output of the stacking model. Another LR-based pLOS prediction model was built as
the benchmark model. The prediction performance of the stacking model was compared with that of its base models and the
benchmark model. Five-fold cross-validation was employed to develop and validate the models. Performance measures included
the Brier score, area under the receiver operating characteristic curve (AUROC), estimated calibration index (ECI), accuracy,
sensitivity, specificity, and geometric mean (Gm). In addition, a calibration plot was employed to visually demonstrate the
calibration power of each model.

Results: The final cohort extracted from the HQMS database consisted of 23,992 eligible PD-treated patients, among whom
30.3% had a pLOS (ie, longer than the average LOS, which was 16 days in our study). Among the models, the stacking model
achieved the best calibration (ECI 8.691), balanced accuracy (Gm 0.690), accuracy (0.695), and specificity (0.701). Meanwhile,
the stacking and RF models had the best overall performance (Brier score 0.174 for both) and discrimination (AUROC 0.757 for
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the stacking model and 0.756 for the RF model). Compared with the benchmark LR model, the stacking model was superior in
all performance measures except sensitivity, but there was no significant difference in sensitivity between the 2 models. The
2-sided t tests revealed significant performance differences between the stacking and LR models in overall performance,
discrimination, calibration, balanced accuracy, and accuracy.

Conclusions: This study is the first to develop data-driven pLOS prediction models for PD-treated patients using basic admission
data from a national database. The results indicate the feasibility of utilizing a stacking-based pLOS prediction model for PD-treated
patients. The pLOS prediction tools developed in this study have the potential to assist clinicians in identifying patients at a high
risk of pLOS and to allocate resources optimally for PD-treated patients.

(JMIR Med Inform 2021;9(5):e17886)   doi:10.2196/17886

KEYWORDS

peritoneal dialysis; prolonged length of stay; machine learning; prediction model; clinical decision support

Introduction

Over the past 30 years, the United States Renal Data System
has reported a rapid increase in the incidence of end-stage
kidney disease (ESKD) [1]. The increasing number of patients
with ESKD treated with kidney replacement therapy—including
hemodialysis, peritoneal dialysis (PD), and renal
transplantation—has put a large burden on the health care
system. Approximately 2.6 million people worldwide received
kidney replacement therapy in 2010 [2], and the prevalence of
ESKD in China was 237.3 cases per million population in 2012
[3]. In 2015, the average inpatient expenditure for patients with
ESKD in China was approximately ¥24,800 (US $3793) [4],
and the total inpatient expenditure for patients with ESKD in
China was in excess of ¥6.75 billion (US $1.03 billion). In 2016,
the average expenditure on patients with ESKD in the United
States was estimated to be US $50 billion, one-third of which
was attributed to hospitalization costs [1]. Hospitalization
remains a critical outcome for patients with ESKD, and the risk
of hospitalization in patients undergoing dialysis is triple that
of patients without ESKD [5]. In-hospital length of stay (LOS)
is a key indicator of the efficiency of inpatient management.
Prolonged LOS (pLOS) is associated not only with high resource
consumption and medical expenses [6,7] but also with a high
risk of complications [8]. Much attention has been given to
reducing hospitalization costs [9-15], but few studies have
focused on preventing pLOS for PD-treated patients. The
increasing number of PD-treated patients and their consistently
high hospital admission rate have placed a large burden on the
health care system. An accurate pLOS prediction model can
assist physicians to risk-stratify patients and optimally allocate
health care resources [7,16]. Early clinical interventions and
optimal management of patients at a high risk of pLOS may
help reduce hospitalization expenses and improve prognosis for
PD-treated patients [7,8,17]. If timely clinical interventions are
not provided, patients at a high risk of pLOS may face poor
prognosis and high medical expenses, which will also burden
hospitals [18].

Given the increasing number of patients undergoing dialysis
and the importance of optimal resource allocation, physicians
need an effective LOS prediction model. However, no
well-developed LOS prediction models for patients undergoing
dialysis can be found in the literature. Some other
risk-stratification models for patients undergoing dialysis use

mortality [19-21] or cardiovascular events [22] as the end point.
Wagner et al [20] used a nationwide, multicenter, prospective
cohort study in the United Kingdom (the UK Renal Registry)
as a data source to develop a Cox proportional hazards model
for predicting long-term mortality in incident dialysis patients.
They found that using basic patient characteristics, comorbid
conditions, and laboratory variables to predict the 3-year
mortality of incident dialysis patients had sufficient accuracy.
Quinn et al [21] used a Canadian administrative health database
to develop a prognostic index for 1-year mortality in patients
undergoing dialysis by combining logistic regression (LR) with
different variable selection methods. Matsubara et al [22] used
data from the Japan Dialysis Outcomes and Practice Patterns
Study to develop an LR model for predicting the incidence of
cardiovascular events among patients undergoing hemodialysis.
However, few models use LOS as the prediction outcome.

Meanwhile, a number of studies have explored the factors
affecting the LOS of patients undergoing dialysis. Allon et al
[23] explored the association of hospitalization outcomes with
clinical factors and laboratory parameters in patients undergoing
hemodialysis and found that infection-related hospitalization
was associated with pLOS. Kshirsagar et al [24] compared the
LOS of hemodialysis patients receiving care from nephrologists
and internists and found that the LOS was significantly shorter
for patients under the care of nephrologists than for patients
under the care of internists. Rocco et al [25] studied the risk
factors for hospitalization in patients receiving chronic dialysis
and confirmed that the risk factors for LOS were similar to those
for mortality. Other factors affecting the LOS of patients
undergoing dialysis have also been explored, such as obesity
[26], hemoglobin level [27], admission diagnosis [28], and
comorbidities [23,29]. However, no study has built an effective
model for pLOS prediction in patients undergoing dialysis.

With the exponential increase in the amount of health care data,
machine learning algorithms have gained special attention for
their capabilities of handling high-dimension and large-scale
data. Some machine learning–based LOS prediction models
have been developed for patients with other diseases. The
prediction outcome of existing LOS prediction models could
be classified into 2 types: (1) numeric LOS and (2) binary
outcome (ie, having a pLOS or not). Moran et al [30] constructed
a numeric LOS prediction model for patients in the intensive
care unit (ICU) by using a traditional linear regression model.
Their results suggested that their LOS prediction model
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performed well in predicting the average LOS of patients in the
ICU but showed limited performance in predicting the LOS of
individual patients. Yang et al [31] developed a numeric LOS
prediction model based on the support vector machine (SVM)
algorithm for burn patients at different stages and compared its
prediction performance with that of the traditional linear
regression model. They found that although the SVM model
was more effective than the linear regression model in LOS
prediction for burn patients, it yielded a high mean relative error
of 43.9%. LaFaro et al [32] developed a numeric LOS prediction
model based on the artificial neural network (ANN) algorithm
for patients in the ICU after cardiac surgery. Their results also
suggested that the ANN-based LOS prediction model

outperformed the traditional linear regression model (R2: 0.410

vs 0.200; R2 measures the goodness of fit of the corresponding
model), but the prediction performance of the ANN-based model
was still limited. However, if patients are classified into 2 groups
(ie, with and without pLOS), the difference in LOS patterns
between patients in the 2 groups could be more obvious and
easily discovered, and this classification helps identify typical
LOS patterns and improve the performance of LOS prediction
models [33]. In the literature, the LOS prediction models with
binary outcomes achieved good performance. Ma et al [34]
developed a personalized pLOS prediction model for patients
in the ICU by combining just-in-time learning and one-class
extreme learning machine algorithms and found that the model
achieved superior performance to the traditional binary
classification algorithms. Chuang et al [35] compared the
performance of various supervised learning approaches with an
LR model in pLOS prediction for general surgery patients and
the results showed that the random forest (RF) model
outperformed the LR model. Morton et al [36] used 5 machine
learning algorithms to predict the pLOS of hospitalized patients
with diabetes and found that the SVM model demonstrated the
best prediction performance, followed closely by the RF model.
However, LOS prediction models based on machine learning
technologies for PD-treated patients remain to be developed.

Stacked generalization, or stacking, is a general ensemble
method that combines different types of machine learning
models (“base models”) through an aggregation model
(“meta-model”) to maximize the prediction performance [37].
Several studies [38,39] have found that ensemble learning
methods can produce a better or equal predictive performance
than their component parts. Lertampaiporn et al [38] developed
a heterogeneous ensemble model for microRNA precursor
classification through a voting system. Their results showed
that the ensemble method produced a more reliable prediction
than its base classifiers. Wang et al [39] used the stacking
algorithm to predict membrane protein types, and the ensemble
model yielded a better overall performance than its base models.
Phan et al [40] developed a stacking model to predict cancer
survival and reported that this model outperformed the
majority-vote model. An ensemble of various machine learning
models could help reduce the bias in a single machine learning
algorithm to provide a much better prediction performance than
single models.

This study aimed to develop an optimal data-driven pLOS
prediction model for PD-treated patients by using basic

admission data from a national database. A pLOS prediction
model was constructed for PD-treated patients by using the
stacking method, and the Hospital Quality Monitoring System
(HQMS) database in China was used for model development.
An LR-based pLOS prediction model was built and considered
as the benchmark model. The RF, SVM, and K-nearest neighbor
(KNN) algorithms were employed as the base models because
of their superior performance in constructing ensemble models
[38,41], and the LR model was used as the meta-model for
constructing the stacking model.

Methods

Data Set and Subjects
In this study, the HQMS database—a mandatory, patient-level
national database in China—was used for data extraction and
model development. The HQMS database is a large database
consisting of standardized electronic inpatient discharge records,
including 878 Class 3 hospitals in China [42]. The standardized
electronic inpatient discharge record is a national standard
medical record with a stringent standard format across different
hospitals in China. The standardized electronic inpatient
discharge records of patients must be filled in by clinicians who
have the most comprehensive understanding of the patients’
medical conditions to ensure their validity. Strict automated
data quality control was performed on the HQMS data reporting
system. The completeness, accuracy, and consistency of data
were assessed at the time of data submission to the HQMS.
Patient demographic characteristics, clinical diagnoses, medical
procedures, pathology diagnoses, and medical expenditures
were included in the HQMS database.

This study was reviewed and approved by the Ethics Committee
of Peking University First Hospital (2015-928). The HQMS
data set used in this study spans from 2013 to 2015.

Patient records of individuals who met the following criteria
were extracted from the HQMS data set: (1) aged between 18
and 100 years, and (2) treated with PD. Exclusion criteria were
as follows: (1) diagnosed with acute kidney injury or kidney
transplantation, and (2) died in the hospital. For patients
readmitted on the same day as hospital discharge, we
recalculated their LOS by merging the back-to-back admission
records. The PD-treated patients were identified through
admission and discharge diagnoses or in-hospital medical
operations by using the International Statistical Classification
of Diseases, Tenth Revision (ICD-10) codes (Multimedia
Appendix 1). For PD-treated patients with several discontinuous
hospitalizations, we randomly selected one record for each
patient to ensure that all observations were independent and
that PD-treated patients with varying severities were included
for model development.

Outcome and Predictor Variables
The prediction outcome of this study was binary (ie, having a
pLOS or not). LOS was defined as the period from admission
to discharge. pLOS was defined as an LOS longer than the
average LOS, which is 16 days for patients with ESKD in China
[43]. Patients with pLOS may have serious medical situations
and thus need a longer hospital stay. We adopted this pLOS
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definition in our study by referring to existing studies [44-46]
and consulting with experienced clinicians. The pLOS prediction
models developed in our study aimed to assist physicians in
identifying patients at a high pLOS risk and thus to provide
early and timely interventions for these high-risk patients.

Predictor variables were determined on the basis of prior studies
[23,24,28,29] and variable availability on admission. Variables
used as predictor variables for model development in this study
included age, sex, nationality, reason for admission, specific
causes of chronic kidney disease (CKD), comorbidities,
admission type, number of hospitalizations within 6 months,
number of emergency admissions within 6 months, admission
department, planned admission or not, admission day of the
week, admitted in the same hospital as last admission or not,
place of residence, and insurance type. The reason for admission,
specific causes of CKD, and comorbidities were extracted using
ICD-10 codes. The categories of reasons for admission and
comorbidities were determined after consultation with
experienced clinicians. Limited by the available data set, the
number of hospitalizations within 6 months and number of
emergency admissions within 6 months were calculated on the
basis of the data collected from Class 3 hospitals.

Model Development

RF Model
RF is a supervised ensemble learning algorithm consisting of
a collection of tree-structured classifiers [47]. RF models work
by generating a multitude of decision trees independently and
then synthesizing the individual predictions of all trees through
a voting system. Each tree in an RF model is built using a
bootstrap sample of the training data set. Assuming that M
predictor variables are included for model development, F of
all M input variables are randomly selected for each node, and
the split of each node is performed according to the minimal
impurity principle. For each tree, a variable that was used for
tree growth in the previous nodes will no longer be used in later
splitting. In decision tree induction, the Gini index is a general
impurity measure used to determine the splitting variables. If a
data set D contains samples with J classes, the Gini index of
data set D—Gini(D)—is defined as follows [48]:

where pj is the frequency of the jth class in D. At each node, if
a variable can split the parent data set D into 2 child data sets,
D1 and D2, the decrease in the Gini index, S, for this variable
is defined by the following:

The variable with a maximal decrease in the Gini index will be
used for splitting at this node.

In an RF model, to classify a new case, each tree in the forest
model gives a classification result for the new case as a vote,
and the majority vote is declared as the final classification of
the model. Twice randomization in an RF model, which involves
randomly selecting training data samples and randomly selecting
the attributes for each tree growth, provides the model with a

strong capability of handling high-dimensional data together
with a stable generalization error [49].

We used the RandomForestClassifier package in Python to
construct the RF model in this study. A set of optimal parameters
of the RF model was found using grid search, which is an
exhaustive searching method using a manually specified subset
of hyperparameter space to find the optimal parameters of a
learning algorithm [50]. The RF model obtained in this study
had the following parameters: the number of decision trees was
300, the number of variables (F) selected at each node was 10,
and the maximal depth of each decision tree was 28.

SVM Model
SVMs have been used frequently in various classification
problems because of their remarkably robust performance in
handling noisy and nonlinearly classified data [51]. If the data
set is not linearly separable, a mapping function will be used in
the SVM to map the data set into a high-dimensional space. An
SVM tries to find an optimal separating hyperplane (ie, the
maximum-margin hyperplane) in the high-dimensional space
to make a classification. Assuming that a training data set, D,

consists of N labeled cases, , where xi represents the ith
feature vector and yi is the label of the ith case. A mapping
function, ø (x), will map the data set from the original space
into a high-dimensional space. In the transformed
high-dimensional space, the separating hyperplane [52] is
defined as follows:

where is a normal vector determining the direction, and b is the
bias. The training cases with minimum margins from the
hyperplane are called support vectors. A support vector (xj, yj)
satisfies:

In the high-dimensional space, the margin M between the
support vector and the hyperplane is defined as

The hyperplane that makes the margin M maximum is the
optimal separating hyperplane (ie, maximum-margin
hyperplane). In the process of finding the optimal separating
hyperplane, a kernel function is usually used to deal with the
high computational cost. Commonly used kernel functions
include the polynomial kernel, the linear kernel, the exponential
kernel, and the radial basis function kernel.

We used the svm package in Python to construct the SVM
model, and the optimal parameters of our SVM model were
found using grid search. The SVM model obtained in this study
had the following parameters: the kernel function was
polynomial kernel, the degree of the polynomial kernel function
was 2, and the penalty parameter C was 0.01.

KNN Model
KNN is a type of instance-based learning method that makes
predictions based on a small number of cases that are very
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similar to the target observation [53]. Specifically, given a new

case (xnew), we can find the K closest training cases, sorted
by the distance to xnew, and then classify xnew using majority
voting among the K neighbors. A commonly used distance
metric in the KNN algorithm is the Euclidean distance.

Assuming the presence of case and , we define the
Euclidean distance from xi to xj as

where and denote the values of M input predictor
variables of the 2 cases. Typically, we first normalize all the
values of the variables to the range of (0,1) because different
variables could be measured in different units. The KNN
algorithm yields convincing results in handling various
classification problems in medicine [54-56]. The model is
effective on data sets where samples of 1 class have many
possible patterns and the decision boundary is nonlinear [57].
The most important parameter in the KNN model is the number
of neighbors, which must be selected with care. In this study,
we used the KNeighborsClassifier package in Python to
construct the KNN model. The optimal parameter K was found
using grid search, and the KNN model with optimal performance
was obtained with the parameter K=130.

Stacked Generalization
Stacked generalization, or stacking, is an ensemble model that
can combine the predictions of several primary machine learning

models [37]. There are 2 types of models in a stacking
framework: several base models (level-0 models) and 1
meta-model (level-1 model). The meta-model is employed to
combine the base models. In general, a stacking framework can
obtain a more accurate prediction result than any single base
model. Different models may complement each other, and the
meta-algorithm can combine the advantages of these base
models.

The stacking model is trained as follows. Given a data set 
we define Dk and D–k = D – Dk as the training and test data sets,
respectively, in the kth round of model training. We assume
that the stacking model has J base models (Model1, Model2, ...
, Modelj, ... ModelJ) and that each base model is trained using

Dk. Let denote the prediction outcome produced by Modelj
for training case (xi, yi). The outputs of all J base models are

assembled as the input of the meta-model. Let denote the
set of outputs produced by all of the J base models for (xi, yi).

The meta-model is then trained using data set .

For a new input case, the output of the meta-model is the final
prediction outcome produced by the stacking model for the case.
How the base models are assembled in the stacking method and
how the prediction outcome for a new input case is generated
by the stacking model are shown in Figure 1.

Figure 1. Stacked generalization, where Predictionj denotes the prediction outcome produced by the model (Modelj) for a new case.

Given that the level-0 base models have already completed most
of the prediction work, the level-1 meta-model could be rather
simple [58]. The LR model is commonly used as the
meta-model. Existing studies [37,59] suggested that increasing
diversity of the base models could help improve the performance
of the stacking model. In this study, the RF, SVM, and KNN
models were employed as the base models and the LR model
was used as the meta-model.

Statistical Analysis
Two-sided t tests and chi-square tests were used for comparisons
of patient demographics. In model development and
comparisons, we employed 5-fold cross-validation. In
performance comparisons, the Brier score [60], area under the
receiver operating characteristic curve (AUROC) [60], estimated
calibration index (ECI) [61], accuracy, sensitivity, specificity,
and geometric mean (Gm) [62] were employed as performance
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measures. Considering that other performance metrics, such as
positive and negative predictive values and likelihood ratios,
can be calculated from sensitivity and specificity, we did not
employ them in performance comparisons. Brier score is an
overall performance measure, with a lower Brier score
suggesting a superior overall prediction performance. AUROC
measures the discrimination power of a prediction model,
representing the ability to distinguish positive samples from
negative samples. ECI measures the calibration power of a
model, representing the average difference between the predicted
probabilities of individual patients and the observed probability
in that patient population. ECI ranges between 0 and 100, with
a lower ECI suggesting a stronger calibration power of the
corresponding model. Gm is considered a balanced accuracy
measure because it incorporates sensitivity and specificity, and
it is defined as follows:

Gm measures the balance of the classification performance for
the majority and minority classes. The optimal cutoff value for
each model was obtained according to its corresponding receiver
operating characteristic curve, and then accuracy, sensitivity,
specificity, and Gm were calculated. Performance differences
between different models were assessed using 2-sided t tests.
Furthermore, we used the calibration plot [60] to demonstrate
the calibration power of each model in different patient groups

with pLOS risk from low to high. In the calibration plot, patients
were divided into 10 groups according to their predicted pLOS
probabilities. The x-axis shows the observed pLOS probability
of each patient group, and the y-axis shows the averaged
predicted pLOS probability of each group. The ideal calibration
curve for a perfect model is a diagonal, which suggests that the
predicted probabilities are exactly consistent with the observed
probabilities.

Statistical analysis and calculations were performed using
Python 3. Less than 15% of records in the HQMS database had
missing values for the nationality and admission type variables,
and the missing values were considered as a special category
in the analysis.

Results

A total of 23,992 eligible patients receiving PD were included
in our study, of whom 30.3% had a pLOS. Characteristics of
the PD-treated patients are displayed in Table 1. The proportion
of male patients was 55.6% (13,351/23,992), and the average
age of all patients was 52.1 (SD 15.0) years. The 2-sided t tests
showed that the differences in age, place of residence, and
insurance type between PD-treated patients with a pLOS and
those without a pLOS were statistically significant. The
histogram of the LOS distribution of the PD-treated patients is
displayed in Figure 2.
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Table 1. Characteristics of peritoneal dialysis–treated patients in the study.

P valuePatients without pLOSPatients with pLOSaAll patientsCharacteristic

16,722 (69.7)7270 (30.3)23,992 (100)Number of patients (%)

<.00151.5 (14.8)53.6 (15.4)52.1 (15.0)Age (years), mean (SD)

.63Sex, n (%)

7399 (44.2)3242 (44.6)10,641 (44.4)Female

9323 (55.8)4028 (55.4)13,351 (55.6)Male

<.001Place of residence, n (%)

6860 (41.0)2565 (35.3)9425 (39.3)East China

1416 (8.5)902 (12.4)2318 (9.7)North China

2259 (13.5)1157 (15.9)3416 (14.2)Central China

2717 (16.2)1261 (17.3)3978 (16.6)South China

2084 (12.5)849 (11.7)2933 (12.2)Southwest China

842 (5.0)225 (3.1)1067 (4.4)Northwest China

544 (3.3)311 (4.3)855 (3.6)Northeast China

.005Insurance, n (%)

6386 (38.2)2714 (37.3)9100 (37.9)UEBMIb

1487 (8.9)705 (9.7)2192 (9.1)URBMIc

4151 (24.8)1931 (26.6)6082 (25.4)NRCMSd

233 (1.4)101 (1.4)334 (1.4)Free medical care

2496 (14.9)997 (13.7)3493 (14.6)Self-paid treatment

1969 (11.8)822 (11.3)2791 (11.6)Other

apLOS: prolonged length of stay.
bUEBMI: urban employee basic medical insurance.
cURBMI: urban resident basic medical insurance.
dNRCMS: new rural cooperative medical system.

Figure 2. Histogram of length of stay (LOS) distribution of peritoneal dialysis–treated patients.

A comparison of the prediction performance of the stacking
model, its 3 base models, and the benchmark LR model in terms

of the Brier score, AUROC, ECI, Gm, accuracy, sensitivity,
and specificity is shown in Table 2. Among these models, the
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stacking model achieved the best calibration (ECI 8.691),
balanced accuracy (Gm 0.690), accuracy (0.695), and specificity
(0.701). Meanwhile, the stacking and RF models had the best
overall performance (Brier score 0.174 for both) and
discrimination (AUROC 0.757 for the stacking model and 0.756
for the RF model). Compared with the benchmark LR model,

the stacking model was superior in all performance measures
except sensitivity, but there was no significant difference in
sensitivity between the 2 models. The 2-sided t tests revealed
significant performance differences between the stacking and
LR models in overall performance, discrimination, calibration,
balanced accuracy, and accuracy.

Table 2. Prediction performance of the 5 models.

SpecificitySensitivityAccuracyGmcECIbAUROCa (95% CI)Brier scoreModel

0.6710.6830.6750.6778.9110.742 (0.731-0.753)0.178LRd

0.6570.6660.6660.661*9.386*0.721 (0.703-0.740)*0.188*KNNe

0.6900.6560.6800.6739.342*0.730 (0.720-0.739)*0.187*SVMf

0.6930.6860.691*0.689*8.722*0.756 (0.748-0.765)*0.174*RFg

0.7010.6800.695*0.690*8.691*0.757 (0.748-0.765)*0.174*Stacking

aAUROC: area under the receiver operating characteristic curve.
bECI: estimated calibration index.
cGm: geometric mean.
dLR: logistic regression.
eKNN: K-nearest neighbor.
fSVM: support vector machine.
gRF: random forest.
*P<.05 in 2-sided t test when compared with the LR model.

Figure 3 demonstrates the calibration plots of the 5 models. The
calibration curve of the stacking model was the optimal fitting
curve among the 5 models. The SVM model underestimated
the pLOS probabilities for most patients, whereas the KNN

model overestimated the pLOS probabilities for most patients.
The RF model underestimated the pLOS probabilities for most
patients at low risk and overestimated the probabilities for most
patients at high risk.
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Figure 3. Calibration plots of the 5 models. KNN: K-nearest neighbor; LR: logistic regression; RF: random forest; SVM: support vector machine.

Discussion

Principal Findings
The main objective of this study was to develop an optimal
data-driven model for predicting the pLOS risk of PD-treated
patients using basic admission data. To the best of our
knowledge, this study is the first to develop such pLOS
prediction models for PD-treated patients by using data from a

national database. Our study constructed a pLOS prediction
model for PD-treated patients based on a stacking method with
KNN, SVM, and RF as its base models and LR as its
meta-model. The prediction performance of the stacking model
was compared with those of a benchmark LR model and its 3
base models. A pragmatic pLOS prediction model for PD-treated
patients would be useful in family consultation and has the
potential to assist physicians in making optimal clinical
decisions. Considering that medical expenses are highly
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associated with LOS [6,7], the pLOS prediction model could
help estimate the medical expenses for PD-treated patients. The
degree of satisfaction may increase if patients and their families
know more about their LOS and medical expenses on hospital
admission. In addition, the pLOS prediction models could be
integrated into hospital information systems, providing
physicians with real-time suggestions about the LOS of patients
and helping physicians to identify PD-treated patients at a high
risk of pLOS and give timely individualized intervention.

In this study, the RF, SVM, and KNN models were employed
as base models for stacking because they have different learning
mechanisms and have advantages in different aspects. RF is an
ensemble learning algorithm consisting of a collection of
tree-structured classifiers. The twice randomization in an RF
model provides the model with a strong capability of handling
high-dimensional data together with a stable generalizability
[49]. However, RF models are sensitive to noise data. SVM
models make classifications by mapping data into a
high-dimensional space and finding an optimal separating
hyperplane in the high-dimensional space. SVM models show
remarkably robust performance in handling noisy and
nonlinearly classified data but have limitations in handling
high-dimensional data [51]. KNN is an instance-based learning
method that makes predictions depending on a small number
of cases that are strongly similar to the target observation. KNNs
are effective on nonlinearly separable data sets and data sets
where samples of one class have different patterns [57]. KNNs
are insensitive to noise data but have limited accuracy in
unbalanced data. In addition, an existing study [38] showed that
the ensemble of the 3 models demonstrated superior prediction
performance in dealing with classification problems. Moreover,
the literature states that the 3 classifiers are suitable for pLOS
prediction problems. All 3 classifiers have shown superior
performance in predicting pLOS for patients. Chuang et al [35]
employed the SVM and RF models for pLOS prediction in
patients who underwent general surgery, and both models
achieved a high AUROC. Steele and Thompson [63] developed
a KNN-based pLOS prediction model for general patients and
achieved an AUROC of 0.847. KNN was included as the base
model in our study because it has shown superior performance
in pLOS prediction in existing studies [63,64]. Given that its
learning mechanism is different from the learning mechanisms
of the 2 other base models (SVM and RF), KNN was expected
to improve the prediction performance of the stacking model
in dealing with data sets with various characteristics [37,59].
We also attempted to construct stacking models with
combinations of any 2 base models of RF, SVM, and KNN. We
found that the stacking model with SVM and KNN as its base
models had the worst performance, while the stacking model
with 3 base models and the stacking models with the other 2
combinations (SVM and RF, and KNN and RF) had similar
overall performances. Considering the diversity and respective
advantages of the base models, and the generalizability of the
stacking model in dealing with data sets with different
characteristics, we selected the stacking model with 3 base
models.

The performance comparison results showed that the stacking
model was the best among the 5 models in terms of overall

performance (Brier score), discrimination (AUROC), calibration
(ECI), balanced accuracy (Gm), accuracy, and specificity. The
RF model showed the best prediction performance among the
3 base models, and it had a similar overall performance and
discrimination power as the stacking model. The good prediction
performance of the stacking and RF models may be due to the
fact that both models are ensemble learning models. Our study
results are consistent with previous studies showing that the
ensemble model is almost always superior to single learning
models [38,39]. A stacking model can exploit its base models
by combining the output of each model via a meta-model, thus
reducing the bias that tends to occur with a single classifier. An
RF model can exploit its base tree models by combining the
output of each model via a voting system. The stacking model
was slightly superior to the RF model in most performance
measures for 2 possible reasons. First, the prediction
performance of a stacking model is usually similar to its best
base model [40,41]. Second, compared with an RF model, a
stacking model has more diverse base models that can
complement each other.

The calibration curves of the 5 models further suggest that the
stacking model had the optimal calibration power in different
patient groups. ECI measures the overall calibration power of
a model, whereas the calibration curve visually shows the
calibration power of a model in patient groups with pLOS risk
from low to high. The ECI and calibration curve demonstrated
that the stacking model had superior calibration power. The
calibration curve showed that the averaged predicted pLOS
probability of the stacking model had high consistency with the
observed outcome across different pLOS risk groups.
Meanwhile, the calibration curve showed that the RF model
underestimated the pLOS probabilities of most patients at low
risk and overestimated the probabilities of most patients at high
risk. This feature can help the RF model expand the difference
of predicted probabilities between patients with different pLOS
risks and thus discriminate the patients at a high pLOS risk from
those at a low risk. This probably explained why the RF model
showed similar discrimination but worse calibration power than
the stacking model.

We also attempted to develop numeric LOS prediction models
for PD-treated patients, but the corresponding prediction
performance of the models was limited, which was similar to
that of existing numeric LOS prediction models. Numeric LOS
prediction models focused on mining different LOS patterns
for patients with different LOSs (even 1 day apart), but the
difference in LOS patterns between patients with different LOSs,
especially those LOSs with 1 or 2 days apart, may be slight and
was difficult to identify. The pLOS prediction models with
binary outcomes had a much better performance.

Regarding data exclusion, the PD-treated patients who died in
the hospital were excluded in our study because the LOS pattern
of the decedents might be different from that of patients who
survived in the hospital [65,66]. Based on our consultations
with experienced clinicians, we knew that there was uncertainty
in the LOS pattern of patients who died in the hospital.
Specifically, deceased patients could die quickly after hospital
admission and have a short LOS or die after a long period of
treatment and have a long LOS. In fact, the proportion of
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PD-treated patients who died in the hospital was only 0.8% in
our study. Selection bias might have occurred when we excluded
those PD-treated patients who died in the hospital, and the pLOS
prediction model developed in our study may not apply to those
patients who have a high risk of in-hospital mortality.

In our study, some PD-treated patients were hospitalized more
than once; they can be classified into 2 types: (1) patients
readmitted on the same day as discharge, and (2) patients with
several discontinuous hospitalizations. Some hospitals in China
may discharge patients with a potential pLOS first and then
readmit them on the same day to reduce the average LOS, which
is an important indicator in hospital evaluation. Therefore, for
the PD-treated patients readmitted on the same day as discharge,
we recalculated their actual LOS by merging the back-to-back
admission records in this study. To deal with the situation of
PD-treated patients with several discontinuous hospitalizations,
we examined 2 approaches that were employed in the literature:
(1) selecting the first hospitalization record, or (2) randomly
selecting 1 record among multiple hospitalization records.
Compared with the former approach, the latter approach may
help include patients with varying severities [67]. Thus, we
employed the second approach and randomly selected 1 record
for each patient to ensure that all observations were independent
and PD-treated patients with varying severities were included
in model development.

Definition of pLOS
In this study, pLOS was defined as an LOS longer than the
average LOS by referring to existing studies [44-46] and
consulting with experienced clinicians. In the literature, there
is no consensus on the definition of pLOS for general patients
or PD-treated patients. Existing studies have defined pLOS as
an LOS longer than the average LOS [44-46], longer than the
median LOS [68], or longer than a specific LOS according to
experiences [69]. After consulting with experienced clinicians,
we know that the average LOS is a more important metric for
PD-treated patients, and it is also a more commonly used metric
in assessing medical efficiency around the world. In addition,
pLOS has been defined as an LOS longer than the average LOS
in various medical fields by researchers from different countries
[44-46]. Among the 3 cited references that defined pLOS as an
LOS longer than the average LOS, one study [44] was of trauma
patients in the United States, another study [45] was of critically
ill patients in Switzerland, and the third study [46] was of
surgery patients in China. Therefore, the definition of pLOS as
longer than the average LOS may help our models achieve good
generalizability to some extent.

Diagnosis Codes
The use of diagnosis codes to identify patients with specific
diseases may miss some target patients because clinicians tend

to focus on the main diagnosis related to admission reasons and
overlook the diagnosis of other diseases. To address this
problem, we employed ICD-10 codes associated with all
admission and discharge diagnoses and in-hospital medical
operations to identify PD-treated patients. We also used ICD-10
codes associated with admission and discharge diagnoses to
identify patients' comorbidities.

Strengths and Limitations of the Study
This study has several strengths. First, a large nationwide
database with a relatively representative population was used
to derive the prediction models. Second, all of the predictor
variables are available at admission, which ensures the feasibility
of applying the developed models in clinical practice to assist
clinical decision making. Third, 5-fold cross-validation was
employed to achieve reliable performance results.

However, this study has some limitations. First, the models
were derived from a nationwide data set in China. Some of the
variables included in the models, such as nationality and
insurance type, are region specific. The generalizability and
validity of our prediction models need to be validated using a
data set from different regions. Second, other potentially
important variables, such as some laboratory markers, that
reportedly affect LOS [27,70] were not available in the studied
data set. Third, only patient data from Class 3 hospitals were
included in the studied data set. Class 3 hospitals in China
provide the best medical services for patients, and patients
admitted to Class 3 hospitals in China may be suffering from
serious diseases. Thus, our pLOS prediction models may not
be applicable to the PD-treated patients in the primary or Class
2 hospitals in China, considering that patients admitted to those
hospitals may have only minor or moderate diseases.

Conclusion
This study was the first to develop data-driven automated pLOS
prediction models for PD-treated patients using basic admission
data from a national database. The results of our study indicate
the feasibility of utilizing a stacking-based model for PD-treated
patients. The developed pLOS prediction models have the
potential to help clinicians identify PD-treated patients at a high
risk of pLOS and then provide optimal patient management.
The pLOS prediction tools developed in this study have the
potential to assist clinicians in identifying patients at a high risk
of pLOS and to allocate resources optimally for PD-treated
patients. The generalizability and validity of the developed
pLOS prediction models need to be externally validated, and
the clinical utility of the models needs further validation before
they are used in clinical practice. The pLOS prediction models
developed in our study are purely theoretical so far, and we plan
to integrate them into the information system of a pilot hospital
for prospective validation.
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Abstract

Background: Disk herniation and disk bulge are two common disorders of lumbar intervertebral disks (IVDs) that often result
in numbness, pain in the lower limbs, and lower back pain. Magnetic resonance (MR) imaging is one of the most efficient
techniques for detecting lumbar diseases and is widely used for making clinical diagnoses at hospitals. However, there is a lack
of efficient tools for effectively interpreting massive amounts of MR images to meet the requirements of many radiologists.

Objective: The aim of this study was to present an automatic system for diagnosing disk bulge and herniation that saves time
and can effectively and significantly reduce the workload of radiologists.

Methods: The diagnosis of lumbar vertebral disorders is highly dependent on medical images. Therefore, we chose the two
most common diseases—disk bulge and herniation—as research subjects. This study is mainly about identifying the position of
IVDs (lumbar vertebra [L] 1 to L2, L2-L3, L3-L4, L4-L5, and L5 to sacral vertebra [S] 1) by analyzing the geometrical relationship
between sagittal and axial images and classifying axial lumbar disk MR images via deep convolutional neural networks.

Results: This system involved 4 steps. In the first step, it automatically located vertebral bodies (including the L1, L2, L3, L4,
L5, and S1) in sagittal images by using the faster region-based convolutional neural network, and our fourfold cross-validation
showed 100% accuracy. In the second step, it spontaneously identified the corresponding disk in each axial lumbar disk MR
image with 100% accuracy. In the third step, the accuracy for automatically locating the intervertebral disk region of interest in
axial MR images was 100%. In the fourth step, the 3-class classification (normal disk, disk bulge, and disk herniation) accuracies
for the L1-L2, L2-L3, L3-L4, L4-L5, and L5-S1 IVDs were 92.7%, 84.4%, 92.1%, 90.4%, and 84.2%, respectively.

Conclusions: The automatic diagnosis system was successfully built, and it could classify images of normal disks, disk bulge,
and disk herniation. This system provided a web-based test for interpreting lumbar disk MR images that could significantly
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improve diagnostic efficiency and standardized diagnosis reports. This system can also be used to detect other lumbar abnormalities
and cervical spondylosis.

(JMIR Med Inform 2021;9(5):e14755)   doi:10.2196/14755

KEYWORDS

deep learning; object localization; disk herniation; disk bulge; image classification

Introduction

Magnetic resonance imaging (MRI) is a widely used technique
for detecting lumbar disorders, and its advantages include high
image quality and noninvasive and ionization-free radiation.
Disk herniation and disk bulge are two common types of lumbar
intervertebral disk (IVD) injuries that often result in low back
pain and tingling and numbness in the legs [1,2]. The diagnosis
of disk disorders is highly dependent on radiology methods such
as MRI. The leading question is as follows: how can radiologists
interpret massive amounts of magnetic resonance (MR) images
quickly and accurately for real-world applications? Motivated
by machine learning– and deep learning–based clinical practice
[3-6], we propose an automatic diagnosis system for diagnosing
disk bulge and disk herniation with MR images via deep
convolutional neural networks (CNNs), which can reduce
radiologists’ workload and provide the consistency required to
produce standardized diagnosis reports.

Koh et al [7] proposed a computer-aided framework that uses
several heterogeneous classifiers (ie, a perceptron classifier, a
least mean squares classifier, a support vector machine classifier,
and a k-means classifier) to construct a 2-level classification
scheme for disk herniation diagnosis, which achieved 99%
accuracy for 70 subjects. A probability classifier based on
Gaussian models was proposed to detect abnormal IVDs. This
model used the following three features: appearance, location,
and context [8]. A study [9] on texture features that were
obtained from IVD MR images used three different classifiers
(ie, the back-propagation neural network, k-nearest neighbor,
and support vector machine classifiers) to classify normal disks
and IVDs and achieved a maximum accuracy of 83.33%.
Additionally, many other methods have been proposed to
automatically diagnose IVD diseases based on MR images
[10-13]. Most of these models are for sagittal MR images, and
there are very few studies that have used axial lumbar MR

images, which are even more important in real clinical scenarios
to identify disk bulge and herniation [13]. Most previous studies
have mainly focused on binary classification (disease and
normal) [7-9,11,12], as it is rare to study 2 diseases at the same
time. In this study, we present a deep CNN–based diagnosis
system for diagnosing lumbar disk bulge and disk herniation
based on axial MR images. CNN analysis has proven to be an
efficient method that is widely used to solve various image
problems and has achieved huge success in many applicable
fields [14-18].

This study aimed to develop a clinical applicable system that
requires as little information from doctors as possible for
diagnosing disk bulge and disk herniation via deep learning
methods [19-21].

Methods

Data Set
In this study, lumbar MR Images and clinical diagnosis reports
were collected from the Medical Imaging Department of Xi’an
Number 3 Hospital, which is a large-scale grade 3A general
hospital in Xi’an, China. The sagittal and axial T2-weighted
lumbar MR images of 500 patients were acquired by using a
Philips Ingenia 3.0T scanner and exported in the Digital Imaging
and Communications in Medicine (DICOM) format. The main
diagnosis was based on axial images, as they display the
morphology of IVDs more clearly than other images. For each
subject, midsagittal images were used to locate IVDs in axial
images. A total of 3555 axial images were used in this study.
These images were labeled as normal disk, disk bulge, and disk
herniation according to diagnosis reports and rechecked by an
experienced radiologist, as shown in Table 1. Examples of
midsagittal lumbar images and axial images of normal disks,
disk bulge, and disk herniation are shown in Figure 1.

Table 1. The number of axial images in each category.

Total, nHerniation images, nBulge images, nNormal images, nIntervertebral disk

6663637593L1-L2a

69930120549L2-L3

71786284347L3-L4

749178413158L4-L5

724244242238L5-S1b

355557410961885All intervertebral disks

aL: lumber vertebra.
bS: sacral vertebra.
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Figure 1. Examples of lumbar MR images. (A) A sagittal lumbar MR image in which 5 IVDs are labeled. (B) A sagittal lumbar MR image in which
6 vertebral bodies are enclosed in boxes. (C) An axial lumbar MR image of a normal disk. (D) An axial lumbar MR image of disk bulge. (E) An axial
lumbar MR image of disk herniation. L: lumbar vertebra; MR: magnetic resonance; S: sacral.

Overall Diagnosis System
Our system consists of 4 steps, as shown in Figure 2. In the first
step, the six lumbar vertebral bodies (lumbar vertebra [L] 1, L2,
L3, L4, L5, and sacral vertebra [S] 1) in midsagittal images
were detected and located. The second step was to identify the
corresponding IVDs in each axial MR image. Afterward, these

axial images were grouped into five categories (L1-L2, L2-L3,
L3-L4, L4-L5, and L5-S1). In the third step, the IVD regions
of interest (ROIs) in axial images were segmented to decrease
the noise of the images. In the fourth step, each ROI image that
included the five IVDs was classified as normal disk, disk bulge,
or disk herniation.
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Figure 2. Overall diagnosis system. This system consists of 4 steps. First, vertebral bodies (L1, L2, L3, L4, and L5) in sagittal lumbar magnetic resonance
images were automatically located by using the faster R-CNN, and the middle point of each vertebral body was calculated. Second, the axial images
were grouped into 5 categories. Each category corresponded to an intervertebral disk (ie, the L1-L2, L2-L3, L3-L4, L4-L5, and L5-S1 intervertebral
disks). Third, the intervertebral disk regions of interest in each axial MR image were segmented using the faster R-CNN. Finally, in each category, the
region-of-interest images were classified as images of normal disks, disk bulge, and disk herniation using ResNet101. L: lumbar vertebra; R-CNN:
region-based convolutional neural network; S: sacral.

Automatically Locating Vertebral Bodies in
Midsagittal Images
The faster region-based CNN (R-CNN) [19] was developed
from the R-CNN [22] and the fast R-CNN [23], which unifies
the target detection process (including candidate region
generation, feature extraction, classification, and position
refinement) into 1 deep network framework and greatly
improves operational speed. In step 1, the faster R-CNN was
used to locate the vertebral bodies in sagittal MR images.

First, the six vertebral bodies (L1-S1) in 200 midsagittal images
were manually located under the guidance of a radiologist.
Second, the faster R-CNN was trained to detect and locate each
vertebral body. We detected vertebral bodies instead of disks
because they were easier to manually locate. Finally, the middle
point coordinate of each vertebral body was calculated based
on bounding box coordinates, as the precise location of the
vertebral bodies would be used to locate the vertebrae in axial
MR images, as shown in Figure 1 (step 1).

The faster R-CNN was implemented with Caffe [24] (Berkeley
Vision and Learning Center deep learning framework) and
trained in parallel on 4 Nvidia Titan X graphics processing units.

Accuracy, sensitivity, and specificity [25,26] were analyzed to
comprehensively evaluate the performance of this system.

Identifying the Corresponding IVD in Each Axial MR
Image
For each subject, 15 axial slices were needed to identify the
corresponding IVDs (L1-L2, L2-L3, L3-L4, L4-L5, and L5-S1)
in each axial MR image. In step 1, the center point coordinates
of the six vertebral bodies in the sagittal images were calculated.
The directed distances from these center points to each axial
image were calculated for each subject based on the spatial
location relationship between sagittal images and axial images.
The directed distances indicated which IVDs were closer to the
corresponding IVDs in each axial image and which IVDs were
located above or below the corresponding IVDs, as shown in
Figure 3. Based on these distances, the axial slices were
classified into 5 categories (L1-L2, L2-L3, L3-L4, L4-L5, and
L5-S1). The conversion from DICOM patient-based coordinates
to 2D computer coordinates was conducted in order to establish
the relationship between the primitively processed images and
the 3D DICOM coordinates. The detailed procedures are
depicted in Multimedia Appendix 1.
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Figure 3. The intervertebral disks (from L1-L2 to L5-S1) in each axial image were located by calculating directed distances. The red dot shows the
middle point of each vertebral body in a sagittal image. The blue line depicts the directed distance from the red dot to a specific axial image. L: lumbar
vertebra; S: sacral.

Locating IVD ROIs in Axial MR Images
Axial lumbar MR images contain large amounts of unrelated
areas. In order to focus on IVDs and extract more relevant
features, IVD areas were labeled manually in 1237 axial images,
including normal disk areas, bulging disk areas, disk herniation
areas, and the L1-L2 to L5-S1 IVD areas. The IVD areas of
each ROI image needed to be located to train the faster R-CNN,
and our fourfold cross-validation showed 100% accuracy.
Afterward, the ROIs in each axial lumbar image were detected
and extracted using the faster R-CNN, as shown in Figure 2
(step 3). We reserved a larger area for the components
surrounding IVDs, as they may also help with identifying the
condition of the disks (eg, the compression of the spinal canal).

Classification of ROI Images
It is worth mentioning that the degradation problem of the
ultradeep CNN may result in reduced classification accuracy
as the depth of the CNN increases. He et al [27] proposed a
deep residual network framework that can solve this problem
by using the residual block method, and this was proven to have
significant accuracy for the ImageNet validation set [27-29].
The residual architecture of ResNet101 is shown in Figure 2
(step 4).

According to the diagnosis reports, in every category (L1-L2
to L5-S1), a total of 3555 axial MR images were labeled as
normal disk, disk bulge, or disk herniation. All 3555 ROI images
were reviewed by an expert radiologist to confirm whether the
images conformed to the labels. Afterward, ResNet101 was
used to conduct the 3-class classification for each category, and
our fourfold cross-validation showed classification accuracies
of 92.7%, 84.4%, 92.1%, 90.4% and 84.2% for the L1-L2,
L2-L3, L3-L4, L4-L5, and L5-S1 IVDs, respectively. In this
step, a cost-sensitive CNN was used to test for imbalances in
the 3-class classification data set [30]. Relevant mathematical
theory is provided in Multimedia Appendix 1.

Results

We focused on images that showed disk bulge, disk herniation,
and normal disks. From Table 1, we can see that the probabilities
of disk bulge and disk herniation in the L1-L2 and L2-L3 IVDs
are low, and disk bulge tended to occur more commonly in the

L3-L4, L4-L5, and L5-S1 IVDs. The L5-S1 IVD is the most
common location of disk herniation. This is probably because
it bears more weight and pressure than the other locations.

Discussion

Principal Findings
Our system is comprised of 4 steps. First, the system
automatically located vertebral bodies (from L1 to S1) in sagittal
images by using the faster R-CNN, which was trained on 200
manually cropped images. Our fourfold cross-validations
showed 100% accuracy. This high location accuracy shows that
the faster R-CNN method can more accurately locate vertebral
bodies than many other methods, such as the Gabor filter bank
method [31], which is a method based on measurements of disk
signal intensity and structure [7]. Second, the disk positions
(from L1-L2 to L5-S1) in each axial image were calculated
based on the equations for coordinate conversion. We achieved
an accuracy of 100%. Third, the system automatically segmented
IVD ROIs in axial MR images by using the faster R-CNN,
which was trained on 1300 manually boxed images that included
all five types of disks (from L1-L2 to L5-S1) and the disk
conditions (normal, herniation, and bulge). The mean average
precision [21] reached 100%. This high accuracy was the result
of the excellent performance of the faster R-CNN. Finally, all
ROI images were classified as normal, bulge, and herniation
by using ResNet101. The average accuracies for the 3-class
classification of the L1-L2, L2-L3, L3-L4, L4-L5, and L5-S1
IVDs were 92.7%, 84.4%, 92.1%, 90.4%, and 84.2%,
respectively. All relevant results are shown in Figure 4. Previous
studies have mainly focused on comparing IVDs affected by 1
disease (disk bulge or herniation) with normal IVDs. This is
known as a binary classification. For example, the performance
value of one IVD classification system was 86.5%, and this was
based on a sparse shape reconstruction from a statistical shape
model [32]. Additionally, an accuracy of 92.78% was reported
by a study that classified normal disks and disk bulge by using
a program called IVD Descriptor [13]. Compared to the
accuracies of these previous studies, our accuracies were roughly
the same or slightly inferior. This was mainly because a 3-class
classification system is often less accurate than a binary
classification system.
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Figure 4. Results of the 3-class classification (normal disk, disk bulge, and disk herniation). (A) The average accuracies of the classification system
(calculated using ResNet101) for the following five categories: L1-L2, L2-L3, L3-L4, L4-L5 and L5-S1. The rows and columns of all heat maps represent
ground truth labels and predicted labels, respectively. The x-axis shows the five intervertebral disks. (B) A heat map of the classification accuracies for
category L1-L2. The color scale expresses the accuracy. (C) A heat map of the classification accuracies for category L2-L3. The color scale expresses
the accuracy. (D) A heat map of the classification accuracies for category L3-L4. The color scale expresses the accuracy. (E) A heat map of the
classification accuracies for category L4-L5. The color scale expresses the accuracy. (F) A heat map of the classification accuracies for category L5-S1.
The color scale expresses the accuracy. L: lumbar vertebra; S: sacral.

Based on our results, the classification accuracies for the L2-L3
and L5-S1 IVDs were lower than those for other disks. The
shape of a normal disk is somewhat different from the L1-L2
to L5-S1 IVDs. With regard to the L2-L3 disks, several images
were blurry, and it was difficult to identify subtle differences.
This, coupled with our small sample of herniated disks, had a
considerable impact on our classification accuracy. Data quality
may become a crucial factor that could restrict the performance
of algorithms used in research [33]. With regard to the L5-S1
disks, the normal disks were similar in shape to that of bulged
disks in axial images. There were also a few images that were

wrongfully classified by our system, which resulted in a lower
classification accuracy.

Web-Based Diagnosis System

We used the Django framework [34] to develop an automatic
diagnosis system for radiologists that could analyze inputted
medical images and show results as normalized diagnosis reports
(a PDF file). The appearance and functions of the reports are
shown in Figure 5. This system can be deployed in multiple
radiology departments to analyze patients’ lumbar MR images
and collect more images to improve radiologists’ IVD
interpretation performance. This system is freely available [35].
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Figure 5. Appearance and functions of the reports of the web-based automatic diagnostic system. (A) This is the page for uploading a folder. (B)
Diagnostic results in tabular form. (C) The diagnostic report in the Unified format. LDP: lumbar disk protrusion.

In this paper, we present an automatic diagnosis system for
diagnosing disk bulge and disk herniation with axial MR images
via deep convolutional neural networks. This system can
automatically determine the position and the condition of IVDs
in axial MR images. Therefore, this system could help reduce
the workloads of radiologists by analyzing lumbar MR images
via a standardized method. In addition, this system can be
expanded to analyze other types of lumbar diseases, such as

cervical spondylosis. However, there are some limitations to
using this system. Data from this system could be fundamentally
limited by the quality of images (eg, when the image is blurry),
making it difficult to identify subtle differences. The system is
also limited by the size of the total data set, as it is relatively
small for deep convolutional neural networks. Our future work
will focus on the following two aspects: (1) developing this
system by using a more targeted method that analyzes the
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specific features of MR images, and (2) gathering more MR
images to train a more practical and complete automatic

diagnosis system.
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MR: magnetic resonance
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R-CNN: region-based convolutional neural network
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Abstract

Background: Predicting the risk of glycated hemoglobin (HbA1c) elevation can help identify patients with the potential for
developing serious chronic health problems, such as diabetes. Early preventive interventions based upon advanced predictive
models using electronic health records data for identifying such patients can ultimately help provide better health outcomes.

Objective: Our study investigated the performance of predictive models to forecast HbA1c elevation levels by employing several
machine learning models. We also examined the use of patient electronic health record longitudinal data in the performance of
the predictive models. Explainable methods were employed to interpret the decisions made by the black box models.

Methods: This study employed multiple logistic regression, random forest, support vector machine, and logistic regression
models, as well as a deep learning model (multilayer perceptron) to classify patients with normal (<5.7%) and elevated (≥5.7%)
levels of HbA1c. We also integrated current visit data with historical (longitudinal) data from previous visits. Explainable machine
learning methods were used to interrogate the models and provide an understanding of the reasons behind the decisions made by
the models. All models were trained and tested using a large data set from Saudi Arabia with 18,844 unique patient records.

Results: The machine learning models achieved promising results for predicting current HbA1c elevation risk. When coupled
with longitudinal data, the machine learning models outperformed the multiple logistic regression model used in the comparative
study. The multilayer perceptron model achieved an accuracy of 83.22% for the area under receiver operating characteristic curve
when used with historical data. All models showed a close level of agreement on the contribution of random blood sugar and age
variables with and without longitudinal data.

Conclusions: This study shows that machine learning models can provide promising results for the task of predicting current
HbA1c levels (≥5.7% or less). Using patients’ longitudinal data improved the performance and affected the relative importance
for the predictors used. The models showed results that are consistent with comparable studies.

(JMIR Med Inform 2021;9(5):e25237)   doi:10.2196/25237

KEYWORDS

glycated hemoglobin HbA1c; prediction; machine learning; deep learning; neural network; multilayer perceptron; electronic
health records; time series data; longitudinal data; diabetes
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Introduction

Background
The level of glycated hemoglobin (HbA1c) is used to measure
the average glucose concentration in red blood cells [1,2]. Unlike
other glucose blood tests, such as random blood sugar (RBS)
and fasting blood sugar (FBS), HbA1c provides a long-term
measure of a patient’s blood glucose levels [3]. The HbA1c test
can therefore provide physicians with a reliable means of
monitoring a patient’s hyperglycemia without requiring the
patient to undertake overnight fasting prior to being tested.

A concentration of 6.5% for the HbA1c in patient blood is
considered as the cutoff point for the diagnosis of diabetes [4].
However, patients with a concentration of less than 6.5% are
not completely excluded from a diabetes diagnosis, as the range
of elevation levels (5.7%≤ HbA1c <6.5%) can indicate the future
onset of diabetes. Therefore, HbA1c can act as an early predictor
for the potential development of type-2 diabetes mellitus
(T2DM) [2]. Ackermann et al [3] suggested using the HbA1c

test as a measure for identifying those adults who are at a greater
risk of developing T2DM in the future.

Research has shown that reducing HbA1c levels can significantly
reduce the possibility of developing serious complications.
Hence, close monitoring of HbA1c levels is recommended for
all diabetic patients and those with the potential for developing
diabetes [5]. It is also suggested that diabetic and nondiabetic
patients with raised HbA1c levels should be clinically checked
and monitored as a preventive intervention to avoid developing
T2DM [6].

Currently, the clinical data collected from patient visits consists
of a set of readings for vital signs and lab tests, diagnoses,
physicians’ notes, and treatments that are stored in electronic
health records (EHRs). These are collected on an irregular basis,
according to clinical needs, and stored with an associated time
stamp.

In recent years, machine learning models have shown powerful
capabilities for analyzing and understanding complex data across
a wide variety of applications. Our research question for this
study was as follows: “Can HbA1c prediction be improved by
using machine learning with longitudinal data that are normally
available in EHR systems?”

This paper reports an investigation into the performance of
machine learning models to predict current HbA1c levels as a
binary classification problem using EHR data. Nondiabetic
patients with an HbA1c level of 5.7% or more are considered to
have an elevated HbA1c, while those with levels lower than this
are considered normal. The models combine current visit data
with extra features (independent variables) extracted from
previous visits by patients. We used explainable methods to
rank the features in order of their importance to the decision
made by each of the models. To the best of our knowledge, this
study is the first to employ machine learning models that use
longitudinal data from EHR systems for the purpose of HbA1c

elevation risk prediction. This study is also the first to use

explainable machine learning techniques to explain the
classification decisions made by black box models, support
vector machine (SVM), and multilayer perceptron (MLP), in
predicting HbA1c elevation risk (≥5.7%), in order to better
understand the behavior of the model.

Related Work
EHR data have been intensively investigated for a variety of
medical decision support tasks [7]. These tasks include the
analysis of complex patterns and prediction of major medical
events (for example, diagnostic imaging and gene interactions)
[8,9]. Several studies have demonstrated the successful
employment of EHR data with prediction models [10]. For
instance, machine learning has been intensively used with EHR
data in diagnosing diabetes and discovering its related patterns
[11-15]. However, we are not aware of any studies that have
explored machine learning models for the prediction of current
elevated HbA1c levels using EHR data from a nondiabetic
population or the impact of patient longitudinal data on the
effectiveness of such predictive machine learning models.

Several studies have investigated the association between HbA1c

levels and clinical variables using statistical models [16,17]. A
study by Rose et al [18] discussed the correlation between RBS
and HbA1c levels. Stanley et al [19] used a linear regression
model for imputation of missing HbA1c data. Their model
calculates HbA1c levels for patient records with missing HbA1c

values as continuous and categorical values and uses 4 predictors
extracted from an EHR system—RBS, FBS, age, and gender—as
predictors to calculate the level of HbA1c for a diabetic
population. Simone et al [20] used linear regression models to
predict HbA1c levels after 6 years for nondiabetic patients using
different populations.

A study by Wells et al [21] in 2018 was the first to focus on
predicting current HbA1c elevation levels for nondiabetic
patients through use of an EHR data set. Multiple logistic
regression (MLR) was employed to calculate the probability of
a patient having an elevated HbA1c level (≥5.7%). The data set
was extracted from an EHR system used in the United States.
The authors used 8 independent variables fitted to the model
using restricted cubic splines with 3 knots to formulate the final
equation. The performance of the MLR model was compared
to that of the models used by Baan et al [22] and Griffin et al
[23]. However, the models by Baan and Griffin aimed at
predicting the onset of patients’ diabetes rather than predicting
HbA1c levels for nondiabetic patients. In addition, the
experimental data set used by Wells et al to train and test their
model was imbalanced with 74% of the samples having normal
HbA1c levels (5.7%) and only 26% of the samples having
elevated HbA1c levels (≥5.7%).

We performed a differentiated replication of the study by Wells
et al [21] using the more balanced King Abdullah International
Medical Research Center (KAIMRC) data set [24]. Although
the significant variables identified in our replication were in
general agreement with those of the original study, there were
some differences in the ranking of importance for these,
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suggesting that such models do need to be “tuned” to the
characteristics of different populations.

Methods

Study Design
To study the impact of using advanced predictive models with
EHR data to predict current HbA1c levels, we employed the
MLR, random forest (RF), SVM, and logistic regression (LR)
models, as well as a deep learning model, MLP [25]. The
problem was formulated into a binary classification problem
whereby the target variable, HbA1c level, was encoded as 1
when the level of HbA1c was 5.7% or more and with 0 otherwise.
The results obtained from using these models were compared
to those obtained from employing the model used by Wells et
al with the KAIMRC data set (detailed in the Data Set
subsection).

The performance of the models was investigated using current
visit data only and with additional longitudinal data from current
and previous visits. The performance of each model was
evaluated using measures commonly employed in clinical
applications. For the SVM and MLP models, the relative
importance of the features was also calculated using explainable
machine learning techniques.

Explainable Methods for Black Box Models
Using black box machine learning models in health care can
have adverse effects on the trust and confidence placed in their
outcomes; the risk of misclassification is potentially too high
for clinicians to confidently use black box models for high risk
health care decisions, and not being able to interpret a model’s
decision exacerbates this problem [26]. Explainable methods
for machine learning models allow interpretable outcomes that
can expose the reasons behind the decision made by the model
[27]. This transparency provides both health professionals and
patients with the confidence and trust in the outcome of the
models. The widely used Shapley Additive Explanations
(SHAP) values [28] and local interpretable model-agnostic
explanations (LIME) score [29] techniques have therefore been
used to provide a degree of transparency to our deep learning
model.

SHAP values are derived from Shapley values used in game
theory and provide a method of calculating the contribution of
each feature (variable) to the final prediction via the
GradientSHAP approximation. This is achieved for each feature
by comparing the prediction the model makes when the feature
is present with the prediction obtained when the feature takes
some baseline value [28]. Consequently, the SHAP values for
a given input “explain” how each feature affects the output of
the model when compared to the baseline (or “default”) output
of the model. We used SHAP values to interpret our black box
models, so they could be efficiently calculated, and their use
enabled a global view of the model to be constructed through
the computation of SHAP values from across the whole data
set.

SHAP values were computed using the feature’s mean marginal
contribution across different coalitions of all features. SHAP

values themselves are computationally intensive to compute,
and so approximation methods are commonly used when
calculating the values.

To ensure that the SHAP values we calculated were not too
greatly affected by the approximation method used, we also
computed the LIME [29] scores for the models across the entire
data set. LIME tries to estimate locally faithful linear
explanations (ie, explanations that correspond to how the model
behaves around the instance being explained) for any classifier.
LIME achieves this by creating local linear classifiers that
approximate the behavior of the original model in the vicinity
of the data being explained. As linear models are inherently
interpretable through their parameters, they can be used to
generate explanations of the original model. Both SHAP and
LIME have the advantage that they are model-agnostic
techniques, and so we were able to apply both methods to both
of our black box classification models (SVM and MLP).

Data Set
The data used in this study were taken from the KAIMRC data
set. The data were collected from King Abdulaziz Medical City
located in the central and western regions of Saudi Arabia, an
area which has been ranked second in the Middle East and
seventeenth in world in diabetes prevalence by the World Health
Organization (WHO) [30]. According to the International
Diabetes Federation, the diabetes prevalence rate in Saudi Arabia
is 18.3%. Therefore, the availability of the data from this
population provides considerable opportunities for research into
the early prediction of diabetes.

The data set contains a full history of patient details, vital signs,
and lab test readings for each patient visit for the period from
2016 to the end of 2018. As the aim of this study was to identify
nondiabetic patients that are at a high risk of HbA1c elevation,
all patients previously diagnosed with hyperglycemia were
excluded from the experimental data set. The remaining cohort
formed our experimental data set and was categorized by using
the American Diabetes Association’s guidelines [31], in which
patients with HbA1c readings of more than 5.7% are considered
as being in the prediabetic range, while those with less than
5.7% are considered to be in the normal range.

Most medical data sets are imbalanced [32-34]. These
imbalances occur when the proportion of one class of patients
in the data set is greater than its counterpart class [35,36].
However, unusually, our experimental data set was not
imbalanced. Slightly over half of the patients in our experimental
data set (9826/18,844, 52.14%) were found to have elevated
levels of HbA1c (≥5.7%) while 47.86% (9018/18,844) of patients
had normal HbA1c levels (<5.7%). This can be ascribed to the
high incidence of diabetes in the region from which the data set
was collected [37].

A detailed illustration of the patients’ class distribution (HbA1c

levels) by age groups and gender is shown in Figure 1. This
shows that as the age of patients increased, so did the proportion
of patients who had elevated HbA1c levels. The data set also
exhibited a balanced gender distribution, with 49.40%
(9308/18,844) of the patients being male and 50.60%
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(9536/18,844) being female. However, the proportion of male
patients with elevated levels of HbA1c (≥5.7%) was greater than
that of the female patients. Also, female patients with normal

levels of HbA1c (<5.7%) made more visits than did males. Table
1 shows the profile for the distribution of HbA1c elevation levels
organized by gender.

Figure 1. HbA1c elevation levels distributed over age range and gender in the King Abdullah International Medical Research Center (KAIMRC) data
set (before sampling). HbA1c: glycated hemoglobin.

Table 1. Profile for the class distribution over gender.

HbA1c ≥5.7%, n/N (%)HbA1c
a <5.7%, n/N (%)Characteristics

Number of patients (N=18,844)

9826/18,844 (52.14)9018/18,844 (47.86)Total

5544/9826 (56.42)3764/9018 (41.74)Male

4282/9826 (43.58)5253/9018 (58.26)Female

Number of visits (N=157,600)

77,993/157,600 (49.49)79,607/157,600 (50.51)Total

41,591/77,993 (53.32)31,620/79,607 (39.72)Male

36,402/77,993 (46.68)47,987/79,607 (60.28)Female

aHbA1c: glycated hemoglobin.

Feature Selection and Data Sampling
Six main variables (features) were extracted from the KAIMRC
EHR data set to be used in this study. These features, which
were selected first for their theoretical association with
hyperglycemia and second for their availability in the KAIMRC
data set, were the following: age, BMI, estimated glomerular

filtration rate (eGFR), RBS, total cholesterol, and
non–high-density lipoprotein. The lab codes of the features used
are available in Multimedia Appendix 1 Table S1. The
descriptive statistics (using the data for the current visit only
for unique patients), units, and P values for the selected features
are presented in Table 2.
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Table 2. Descriptive statistics of the selected features from the King Abdullah International Medical Research Center (KAIMRC) data set.

P valueHbA1c 5.7%, mean (SD)HbA1c
a 5.7%, mean (SD)Feature

<0.00158.92 (15.12)43.94 (16.38)Age (years)

<0.00130.90 (6.55)29.11 (6.75)BMI (Kg/m2)

<0.00185.81 (28.239)100.03 (29.22)eGFRb (ml/min/1.73 m2)

<0.0017.88 (4.19)5.45 (1.26)RBSc (mmol/L)

<0.0014.42 (1.20)4.65 (1.07)CHOLd mean (mmol/L)

<0.0013.37 (1.115)3.45 (1.01)non-HDLe mean (mmol/L)

aHbA1c: glycated hemoglobin.
beFGR: estimated glomerular filtration rate.
cRBS: random blood sugar.
dCHOL: total cholesterol.
enon-HDL: non–high-density lipoprotein.

It is very common in clinical practice that physicians may
require some lab tests and vital signs to be frequently recorded.
In these cases, the average value of all readings taken on a given
day (the basic time interval used for this study) was used. For
inpatient visits, only data for the first day were considered, and,
where there were missing values, the first available values from
the visit were used.

For the purpose of this study, we aimed at predicting the HbA1c

levels (≥5.7%) for current (last) patient visits only. Unlike the
sampling approach used by Wells et al, which was based on
independent hospital visits for patients (including for the same

patients), the sampling approach used in this study included
independent patients to ensure only unseen patients data were
used for testing the models. Although we aimed to identify
patients with elevated levels of HbA1c from a nondiabetic
population, patients previously diagnosed with diabetes were
excluded. We also excluded nonadult patients and those with
erroneous or missing values [24]. Figure 2 shows the details of
the tasks performed to refine the sample selection. This resulted
in a reduction in the size of the experimental data set from
114,057 patients with 750,709 visits to 18,844 unique patients
with 157,600 visits.

Figure 2. Details of the sampling approach performed on the KAIMRC data set. EHR: electronic health record; HbA1c: glycated haemoglobin; KAIMRC:
King Abdullah International Medical Research Center.

The inputs (input features space) for the models used in this
study were continuous values. Values for age, eGFR, RBS and
total cholesterol features were directly available in the KAIMRC

data set. The values for the BMI and non–high-density
lipoprotein variables were calculated from other available
features using the formulae in Multimedia Appendix 2.
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Input Preparation for the Models
The input structure for the deep learning model was organized
as a matrix, based on current and previous time-stamped patient
visits. It contained the current visit data concatenated with
approximated values for the selected features from all previous
visits, which we refer to as the “Approximated Time Series
Data”.

Each patient visit was described by the selected features,
represented as x1, x2 …, xn. These features were formed as
episodes based on the time-stamped values available in each
visit (vi).

Here, xij is the feature value at a patient visit (0 < i ≥ s, 0 < j ≥
n); s is the number of time series steps (the length of the input
sequence); and n is the number of features for each time step,
which was set to 6 as explained earlier.

If the number of visits (longitudinal time series visits) for a
patient was fewer than s, the input for this patient was padded
out with the mean value of the available visits to compensate
for the missing time series data (Multimedia Appendix 3 shows
an example of the padding approach used). Where the number
of longitudinal visits for a patient was more than s, the piecewise
aggregation approximation (PAA) technique [38] was applied
to the data for these visits to account for all data from patient
visits.

PAA transforms the longitudinal time series data using s as a
number of sliding windows (or segments) into a reduced number
of time steps data (approximated) employing the mean value
of the series falling within that window (segment) [39]. We
tested the models with several values for the size of the sliding
window (s), and 3 was shown to be the optimal value. The
formula used to calculate the approximated time-series data was
as follows:

Where represents the approximated value for x, r is the total
number of visits for a patient, and s is the reduced number of
time series steps (Multimedia Appendix 4 shows an example
of the PAA technique used).

The approximated time series data forming the output of the
PAA was then concatenated with the current visit data to form
the final input for the deep learning model. As the MLR, RF,
SVM, and LR models are not capable of handling
multidimensional data (formed as matrices), the output of the
PAA was reorganized for these into a single-dimensional input
by vectorizing the matrix used in equation 1 as below:

Input = [x11x12x13 …xsn]    (3)

The last data preprocessing task before training the predictive
models was data scaling. The experimental data set was scaled
using the normalization technique that rescales the ranges of
each of the features to be between 0 and 1 using minimum and
maximum values of that feature.

Predictive Models and Experimental Setups
As a baseline comparison, we employed the MLR model used
by Wells et al [21], and compared the results from this with
those from 4 commonly used machine learning models.

The MLR model is used to create a mathematical equation that
can best calculate the probability of a value by assigning weights
(coefficients) to the independent variables (features) based on
their importance [40]. In this study we employed the same
approach used by Wells et al by which the continuous features
were fitted into the MLR model using restricted cubic splines
technique with 3 knots. When we used the longitudinal input,
the variables that caused collinearity were excluded.

Random forest is an algorithm very commonly used for
classification. It combines several decision trees that are
generated during the training process. Each decision tree is
trained using a random subset of the training data set. The final
classification is then based on the majority voting results of all
generated decision trees [41]. The quality function used in the
employed RF model is the Gini importance, with a value of 100
for the number of tree parameters.

Logistic regression is commonly used to solve binary
classification problems. It calculates the odds ratio of the
variables and is similar to MLR but uses a binomial distribution
of the dependent variable (ie, more than 1). Thus, it includes a
logit function that handles different types of relationships
between the dependent and independent variables [42,43].

Support vector machine was introduced by Vapnik [44] in 1998.
It can solve both classification and regression problems. It uses
the training feature space to decide on the separation boundaries
(hyperplane) that best divides the training data set into regions,
1 for each class. The very close points to the hyperplanes are
the support vectors. SVMs also use kernels to help enhance
class separation by mapping the training features into a higher
dimensional space with an increased number of dimensions
[44,45]. The kernel function used in the SVM model employed
is a radial base function with a value of 1 for the cost parameter
(C).

A multilayer perceptron, also known as a feed-forward neural
network, is one of the most common deep learning approaches.
It is mainly used to address supervised learning problems by
learning the dependencies between the input layer (the features
or variables) and output layer (the classification decision) using
a fully connected hidden layer in between. The layers, including
hidden ones, contain a number of neurons that are connected to
the neurons of the next and previous layers via weights and
nonlinear functions. MLP uses a backpropagation algorithm to
update the weights and biases within the hidden layers to
minimize the output error rate [25,46].

To optimize the MLP model, fine-tuning of the structure and
hyperparameters was performed and involved the number of
hidden layers and neurons, activation functions, optimizers, and
loss functions. The optimized structure of the MLP model used
in this study contained 3 hidden layers. The number of neurons
in the hidden layers were 48, 48, and 24, respectively. The final
layer (the output layer) contained 2 neurons for the final output
of the model (Y1 for normal HbA1c or Y2 for elevated HbA1c).
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A rectified linear unit activation function was used in the 3
hidden layers, while a sigmoid was used in the output layer.
The detailed structure of the MLP model is shown in Figure 3.

The model was trained using an Adam optimizer with mean
squared error as the loss function.

Figure 3. The structure used for multilayer perceptron trained with the longitudinal data. relu: rectified linear unit.

Evaluation of Model Performance
The models all employed the same data preprocessing, training,
and testing techniques. The models were validated using the
10-fold cross-validation technique. The k-fold cross-validation
is one of the most commonly used approximation approaches
for validating the obtained results [47,48]. For the MLP model,
100 epochs were used to train each fold.

As our measure for evaluating and comparing the performance
of the proposed models, we used the area under the receiver
operating characteristic (AUC-ROC) curve, which is equal to
the concordance statistic [49]. We also report values for a set
of measures that are commonly used in clinical applications:
balanced accuracy (that calculates the recall average for each
class), overall accuracy, F score, precision, and precision-recall
area under the curve (PR-AUC).

To determine the importance that the black box models (SVM
and MLP) place upon each variable, we first computed the
SHAP values and LIME scores for all samples in our data set
and then calculated the average absolute SHAP value and LIME
score for each predictor.

Results

Table 3 shows the performance metrics obtained using the MLR,
RF, SVM, LR, and MLP models with and without the
longitudinal data. The results show that the models achieved
competitive performance using the reported measures. The LR
and MLP models trained with and without the longitudinal data
achieved better performance with regards to the AUC-ROC
measure than did the MLR (statistical model employed by Wells
et al) or the RF and SVM models (more details about AUC-ROC
and PR-AUC curve plots are presented in Multimedia Appendix
5). The results also show that the SVM, LR, and MLP models
trained with and without the longitudinal data achieved better
performance than did the MLR and RF models using the
balanced accuracy measure.

Table 3 also shows that all models, including the MLR, achieved
better performance using all reported measures when they were
trained with the features from patients’ longitudinal data. The
MLP with longitudinal data slightly outperformed all other
models with respect to the reported measures.
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Table 3. Classifiers performance for current glycated hemoglobin level prediction.

PR-AUCb, % (SD)Precision, % (SD)F score, % (SD)Accuracy, % (SD)Balanced accuracy, % (SD)AUC-ROCa, % (SD)Model

MLRc

82.14 (6.04)73.20 (5.05)74.91 (5.12)73.59 (3.79)72.74 (4.15)81.38 (3.82)Nod

83.45 (6.29)74.36 (5.26)75.11 (6.00)74.30 (4.02)73.49 (4.19)82.45 (4.09)Yese

RFf

82.03 (1.35)73.42 (1.84)73.97 (1.04)72.64 (1.14)72.57 (1.17)80.82 (1.14)No

84.06 (1.17)74.81 (1.68)75.07 (0.86)73.91 (0.95)73.86 (0.98)82.38 (1.04)Yes

SVMg

80.56 (1.48)73.42 (1.90)75.76 (1.18)73.88 (1.33)73.69 (1.35)81.05 (1.04)No

83.16 (1.19)74.20 (1.65)76.08 (0.92)74.40 (1.08)74.25 (1.11)82.04 (0.89)Yes

LRh

82.49 (1.46)74.88 (1.69)73.96 (1.03)73.17 (1.08)73.18 (1.10)81.51 (1.26)No

84.13 (1.04)76.31 (1.72)74.55 (0.98)74.05 (1.13)74.11 (1.15)82.59 (1.04)Yes

MLPi

83.42 (1.19)73.07 (1.62)75.87 (1.10)73.83 (1.03)73.61 (1.04)82.07 (1.06)No

84.85 (0.78)74.78 (2.07)75.99 (1.95)74.55 (1.18)74.45 (1.18)83.22 (0.92)Yes

aAUC-ROC: area under the receiver operating characteristic.
bPR-AUC: precision-recall area under the curve.
cMLR: multiple logistic regression.
dWithout longitudinal data.
eWith longitudinal data.
fRF: random forest.
gSVM: support vector machine.
hLR: logistic regression.
iMLP: multilayer perceptron.

Figure 4 summarizes the 10-fold performance achieved for the
set of measures where the models were trained without
longitudinal data, and Figure 5 shows the performance where
they were trained with the longitudinal data. Both figures show
a more consistent prediction trend for RF, LR, SVM, and MLP
with and without longitudinal data, as the measures for these

models show a small variation between the folds. As shown in
Figure 4 and Figure 5, the SD values for MLR with and without
longitudinal data are larger than those for the other models. This
indicates that the machine learning models used can not only
enhance the performance, but can also improve the classification
confidence for HbA1c prediction.
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Figure 4. Box plot showing the detailed 10-fold performance of all models trained without longitudinal data. AUR-ROC: area under the receiver
operating characteristic; LR: logistic regression; MLP: multilayer perceptron; MLR: multiple logistic regression; PR-AUC: precision-recall area under
the curve; RF: random forest; SVM: support vector machine.

Figure 5. Boxplot showing the detailed 10-fold performance of all models trained with longitudinal data. AUR-ROC: area under the receiver operating
characteristic; LR: logistic regression; MLP: multilayer perceptron; MLR: multiple logistic regression; PR-AUC: precision-recall area under the curve;
RF: random forest; SVM: support vector machine.

Table 4 shows the ranked order of importance of the set of
predictors used for training the models. Further details on the
actual importance values for each model are provided in
Multimedia Appendix 6 (refer to Multimedia Appendix 7 for
more details of the MLR and LR calculator). Calculating the
importance of the predictors for the MLR models using

vectorized longitudinal data was not possible due to the
collinearity caused by having multiple variables for BMI. The
order of importance results obtained using the SHAP method
for both the SVM and MLP were identical to those obtained
using LIME and provided greater confidence in the explainable
methods used (see Multimedia Appendix 6).
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Table 4. Order of importance of predictors for the models.

Importance rankModel

6th5th4th3rd2nd1st

MLRa

eGFRfNon-HDLeCHOLdBMIRBScAgeNob

RFg

Non-HDLh CHOLeGFR BMIRBS Age No

BMINon-HDL eGFR CHOLAgeRBSYesh

LRi

eGFR BMI CHOL Non-HDL Age RBS No

BMICHOL eGFRNon-HDL AgeRBSYes

SVMj (SHAPk & LIMEl)

eGFR CHOL Non-HDL BMI RBS Age No

eGFRBMINon-HDL CHOL AgeRBSYes

MLPm (SHAP & LIME)

eGFRBMICHOLNon-HDL AgeRBSNo

BMINon-HDL CHOL eGFR Age RBS Yes

aMLR: multiple logistic regression.
bWithout longitudinal data.
cRBS: random blood sugar.
dCHOL: total cholesterol.
enon-HDL: non–high-density lipoprotein.
feGFR: estimated glomerular filtration rate.
gRF: random forest.
hWith longitudinal data.
iLR: logistic regression.
jSVM: support vector machine.
kSHAP: Shapley Additive Explanations.
lLIME: local interpretable model-agnostic explanations.
mMLP: multilayer perceptron.

Table 4 and the figures in Multimedia Appendix 6 show that
all of the models were heavily and interchangeably reliant on
age and RBS when making classification decisions. The RF and
SVM models, when trained with longitudinal data, ranked RBS
over age. Figure 6 and Figure 7 highlight the importance that

our best performing model, MLP, placed upon the features in
our data set using SHAP and LIME, respectively. Both figures
show that the RBS contributed the most to the MLP’s final
prediction, while the patient’s BMI contributed the least.

Figure 6. Relative importance of predictors obtained from the multilayer perceptron trained with longitudinal data using SHAP. CHOL: total cholesterol;
eGFR: estimated glomerular filtration rate; non-HDL: non–high-density lipoprotein; RBS: random blood sugar; SHAP: Shapley Additive Explanations.
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Figure 7. Relative importance of predictors obtained from multilayer perceptron trained with longitudinal data using LIME. CHOL: total cholesterol;
eGFR: estimated glomerular filtration rate; LIME: local interpretable model-agnostic explanations; non-HDL: non–high-density lipoprotein; RBS:
random blood sugar.

For all models trained with longitudinal data, BMI was ranked
lower than when the models were trained without longitudinal
data. However, the importance value produced for the BMI
variable from the models was still not insignificant (see the
figures in Multimedia Appendix 7). This indicates that models
are able to find subtle relationships in the longitudinal data that
are more relevant to the prediction than is BMI, rendering it
less important.

When MLP and LR models trained on the longitudinal data
were used, the eGFR variable was ranked higher than total
cholesterol and BMI, in contrast to when these were trained on
the current visit only. None of the other models trained with the
current visit only, except for RF, considered it important. Again,

we ascribe this to the information that the model learns from
the variations of eGFR values between a patient’s visits
(longitudinal EHR data).

SHAP values are calculated on the sample level. Figures 8 and
9 illustrate the SHAP values for 2 randomly selected sample
patients from our data set. These figures highlight how different
inputs have different SHAP values. The patient in Figure 8 (for
whom our model correctly predicted elevated HbA1c levels of
≥5.7%) had a higher RBS value than did the patient in Figure
9 (for whom our model correctly predicted normal HbA1c levels
of <5.7%). This explains why our MLP model placed much
more importance on the RBS value of the patient in Figure 6.

Figure 8. An example showing the SHAP values for a randomly selected sample with elevated glycated hemoglobin levels (≥5.7%). CHOL: total
cholesterol; eGFR: estimated glomerular filtration rate; non-HDL: non–high-density lipoprotein; RBS: random blood sugar; SHAP: Shapley Additive
Explanations.

Figure 9. An example showing the SHAP values for randomly selected sample with normal glycated hemoglobin levels (<5.7%). CHOL: total cholesterol;
eGFR: estimated glomerular filtration rate; non-HDL: non–high-density lipoprotein; RBS: random blood sugar; SHAP: Shapley Additive Explanations.

The task of predicting HbA1c elevation risk can be challenging.
Figure 10 provides a visualization of the data points for the 2

classes (prediabetic with ≥5.7%; normal with <5.7%) after
mapping of the data points (for the test data) into 2 dimensions
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with t-distributed stochastic neighbor embedding was performed
[50]. The overlap in the data points visualized in the figure
demonstrates the challenge of separating the patients with and
without elevated levels of HbA1c (≥5.7%) in the KAIMRC data

set. We avoided intensive feature engineering techniques in the
sampling approach used. However, the approaches adopted
were able to achieve promising results with an accuracy of
83.22% for the AUC-ROC using MLP with historical data.

Figure 10. Two-dimensional visualization using t-distributed stochastic neighbor embedding for a randomly selected subset of the data. HbA1c: glycated
hemoglobin.

In summary, all models showed promising results for predicting
the current HbA1c elevation levels (≥5.7%) with EHR data. The
results emphasize that the HbA1c predictive models can exhibit
more learnability when they are trained with the longitudinal
patient data observations typically available from EHR systems.

Discussion

Strengths and Limitations
EHR systems were adopted for the purpose of improving health
care outcomes and were not originally intended for research
purposes [19]. Patient data stored in EHR systems can be
obtained at irregular intervals, as lab instructions are carried out
with different frequencies based on the physician's decisions
and a patient’s visit patterns. It is very common that medical
data extracted from EHR systems suffer from problems such
as irregularity, incompleteness, and noisy and imbalanced data
[13]. These can be challenging obstacles for any technology
used for predictive analytics.

In our study, the sampling approach used did not affect the
balanced nature of the data set used. As shown in Figure 2, there
were 56,185 unique patients present before removal of the
records with 1 or more missing values. The number of unique
patients with elevated HbA1c levels (≥5.7%) before removal of
the incomplete records was 27,354, resulting in a retention of

48.68% (27,354/56,185). The number of unique patients with
normal HbA1c levels was 28,831, resulting in a retention of
51.32% (28,831/56,185). We would argue that the absence or
the presence of the HbA1c readings is not random, as the sample
was collected from the population of Saudi Arabia and thus the
likelihood of a patient taking an HbA1c test is large because of
the prevalence of diabetes in this country [51]. This may affect
the reproducibility of this work using different populations from
different countries especially those with lower rates of diabetes.

It is hoped that these outcomes will encourage further
investigation into the predictability of current HbA1c levels
(≥5.7%) using more of the readings normally provided in EHR
data. For example, other important readings such as FBS and
triglycerides have shown clinical correlations with diabetes
[52]. In addition, our data set contained only 3 years of patient
data, which limits the number of patient visits recorded. Figure
11 shows the number of visits made by patients from 2016 to
2018, while Figure 12 details the number of visits made by
patients (after removal of the outliers) over HbA1c levels. Both
figures show that the majority of the patients have made
relatively few visits: 52% (8713/16818) of the patients made 4
visits or fewer over the 3 years (1.3 visit per year). This also
justifies the size of the sliding window (s=3) as the optimal
input size for the models used. However, we hypothesize that
the longitudinal behavior of the features used can be enriched
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by including more values obtained over longer periods.
Therefore, incorporating more features and their longitudinal
behavior over longer periods into the models used in this study

would likely improve the prediction performance of our chosen
models.

Figure 11. Histogram showing the trend in the number of visits made by patients.

Figure 12. The details for the number of visits made over number of patients. HbA1c: glycated hemoglobin.

Variations in the data or model produce slightly different
attribution values. However, due to the critical nature of many
health care applications, it is always important to verify that the
models make “sensible” predictions. Without the use of
SHAP/LIME, this would be hard to verify for any nonlinear
model. Although it is possible to see that the models have high
performance, we would be unable to verify that a model is not
making spurious correlations. Furthermore, through the use of
SHAP, we can verify that MLPs trained on the longitudinal data
are learning to use the extra information contained in the
longitudinal data (as indicated by the higher importance of

eGFR), allowing us to pinpoint the reason these models gain
higher performance.

To investigate the effect of temporal dependencies in the data,
this study investigated the use of other deep learning models
along with the MLP, including long short-term memory (LSTM)
and bidirectional LSTM [25,53] for HbA1c prediction. Table 5
reports the results of using these models. The MLP model
achieved similar performance to the LSTM and bidirectional
LSTM models according to all reported measures. This suggests
that directly modeling the temporal dynamics in the data is not
very helpful. This could be due to the short lengths of the time
series or a too-weak temporal dependency.
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Table 5. LSTM and BiLSTM Classifiers performance trained with longitudinal data for current HbA1c levels prediction.

PR-AUCb, % (SD)Precision, % (SD)F score, % (SD)Accuracy, % (SD)Balanced Accuracy, % (SD)AUC-ROCa, % (SD)Model

81.88% (0.95)74.59% (3.26)75.64% (1.50)74.59% (1.23)74.17% (1.05)83.26% (0.91)LSTMc

84.75% (0.75)75.19% (2.36)75.46% (1.39)74.30% (1.15)74.21% (1.24)83.16% (0.87)BiLSTMd

aAUC-ROC: area under the receiver operating characteristic.
bPR-AUC: precision-recall area under the curve.
cLSTM: long short-term memory.
dBiLSTM: bidirectional LSTM.

Generalizing our findings using other data sets is challenging
because of the accessibility and privacy restrictions that apply
to medical data sets. For this reason, and because of the lack of
similar studies that have used machine learning for HbA1c

prediction with EHR data, comparing the performance achieved
by the models outlined in this study with those developed by
other researchers will require the availability of alternative
anonymized data sets.

Conclusions
We believe that this study is the first to investigate the
performance of machine learning models used with EHR data
for predicting current HbA1c elevation risk (≥5.7%) for

nondiabetic patients. It is also the first to investigate employing
the longitudinal data that are normally stored on EHR systems
to enhance the prediction of HbA1c elevation levels. Our findings
show that the MLP model achieves better results when a
patient’s longitudinal data are combined with current visit data,
and the use of longitudinal data also affects the relative
importance for the predictors used.

As this work formed a continuation of previous work [24], we
avoided changing the sampling approach used. However,
studying the impact of applying different sampling approaches
could be valuable to explore in future work as would the use of
a larger data set with more variables and the recording of
longitudinal behavior over longer periods.

 

Acknowledgments
We would like to acknowledge the contribution the KAIMRC for providing the data set under the approved projects: Diabetes
Early Warning System (research protocol no. SP14/042), Finding the Common Related Diseases with Diabetes using Data Mining
Association Techniques (research protocol no. SP15/064,) and extension project (no. RYD-17-417780-187503) to collect the
newest data set. The authors would also like to thank Cievert Ltd and the European Regional Development Fund for sponsoring
this work.

Authors' Contributions
ZA was responsible for implementing and building predictive models. ZA, MW, DB, and NAM were responsible for the design
of the study and for writing the manuscript. ZA, MW, DB, and NAM were responsible for designing and validating the models.
MW and ZA were responsible for analyzing the explainability of the machine learning model. ZA, AA, and RA were responsible
for extracting and describing the data set. All authors participated in reviewing the manuscript.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Lab test and diagnostic codes.
[PDF File (Adobe PDF File), 93 KB - medinform_v9i5e25237_app1.pdf ]

Multimedia Appendix 2
Formulae for the calculated variables.
[PDF File (Adobe PDF File), 77 KB - medinform_v9i5e25237_app2.pdf ]

Multimedia Appendix 3
An example of the padding approach used.
[PDF File (Adobe PDF File), 169 KB - medinform_v9i5e25237_app3.pdf ]

Multimedia Appendix 4
An example of the PAA technique.

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e25237 | p.287https://medinform.jmir.org/2021/5/e25237
(page number not for citation purposes)

Alhassan et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

medinform_v9i5e25237_app1.pdf
medinform_v9i5e25237_app1.pdf
medinform_v9i5e25237_app2.pdf
medinform_v9i5e25237_app2.pdf
medinform_v9i5e25237_app3.pdf
medinform_v9i5e25237_app3.pdf
http://www.w3.org/Style/XSL
http://www.renderx.com/


[PDF File (Adobe PDF File), 240 KB - medinform_v9i5e25237_app4.pdf ]

Multimedia Appendix 5
AUC-ROC and PR-AUC curves for the models (with 10 folds) trained with longitudinal data.
[PDF File (Adobe PDF File), 1011 KB - medinform_v9i5e25237_app5.pdf ]

Multimedia Appendix 6
Variable relative importance charts for the models.
[PDF File (Adobe PDF File), 578 KB - medinform_v9i5e25237_app6.pdf ]

Multimedia Appendix 7
Multiple logistic regression (MLR) and logistic regression (LR) details.
[PDF File (Adobe PDF File), 157 KB - medinform_v9i5e25237_app7.pdf ]

References
1. Larsen ML, Hørder M, Mogensen EF. Effect of long-term monitoring of glycosylated hemoglobin levels in insulin-dependent

diabetes mellitus. New England Journal of Medicine 1990 Oct 11;323(15):1021-1025. [doi: 10.1056/NEJM199010113231503]
[Medline: 2215560]

2. Pradhan AD, Rifai N, Buring JE, Ridker PM. Hemoglobin A1c predicts diabetes but not cardiovascular disease in nondiabetic
women. The American Journal of Medicine 2007 Aug;120(8):720-727. [doi: 10.1016/j.amjmed.2007.03.022] [Medline:
PMC2585540]

3. Ackermann RT, Cheng YJ, Williamson DF, Gregg EW. Identifying adults at high risk for diabetes and cardiovascular
disease using hemoglobin A1c: National Health and Nutrition Examination Survey 2005-2006. American Journal of
Preventive Medicine 2011 Jan;40(1):11-17. [doi: 10.1016/j.amepre.2010.09.022] [Medline: 21146762]

4. World Health Organization. Use of glycated haemoglobin (HbA1c) in diagnosis of diabetes mellitus: abbreviated report
of a WHO consultation. World Health Organization 2011:a. [Medline: 26158184]

5. Khaw K, Wareham N, Bingham S, Luben R, Welch A, Day N. Association of hemoglobin A1c with cardiovascular disease
and mortality in adults: the European prospective investigation into cancer in Norfolk. Ann Intern Med 2004 Sep
21;141(6):413. [doi: 10.7326/0003-4819-141-6-200409210-00006] [Medline: 15381514]

6. American Diabetes Association. Classification and diagnosis of diabetes: standards of medical care in diabetes—2018. Dia
Care 2017 Dec 08;41(Supplement 1):S13-S27. [doi: 10.2337/dc18-s002]

7. Coorevits P, Sundgren M, Klein GO, Bahr A, Claerhout B, Daniel C, et al. Electronic health records: new opportunities
for clinical research. Journal of internal medicine 2013 Oct 18;274(6):547-560. [doi: 10.1111/joim.12119] [Medline:
23952476]

8. McKinney BA, Reif DM, Ritchie MD, Moore JH. Machine learning for detecting gene-gene interactions: a review. Appl
Bioinformatics 2006;5(2):77-88 [FREE Full text] [doi: 10.2165/00822942-200605020-00002] [Medline: 16722772]

9. Goldenberg SL, Nir G, Salcudean SE. A new era: artificial intelligence and machine learning in prostate cancer. Nature
Reviews Urology 2019 May 15;16(7):391-403. [doi: 10.1038/s41585-019-0193-3] [Medline: 31092914]

10. Botsis T, Hartvigsen G, Chen F, Weng C. Secondary use of EHR: data quality issues and informatics opportunities. Summit
Transl Bioinform 2010:1. [Medline: 21347133]

11. Perveen S, Shahbaz M, Keshavjee K, Guergachi A. Prognostic modeling and prevention of diabetes using machine learning
technique. Scientific reports 2019 Sep 24;9(1):1. [doi: 10.1038/s41598-019-49563-6] [Medline: 31551457]

12. Esteban S, Rodríguez Tablado M, Peper FE, Mahumud YS, Ricci RI, Kopitowski KS, et al. Development and validation
of various phenotyping algorithms for Diabetes Mellitus using data from electronic health records. Computer Methods and
Programs in Biomedicine 2017 Dec;152:53-70. [doi: 10.1016/j.cmpb.2017.09.009] [Medline: 29054261]

13. Miotto R, Li L, Kidd BA, Dudley JT. Deep patient: an unsupervised representation to predict the future of patients from
the electronic health records. Scientific reports 2016 May 17;6(1):1-10. [doi: 10.1038/srep26094] [Medline: 27185194]

14. Hippisley-Cox J, Coupland C, Robson J, Sheikh A, Brindle P. Predicting risk of type 2 diabetes in England and Wales:
prospective derivation and validation of QDScore. BMJ 2009 Mar 17;338(mar17 2):b880-b880. [doi: 10.1136/bmj.b880]
[Medline: 19297312]

15. Alhassan Z, McGough A, Alshammari R, Daghstani T, Budgen D, Al MN. Type-2 diabetes mellitus diagnosis from time
series clinical data using deep learning models. 2018 Presented at: International Conference on Artificial Neural Networks;
2018 Oct 4-7; Greece. [doi: 10.1007/978-3-030-01424-7_46]

16. McCarter RJ, Hempe JM, Chalew SA. Mean blood glucose and biological variation have greater influence on HbA1c levels
than glucose instability: an analysis of data from the Diabetes Control and Complications Trial. Diabetes Care 2006 Jan
27;29(2):352-355. [doi: 10.2337/diacare.29.02.06.dc05-1594] [Medline: 16443886]

17. Nathan DM, Kuenen J, Borg R, Zheng H, Schoenfeld D, Heine RJ. Translating the A1C assay into estimated average
glucose values. Diabetes Care 2008 Jun 07;31(8):1473-1478. [doi: 10.2337/dc08-0545] [Medline: 18540046]

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e25237 | p.288https://medinform.jmir.org/2021/5/e25237
(page number not for citation purposes)

Alhassan et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

medinform_v9i5e25237_app4.pdf
medinform_v9i5e25237_app4.pdf
medinform_v9i5e25237_app5.pdf
medinform_v9i5e25237_app5.pdf
medinform_v9i5e25237_app6.pdf
medinform_v9i5e25237_app6.pdf
medinform_v9i5e25237_app7.pdf
medinform_v9i5e25237_app7.pdf
http://dx.doi.org/10.1056/NEJM199010113231503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2215560&dopt=Abstract
http://dx.doi.org/10.1016/j.amjmed.2007.03.022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=PMC2585540&dopt=Abstract
http://dx.doi.org/10.1016/j.amepre.2010.09.022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21146762&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26158184&dopt=Abstract
http://dx.doi.org/10.7326/0003-4819-141-6-200409210-00006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15381514&dopt=Abstract
http://dx.doi.org/10.2337/dc18-s002
http://dx.doi.org/10.1111/joim.12119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23952476&dopt=Abstract
http://europepmc.org/abstract/MED/16722772
http://dx.doi.org/10.2165/00822942-200605020-00002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16722772&dopt=Abstract
http://dx.doi.org/10.1038/s41585-019-0193-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31092914&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21347133&dopt=Abstract
http://dx.doi.org/10.1038/s41598-019-49563-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31551457&dopt=Abstract
http://dx.doi.org/10.1016/j.cmpb.2017.09.009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29054261&dopt=Abstract
http://dx.doi.org/10.1038/srep26094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27185194&dopt=Abstract
http://dx.doi.org/10.1136/bmj.b880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19297312&dopt=Abstract
http://dx.doi.org/10.1007/978-3-030-01424-7_46
http://dx.doi.org/10.2337/diacare.29.02.06.dc05-1594
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16443886&dopt=Abstract
http://dx.doi.org/10.2337/dc08-0545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18540046&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


18. Rose E, Ketchell D. Clinical inquiries. Does daily monitoring of blood glucose predict hemoglobin A1c levels? J Fam Pract
2003:1. [Medline: 12791231]

19. Xu S, Schroeder EB, Shetterly S, Goodrich GK, O’Connor PJ, Steiner JF, et al. Accuracy of hemoglobin A1c imputation
using fasting plasma glucose in diabetes research using electronic health records data. Stat., optim. inf. comput 2014 Jun
01;2(2):93-104. [doi: 10.19139/68]

20. Rauh SP, Heymans MW, Koopman ADM, Nijpels G, Stehouwer CD, Thorand B, et al. Predicting glycated hemoglobin
levels in the non-diabetic general population: Development and validation of the DIRECT-DETECT prediction model - a
DIRECT study. PLoS ONE 2017 Feb 10;12(2):e0171816. [doi: 10.1371/journal.pone.0171816] [Medline: 28187151]

21. Wells BJ, Lenoir KM, Diaz-Garelli J, Futrell W, Lockerman E, Pantalone KM, et al. Predicting current glycated hemoglobin
values in adults: development of an algorithm from the electronic health record. JMIR Med Inform 2018 Oct 22;6(4):e10780.
[doi: 10.2196/10780] [Medline: 30348631]

22. Baan CA, Ruige JB, Stolk RP, Witteman JC, Dekker JM, Heine RJ, et al. Performance of a predictive model to identify
undiagnosed diabetes in a health care setting. Diabetes Care 1999 Feb 01;22(2):213-219. [doi: 10.2337/diacare.22.2.213]
[Medline: 10333936]

23. Griffin SJ, Little PS, Hales CN, Kinmonth AL, Wareham NJ. Diabetes risk score: towards earlier detection of Type 2
diabetes in general practice. Diabetes/metabolism research and reviews 2000 May;16(3):164-171. [doi:
10.1002/1520-7560(200005/06)16:3<164::aid-dmrr103>3.0.co;2-r] [Medline: 10867715]

24. Alhassan Z, Budgen D, Alshammari R, Al Moubayed N. Predicting current glycated hemoglobin levels in adults from
electronic health records: validation of multiple logistic regression algorithm. JMIR Med Inform 2020 Jul 3;8(7):e18963.
[doi: 10.2196/18963] [Medline: 32618575]

25. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015 May 27;521(7553):436-444. [doi: 10.1038/nature14539]
26. Ahmad M, Eckert C, Teredesai A. Interpretable machine learning in healthcare. 2018 Presented at: Proceedings of the ACM

international conference on bioinformatics, computational biology, and health informatics; 2018 Aug 29-Sept 1; Washington
DC. [doi: 10.1145/3233547.3233667]

27. Lipton ZC. The Mythos of Model Interpretability: In machine learning, the concept of interpretability is both important
and slippery. ACM 2018 Jun;16(3):31-57. [doi: 10.1145/3236386.3241340]

28. Lundberg S, Lee SI. A unified approach to interpreting model predictions. 2017 Presented at: Advances in neural information
processing systems; 2017 Dec 4-9; Long Beach.

29. Ribeiro M, Singh S, Guestrin C. "Why should I trust you?": explaining the predictions of any classifier. 2016 Presented at:
Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining; 2016 Aug
13-16; San Francisco. [doi: 10.1145/2939672.2939778]

30. Abdulaziz Al Dawish M, Alwin Robert A, Braham R, Abdallah Al Hayek A, Al Saeed A, Ahmed Ahmed R, et al. Diabetes
mellitus in Saudi Arabia: a review of the recent literature. Current diabetes reviews 2016 Oct 26;12(4):359-368. [doi:
10.2174/1573399811666150724095130] [Medline: 26206092]

31. Understanding A1C. American Diabetes Association. URL: https://www.diabetes.org/a1c [accessed 2020-11-07]
32. Batista GEAPA, Prati RC, Monard MC. A study of the behavior of several methods for balancing machine learning training

data. ACM SIGKDD Explorations Newsletter 2004 Jun;6(1):20-29. [doi: 10.1145/1007730.1007735]
33. Zhang L, Yang H, Jiang Z. Imbalanced biomedical data classification using self-adaptive multilayer ELM combined with

dynamic GAN. BioMedical Engineering OnLine volume 2018 Dec 4;17(1):1. [doi: 10.1186/s12938-018-0604-3] [Medline:
30514298]

34. Rahman MM, Davis DN. Addressing the class imbalance problem in medical datasets. International Journal of Machine
Learning and Computing 2013:224-228. [doi: 10.7763/ijmlc.2013.v3.307]

35. Longadge R, Dongre S, Malik L. Class imbalance problem in data mining review. IJCSN 2013;2(1):1-7.
36. Alhassan Z, Budgen D, Alshammari R, Daghstani T, McGough A, Al MN. Stacked denoising autoencoders for mortality

risk prediction using imbalanced clinical data. 2018 Presented at: International Conference on Machine Learning and
Applications (ICMLA); 2018 Dec 17; Orlando. [doi: 10.1109/icmla.2018.00087]

37. Alqurashi KA, Aljabri KS, Bokhari SA. Prevalence of diabetes mellitus in a Saudi community. Annals of Saudi Medicine
2011 Jan;31(1):19-23. [doi: 10.4103/0256-4947.75773] [Medline: 21245594]

38. Keogh E, Chakrabarti K, Pazzani M, Mehrotra S. Locally adaptive dimensionality reduction for indexing large time series
databases. 2001 Presented at: The 2001 ACM SIGMOD International Conference on Management of Data; 2001 May
21-25; Santa Barbara. [doi: 10.1145/375663.375680]

39. Zhao J, Papapetrou P, Asker L, Boström H. Learning from heterogeneous temporal data in electronic health records. Journal
of Biomedical Informatics 2017 Jan;65:105-119. [doi: 10.1016/j.jbi.2016.11.006] [Medline: 27919732]

40. McDonald J. Handbook of Biological Statistics. Baltimore, MD: Sparky House Publishing; 2009.
41. Breiman L. Random forests. Machine learning 2001;45(1):5-32.
42. Rawlings J, Pantula S, Dickey D. Applied Regression Analysis. New York: Springer; 2001:a.
43. Sperandei S. Understanding logistic regression analysis. Biochemia Medica 2014:12-18. [doi: 10.11613/bm.2014.003]

[Medline: 24627710]
44. Vapnik V. The Nature of Statistical Learning Theory. New York: Springer; 2013.

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e25237 | p.289https://medinform.jmir.org/2021/5/e25237
(page number not for citation purposes)

Alhassan et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12791231&dopt=Abstract
http://dx.doi.org/10.19139/68
http://dx.doi.org/10.1371/journal.pone.0171816
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28187151&dopt=Abstract
http://dx.doi.org/10.2196/10780
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30348631&dopt=Abstract
http://dx.doi.org/10.2337/diacare.22.2.213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10333936&dopt=Abstract
http://dx.doi.org/10.1002/1520-7560(200005/06)16:3<164::aid-dmrr103>3.0.co;2-r
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10867715&dopt=Abstract
http://dx.doi.org/10.2196/18963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32618575&dopt=Abstract
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1145/3233547.3233667
http://dx.doi.org/10.1145/3236386.3241340
http://dx.doi.org/10.1145/2939672.2939778
http://dx.doi.org/10.2174/1573399811666150724095130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26206092&dopt=Abstract
https://www.diabetes.org/a1c
http://dx.doi.org/10.1145/1007730.1007735
http://dx.doi.org/10.1186/s12938-018-0604-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30514298&dopt=Abstract
http://dx.doi.org/10.7763/ijmlc.2013.v3.307
http://dx.doi.org/10.1109/icmla.2018.00087
http://dx.doi.org/10.4103/0256-4947.75773
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21245594&dopt=Abstract
http://dx.doi.org/10.1145/375663.375680
http://dx.doi.org/10.1016/j.jbi.2016.11.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27919732&dopt=Abstract
http://dx.doi.org/10.11613/bm.2014.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24627710&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


45. Noble WS. What is a support vector machine? Nature Biotechnol 2006 Dec;24(12):1565-1567. [doi: 10.1038/nbt1206-1565]
46. Gardner M, Dorling S. Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric

sciences. Atmospheric Environment 1998 Aug;32(14-15):2627-2636. [doi: 10.1016/s1352-2310(97)00447-0]
47. Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep Learning. Cambridge, MA: MIT Press; 2016.
48. Bobadilla J, Ortega F, Hernando A, Gutiérrez A. Recommender systems survey. Knowledge-Based Systems 2013

Jul;46:109-132. [doi: 10.1016/j.knosys.2013.03.012]
49. Austin PC, Steyerberg EW. Interpreting the concordance statistic of a logistic regression model: relation to the variance

and odds ratio of a continuous explanatory variable. BMC medical research methodology 2012 Jun 20;12(1):109-132. [doi:
10.1186/1471-2288-12-82] [Medline: 22716998]

50. Maaten L, Hinton G. Visualizing data using t-SNE. Journal of machine learning research. (Nov) 2008;9:2579-2605.
51. Al-Zahrani J, Aldiab A, Aldossari K, Al-Ghamdi S, Batais M, Javad S. Prevalence of prediabetes, diabetes and its predictors

among females in Alkharj, Saudi Arabia: a cross-sectional study. Annals of Global Health 2019;85(1):A. [doi:
10.5334/aogh.2467] [Medline: 31348623]

52. Naqvi S, Naveed S, Ali Z, Ahmad S, Khan R, Raj H. Correlation between glycated hemoglobin and triglyceride level in
type 2 diabetes mellitus. Cureus 2017;9(6):1. [doi: 10.7759/cureus.1347] [Medline: 28713663]

53. Schuster M, Paliwal K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process 1997;45(11):2673-2681. [doi:
10.1109/78.650093]

Abbreviations
AUR-ROC: area under the receiver operating characteristic
eGFR: estimated glomerular filtration rate
EHR: electronic health records
FBS: fasting blood sugar
HbA1c: glycated hemoglobin
KAIMRC: King Abdullah International Medical Research Center
LIME: local interpretable model-agnostic explanations
LR: logistic regression.
LSTM: long short-term memory
MLP: multilayer perceptron
MLR: multiple logistic regression
PAA: piecewise aggregation approximation
PR-AUC: precision-recall area under the curve
RBS: random blood sugar
RF: random forest
SHAP: Shapley Additive Explanations
SVM: support vector machine
T2DM: type-2 diabetes mellitus
WHO: World Health Organization

Edited by C Lovis; submitted 23.10.20; peer-reviewed by S Veeranki, F Agakov, C Doogan; comments to author 13.11.20; revised
version received 05.01.21; accepted 22.04.21; published 24.05.21.

Please cite as:
Alhassan Z, Watson M, Budgen D, Alshammari R, Alessa A, Al Moubayed N
Improving Current Glycated Hemoglobin Prediction in Adults: Use of Machine Learning Algorithms With Electronic Health Records
JMIR Med Inform 2021;9(5):e25237
URL: https://medinform.jmir.org/2021/5/e25237 
doi:10.2196/25237
PMID:34028357

©Zakhriya Alhassan, Matthew Watson, David Budgen, Riyad Alshammari, Ali Alessa, Noura Al Moubayed. Originally published
in JMIR Medical Informatics (https://medinform.jmir.org), 24.05.2021. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly
cited. The complete bibliographic information, a link to the original publication on https://medinform.jmir.org/, as well as this
copyright and license information must be included.

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e25237 | p.290https://medinform.jmir.org/2021/5/e25237
(page number not for citation purposes)

Alhassan et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.1038/nbt1206-1565
http://dx.doi.org/10.1016/s1352-2310(97)00447-0
http://dx.doi.org/10.1016/j.knosys.2013.03.012
http://dx.doi.org/10.1186/1471-2288-12-82
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22716998&dopt=Abstract
http://dx.doi.org/10.5334/aogh.2467
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31348623&dopt=Abstract
http://dx.doi.org/10.7759/cureus.1347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28713663&dopt=Abstract
http://dx.doi.org/10.1109/78.650093
https://medinform.jmir.org/2021/5/e25237
http://dx.doi.org/10.2196/25237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34028357&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Original Paper

Effective Training Data Extraction Method to Improve Influenza
Outbreak Prediction from Online News Articles: Deep Learning
Model Study

Beakcheol Jang1, PhD; Inhwan Kim1, BSc; Jong Wook Kim2, PhD
1Graduate School of Information, Yonsei University, Seoul, Republic of Korea
2Department of Computer Science, Sangmyung Univerisity, Seoul, Republic of Korea

Corresponding Author:
Jong Wook Kim, PhD
Department of Computer Science
Sangmyung Univerisity
20, Hongjimun 2-gil, Jongno-gu
Seoul, 03016
Republic of Korea
Phone: 82 027817590
Fax: 82 0222870072
Email: jkim@smu.ac.kr

Abstract

Background: Each year, influenza affects 3 to 5 million people and causes 290,000 to 650,000 fatalities worldwide. To reduce
the fatalities caused by influenza, several countries have established influenza surveillance systems to collect early warning data.
However, proper and timely warnings are hindered by a 1- to 2-week delay between the actual disease outbreaks and the publication
of surveillance data. To address the issue, novel methods for influenza surveillance and prediction using real-time internet data
(such as search queries, microblogging, and news) have been proposed. Some of the currently popular approaches extract online
data and use machine learning to predict influenza occurrences in a classification mode. However, many of these methods extract
training data subjectively, and it is difficult to capture the latent characteristics of the data correctly. There is a critical need to
devise new approaches that focus on extracting training data by reflecting the latent characteristics of the data.

Objective: In this paper, we propose an effective method to extract training data in a manner that reflects the hidden features
and improves the performance by filtering and selecting only the keywords related to influenza before the prediction.

Methods: Although word embedding provides a distributed representation of words by encoding the hidden relationships
between various tokens, we enhanced the word embeddings by selecting keywords related to the influenza outbreak and sorting
the extracted keywords using the Pearson correlation coefficient in order to solely keep the tokens with high correlation with the
actual influenza outbreak. The keyword extraction process was followed by a predictive model based on long short-term memory
that predicts the influenza outbreak. To assess the performance of the proposed predictive model, we used and compared a variety
of word embedding techniques.

Results: Word embedding without our proposed sorting process showed 0.8705 prediction accuracy when 50.2 keywords were
selected on average. Conversely, word embedding using our proposed sorting process showed 0.8868 prediction accuracy and
an improvement in prediction accuracy of 12.6%, although smaller amounts of training data were selected, with only 20.6 keywords
on average.

Conclusions: The sorting stage empowers the embedding process, which improves the feature extraction process because it
acts as a knowledge base for the prediction component. The model outperformed other current approaches that use flat extraction
before prediction.

(JMIR Med Inform 2021;9(5):e23305)   doi:10.2196/23305
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Introduction

Influenza is a highly contagious disease that affects 3 to 5
million people and kills 290,000 to 650,000 worldwide each
year [1]. To track and counter its effects, various countries have
established influenza surveillance systems, such as the European
Influenza Surveillance Scheme in Europe and the Centers for
Disease Control and Prevention (CDC) in the United States.
These mechanisms provide clinical data, such as physician visits
with influenza-like illness (ILI). However, a proper extraction
of actionable insights is hindered by a delay of approximately
2 weeks for such information to become available. To solve
this problem, studies in the field of infodemiology [2,3] have
been trying to gain novel and effective insights into diseases
from internet-based data. Hence, various recent studies in
infodemiology have attempted to deter this time delay to predict
impending outbreaks by monitoring influenza in real time using
cloud-sourced data, such as online news articles and social
network services [4-9].

Key studies have been conducted on influenza prediction
systems based on search queries, including Google Flu Trends
[10,11], in which Google provided surveillance and prediction
services for influenza using search queries [2,10,12-16]. Twitter
has recently received significant attention as a potential source
of data for the prediction of influenza outbreaks. The number
of studies that leverage tweets to predict influenza has multiplied
and they have achieved moderately accurate prediction accuracy
[17-23]. The advantage of predicting a fast-spreading outbreak
via social network data (such as Twitter) is the speed at which
people can share the news, hence providing a prompt
opportunity to use an analytical system to predict a serious
outbreak. However, various obstacles—such as privacy issues
for search query data—hinder the real-time prediction because
of the failure to capture the inherent features of the data [24].
In addition, the tweets are created by amateur users and are
prone to noise due to poor writing standards, typographical
errors, use of jargon expressions, and meaningless content
[19,25].

Previous studies have used these web data to surveil influenza
outbreaks and improved predictive performance, but the problem
exists that which data are used depends on the subjective choice
of the experimenter [2,10,18,26,27]. Owing to these drawbacks,
the performance of any machine learning approach that
leverages such data depends on a meticulous extraction of data
and the extraction of key latent features. Because training data
are extracted from the internet based on keywords, it is important
to select influenza-related keywords that perfectly reflect the
latent characteristics of the data [10,18,26]. In previous studies,
the keywords were selected by calculating the correlations
between each word and influenza-related tokens [10], directly
filtering all words that referred to influenza [19,25], or extracting
all words that were subjectively related to influenza [27].
Calculating the correlations for all words is the most effective
approach to selecting keywords that properly capture the hidden
features of the data. However, this approach requires a lot of
time because of the sheer number of correlation coefficients
that must be calculated. On the other hand, the selection of
keywords by screening the words that directly refer to influenza

or are subjectively defined to be related to influenza fails to
capture the ingrained features, even if the method is relatively
fast.

To solve these problems, we proposed a method that combines
word embedding [28-32] with cosine similarity to capture only
the word vectors that are highly correlated with influenza using
the distributed vectors. Filtering is followed by a sorting process
that ranks these keywords according to their relationship with
the actual influenza outbreak. To assess the effect of the sorting
process on embeddings, we applied a long short-term memory
(LSTM) [33] predictive model that predicts the impending
influenza outbreak.

Word embedding is a natural language processing–based feature
extraction technique that consists of establishing a distributed
representation of words. Importantly, the features that are
generated from word embedding can capture the context
between tokens. However, in the context of influenza, using the
features obtained through word embedding alone results in a
large vector space that includes unnecessary tokens and
deteriorates the prediction performance. To reduce the number
of tokens to be considered in the prediction stage, the cosine
similarity function empowers the word embedding by selecting
influenza-related features according to their similarity.

After filtering the features of the tokens that are related to
influenza keywords, it is also important to determine the optimal
amount of training data to be used for the predictive model to
improve its performance. To preferentially use keywords that
are highly related to influenza outbreaks among keywords
selected by word embedding and cosine similarity, these
keywords are sorted using the Pearson correlation coefficient
(PCC) [34] between the actual influenza outbreak keywords
and the extracted features of the training data. The ultimate
purpose of the sorting stage is to ensure that during the training,
only the features that are highly correlated with the true features
are input to the predictive model. The sorting reduces the error
and facilitates the optimization process during the LSTM model
training. The model is trained with the fine-grained features,
and the sorting process improves the performance of the LSTM
predictive model considerably. To assess the effect of the
embedding process, various embedding approaches are
evaluated.

We compared the model’s performance when the keywords
used were sorted versus when they were unsorted. For the
evaluation of the performance, we recorded the
root-mean-square error (RMSE). FastText continuous
bag-of-words (CBOW) outperformed other embedding schemes
with a PCC of 0.8986 and an RMSE of 0.0090 with sorted
keywords.

Methods

Online News Articles
Online news articles offer a rich opportunity to predict epidemic
diseases such as influenza. However, news articles extracted
based solely on the presence of the “influenza” token do not
capture the hidden insights from the news. The main reason for
this is the presence of noisy tokens, such as advertising content
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that has no association with influenza. To reflect the
characteristics of the data, before keyword selection, we used
an effective embedding stage to capture the latent relationship
between words. Furthermore, to preferentially use the keywords
most relevant to the influenza outbreak among the selected
keywords, we sorted them according to the PCC based on the
actual influenza outbreak and the proportion of news articles
containing the keyword. Moreover, the classification model
was trained on the extracted keywords.

Main Components of the Overall Methodology
In this section, we cover the overall methodology, which
includes 4 main parts: (1) tokenization and word embedding,
(2) selection of flu-related keywords via cosine similarity, (3)
extraction of flu-related news and its conversion into time-series
data, and (4) training and classification. Figure 1 depicts the
following 4 components of the model.

Figure 1. System architecture. LSTM: long short-term memory.

Tokenization and Word Embedding
Various tokens that are present in news articles do not have a
semantic or syntactic relationship to the classification of the
articles. Words such as “at” and “in” or adverbs such as “many”
and “very” are filler words that must be removed before the
embedding process. Hence, these stop words were stripped. To
use only nouns as influenza-related words, tokenization was
performed using the Mecab class provided by the morpheme
analyzer KoNLPy [35]. The tokenized articles were fed to an
embedding module that established a distributed representation
of input tokens.

As shown in Figure 1, given the input article made of tokens

, the objective of the embedding process is to learn a
distributed feature representation of each token in the form of

a distributed matrix, , where n represents the number of
tokens and d represents the embedding size. The embedding
matrix is structured such that the cosine similarity between the
features that represent related tokens is higher. The generated
vectors have the same dimension, and thus facilitate the training
process.

Here, W learns a hidden vector that produces a context vector
W' that considers other words when representing a given word.
Given the input word, Wi, the corresponding word vector in W
(which is denoted as vwi) generates a corresponding context

vector in W' (denoted as ). The embedding output layer uses

a softmax function to estimate the probability, , of generating
the output word Wo from Wi via the context vector as follows:

The vector assigned to each word uses the distance between the
vectors to capture the relationship between words. Using the
cosine similarity between the obtained embedding vectors, it is
feasible to express the similarity between words. For instance,
the results of the embedding are such that the cosine similarity
between the vectors for “influenza” and “sneeze” is closer to 1
and is very close to the similarity between “malaria” and “fever.”
Key hyperparameters are set during the training process. The
embedding size d is the length of a dense vector that represents
each word, and the window size is the number of words to be
checked simultaneously to learn semantic relationships. The
min count represents the minimum number of words to ponder
during the training, and any word whose number of appearances
is less than this count will be disregarded. In our
implementation, we set the embedding size to 300, the window
size to 5, and the min count to 100. There are various embedding
approaches; in this study, we compared them to evaluate their
performance in influenza detection. We compared Word2Vec
skip-gram, Word2Vec CBOW, GloVe, FastText CBOW, and
FastText skip-gram.

Selection of Flu-Related Keywords
The main objective of our model was to filter the
influenza-related tokens to be considered for prediction. For
this, we measured the cosine similarity to establish the closeness
of each token with the word “influenza.” The cosine function
was applied to the embeddings obtained in the previous step.
Cosine similarity is a method of measuring the similarity
between 2 vectors using the cosine between the 2 vectors. It has
a value between –1 and 1. The formula to measure the similarity
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using vector W of a specific word and vector Wflu of influenza
is as follows:

The above formula means that the inner product of vector W of
a specific word and vector Wflu of influenza is divided by the
length of the 2 vectors. We selected n influenza-related
keywords in the order of high cosine similarity.

Extraction of the Flu-Related News and Its Conversion
Into Time-Series Data
Following the selection of influenza-related keywords, we
extracted influenza-related news articles containing the
keywords selected by word embedding and the word “influenza”
simultaneously to ensure that the news articled reflected the
characteristics of the data. In other words, news articles extracted
through this process were a subset of the news articles that
contained only the word “influenza.” The following step
involved the conversion of news articles that contained only
the word “influenza” and news articles that contained both the
word “influenza” and the keywords selected by word embedding
into time-series data to use as a training set. The n related

keywords selected by the word embeddings were converted

into time-series data by the following process:

In the above equation, D(t) represents the number of news
articles in the t-th week, and D(Wflu AND Rk) is the number of
news articles that contain both the word “influenza” and the
related keyword Rk. Therefore, Q(k, t) refers to the proportion
of news articles containing both “influenza” and Rk news articles

from the t-th week. The time-series data Qk are an array of

Q(k, t) corresponding to each week .

Sorting the Time-Series Data
Another key objective of the model was to capture a weekly
match between influenza trends in news articles and the actual
occurrences of influenza. Hence, the sorting of the obtained
time-series data was critical to progressive prediction and trend

capturing. Time-series data extracted using the keyword
selected by word embedding were in the order that was highly
related to the word “influenza.” Therefore, we sorted the
keywords and the time-series data based on the PCCs between
the actual influenza outbreak and extracted time-series data to
preferentially use the time-series data that were most relevant
to the influenza outbreak. For example, since “headache” is a
word associated with influenza symptoms that tends to appear
alongside “influenza” in many news articles, the generated
embeddings for these 2 tokens are likely to be close to encode
a high association between “influenza” and “headache.”
However, because “headache” is a symptom of various diseases,
it can be difficult to determine if the “headache” in the text
refers to “influenza” outbreak. Therefore, for effective training
of influenza prediction, we applied a sorting process that
preferentially uses highly relevant tokens to influenza outbreaks.

After this step, we trained the (n+1) predictive model by adding

the sorted time-series data sequentially to the time-series
data extracted using only the word “influenza” (Qflu). This was
performed to check the change in performance according to the
additional training data and find the optimal number of training
data. In other words, the input dimension of the k-th predictive

model was k-1, and were used as training data.

Training of the Predictive LSTM Model
We built an LSTM model [33] to predict the weekly ILI-related
cases. LSTM networks have recently been used for various
prediction studies and performed well compared with vanilla
recurrent neural networks (RNNs). LSTM networks use a gating
mechanism that helps them overcome the vanishing gradient
problem faced by RNNs. LSTM networks perform efficiently
with time-series data, as they can choose which past information
to forget or use while encoding a given time step. Bidirectional
LSTM [36], recently studied in the field of natural language
processing, showed better performance than unidirectional
LSTM on average in time-series prediction such as influenza
prediction [37]. However, in order to evaluate the proposed
keyword selection process and the performance according to
the type of word embeddings, we trained a prediction model
using LSTM, which was mainly used in existing influenza
studies [6,38,39].

During the training, we calculated the RMSE loss function,
which is the square root of the difference between the predicted
number of ILI cases and the actual numbers reported by the
CDC. The model was optimized using the Adam optimizer [40],
the time step was fixed to 5, and the layer size was set to 64.

Results

Embedding Models
To identify the most suitable word embeddings for the selection
of influenza-related keywords, we selected 100 keywords that
were highly related to influenza using 5 word-embedding
models: Word2Vec CBOW, Word2Vec skip-gram, GloVe,
FastText CBOW, and FastText skip-gram. The PCC [34] was
used to sort the extracted keywords so that only the highly
correlated ones were input to the LSTM model for training. The
predictive accuracy of each model was evaluated using the PCC
and the RMSE [41].

Experimental Setup
We trained each word embedding model to evaluate its
performance. As per the recent trend, many studies skip the
embedding stage by using pretrained vectors. Although
pretrained vectors are obtained from a large data set, they
contain many tokens and have exhibited good performance in
various recent studies. However, it is difficult to obtain efficient
pretrained embeddings for languages other than English.
Therefore, we collected approximately 2 million news articles
over 2 years from September 11, 2017, to September 15, 2019,
and the size of the collected data was approximately 761 MB,
containing about 140,000 words as shown in Table 1. Table 2
shows the hyperparameters used when training word embeddings
and the LSTM model. Epoch means the number of training

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e23305 | p.294https://medinform.jmir.org/2021/5/e23305
(page number not for citation purposes)

Jang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


repetitions; dimension of word embeddings means the dimension
of the vector representing the word, and in the case of LSTM
models it means the layer size. The window size of word
embeddings means the number of surrounding words to be used

for training, and min count means the minimum number of
occurrences of words to be used for learning. The LSTM model's
time step means how many weeks of data to use for prediction.

Table 1. Summary of news data for word embeddings.

ValueParameter

September 11, 2017, to September 15, 2019Time period

2,093,120Total articles

761,233,009Total bytes

142,651Total terms

Table 2. Hyperparameters for word embeddings and long short-term memory model training.

Long short-term memory modelWord embeddingsHyperparameter

20010Epoch

64300Dimension

–5Window size

–100Min count

5 weeks–Time step

Experimental Results
Figures 2 to 6 show the accuracy of the predictive model for
100 keywords selected from each word embedding. The black
dotted line in each figure depicts the condition when no keyword
was selected and only “influenza” was used, and all time-series
data related to the word “influenza” were used as input.
Moreover, for each embedding schema, the figures show the
PCC and the RMSE of the predictive model using the time-series
data of only the word “influenza.” In the figures, “sorted” means
that the keywords selected by the word embeddings were sorted
based on the PCC—that is, the keywords were sorted in the
order of their correlation with the influenza outbreak. “Unsorted”
means that the keywords were not sorted. We expected that both
sorted and unsorted approaches would show an accuracy
increase to a certain level and then decrease with a further
increase in the number of keywords. The sorted version achieved
better accuracy than the unsorted method.

Figure 2 shows the accuracy of the LSTM model using PCC
and RMSE when adding 1 to 100 time-series training data for
the selected keyword using Word2Vec CBOW. As the number
of keywords increased, both sorted and unsorted approaches
showed an accuracy increase to a certain level and then
decreased with a further increase in the number of keywords.
The sorted version achieved better accuracy than the unsorted
method. In the case of the sorted method, the maximum value
achieved by PCC was 0.8951 with 22 keywords used, and the
minimum RMSE value was 0.0082 when the same number of
keywords was used. In the case of the unsorted method, the
maximum PCC was 0.8784 with 59 keywords, and the minimum
RMSE value was 0.0095 with 19 keywords. The sorted method
showed better accuracy with fewer keywords. When using
keywords that were highly related to influenza outbreaks, as
the number of keywords increased, the accuracy decreased
significantly. However, the decrease in accuracy was a natural
result of using less relevant keywords. It was judged that the
training data added in the sorted order had a more positive effect
on accuracy improvement.
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Figure 2. Pearson correlation coefficient (PCC) (A) and root-mean-square error (RMSE) (B) of long short-term memory models using Word2Vec
continuous bag-of-words.

Figure 3 shows the accuracy of the LSTM model using PCC
and RMSE when adding 1 to 100 time-series training data for
the selected keyword using Word2Vec skip-gram. Both the
sorted and unsorted methods of Word2Vec skip-gram showed
repeated increases and decreases in accuracy as keywords were
added. This means that the keywords selected using Word2Vec
skip-gram were somewhat less related to the influenza outbreak
than were the keywords selected using Word2Vec CBOW.

However, in the case of the sorted method, although the repeated
increase and decrease was large, it tended to increase to a certain
level and then decrease with a further increase in the number
of keywords. For the sorted keywords, the maximum PCC was
0.8942 with 8 keywords, and the minimum RMSE was 0.008
with the same number of keywords. In the case of the unsorted
method, the maximum PCC was 0.8942 with 8 keywords, and
the minimum RMSE was 0.0089 with 9 keywords.

Figure 3. Pearson correlation coefficient (PCC) (A) and root-mean-square error (RMSE) (B) of long short-term memory models using Word2Vec
skip-gram.

Figure 4 shows the accuracy of the LSTM model using PCC
and RMSE when adding 1 to 100 keywords using GloVe. The
accuracy of the predictive model using GloVe was similar to
that of the predictive model using Word2Vec CBOW. Both the
unsorted and sorted methods temporarily exhibited a boost in
accuracy as per the increase in the number of keywords.
However, the accuracy gently decreased as the number of
keywords increased further. Generally, the sorted method

achieved higher accuracy. However, as shown in the figure,
when the number of added keywords was very large, the
accuracy of the unsorted and sorted methods was similar. In the
case of the sorted method, the maximum PCC was 0.8783 with
29 keywords, and the minimum RMSE was 0.009 with 22
keywords. In the case of the unsorted method, the maximum
PCC was 0.8467 with 14 keywords, and the minimum RMSE
was 0.0095 with the same number of keywords.
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Figure 4. Pearson correlation coefficient (PCC) (A) and root-mean-square error (RMSE) (B) of long short-term memory models using GloVe.

The accuracy of the LSTM model using PCC and RMSE when
adding 1 to 100 time-series training data for the selected
keywords using FastText CBOW is depicted in Figure 5. Similar
to the accuracy of the predictive model using the previous word
embeddings, the sorted method outperformed the unsorted

method. The sorted method achieved a maximum PCC of 0.8986
with 34 keywords and a minimum RMSE of 0.009 with the
same number of keywords. The unsorted method achieved a
maximum PCC of 0.8467 with 42 keywords and a minimum
RMSE of 0.0095 with 11 keywords.

Figure 5. Pearson correlation coefficient (PCC) (A) and root-mean-square error (RMSE) (B) of long short-term memory models using FastText
continuous bag-of-words.

Figure 6 depicts the accuracy of the LSTM model using PCC
and RMSE when adding 1 to 100 time-series training data for
the selected keywords using FastText skip-gram. The general
accuracy of unsorted and sorted methods was lower than that
of other word embeddings covered thus far. This means that
the time-series data for keywords selected using the FastText
skip-gram were negatively correlated with actual influenza
outbreaks. In the case of the sorted method, the maximum PCC
was 0.8679 with 10 keywords, and the minimum RMSE was

0.009 with the same number of keywords. However, the model
that used more keywords than the model with maximum
accuracy showed a sharp decline in accuracy. The accuracy was
lower than that of the model that used only “influenza” as a
keyword. In the case of the unsorted method, the maximum
PCC was 0.8676 with 86 keywords, and the minimum RMSE
was 0.0095 with 87 keywords. However, similar to the sorted
method, the accuracy increased sharply and decreased
significantly.
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Figure 6. Pearson correlation coefficient (PCC) (A) and root-mean-square error (RMSE) (B) of long short-term memory models using FastText
skip-gram.

Analysis
In this study, we aimed to obtain the optimal word embedding
when the PCC-based sorting was applied after keyword
selection. We compared the best accuracy of the LSTM models
trained using each type of word embedding against the number
of selected keywords using PCC and RMSE. We considered 2
cases: whether PCC-based sorting was applied or not. Table 3
shows the highest accuracy of the LSTM predictive model using
different word embedding techniques and the number of
keywords used at each time. We found that the sorted method
used fewer keywords but performed better on average. This
means that using the data highly related to influenza outbreaks

through the sorted method effectively selected training data and
improved the average accuracy of the predictive model.
Moreover, we found that among the word embedding
techniques, FastText CBOW had the highest performance in
terms of PCC and Word2Vec skip-gram had the highest
performance in terms of RMSE. The process of training by
using the context words is the same except that FastText
produces a word vector using subword information while
Word2Vec considers vectors for complete words. Therefore,
there is a slight difference in the performance of Word2Vec and
FastText, but it can be confirmed that they are very similar.
GloVe, which utilizes the statistical data of the entire document,
showed lower performance than the other embedding techniques.

Table 3. Pearson correlation coefficient (PCC) and root-mean-square error (RMSE) for influenza prediction models using different word embedding
techniques.

RMSE (number of keywords)PCC (number of keywords)Prediction model

SortedUnsortedSortedUnsorted

0.0082 (22)0.0095 (19)0.8951 (22)0.8784 (59)Word2Vec CBOWa

0.0080 (8)0.0089 (9)0.8942 (8)0.8755 (50)Word2Vec skip-gram

0.0090 (22)0.0095 (14)0.8783 (29)0.8467 (14)GloVe

0.0090 (34)0.0095 (11)0.8986 (34)0.8845 (42)FastText CBOW

0.0090 (10)0.0095 (87)0.8679 (10)0.8676 (86)FastText skip-gram

0.0086 (19)0.0094 (28)0.8868 (21)0.8705 (50)Mean

aCBOW: continuous bag-of-words.

Figure 7 shows the prediction results of the model using only
the time-series data of “influenza” (basic LSTM) and the
unsorted and sorted methods using FastText CBOW,
respectively, which showed the highest PCCs (Table 3). In
Figure 7, the left side of the black dotted line drawn vertically
at weeks 18-37 is the prediction result using the training data
set, and the right side is the prediction result using the test data
set. The predictive model using Korea Centers for Disease
Control and Prevention ILI data and time-series data of only
“influenza” hardly predicted the influenza peak at weeks 19-5
in the test data set. However, the predictive model trained on
time-series data of additional keywords selected by FastText

CBOW substantially improved the prediction accuracy
compared with the model that used only the word “influenza.”
In addition, the method that sorted the keywords selected by
FastText CBOW based on PCC and added time-series data
outperformed the unsorted method. Both unsorted and sorted
methods using FastText CBOW predicted the influenza peaks
at weeks 18-1 included in the training data set. However, neither
method accurately predicted the influenza peaks at weeks 18-52
and 19-5 in the test data set. This is because the proportion of
news articles containing the word “influenza” at the second
(18-52) and the third (19-5) peak decreased compared with the
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first (18-1) peak, which affected the performance of all predictive models.

Figure 7. Comparison of actual influenza outbreaks and influenza prediction results from prediction models. CBOW: continuous bag-of-words; ILI:
influenza-like illness; KCDC: Korea Centers for Disease Control and Prevention; LSTM: long short-term memory.

Discussion

Related Work
The accurate and timely prediction of influenza outbreaks has
recently gained significant research attention. Many studies rely
on legacy statistical approaches. High-performing methods use
machine learning with internet-sourced and social
network–sourced cloud data.

Eysenbach [2] found a close correlation between
epidemiological data on flu and the number of clicks on Google's
keyword-triggered links, which is based on the fact that many
people use the internet to find health information. The PCC for
the number of clicks in the current week and influenza cases in
the following week was 0.91, which was a better predictor for
influenza than ILIs reported by sentinel physicians. Eysenbach
[2] also defined “information epidemiology” or “infodemiology”
as a set of research methods such as tracking health information
trends on the internet and distributing people's health
information. Infodemiology data have the advantage that they
can be collected and analyzed in real time.

Ginsberg et al [10] proposed a linear regression model using
the search query from the Google search engine and the ILI data

provided by the CDC in the United States to predict influenza.
The rationale behind the study was that the search frequency of
any influenza-related search query was correlated with the
occurrence of influenza. The study established a list of candidate
query groups to be used in the regression model by calculating
the correlation between time-series forms of all search queries
and the ILI value from the CDC. Hence, the top 100 of these
correlated search queries were selected for training the model.
The performance of the model improved depending on the
number of highly correlated queries. The accuracy improved
with 100 queries but did not improve with 45 queries.

Achrekar et al [19] proposed the framework of social
network–enabled flu trends, which monitored flu trends. The
study developed a model based on autoregression with an
exogenous input that used tweets to predict influenza warnings
and ILI occurrences. Tweets with the keywords “flu,” “H1N1,”
and “swine flu” were defined as influenza-related tweets.
Support vector machines (SVMs) [42] were used to exclude
meaningless tweets. The study concluded that Twitter data were
highly correlated with ILI rates.

Li and Cardie [25] developed a model that predicted influenza
using Twitter and a probabilistic graphical Bayesian approach
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based on a Markov network. The approach divided influenza
progression into 4 phases: nonepidemic, rising epidemic,
stationary epidemic, and declining epidemic. Tweets containing
the keywords “flu,” “H5N1,” “H5N9,” “swine flu,” and “bird
flu” were defined as influenza-related tweets, and SVMs were
used to remove the unnecessary tweets.

Zhang et al [27] implemented FluOutlook, an online system for
predicting influenza outbreaks in 7 countries using statistical
regression analysis and Global Epidemic and Mobility models
[43,44]. The model was based on Influweb [45]—a voluntary
participation information collection system—and Twitter.
FluOutlook collected tweets containing 40-50 defined keywords
and assigned a priority flag based on the correlation between
the time-series data corresponding to each keyword and actual
flu occurrences. The limited number of keywords helped
mitigate the effect of noise included in the collected raw tweets.

These recent influenza prediction studies have used search
queries and microblogging, such as Twitter, for real-time
prediction. However, search queries provided by search engines
(such as Google) cannot be used for real-time prediction because
it is difficult and imprecise to infer the exact search trends.
Moreover, as already asserted, Twitter and other social platforms
are prone to noise. On the other hand, web-based news data
exhibit less vulnerability to noise and have recently been adopted
in several prediction studies [46-48]. The strength of these news
data is due to real-time online accessibility and rigorous
professional editing.

A crucial aspect to consider during the extraction of training
data from the internet is the selection of keywords. Various
studies calculated correlations for all words or used keywords
that directly indicated influenza or were subjectively selected.
Calculating the correlation coefficient for every token has been
argued to be the best approach. However, it requires a lot of
computing resources and training time. The direct or subjective
selection of influenza-related keywords cannot be generalized
to various data sets because it is challenging to extract the
inherent features of the data set. Therefore, a method for
selecting related keywords by reflecting the latent characteristics
of the data during the selection of keywords improves the model
considerably.

Various studies have also focused on word embedding as a
feature extraction method that can capture the semantic and
contextual aspects from texts by establishing a distributed
representation of each token.

Mikolov et al [29,30] proposed Word2Vec—a model that uses
a shallow neural network to assign a distributed vector to each
word by calculating the co-occurrence probability. Using the
distributional hypothesis [49], the probabilities are calculated
such that words with close meaning or words that are likely to
appear together in a certain context window are close in the
vector space. The model consists of 2 distinct learning
paradigms: skip-gram and CBOW. To build the distributed
vector, skip-gram learns the probability of occurrence of context
words from the target word, while CBOW learns the probability
of occurrence of the target words from context words.

Word2Vec uses local information (context window) between
words in the context by disregarding the global information.
Hence, Pennington et al [31] proposed GloVe, which assigns a
vector to each word by using the proportion of the target word
appearing along with other words throughout the document.

Another key limitation of Word2Vec is that it ignores the
internal morphology of words and fails to capture proper vectors
for rare words. To address this limitation, Joulin et al [32]
proposed FastText, which considers the subwords of each word.
Rather than feeding the individual words to the neural network,
FastText breaks them into n-grams and uses skip-grams to learn
the distributed representation of each of these subwords. The
final representation of a distinct word is the sum of these
n-grams.

Limitations and Future Work
When predicting influenza from news articles, we used word
embedding to find words related to influenza and sorted them
based on their association with actual influenza outbreaks,
effectively extracting training data and improving the accuracy
of predictions. However, our research has the following
limitations, and future studies are needed. First, we need to
check whether our approach works well for novel data sets other
than news articles. Recently, influenza prediction has been
studied using various data [38,50-53]. Therefore, it is necessary
to study whether our approach can improve performance when
applied to different data sets used in the recent state-of-the-art
studies. In this study, we focused on improving the
representation of the training data rather than on the learning
scheme. Hence, we used the standard, unmodified LSTM model,
which is widely used in existing influenza prediction studies
[6,38,39]. However, research is being conducted to change the
standard LSTM model in state-of-the-art influenza prediction
[54,55] or to apply a prediction model that shows better
performance in other fields [56,57]. Therefore, it is necessary
to study whether our approach can lead to improvement in
performance when applied to predictive models other than the
standard LSTM model. Third, we used word embedding to
extract keyword candidates for training data extraction, but we
need to see if our sorting process can improve performance even
when other keyword extraction methods are used.

Conclusions
In this paper, we proposed an effective training data extraction
method to improve influenza prediction from news articles. The
input data selected by the extraction method encoded the
relationship between the words with influenza-related keywords.
Subsequently, these data were filtered as per their relationship
with the actual influenza outbreak. This process was ensured
by sorting the selected keywords based on PCCs between the
actual influenza outbreak and the proportion of news articles
containing the keywords. The predictive model that was trained
on the extracted data using only the word “influenza” did not
reflect the characteristics of the collected data; hence, it showed
unsatisfactory performance. However, because the predictive
models trained on the data extracted through the proposed
method reflected the characteristics of the data, it was confirmed
that the performance was greatly improved. We also compared
the performance of the predictive models with 5 popular word
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embedding techniques. The experimental results proved that
with the proposed method, FastText CBOW outperformed other

embedding techniques with unsorted and sorted keywords.
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Abstract

Background: Precision oncology has the potential to leverage clinical and genomic data in advancing disease prevention,
diagnosis, and treatment. A key research area focuses on the early detection of primary cancers and potential prediction of cancers
of unknown primary in order to facilitate optimal treatment decisions.

Objective: This study presents a methodology to harmonize phenotypic and genetic data features to classify primary cancer
types and predict cancers of unknown primaries.

Methods: We extracted genetic data elements from oncology genetic reports of 1011 patients with cancer and their corresponding
phenotypical data from Mayo Clinic’s electronic health records. We modeled both genetic and electronic health record data with
HL7 Fast Healthcare Interoperability Resources. The semantic web Resource Description Framework was employed to generate
the network-based data representation (ie, patient-phenotypic-genetic network). Based on the Resource Description Framework
data graph, Node2vec graph-embedding algorithm was applied to generate features. Multiple machine learning and deep learning
backbone models were compared for cancer prediction performance.

Results: With 6 machine learning tasks designed in the experiment, we demonstrated the proposed method achieved favorable
results in classifying primary cancer types (area under the receiver operating characteristic curve [AUROC] 96.56% for all 9
cancer predictions on average based on the cross-validation) and predicting unknown primaries (AUROC 80.77% for all 8 cancer
predictions on average for real-patient validation). To demonstrate the interpretability, 17 phenotypic and genetic features that
contributed the most to the prediction of each cancer were identified and validated based on a literature review.

Conclusions: Accurate prediction of cancer types can be achieved with existing electronic health record data with satisfactory
precision. The integration of genetic reports improves prediction, illustrating the translational values of incorporating genetic
tests early at the diagnosis stage for patients with cancer.

(JMIR Med Inform 2021;9(5):e23586)   doi:10.2196/23586
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genetic reports; electronic health records; predicting primary cancers; Fast Healthcare Interoperability Resources; FHIR; Resource
Description Framework; RDF
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Introduction

Cancer is the second leading cause of death worldwide [1]. The
health burden of cancer in the United States is substantial [2,3],
with approximately 1.8 million new diagnoses and an estimated
600,000 deaths in 2020 alone [4]. Despite the advances in
characterizing oncogenic mutations in the past few decades,
overcoming the consequences of cellular self-renewal and
neoplastic transformation remains a challenge in cancer therapy
research [5]. Therefore, continued discoveries in causes,
treatment, and management are needed to further the knowledge
and understanding of this collection of related diseases [6].

Modern gene technology has provided an opportunity to identify
certain gene mutations associated with increased cancer risk.
Approximately 5% to 10% of all cancer diagnoses are linked
to cancer predisposition syndromes [7-9]. Major syndromes of
cancer disposition affecting adults include breast, ovarian,
prostate, gastric, and pancreatic cancer [7]. Precision medicine
initiatives call for the leveraging of clinical and genomic data
to not only screen for cancers but also to help monitor cancer
progression and guide therapy options [10]. Clinicians can
facilitate early screening critical for risk assessment and
surveillance [8]. If cancer is detected at an early stage, survival
rates tend to be significantly higher than those for cancers
diagnosed at an advanced stage [11-13]. Nash et al [11] cite
figures as drastic as 90% survival for early ovarian cancer
detection compared to only 5% survival with advanced stage
detection, as an example. The utilization of genetic tests in
diagnosing primary cancer also becomes critical when the
symptoms and the physical exams suggest unspecified cancer
known as cancer of unknown primary [14]. Cancer of unknown
primary accounts for 3% to 5% of all tumors [15]. The
prediction of the primary cancer of cancer of unknown primary
can significantly increase our current knowledge of metastasis
and benefit the treatment of patients with cancer of unknown
primary.

The implementation and adoption of health information
technology have given frontline clinicians access to a large
repository of longitudinal clinical data collected during health
care encounters [16,17]. Medical insight and clinical decision
making rely heavily upon access to these data from electronic
health records. Artificial intelligence techniques, such as
machine learning methods, are promising for finding patterns
and discovering associations in health care data to help predict
diseases [18]. Improved predictions can be made by integrating
diverse types of digital data in patients’ charts, which include
diagnosis codes, clinical notes, laboratory test results, and
treatment data [19].

As demand grows for genetic testing from patients and as
genomic data continue to be incorporated into electronic health
records, there is a need to study how genetic reports, along with
electronic health record data, can be leveraged to predict cancers.
Conventional computational methods for predictive models are
based on features extracted from diverse data sources, known
as bag of features [20]. The features in these models are treated
independently, and the potential connections and patterns among
the features cannot be fully explored to serve the prediction. A

network-based data model can be used to represent the
association between data models with edges, and the potential
patterns are embedded in the topological structure of the
network. Predictions from network-based data representations
have achieved promising results in diverse biomedical areas,
such as drug-target prediction [21] and patient clustering [22].
Representing correlations among phenotypic and genetic data
elements through network-based data modeling shows great
potential in cancer prediction.

The objective of this study was to harmonize phenotypic and
genetic features for accurate and explainable cancer prediction,
specifically: (1) developing a network-based framework with
standard health care data exchange frameworks, the HL7 Fast
Healthcare Interoperability Resources (FHIR) [23] and the
Resource Description Framework (RDF) for graph-based data
representations, (2) employing a state-of-the-art graph
embedding algorithm, Node2vec [24], to obtain features for
machine learning and deep learning models, and (3)
implementing the proposed method with a collection of genetic
reports of patients with cancer and the corresponding phenotypic
data from Mayo Clinic’s electronic health record systems and
comprehensive experiments.

Methods

Preliminary
FHIR is a standardized data framework designed for data
exchange between different medical centers to enable
information to be captured as it is generated, significantly
simplifying population and real-time updates of predefined data
models [23,25]. The FHIR specification defines a set of granular
clinical concepts and resources to provide standard data
infrastructure to support implementations [23]. FHIR-based
data models are built upon combinations of these resources and
a set of attributes with value types. The common attributes (eg,
identifier) and unique attributes (eg, bodySite) in a resource are
used to facilitate data modeling. Common data types (eg, String
and CodeableConcepts) are used to constrain the attribute based
on an adaptation of clinically related ontologies, such as
SNOMED CT [26], LOINC [27], and International Statistical
Classification of Diseases ninth (ICD-9) and tenth revisions
(ICD-10) [28].

RDF is a general metadata or data model that defines concepts
and web-resources based on a variety of syntax notations and
data serialization formats [29]. Inherited from the classical
conceptual modeling approaches, RDF utilizes the expressions
to form triples, subject-predicate-object, to model data elements
(eg, web resources). Specifically, in this study, the subject
denotes the clinical data elements (eg, patients), and the
predicate denotes a relationship between 2 data elements.

Framework
We proposed a network-based framework (Figure 1) that
represented cancer data using the FHIR standard and RDF to
facilitate the cancer prediction process. Five types of data
sources extracted from the electronic health record—genetic
information, lab tests, diagnosis, medication, and family
historical records—were represented with FHIR resources and
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converted to the RDF-based representation. A graph-embedding
algorithm, Node2vec, was used to provide a vectorial

representation of nodes in the resulting network along with bag
of features to form the features for the classification models.

Figure 1. A network-based framework for cancer prediction based on Fast Healthcare Interoperability Resources and Resource Description Framework.

Data Preprocessing
Genetic data were extracted from 1011 aggregated anonymized
genetic test results (Foundation Medicine Inc), including
microsatellite instability and tumor mutational burden. Medical
record data elements related to laboratory results, diagnoses,
medications, and family histories were extracted from
approximately 515,000 billing encounters (666,000 electronic
health record encounters) retrieved from a Mayo Clinic clinical
data warehouse of [30]. We integrated genetic and electronic
health record data by mapping patient information based on 3
data elements: patient clinic number, names (first and last name),
and date of birth. Lab tests, diagnosis, medication, and family
historical records were searched based on the mapped patients.

We used natural language processing to normalize the names
and values. For diagnosis and medication, all diseases and
medications were represented with standardized names encoded
by ICD-9 [31] and RxNorm [32] codes. For lab tests, we
represented all the tests with standard names encoded by LOINC
[27]. For family historical records, each record was processed
by a pipeline (NLP2FHIR [33]), where the medical concepts
were identified and normalized using cTAKES [34], MedXN
[35], and MedTime [36]. We encoded the diseases from family
historical records using ICD-9 codes. To build the data set
utilized for the cancer prediction, all the records within the
billing circle related to the target cancers were removed. The
top 10 elements in each data source can be found in Table 1.
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Table 1. Distribution of the top 10 elements in each data source.

Record, n (%)Code and verbatim description

Genes

553 (54.70)tumor protein p53TP53

292 (28.88)KRAS proto-oncogene, GTPaseKRAS

173 (17.11)lysine methyltransferase 2DaMLL2

171 (16.91)LDL receptor related protein 1BLRP1B

150 (14.84)lysine methyltransferase 2CaMLL3

141 (13.95)APC regulator of WNT signaling pathwayAPC

137 (13.55)AT-rich interaction domain 1BARID1B

134 (13.25)FAT atypical cadherin 1FAT1

128 (12.66)protein kinase, DNA-activated, catalytic subunitPRKDC

126 (12.46)AT-rich interaction domain 1AARID1A

Diagnosisb

204 (25.66)Work Status Exam (RTW)Z02.9

142 (17.86)Hypertension (HTN) ChronicI10

138 (17.36)HYPERTENSION NOS401.9

116 (14.59)HYPERLIPIDEMIA NEC/NOS272.4

113 (14.21)Mass LungR91.8

106 (13.33)ADMINISTRTVE ENCOUNT NOSV68.9

101 (12.70)Maintenance Health (HM)Z00.00

93 (11.70)Dyslipidemia NOSE78.5

79 (9.94)PREOP EXAMINATION NECV72.83

79 (9.94)ROUTINE MEDICAL EXAMV70.0

Lab testsc

991 (99.40)Platelets [#/volume] in Blood by Automated count777-3

988 (99.10)Creatinine [Mass/volume] in Serum or Plasma2160-0

985 (98.80)Hematocrit [Volume Fraction] of Blood by Automated count965763

985 (98.80)Hemoglobin [Mass/volume] in Blood718-7

985 (98.80)Erythrocyte distribution width [Ratio] by Automated count788-0

985 (98.80)Erythrocytes [#/volume] in Blood by Automated count789-8

985 (98.80)Leukocytes [#/volume] in Blood by Automated count1749545

985 (98.80)MCV [Entitic volume] by Automated count787-2

975 (97.80)Potassium [Moles/volume] in Serum or Plasma337180

973 (97.60)Sodium [Moles/volume] in Serum or Plasma383903

Family historical recordsb

205 (29.54)Other cardiorespiratory problemsV47.2

205 (29.54)Heart disease, unspecified429.9

205 (29.54)Other ill-defined heart diseases429.89

133 (19.16)Malignant neoplasm of bronchus and lung, unspecified162.9

130 (18.73)Malignant neoplasm of other parts of bronchus or lung162.8

124 (17.87)Other and unspecified hyperlipidemia272.4

104 (14.99)Cerebral artery occlusion, unspecified with cerebral infarction434.91
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Record, n (%)Code and verbatim description

84 (12.10)Other unknown and unspecified cause of morbidity and mortality799.9

72 (10.37)Depressive disorder, not elsewhere classified311

63 (9.08)Unspecified disorders of arteries and arterioles447.9

Medicationd

399 (72.41)Iohexol5956

374 (67.88)Sodium Chloride 9 MG/ML Prefilled Syringe1359867

304 (55.17)20 ML Sodium Chloride 9 MG/ML Injection1807638

298 (54.08)1000 ML Sodium Chloride 9 MG/ML Injection1807639

251 (45.55)2 ML Ondansetron 2 MG/ML Injection1740467

224 (40.65)Fentanyl4337

207 (37.57)heparin sodium, porcine314659

202 (36.66)Calcium Chloride 0.0014 MEQ/ML / Potassium Chloride 0.004 MEQ/ML / Sodium
Chloride 0.103 MEQ/ML / Sodium Lactate 0.028 MEQ/ML Injectable Solution

847630

188 (34.12)Acetaminophen 500 MG Oral Tablet198440

163 (29.58)10 ML Propofol 10 MG/ML Injection1808234

Cancersb

231 (22.85)Malignant neoplasm of bronchus and lung, unspecified162.9

124 (12.27)Malignant neoplasm of colon, unspecified site153.9

118 (12.67)Malignant neoplasm of liver, primary155

116 (11.47)Malignant neoplasm of pancreas, part unspecified157.9

85 (8.41)Malignant neoplasm of ovary183

80 (7.91)Malignant neoplasm of prostate185

68 (6.73)Malignant neoplasm of connective and other soft tissue, site unspecified171.9

55 (5.44)Malignant neoplasm of thyroid gland193

53 (5.24)Malignant neoplasm of breast (female), unspecified174.9

———e

aCurrent standard gene symbols: MLL2 is now KMT2D; MLL3 is now KMT2C.
bInternational Statistical Classification of Diseases (ninth revision) code and description.
cLOINC code and description.
dRxNorm code and description.
eA tenth item is not included.

Data Preprocessing and Data Modeling Based on FHIR
and RDF
We adapted FHIR-based data models from our previous work
[37] employing FHIR resources to represent data elements of
genetic reports and structured electronic health record data for
phenome-wide association studies. Specifically, we represented
genetic entries with the existing profile Observation-genetics,
extended from the resource Observation. The lab test, diagnosis,
and medication entries were represented with the resources
Observation, Condition, and Medication, respectively, and were
identified by encounters (eg, billing and electronic health record

encounters) and service date. The family historical records
entities were represented with the resource
FamilyMemberHistory as diseases and were encoded with the
attributed condition. All the resources were associated with the
resource Patient. We further converted the JavaScript object
notation–formatted FHIR data to RDF format based on the
conversion rules, where (1) all the string-type values were
considered as the entities in the RDF graph, and (2) all the values
of the resources were considered as the object of the data-type
property—named after the resource for the subject resource
Patient. We illustrated an example of data representation based
on FHIR and RDF in Figure 2.
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Figure 2. An example of data representation based on Fast Healthcare Interoperability Resources (FHIR) and Resource Description Framework (RDF):
2 JavaScript object notation–formatted FHIR representations for patients 1 and 2 are merged and converted into 1 RDF graph.

Feature Generation and Cancer Prediction

Bag of Features
Bag of features is analogous to the bag-of-words representation
and characterizes a sample with an orderless collection of
features [38]. In this study, we used bag of features based on
the attribute values from the FHIR model. Specifically,
categorical values of mutated genes, lab test results, disease
diagnoses, medications for treatment, and historical family
disease diagnoses were collected as the features from
Observation-genetics, Observation, Condition, Medication, and
FamilyMemberHistory, respectively. Additionally, patient
demographic features, such as age and gender, were also used.

Topological Features
In order to train a model with the features generated from the
input RDF data, we adapted a methodology [21] that considered
RDF graph as a network, G(V,E) with a set of vertices V and a
set of edges E, where V has 7 types of vertices (ie, genetics, lab
tests, diagnosis, medication, family historical records,
demographics, and patients) and E represents associations
between the 6 types of vertices (ie, genetics, lab tests, diagnosis,
medication, family historical records, demographics) and
patients. We used the graph embedding method to learn the
features of the patients, where a patient could be represented
by a vector embedded within the topological structure of the
patient in the network G. Node2vec [30] is a state-of-art graph
embedding method that vectorizes the vertices of a network
based on the topology of the network by maximizing the
probability of observing the neighborhood N(u) of each node u
in G:

where

and f (∙) was the feature representation of a node. In addition,
we also generated a |V|×|V| adjacency matrix from G, where
each cell of the matrix was set to 1 if there was a connection
between nodes, otherwise the cell was set to 0.

We modeled cancer prediction as a multiple-label classification
problem, where a given patient was represented with
k-dimensional features, and a model categorized the patient into
precisely 1 of 9 cancer types: colon cancer (ICD-9: 153.9),
pancreas cancer (ICD-9: 157.9), ovary cancer (ICD-9: 183),
prostate cancer (ICD-9: 185), connective and other soft tissue
cancer (ICD-9: 171.9), thyroid gland cancer (ICD-9: 193), breast
cancer (ICD-9: 174.9), liver cancer (ICD-9: 155), and bronchus
and lung cancer (ICD-9: 162.9).

Experiment Design

Overview
There were 2 main drivers of this study: (1) from a
methodological perspective—how could generated features be
coordinated with classification methods in a favorable manner
to achieve satisfactory prediction?—and (2) from a data
perspective—which data sources, especially genetic data, are
preferable in prediction? Our experiment was thus conducted
as a sequence of 6 distinct tasks.

Task 1: Comparison of Combinations of Features and
Popular Classification Methods
A comparison of 3 feature generation methods—bag of features,
Node2vec, and bag of features+Node2vec (ie, a linear
combination of bag of features and Node2vec)—was conducted.
Seven classification methods—random forest [39], naive Bayes
[40], logistic regression [41], support vector machine [42], deep
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neural network [43], convolutional neural network [44], and
graph convolutional networks [45]—were used.

Task 2: Comparison of Combinations of Data Sources
There were 5 types of data sources used in this study. We took
all possible combinations of the data sources into consideration
and studied how the features generated from these sources
affected the results.

Task 3: Comparison of Predictions for Each Cancer
To understand how the prediction varied in different cancers
predictions, we conducted 9 prediction tasks for all the cancers
to study.

Task 4: Analysis of Feature Contribution for Each
Cancer Prediction
To interpret the model and understand which features were
important to each cancer, we studied the features that contributed
most to the prediction of cancer.

Task 5: Time Effect of Cancer Prediction
To understand how the prediction could be made precisely prior
to a certain amount of time of the diagnosis, we studied the
prediction based on data collected at different duration, ranging
from 0 to 24 months, in advance.

Task 6: Prediction of Cancer of Unknown Primary
Patients
We identified the 43 primary cancers from 81 patients with
cancer of unknown primary based on the diagnosis records to
understand how the proposed method performed for real cancer
predictions. Please note, no patients with pancreas cancer of
unknown primary were identified, and therefore, pancreatic
cancer was not considered in this task.

Feature Selection and Classification
Two methods were used to generate features: bag of features
and Node2vec. For bag of features, all genes, diseases, drugs
in genetics, diagnosis, medication, and family historical records
were considered as features. For the lab tests, the values were
converted into categorical values (Null, Normal, or Abnormal)
based on the normal range defined in the unified data platform.
To avoid overfitting, the features were reduced to
d={10,20,30,40,50,60,70,80,90,100} based on information gain
[46]. For Node2vec, the parameter ranges for the grid search
were specified as the number of walks γ={10,40}, return
P={0.5,1.0,2.0}, in-out q={0.5,1.0,2.0}, dimension
d={10,20,30,40,50,60,70,80,90,100}, window size w={5,10},
and walk length t={40,80}.

Four popular machine learning models and 3 deep learning
models were used for classification. For machine learning
methods, the following settings were used: L2 regularization
for logistic regression, type C-SVC and linear kernel for support
vector machine, 500 trees for random forest, and default settings
for naive Bayes. For deep learning methods, the following

structure were used: 5 dense layers with dimensions {256,
256,128, 64, 10} (4 rectified linear unit [ReLU] activation
functions with 0.5 dropout rate and 1 softmax activation
function) for deep neural network, 3 convolution layers with
filters {256, 256, 256} (3 ReLU activation functions and
maxpooling layers with 0.5 dropout rate) followed with 4 dense
layers with dimensions {256,128, 64, 10} (3 ReLU activation
functions with 0.5 dropout rate and 1 softmax activation
function) for convolutional neural network, and 2 graph
convolutional layers with channels {64, 10}(1 ReLU activation
function with 0.5 dropout rate and 1 softmax activation function)
for graph convolutional networks.

Node2vec was obtained from the Node2vec library [47]. The
logistic regression classifier was obtained from the LIBLINEAR
library [48]; naive Bayes, random forest, and information gain
algorithms were obtained from Weka library [49], support vector
machine was obtained from LIBSVM [50]. Deep neural network
and graph convolutional networks were constructed based on
Keras library [51]. Graph convolutional networks algorithms
were obtained from Spektral library [52].

Validation and Evaluation Metrics
We used conventional 10-fold cross-validation for the
evaluation, where 10 independent iterations of training and
testing were conducted, and a random partition of the original
samples into 10 equal-size subsamples was performed. To assess
the quality of classification, we used area under the receiver
operating characteristic curve (AUROC) [53]. In addition, the
area under the precision-recall curve (AUPRC) [53] was used
as a supplementary metric characterizing the results for
imbalanced classes [54,55]. AUROC and AUPRC scores were
calculated using the Java Receiver Operating Characteristic
library [56] and Weka evaluation package [57].

Results

Combinations of Features and Popular Classification
Methods
Table 2 shows the best performance result was achieved by
using bag of features+Node2vec and random forest (AUROC
96.19%) (AUPRC: Table S1, Multimedia Appendix 1).
Generally, using bag of features+Node2vec outperformed using
bag of features (+1.27 %) and Node2vec (+1.41%). Although
we observed that machine learning–based methods outperformed
deep learning–based methods, in general, the best deep
learning–based approach (AUROC 95.12%) was second to the
best machine learning–based approach by only 1
percentage-point difference (outperforming the remaining
machine learning–based approaches). As our implementation
of deep learning models is based on simple architectures, the
deep learning models with more complex architectures have
the potential to facilitate feature generation and may directly
contribute to improvements in cancer prediction.
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Table 2. Prediction performance (area under the receiver operatic characteristic curve) for combinations of features and classification methods.

Feature generation algorithmClassifiers

Bag of features+Node2vecNode2vecBag of features

AUROC (%)AUROC (%)AUROCa (%)

96.1991.8994.82Random forest

94.7692.9192.30Naive Bayes

89.3985.2586.68Logistic regression

86.7283.9284.62Support vector machine

57.6863.3664.14Convolutional neural network

95.1292.8792.56Deep neural network

83.8383.6279.67Graph convolutional networks

aAUROC: area under the receiver operating characteristic curve.

Combinations of Data Sources
Table 3 shows better results were achieved by the model
DML+G (diagnosis, medication, lab test, and genetic
information; AUROC 96.56%). Steady improvement is obtained
when more features are used (AUPRC: Table S2, Multimedia
Appendix 1). For example, increasing average AUROCs
(75.49%, 82.65%, 87.98%, and 91.74%) are achieved by adding
1 to 5 features successively without using genetic information.
Table 3 also presents the importance of the features, where lab

test is the most important feature (91.00%), followed by
diagnosis (73.12%), medication (72.83%), and family historical
records (65.01%). We also demonstrated the value of genetic
information for cancer prediction—an average improvement of
10.52% was reached. Interestingly, such improvement is
weakened when more feature types are used (+15.76% for using
1 feature type, +10.45% for 2 feature types, +6.92% for 3 feature
types, and +4.45% for 4 feature types). Table 3 also indicates
the potential of using diverse types of features alternatively
when genetic information is not available.

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e23586 | p.312https://medinform.jmir.org/2021/5/e23586
(page number not for citation purposes)

Zong et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Prediction performance for combinations of data sourcing with bag of features+Node2vec and random forest algorithms.

AUROCa (%)Feature types

With genetic informationBase feature set

1 feature type

90.8973.12Gb

88.3765.01Dc

95.8091.00Hd

89.9472.83Le

90.9273.21Mf

2 feature types

96.0991.55DH

90.8877.09DL

95.9291.30DM

89.0271.53HL

95.7591.22MH

96.0191.98ML

3 feature types

91.2876.76DHL

96.5691.76DMH

95.7691.43DML

96.1991.74MHL

4 feature types

90.8973.12DMHL

aAUROC: area under the receiver operating characteristic curve.
bG: genetic information.
cD: diagnosis.
dH: family historical records.
eL: lab test.
fM: medication.

Predictions for Each Cancer
Table 4 shows that the proposed method achieved high AUROC
values across all 9 cancer types (AUPRC: Table S3, Multimedia
Appendix 1), especially for thyroid gland (AUROC 99.80%),
prostate (99.76%), breast (98.53%), ovary (98.29%), connective

and other soft tissue (96.05%), and liver (95.41%). Genetic
information improved the predictions in general (P<.001) based
on a Wilcoxon signed-rank test [58], specifically for thyroid
gland cancer (P=.03), ovary cancer (P=.03), connective and
other soft tissue cancer (P=.03), liver cancer (P=.03), and colon
cancer (P=.03).
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Table 4. Prediction performance for 9 cancer types.

AUROCb (%)Cancer (ICD-9a code)

DML+GdDMLc

99.8099.55Malignant neoplasm of thyroid gland (193)

99.7698.43Malignant neoplasm of prostate (185)

98.5396.80Malignant neoplasm of breast (female), unspecified (174.9)

98.2995.73Malignant neoplasm of ovary (183)

96.0582.39Malignant neoplasm of connective and other soft tissue, site unspecified (171.9)

95.4191.39Malignant neoplasm of liver, primary (155)

95.4191.07Malignant neoplasm of pancreas, part unspecified (157.9)

93.2490.61Malignant neoplasm of bronchus and lung, unspecified (162.9)

92.5679.88Malignant neoplasm of colon, unspecified site (153.9)

aICD-9: International Statistical Classification of Diseases, ninth revision.
bAUROC: area under the receiver operating characteristic curve.
cDML: diagnosis, medication, and lab test.
dDML+G: diagnosis, medication, and lab test, and genetic information.

Feature Contributions for Each Cancer Prediction
Our analysis examines the feature contribution based on SHAP
values [59] for the cancer prediction and selects the top 5
features interpretable for each cancer (Figure 3). Frequent
common features are lab tests (11/17); cancer antigen 19-9 in
serum or plasma (2.03%), carbohydrate antigen 19-9, S (1.76%),
and cancer antigen 125 in serum or plasma by immunoassay
(2.59%) are the most common features across all the cancer
types. These lab tests are considered to be predictive biomarkers
for prognosis and chemotherapeutic effect for carcinomas
[60-63]. Two genes—KRAS proto-oncogene, GTPase homolog
(KRAS) (1.46%) and adenoma polyposis coli regulator of WNT
signaling pathway (APC) (1.60%) contribute the most cancer
predictions. KRAS is the most commonly mutated oncogene in
human cancers. The sustained expression and signaling of KRAS
results in the progress of many cancers thus make it the
high-priority target in clinical therapeutic implications [64].
APC participates in a cytoplasmic complex and its mutation
triggers negatively regulating canonical WNT signaling. APC
counteracts proliferation, facilitates apoptosis, and suppresses
tumor progression, thus APC-deficient tumors drive colorectal
and gastric cancers [65,66].

Lab tests testosterone (2.49%) and prostate-specific antigen in
serum or plasma (2.29%) were found to be the major
contributors to prostate cancer prediction. Evidence supports
the androgen hypothesis, where prostate cancer development
and progression are related to androgens. These findings drive

the studies to explore the correlation between testosterone and
prostate cancer development and progression [67,68]. For
thyroid gland cancer prediction, thyroglobulin antibody in serum
or plasma by immunoassay (2.69%), thyroglobulin in serum or
plasma (0.58%), T4 (thyroxine) (0.62%), and gene telomerase
reverse transcriptase (TERT) (SHAP value 0.59%) were found
to be the major contributors. Associations between autoimmune
thyroiditis and thyroid cancer have been documented [69] in
studies where thyroid autoimmunity was assessed by measuring
thyroglobulin antibody and thyroid peroxidase antibody [70,71].
Thyroglobulin in serum also plays a key role in the surveillance
of differentiated patients with thyroid cancer [72]. TERT
promoter mutations have been found to be strongly associated
with different pathological types of thyroid cancers and are
considered as the biomarker to the preoperative diagnosis and
prognosis of thyroid cancers [73]. Cancer antigen 15-3 in serum
or plasma (1.57%) and cancer antigen 15-3 (CA 15-3) S (0.98%)
lab tests are the major contributors to breast cancer prediction.
Cancer antigen 15-3 is a protein made by a variety of cells,
particularly breast cancer cells, and the cancer antigen 15-3 test
is A biomarker test used to monitor breast cancer [74]. In
addition, the cancer markers alpha-fetoprotein, tumor marker,
S (0.78%) and epidermal growth factor receptor (EGFR) (1.56)
were found to be the main contributors for the prediction of
cancers of the liver [75] and bronchus and lung [76]. In our
study, sex appears to be the major contributor to prediction of
cancers of the breast (0.76%), prostate (0.92%), and ovary
(1.16%).
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Figure 3. Top 5 features contributing to cancer prediction.

Time Effect of Cancer Prediction
Table 5 shows predictions based on different resources with
different combinations of time-dependent (diagnosis,
medication, and lab test) features (AUPRC: Table S4,
Multimedia Appendix 1). Among the 7 models, diagnosis and
lab test were the best (average AUROC 90.31 %). In general,
the performance of prediction decreases as more time increases
prior to the formal diagnosis. For example, the average
performance was reduced from 92.37% to 77.18% from 0

months to 24 months in advance, with an average decrease of
3.04%. Table 5 also demonstrates the performance of the model
(ie, diagnosis, medication, lab test, and genetic information)
based on genetic information (AUROC 91.38% at 24 months
in advance, an improvement of +11.38% over diagnosis,
medication, and lab test). The difference between the two
increase as time increases (eg, 1.06 for 0 months to 11.38% for
24 months), which suggests the importance of genetic testing
at early stages.

Table 5. Prediction performance (AUROC) 0 months to 24 months in advance.

Feature typeMonths

Lab testMedicationDiagnosisMedication
and lab test

Diagnosis and
medication

Diagnosis and
lab test

Diagnosis,
medication,
and lab test

DML+Ga

AUROC (%)AUROC (%)AUROC (%)AUROC (%)AUROC (%)AUROC (%)AUROC (%)AUROCb (%)

87.9370.3997.9088.6797.8998.4198.3699.430

86.6771.0194.5386.8394.3195.5195.6298.081

84.1869.3691.2084.8590.7493.2293.1696.523

83.3868.1285.2683.0985.5389.9189.6995.216

79.9966.7678.2180.5678.2084.6084.3993.1712

78.3566.2271.7177.7371.8180.2080.0191.3824

aDML+G: diagnosis, medication, and lab test, and genetic information.
bAUROC: area under the receiver operating characteristic curve.
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Prediction of Patients With Cancer of Unknown
Primary
In spite of the challenge in identifying patients with cancer of
unknown primary in the clinical setting, hybrid features—the
diagnosis, medication, lab test, and genetic information
model—outperformed the diagnosis, medication, and lab test
model (AUPRC: Table S5, Multimedia Appendix 1), and bag
of features+Node2vec outperform the bag of features and
Node2vec in most cases. Table 6 shows promising prediction
results for 4 cancers, especially for breast (AUROC 92.31%),
connective and other soft tissue (AUROC 92.31%). Cancers of

the liver and lung have the largest number of patients (24/43)
and also achieved satisfactory predictions (AUROCs 88.21%
and 85.51%). We also note that the proposed method performed
suboptimally in predicting cancer of the colon (AUROC
52.56%). Prediction of the prostate, thyroid gland, and colon
cancers had better results for the bag of features+Node2vec
model with diagnosis, medication, and lab test features and for
the bag of features or Node2vec model with diagnosis,
medication, lab test, and genetic information features (Table
S6, Multimedia Appendix 1), suggesting a more flexible strategy
of model adaptation for the prediction of cancer of unknown
primary in practice.

Table 6. AUROC (%) of prediction for 9 cancer types.

Patients, nAUROCb (%)Cancer (ICD-9a code)

DML+GdDMLc

492.3183.97Malignant neoplasm of breast (female), unspecified (174.9)

492.3153.21Malignant neoplasm of connective and other soft tissue, site unspecified (171.9)

1388.2184.10Malignant neoplasm of liver, primary (155)

1185.5174.43Malignant neoplasm of bronchus and lung, unspecified (162.9)

280.4965.85Malignant neoplasm of ovary (183)

379.1791.67Malignant neoplasm of prostate (185)

275.6190.24Malignant neoplasm of thyroid gland (193)

452.5664.74Malignant neoplasm of colon, unspecified site (153.9)

aICD-9: International Statistical Classification of Diseases, ninth revision.
bAUROC: area under the receiver operating characteristic curve.
cDML: diagnosis, medication, and lab test.
dDML+G: diagnosis, medication, and lab test, and genetic information.

Discussion

It is recognized that both genetic and nongenetic factors may
lead to the development of cancers, and they are, therefore,
considered to be risk factors in the plethora of cancer prediction
models based on statistical analysis; this leads to performance
(eg, AUROC) ranging from 60% to 90% [77]. For example, the
variables of high DNA load of high-risk human papillomavirus,
age, marital status, smoking status, and age at sexual debut are
the critical factors to achieve the AUROC 90% in the prediction
of cervical intraepithelial neoplasia grade 2 or worse [78]. DNA
methylation-based markers-based method achieves AUROC
93% in the detection of preinvasive neoplasia and cervical
cancer [79]. Computational methods (eg, machine learning and
deep learning) have been adapted to provide solutions for cancer
prediction challenges in a controlled environment (eg, UCI
machine repository [80]). For example, linear support vector
machines achieved AUROC 96.7% [81] and k-nearest neighbors
classifier achieved an accuracy of 99.28% [82] for breast cancer
prediction.

Public genetic expression databases (eg, The Cancer Genome
Atlas) are frequently used to train diverse deep learning models.
A convolutional neural network–based model achieved
accuracies of 93.9% to 95.0% in the prediction of 34 cancer
types [83]. For lung, stomach, and breast cancer, AUROCs

99.5%, 97.1%, and 95.0%, respectively, were achieved by a
stacked sparse auto-encoder–based classification model [84].
Prostate cancer prediction achieved an AUROC of 95.5% with
a genetic algorithm–optimized artificial neural network [85].
Accuracies of 95.3% for breast cancer, 57.9% for leukemia, and
84.9% for colon cancer were achieved by sample expansion
based 1D convolutional neural network [86].

Electronic health records are utilized in cancer prediction.
DeepPatient has proposed a novel unsupervised feature learning
method based on autoencoders for disease prediction [87]. The
overall AUROC was 77.3%, where AUROCs of 88.7% for
cancer of rectum and anus, 88.6% for cancer of the liver and
intrahepatic bile duct, 85.9% for cancer of the prostate were
predicted with a time interval of 12 months. Multiple studies
have utilized electronic health record data to predict specific
cancers, where AUROCs of 88.1% for lung cancer [88], 64.8%
for breast cancer [89], 85% for pancreatic cancer [90] were
achieved, and 85.7% precision and 60.0% recall were achieved
for colorectal cancer [91]. Our method achieved AUROC
96.56% in general and outperformed the state-of-the-art methods
for most cancer types. Specifically, prostate cancer (99.8%),
breast cancer (AUROC 98.5%), liver cancer (95.4%), and
pancreas cancer (95.4%) predictions results were better for our
method.
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In this study, we designed and developed a network-based
framework leveraging the FHIR resources and RDF for cancer
prediction. Our contributions can be summarized as exploration
of utilizing FHIR and RDF technology to provide a
network-based representation for the prediction of patient health
status, demonstrating the value of integrating the phenotypic
and genetic features data sources to improve the accuracy and
interpretability in cancer prediction models. To enable the
standard representation of data, a FHIR-based representation
was used as the core to support the network population and
feature generation. It is one of the most popular clinical data
standards and is widely used among modern electronic health
record vendors and data providers, enabling the plug and play
functionality of the proposed method to be used across the
different institutions, and it provides the specification and tools
to seamlessly convert to RDF format and support the efficient
data communication based on the popular data exchanging
formats, such as XML or JavaScript object notation.

This study demonstrated a solution for the prediction of
unknown cancer in clinical practice. Despite the value of this
work, there are several limitations that should be addressed.

First, the genetic alterations in the genetic reports provided in
Foundation Medicine are all somatic mutations in tumors and
are collected from somatic tissues. Thus, we could not
differentiate the germline and somatic mutations in our model.
The bias introduced to the system caused by a failure in
capturing this difference weakens the findings of our study.

Second, as most genetic tests are based on specimens collected
from the biopsy or surgery, the best-performing (diagnosis,
medication, lab test, and genetic information) model introduced
in Task 5 might not be adaptable as some medical organizations
have limited access to genetic information available for study.
We, therefore, consider that it is more practical to learn a large
amount of phenotypical information for cancer prediction with
the full utilization of existing generic information. On the other
hand, as the costs of genetic testing are reduced, we believe that
the genetic information will be increasingly used in prediction
models for different tasks, which makes the proposed method
a good reference as a pilot study.

Third, within 81 patients who have been documented as having
cancer of unknown primary (from genetic reports), we could

identify specific cancer types for 43 patients based on the review
of patients' diagnostic report for task 6. We understand that the
limited data set used might affect result analysis, which is a
limitation of this experiment. We also noticed that the proposed
method performs differently in task 6, especially with some
notable failures. Such failures indicate the patterns of the value
distribution for the features learned in the training data are not
the same as the patterns in the cancer of unknown primary. The
cancer of unknown primary source is not considered a single
type of cancer and is known to spread at the early stage without
causing phenotypical symptoms at the origin site [92]. As such,
the proposed model is affected in Task 5 accordingly.

Fourth, our experiment demonstrates the performance of the
proposed method based on data collected over a varying
timeline. Data were used in isolation to train classification
models, ignoring the continuous changing of the measurable
values of phenotypes (eg, lab tests) during cancer progression.
The introduction of deep learning models, such as recurring
neural networks [93] and long short-term memory [94], which
are capable of processing time-series data may potentially
improve predictions.

Fifth, cancers related to the same genetic alteration (eg, both
colorectal and gastric cancers are related to the APC gene)
inspire us to explore the potential of considering dependent
phenotypes of the genetic alteration. With the utilization of
phenotype and genotype dependence based on the ontology
structure, a more sophisticated method can be designed to
empower the prediction. In the future, we plan to reach out to
other institutions to apply our method both with and without
genetic information on diverse electronic health record systems.
We consider it is necessary to adopt other medical data
standards, such as Observational Health Data Sciences and
Informatics Common Data Model [95], to cover the diversity.
We are aware that there are some challenging issues in genetic
data modeling with relational databases, such as how to
anonymize and aggregate genomic data. We believe that the
research community will develop solutions for handling these
challenging issues. We will incorporate such developments into
our framework as part of future work to better support these
requirements. The data process and cancer prediction tools of
this study are publicly available [96].
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(JMIR Med Inform 2021;9(5):e30153)   doi:10.2196/30153

In “Extracting Family History Information From Electronic
Health Records: Natural Language Processing Analysis” (JMIR
Med Inform 2021;9(4):e24020) one correction was made.

Due to a system error, five extraneous figures were added to
the Methods section of the paper at the time of publication.
These have been removed from the corrected version.

The correction will appear in the online version of the paper on
the JMIR Publications website on May 3, 2021, together with
the publication of this correction notice. Because this was made
after submission to PubMed, PubMed Central, and other full-text
repositories, the corrected article has also been resubmitted to
those repositories.
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In “A Patient Journey Map to Improve the Home Isolation
Experience of Persons With Mild COVID-19: Design Research
for Service Touchpoints of Artificial Intelligence in eHealth”
(JMIR Med Inform 2021;9(4):e23238) the authors noted one
error.

In the originally published manuscript, Multimedia Appendix
captions incorrectly appeared as follows:

Multimedia Appendix 1: Patient journey map of
persons with mild COVID-19 during home isolation.

Multimedia Appendix 2: Visual summary.

Multimedia Appendix 3: Video purpose and comments
coding trees.

Multimedia Appendix 4: Personal video story
coverage and experienced symptoms during home
isolation.

In the corrected version of the manuscript, Multimedia Appendix
captions have been corrected to:

Multimedia Appendix 1: Personal video story
coverage and experienced symptoms during home
isolation.

Multimedia Appendix 2: Patient journey map of
persons with mild COVID-19 during home isolation.

Multimedia Appendix 3: Video purpose and comments
coding trees.

Multimedia Appendix 4: Visual summary of design
research.

The correction will appear in the online version of the paper on
the JMIR Publications website on May 4, 2021, together with
the publication of this correction notice. Because this was made
after submission to PubMed, PubMed Central, and other full-text
repositories, the corrected article has also been resubmitted to
those repositories.
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Abstract

Background: Semantic textual similarity (STS) is a natural language processing (NLP) task that involves assigning a similarity
score to 2 snippets of text based on their meaning. This task is particularly difficult in the domain of clinical text, which often
features specialized language and the frequent use of abbreviations.

Objective: We created an NLP system to predict similarity scores for sentence pairs as part of the Clinical Semantic Textual
Similarity track in the 2019 n2c2/OHNLP Shared Task on Challenges in Natural Language Processing for Clinical Data. We
subsequently sought to analyze the intermediary token vectors extracted from our models while processing a pair of clinical
sentences to identify where and how representations of semantic similarity are built in transformer models.

Methods: Given a clinical sentence pair, we take the average predicted similarity score across several independently fine-tuned
transformers. In our model analysis we investigated the relationship between the final model’s loss and surface features of the
sentence pairs and assessed the decodability and representational similarity of the token vectors generated by each model.

Results: Our model achieved a correlation of 0.87 with the ground-truth similarity score, reaching 6th place out of 33 teams
(with a first-place score of 0.90). In detailed qualitative and quantitative analyses of the model’s loss, we identified the system’s
failure to correctly model semantic similarity when both sentence pairs contain details of medical prescriptions, as well as its
general tendency to overpredict semantic similarity given significant token overlap. The token vector analysis revealed divergent
representational strategies for predicting textual similarity between bidirectional encoder representations from transformers
(BERT)–style models and XLNet. We also found that a large amount information relevant to predicting STS can be captured
using a combination of a classification token and the cosine distance between sentence-pair representations in the first layer of a
transformer model that did not produce the best predictions on the test set.

Conclusions: We designed and trained a system that uses state-of-the-art NLP models to achieve very competitive results on
a new clinical STS data set. As our approach uses no hand-crafted rules, it serves as a strong deep learning baseline for this task.
Our key contribution is a detailed analysis of the model’s outputs and an investigation of the heuristic biases learned by transformer
models. We suggest future improvements based on these findings. In our representational analysis we explore how different
transformer models converge or diverge in their representation of semantic signals as the tokens of the sentences are augmented
by successive layers. This analysis sheds light on how these “black box” models integrate semantic similarity information in
intermediate layers, and points to new research directions in model distillation and sentence embedding extraction for applications
in clinical NLP.

(JMIR Med Inform 2021;9(5):e23099)   doi:10.2196/23099
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Introduction

Clinical Semantic Textual Similarity
Semantic textual similarity (STS) has long been an important
task in natural language processing (NLP) research. Early work
built document-level models for textual similarity that used an
unsupervised approach, primarily for the purpose of indexing
documents for search [1,2]. These models generally relied on
the assumption that greater overlap in terms indicated greater
interdocument similarity. This body of work was enriched by
Lee et al [3] who also modeled similarity at the document level
but elicited human semantic judgments of similarity to create
a small data set of interest to NLP researchers and cognitive
scientists. It was not until SemEval-2012 Task 6 [4] that the first
sentence-based STS data set was released, featuring 2000
training and 750 test sentence pairs that were rated by humans
on a scale of 0-5 (from low to high similarity). Since then, there
have been many new SemEval STS tasks, building on the initial
task to encompass new domains of text [5] and cross-lingual
similarity [6,7]. Researchers have used these models in a diverse
set of applications such as discovering links between data sets
[8] and identifying arguments in online discourse [9].
Recognizing both the potential of STS for processing eHealth
records and the need for specialized data sets to account for
clinical domain knowledge and handle the use of medical
abbreviations, Rastegar-Mojarad et al [10] introduced a corpus
of clinical sentence pairs that were assigned semantic similarity
labels on a 0-5 scale by medical experts. This data set of 1068
annotated sentence pairs, as well as an expanded corpus of
174,629 unannotated sentence pairs, was released as MedSTS
[11]. As with previous STS tasks, performance on this data set
is measured by the Pearson correlation between the predicted
labels and the ground-truth similarity scores. In general, the
best systems in the BioCreative/OHNLP Challenge STS task
used ensembles of traditional machine learning models and deep
learning models [12], with the overall top-performing model
achieving a correlation of 0.83 on the test set. The clinical STS
task tackled in this paper, the 2019 n2c2/OHNLP Track on
Clinical Semantic Textual Similarity [13], uses an expansion of
the BioCreative/OHNLP Challenge STS task data set.

Transformer Models
In this work we train different types of transformer language
models [14]. One of the types of transformer models that we
train is bidirectional encoder representations from transformers
(BERT) [15], which uses a masked language modeling task to
train fully on bidirectional context without the decoder
component of the original transformer architecture. Recently
there has been much work in further training BERT on data
from specialized domains, including biomedical text [16] and
clinical documents [16-18]. We also further fine-tune these
models on the task of STS. The last type of transformer model
that we fine-tune is XLNet [19], which performs autoregressive
language modeling while also capturing bidirectional context
by sampling different possible word orders.

Interpreting Deep Neural Networks
After we train our models, we explore the representations that
they build of clinical semantic similarity to identify any
systematic biases or heuristics they may have learned that we
can then work toward addressing to improve future clinical STS
transformer architectures. There is a substantial literature that
uncovers the kind of linguistic representations deep neural
networks learn by experimentally perturbing the model’s input
and carefully analyzing the failure cases [20-22]. Another
approach uses “decoding” to try to predict task-relevant
information from intermediate representations generated from
the model [23-25]. Recently there has been further work on
interpreting the representations in deep neural models using
attention weights [26,27]. While this approach is intuitive, there
is still an ongoing debate about the extent to which the attention
mechanism can be used to interpret a model’s decision-making
process [28,29]. As such, we focus our layer-wise analysis on
our models’ hidden token vectors [24]. Other relevant work on
layer-wise analyses of BERT representations include [30] and
[31].

One method we use to analyze the representational geometry
of our models is representational similarity analysis (RSA) [32],
which compares models that represent stimuli using vectors
with different numbers of dimensions by measuring the
correlation of second-order dissimilarity matrices with each
other (ie, how dissimilar each pair of sentences is to each other
pair by some metric). RSA has been used recently to analyze
linguistic properties of deep learning models [33,34]. We use
basic RSA to correlate various representations that we extract
from each layer of our fine-tuned models with a matrix that
corresponds to the ground-truth dissimilarity patterns found in
the test set. This allows us to measure the strength of a clinical
semantic signal through the layers of our networks and compare
this signal across both models and choices of representation.
We also employ a version of RSA that involves reweighting
and linearly recombining the representational dissimilarity
matrices (RDMs) [35] to build a representational model that
best explains the ground-truth dissimilarity patterns in the test
set. To our knowledge, this is the first use of this framework to
explore the representational space of a deep neural language
model.

Contributions
This work presents the following contributions:

• A transformer ensemble that achieves very competitive
results on a new clinical STS task (with predictions
producing a correlation of 0.87 with ground-truth similarity
scores compared with the state-of-the-art correlation of
0.9), serving as a very strong deep learning baseline for this
task.

• An extensive qualitative analysis of the transformer
ensemble’s error cases in the task of clinical semantic
similarity that highlights the inability of popular transformer
models to capture fine-grained differences between
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medicinal sentence pairs, despite being trained on clinical
or biomedical text.

• A quantitative error analysis framework for STS that reveals
the shallow heuristics that transformer models learn to rely
on for this task.

• The application of linear decoding and RSA to measure the
semantic similarity signal in intermediate token
representations of 5 popular transformer models, showing
convergent and divergent representational strategies that
reflect the models’ performance on this task.

• The first application (to the authors’ knowledge) of a
reweighted and recombined version of RSA to neural
language models, indicating that better representations of
sentence pairs may be synthesized by combining 2 layers
from a relatively poorly performing biomedical transformer
with a simple textual feature signal, and suggesting new
directions for research in sentence embedding extraction.

Methods

Data
The training data for this task were made up of 1642 sentence
pairs and their associated similarity scores and the test set was
made up of 412 sentence pairs. The similarity scores are floats
on a scale of 0 to 5, ranging from no similarity to semantically
identical. The annotations were performed by 2 medical experts

(Donna Ihrke and Gang Liu [13]). The task is evaluated by the
Pearson correlation between the predictions of a model and the
ground-truth similarity scores.

Models
We fine-tuned 5 transformer [14] models. These include
BERT-Large [15], 3 variants of BERT that were fine-tuned on
text from the clinical domain, and XLNet-Large [19]. The 3
BERT variants were BioBERT [16], ClinicalBERT [17,18],
and Discharge Summary BERT (DS BERT) [17,18]. We also
created a mean_score model by taking the average prediction
of the 5 transformer models. A linear layer was added on top
of the pooled output for each model to perform the regression.
The input for the BERT models was [CLS] + A + [SEP] + B
+ [SEP], where [CLS] is the classification token, A and B are
the 2 text snippets, and [SEP] is the separator token. The input
for XLNet was A + [SEP] + B + [SEP] + [CLS]. We set the
maximum sequence length for each model to 128. As we add
3 additional tokens to the input, any sentence pairs with over
125 tokens in total were shortened. This affected 5 sentence
pairs, all of which were in the training set (with an average of
7.6 removed tokens). Each model was trained over 23 epochs
using a batch size of 32. These models were trained using the
PyTorch-Transformers library [36]. Our system architecture is
depicted in Figure 1. We submitted the predictions of 3 models
for evaluation on the n2c2 2019 Track 1 task: those from
ClinicalBERT, XLNet, and the mean_score model.

Figure 1. Our system architecture for predicting the semantic textual similarity between two sentences using an ensemble of five Transformer models.

Results

Overview
Our best performing model, the mean_score ensemble, achieved
a correlation of 0.87, reaching 6th place out of 33 teams in the
n2c2 2019 Track 1 task. The best model on the task achieved
a correlation of 0.9 [37]. Our results are presented in Table 1.

The correlation between the predictions of each of 5 transformer
models with all others is presented in Table 2. While the 3
models that have been fine-tuned with biomedical or clinical
text (BioBERT, ClinicalBERT, and DS BERT) are more
correlated with each other than with both XLNet and BERT,
the predictions of all models generally correlate strongly with
each other.

Table 1. Pearson correlation between the ground-truth labels and the predicted labels for each model.

Mean scoreXLNetDS BERTClinicalBERTBioBERTBERTModel

0.8700.8370.8670.8540.8550.817Correlation
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Table 2. Correlation between the predictions of each transformer model on the test set.

XLNetDS BERTClinicalBERTBioBERTBERTModel

0.910.920.920.921BERT

0.920.960.9510.92BioBERT

0.920.9610.950.92ClinicalBERT

0.9310.960.960.92DS BERT

10.930.920.920.91XLNet

Error Analysis

Error Cases Investigation
Rather than only evaluating our transformer ensemble by the
correlation between its predictions and the ground-truth
similarity scores, we carried out an extensive investigation into
the error cases of this ensemble to shed light on any trends in
the biases and heuristics that the component models may have
learned from the training data. In this endeavor we carried out
both qualitative and quantitative error analyses. Both analyses
use a measure of loss that is calculated as the squared error
between the models’ prediction and the ground-truth similarity
score.

Qualitative Analysis
We first carried out a qualitative analysis by grouping the
sentence pairs that were most difficult to predict for the

transformer ensemble by the primary lexical, syntactic, or
semantic feature that we consider to be most salient and
distinguishing. By identifying common error clusters, we can
better understand our models’ biases and attempt to mitigate
these issues in future iterations of the clinical STS system. A
list of these error categories as well as example sentences can
be found in Table 3. We took 100 sentence pairs from the test
data set with the highest loss and manually analyzed them to
find possible explanations for incorrect predictions. The main
categories that were identified are shown in Figures 2 and 3.
We divided the errors into 2 cases: those where the transformer
ensemble overpredicted sentence similarity with respect to the
ground truth (Figure 2, which includes 77 sentence pairs) and
those where the models underpredicted sentence similarity
(Figure 3, which includes 23 sentence pairs).

Table 3. Example sentence pairs and error type (ie, whether the transformer ensemble overpredicted or underpredicted semantic similarity with respect
to the ground truth) for each error category selected for the qualitative analysis.

NotesExample sentence pairCategoryError type

(1) Ibuprofen [MOTRIN] 400 mg tablet 1 tablet by mouth every 4
hours as needed. (2) Gabapentin [NEURONTIN] 300 mg capsule 1
capsule by mouth every bedtime.

Medical prescriptionOverprediction

(1) Patient to call to schedule additional treatment sessions as needed
otherwise patient dismissed from therapy. (2) Patient tolerated session
without adverse reactions to therapy.

Lexical overlapOverprediction

Some semantic overlap de-
spite low ground-truth simi-
larity score of 0

(1) The client verbalized understanding and consented to the plan of
care. (2) The patient consented to the possibility of blood transfusion.

Semantic overlapOverprediction

Common phrase structures
often feature lexical overlap,
as well as strong syntactic
similarity

(1) male who presents for evaluation of Knee Pain (right). (2) female
who presents for evaluation of Ear Infection/ Ear Pain.

Reuse of phrase templateOverprediction

Note quotation marks within
original text

(1) “Left upper extremity: Inspection, palpation examined and nor-
mal.” (2) “Abdomen: Liver and spleen, bowel sounds examined and
normal.”

Similar punctuationOverprediction

The ensemble predicted a
score of 2.55/5 for this exam-
ple sentence pair

(1) “Mental: Alert and oriented to person, place and time.” (2) She
demonstrated understanding and agreed to proceed as noted.

UnknownOverprediction

(1) He denies any shortness of breath or difficulty breathing. (2) Pa-
tient denies any chest pain or shortness of breath.

UnknownUnderprediction

(1) “Thank you for choosing the Name, M.D.. care team for your
health care needs!” (2) Thank you for choosing Location for your
health care and wellness needs.

Different punctuationUnderprediction

Semantic similarity with lit-
tle lexical overlap

(1) The above has been discussed and reviewed in detail with the pa-
tient. (2) The family was advised that the content of this interview
will be shared with the health care team.

Lack of lexical overlapUnderprediction
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Figure 2. Common categories of error for cases when the model over-predicts similarity as identified by manual analysis of the 100 worst predictions.

Figure 3. Common categories of error for cases when the model under-predicts similarity as identified by manual analysis of the 100 worst predictions.

Quantitative Analysis
To complement our qualitative analysis, we developed a simple
STS quantitative analysis framework that allows us to
investigate the relationship between surface features of the
sentence pairs and our model’s performance. This involves
measuring the correlation between model loss and various
features of the sentence pairs. In addition to providing the results
for all labels, we present correlations (measured using Spearman
rho) between the loss and pair features for each similarity score
in the test set. The results are shown in Table 4. Below is an
explanation of each sentence-pair feature that we investigated:

• Average sentence length: The total amount of tokens across
the 2 sentences.

• Scaled total token frequency: The number of times each
token in the sentence pair appears in the training set divided
by the average sentence length, calculated after we removed
stop words.

• Scaled unseen tokens per pair: The number of tokens in the
sentence pair that do not appear in the training corpus,
divided by the average sentence length.

• Scaled difference in token frequency: The difference
between the training corpus token frequency across the 2
sentences, divided by the average sentence length,
calculated after we removed stop words.
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• Jaccard distance: The distance between the token sets of 2
sentences in a pair measured as

1 – (|A ∩ B|)/(|A ∪ B|)

Table 4. Correlation (Spearman rho) between the model’s loss (mean score) per sentence pair and various sentence-pair features.

Jaccard distanceScaled difference in token
frequency

Scaled unseen tokens
per pair

Scaled total token frequencyAverage sentence lengthLabela

−0.0250.0740.0200.142−0.132All

−0.554 (<.001)b0.219−0.2630.391−0.3100.0

−0.202−0.010−0.249−0.1140.1020.5

−0.074−0.0330.047−0.0430.0671.0

−0.153−0.2810.033−0.1510.0041.5

−0.3380.3540.0120.4410.1182.0

0.1090.070−0.2380.014−0.0182.5

0.119−0.026−0.0980.432−0.4533.0

0.587−0.0460.257−0.051−0.4403.5

0.1710.0520.2680.138−0.0884.0

0.4680.033−0.221−0.266−0.1814.5

0.5960.590−0.2420.789 (.042)−0.0405.0

aLabels are ground-truth similarity scores.
bSignificant P value is reported in parenthesis after Bonferroni correction.

Layer-wise Token Representation Decoding
Given the difficulty of analyzing how these models build
representations of clinical STS by looking at their loss alone,
we next performed a layer-wise decoding analysis by training
linear regression models to predict between-sentence semantic
similarity given representations from each transformer across
different layers of the model. By decoding the semantic signal
in the intermediate layers of each model, we can uncover the
mechanisms that transformer models use to predict clinical
semantic similarity. We can then investigate whether any
representational strategies correspond to better performance on
this task, shedding light on why certain constituent models of
the transformer ensemble perform worse, and potentially
indicating directions for sentence-pair embedding extraction
for STS. In the case of 12-layer models we used each layer and
in the case of the larger 24-layer models, we used every other
layer. This allows for direct comparison of representations by
relative depth through the network.

We chose a variety of representations to decode. As we have
many tokens per sentence pair, there are many different possible
ways to map this list of vectors to a fixed-length representation.
We aimed to choose representations that can reveal potential
strategies and heuristics that our models use to predict semantic
similarity. In doing so, we may also reveal how different types

of models (ie, those trained on clinical versus general domain
text, or those with BERT/XLNet-style architectures) diverge
or converge in their representational transformation strategies.
The chosen representations were

• [CLS]: The token vector corresponding to the classification
token input.

• avg_reps_concat: Concatenation of the mean-pooled token
vector representations of sentences A and B.

• max_reps_concat: Concatenation of max-pooled token
vectors within sentences A and B.

• sent_avg_difference: The absolute difference in average
token vector representations in sentences A and B.

• sent_max_difference: The absolute difference in
max-pooled token vector representations in sentences A
and B.

• sent_a_avg_max_concat: Concatenation of mean- and
max-pooled token vectors from sentence A.

• sent_b_avg_max_concat: Concatenation of mean- and
max-pooled token vectors from sentence B.

The linear regression models were evaluated using 10-fold
cross-validation. Table 5 shows the overall best representations
for decoding similarity score. Figures 4 and 5 feature layer-wise
correlation plots for representations based on the classification
token vector (Figure 4) and the absolute difference between the
average token vectors in each sentence (Figure 5).
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Table 5. The overall top decoding scores ranked in descending order. All the top-performing representations were extracted from XLNet and are mostly
made up of the concatenation of the max-/mean-pooled token representations in the 2 sentences that were extracted from middle-late layers.

CorrelationLayerRepresentationModel

0.918max_reps_concatXLNet-large

0.8918sent_a_avg_max_concatXLNet-large

0.8818avg_reps_concatXLNet-large

0.8820max_reps_concatXLNet-large

0.8816avg_reps_concatXLNet-large

0.8820avg_reps_concatXLNet-large

0.8718sent_b_avg_max_concatXLNet-large

0.8714sent_b_avg_max_concatXLNet-large

0.8714max_reps_concatXLNet-large

0.8716max_reps_concatXLNet-large

Figure 4. Pearson correlation between linear regression models’ predictions of a sentence pair’s semantic similarity and the ground-truth score (10-fold
cross-validated on test-set) using [CLS] token pair representations.
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Figure 5. Pearson correlation between linear regression models’ predictions of a sentence pair’s semantic similarity and the ground-truth score (10-fold
cross-validated on test-set) using the absolute difference between each sentence’s mean-pooled token vector.

Representational Similarity Analysis

Overview
To find which representations learned by our models best
explain the representational geometry of the semantic similarity
task, we carried out 2 types of investigations within the
framework of RSA. We use RSA to complement our layer-wise
linear probing analysis, as it can reveal second-order
representational patterns across many samples, while the
layer-wise probing analysis relies on identifying particular
dimensions of the representational space that predict semantic
similarity. By taking these methods together, we can reach more
robust conclusions about how transformer models build
representations of semantic similarity and use this information
to understand the performance of these models and identify how
we can improve them. The data RDMs that we compared with
the ground-truth RDM were extracted from each layer of each
of the 5 transformer models, for each of the pair representations

defined in the previous decoding analysis as well as 3 additional
potential explanatory representations:

• avg_representation: The average across all token vectors.
• avg_sent_cosine_dist: The cosine distance between the

mean-pooled token vector representations in sentences A
and B.

• max_sent_cosine_dist: The cosine distance between the
max-pooled token vector representations in sentences A
and B.

Basic RSA
In our first RSA experiment, we performed a basic analysis in
which we measure the Spearman correlation between a model
RDM (calculated using the distance between all the samples in
the test set measured by their ground-truth similarity score) and
various representations elicited from our transformer models.
Using the 412 test sentence pairs we produced the 412 × 412
matrix shown in Figure 6.
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Figure 6. Model representational dissimilarity matrix for 412 test sentence pairs measured by distance between ground-truth semantic similarity scores.
The dimensions of the dissimilarity matrix are sorted by each sentence-pair’s ground-truth semantic similarity score.

Reweighted and Recombined RSA
We then found a combination of representations from all layers
of each of the separate 5 transformer models and an RDM made
up of text features (detailed in the “Quantitative Analysis”
section) that best explains the ground-truth model when linearly

recombined. Each explanatory RDM in a given trial had an
associated weight that altogether summed to 1. These weights
were found using a non-negative least squares (NNLS) solver
using 10-fold cross-validation. This analysis revealed that the
best performing explanation model was BioBERT. The final
BioBERT-reweighted explanatory RDM is shown in Figure 7.
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Figure 7. The final best-fitting re-weighted and linearly re-combined explanatory model found using NNLS and representations from BioBERT,
achieving a correlation of 0.54 with the ground-truth model. The dimensions of the dissimilarity matrix are sorted by each sentence-pair’s ground-truth
semantic similarity score.

Layer-wise Reweighted RSA
In the final part of our reweighted RSA, we revisited the
representations of BERT-Large to investigate why the
classification token suddenly becomes less representative of
the ground-truth similarity score around layers 12-16 as
measured by linear regression probing (Figure 4) and RSA
correlation (Figure 8). We reran the NNLS solver for the
BERT-Large representations (using 10-fold cross-validation)

but this time we excluded the text features RDM and used token
vectors from only 1 layer at a time. We performed this analysis
for the even layers, from layers 2 to 24 (as we had previously
extracted every other layer of the 24-layer models to directly
compare representations with 12-layer models based on relative
depth through the network), and retrieved the values used to
reweight the RDM for each layer. The plot of weights associated
with each representation can be seen in Figure 9.
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Figure 8. Correlation between the ground-truth model RDM and explanatory RDMs constructed from [CLS] token pair representations.

Figure 9. Weights associated with sentence-pair representations of BERT-Large found using NNLS to minimise the distance between a linearly
re-combined set of RDMs and the ground-truth model RDM for each layer.

Discussion

Principal Results

Qualitative Error Analysis
In the case of sentence pairs that caused our ensemble to
overpredict semantic similarity (Figure 2), the most obvious
problem with our ensemble was its failure to model the semantic
similarity of 2 sentences which contain details of medical
prescriptions. This is likely because our models do not have the
advanced level of domain knowledge necessary to correctly
model this problem. As these sentences are usually very similar
(apart from the name of a drug and dosage), the models
overpredict similarity. The second biggest issue when

overpredicting similarity is when there is a lexical overlap
without semantic overlap. This suggests that our models
over-rely on surface features such as token overlap. In most
cases when our model underpredicts similarity, there is no
obvious possible explanation. However, in the interpretable
samples the issue was usually that synonyms were used, again
suggesting an over-reliance on lexical overlap, and potentially
motivating a concept normalization preprocessing step. In any
case, the qualitative approach to analysis error is relatively
limited for interpreting the instances of underprediction of
semantic similarity for this ensemble. This limitation is mitigated
by the fact that overpredictions made up the majority of the
largest errors (77 out of 100). By taking both the cases of
underprediction and overprediction together, it is clear that
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simple heuristics, such as predicting similarity given lexical
overlap, are prominent within the transformer ensemble, and
that these transformer models still lack the ability to produce
the extremely fine-grained clinical semantic representations that
are required to implicitly calculate semantic distances between
medical concepts (eg, particular drugs) given a relatively small
task set. Any future work would have to address these issues;
for example, by augmenting the data using a concept
normalization preprocessing step, or by enriching the ensemble’s
domain knowledge by incorporating a clinical terms resource.

Quantitative Error Analysis
Overall, Table 4 shows a weak negative correlation between
the average sentence length and loss. This relationship is
relatively strong for entirely dissimilar sentence pairs and
moderately similar sentence pairs and may be explained by the
fact that longer sentences provide more contextual information
that can be used to decide whether 2 sentences are semantically
similar. Another trend is for the loss to increase with the scaled
total token frequency (ie, how often the words in the pair appear
in the training corpus), particularly in the case where the 2
sentences are semantically identical. This relationship is difficult
to interpret, but additional analysis could investigate the extent
to which the loss can be explained using the relative frequency
of the words given a more general corpus (such as Wikipedia),
to separate the effect of clinical term frequency.

We also see that Jaccard distance is negatively correlated with
loss for sentence pairs that are less semantically similar and
positively correlated with loss for pairs that are more
semantically similar. One possible explanation for this
observation is that our deep transformer models have learned
an appropriate strategy of predicting low similarity scores given
token overlap for the extreme case when sentence pairs are
dissimilar and have little overlap. However, the model seems
unable to apply such a shallow heuristic in cases where sentence
pairs are very semantically similar. Further analysis showed
Jaccard distance to be very significantly negatively correlated
with the ground-truth label (P<.001), which may indicate that
a deep ensemble model could benefit from the presence of
traditional machine learning models that are trained on simple
features of the text such as relative overlap between tokens.

The quantitative analysis approach has both verified the
existence of overall heuristics that use surface features of the
sentence pairs to predict semantic similarity as noted in the
previous qualitative analysis and allowed to us examine these
trends as they occur within certain ranges of semantic similarity
scores. This approach to quantitative analysis of STS errors has
thus produced a richer view of these biases, while still
suggesting that these deep transformer models use a set of
relatively shallow strategies for this task.

Layer-wise Token Representation Decoding
The first striking pattern to note in Figure 4 is that the BERT
models tend to drop in performance on the CLS token task in
the middle of the network, thereafter reaching their apexes (in
the extreme case this is amplified in BERT-Large), whereas
XLNet tends to steadily increase to its highest point before
dropping off over the rest of the network. This indicates that in

BERT-style models, the [CLS] token does not serve as the
primary representation of semantic similarity in the middle
layers. Second, the correlation between linear model predictions
and ground-truth scores held-out folds almost always
monotonically increases for the difference between average
sentence representations for all BERT-style models (Figure 5).
This contrasts with the performance on the XLNet sent_avg_diff
representation, which caps half-way through the network, then
drops off steadily beginning a few layers later. It appears that
XLNet builds a good representation based on the mean-pooled
token representations, but that this information is integrated in
the middle of processing and subsequently discarded around
layer 18.

All the top 10 best decoding scores across all representations
were extracted from XLNet (Table 5). Overall, XLNet did best
using the max_reps_concat, reaching a correlation of 0.9 in
layer 18, which represents a 7.5% increase in that model’s initial
performance on the test set. This demonstrates that given the
initial representations of a large deep model, it may be possible
to increase its performance very inexpensively and massively
on small amounts of held-out data using a simple linear model
and the correct choice of representation.

It is clear from the linear decoding experiment that the
representational strategies of the transformers fine-tuned with
biomedical or clinical documents tend to align, with each model
gradually building better representations of STS over the course
of their layers in an almost always monotonic fashion, in both
the [CLS] token and the absolute difference between
mean-pooled sentence representations. This is in contrast to the
relatively erratic differences between decodability over layers
seen with BERT-Large and XLNet, where decodability will
rapidly gain or fall over the course of 1-2 layers, especially
when looking at the distance between mean-pooled sentence
vectors representation. This result suggests that models with
more clinical domain knowledge (and better performance on
this task) learn to build robust representations of clinical
semantic similarity (ie, not only using the [CLS] token or the
distance between mean-pooled vectors) and that this information
is gradually recovered in a steady, step-wise manner.

Representational Similarity Analysis

Basic RSA

In carrying out the single-correlation RSA task, we found
confirmation for some of the representational trends identified
during the decoding task. Two of such trends are presented in
Figures 8 and 10, which include the correlation of the model
RDM with data RDMs built using classification tokens (Figure
8) and the absolute difference between average token vectors
from the 2 sentences in a pair (Figure 10). As was previously
shown in Figure 4, BERT-Large diverges drastically from the
other models in how representative the classification token is
of a sentence pair’s semantic similarity score around layers
12-16, while all other models generally generate progressively
better [CLS] tokens throughout the network, with only slight
loss in performance around the middle of the network. The
performance of BERT-Large [CLS] representations on this task
again reflects its final score, which was the lowest of the 5
models. We further analyzed the representational geometry of
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BERT-Large in our reweighting analysis later in the current
section to better understand this observation. The confirmation
of this considerable drop in decodability performance shows
that this trend does not simply reflect the inability of the linear
regression models to predict semantic information due to the
small amount of data. Likewise, the correlation plot featured in
Figure 10 presents more evidence for our previous finding that
BERT-style models seem to represent across-sentence similarity
by minimizing the average difference in token vectors. While

these correlations are positive from layers 4 to 12, this signal
is not as strong as would be indicated by the probing analysis,
suggesting that this strategy may not be a primary heuristic. In
any case, taken together, these 2 layer-wise correlation plots
show that the probing task produces robust metrics of
representational trends, and that probing and basic RSA are
complementary approaches to the analysis of transformations
in token vectors of deep transformer models.

Figure 10. Correlation between the ground-truth model RDM and explanatory RDMs constructed using the absolute difference between each sentence’s
mean-pooled token vector.

Reweighted and Recombined RSA

After performing the next stage in our RSA, reweighting and
recombining a set of RDMs (using all layers using all
representations, as well as the text features RDM) for each
transformer to minimize the distance between the new RDM
and the ground-truth representation, we found that the best
choice of model was BioBERT. Figure 7 shows visual
confirmation that much of the ground-truth dissimilarity
patterning (Figure 6) has been reproduced by this explanatory
model. This result was somewhat unexpected, given that this
model did not perform best on the test set. This finding suggests

that when generating sentence-pair vectors, it may in some cases
be better to reweight and combine representations from
runner-up models, rather than using the single best model. The
weights learned for each RDM in the BioBERT model (Figure
11) show that the RDM is mostly made up of the final layer’s
[CLS] token, although it has been reweighted using the cosine
distance between the average token vector of the 2 sentences
in a given pair and the Jaccard distance between the 2 sentences.
We believe that beyond revealing how well each representation
explains the ground-truth semantic similarity, this technique
has promising potential for generating sentence embeddings for
downstream tasks.
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Figure 11. Proportion of weights learned for the best explanatory model (which used BioBERT representations and text features).

Layer-wise Reweighted RSA

By looking at the weights learned for each component of the
layer-wise BERT explanatory model (Figure 9), we find that
after layer 8, the weight associated with the average token
representation drastically increases and this representation
becomes dominant for the remaining layers, whereas the
explanatory weight of the [CLS] token peaks at layer 8 before
rapidly declining. We link this result to our finding that the
worst linear probing and RSA correlations for BERT’s [CLS]
tokens start to occur after layer 8 (Figures 4 and 8). This
suggests that in middle to late layers, BERT-Large focuses on
building better mean-pooled representations of the sentence
pairs, an interpretation which is in line with the dramatic
increase in correlation between BERT-Large’s representations
and the ground-truth model when using the absolute difference
between the average token vector of each sentence as the data
RDM (Figure 10). This interpretation is also compatible with
the increase in linear regression performance when using
BERT-Large token vectors and taking the absolute difference
between the average token vectors in each sentence as input
(Figure 5).

Limitations and Future Work
While we employed the use of cross-validation for our linear
probing and NNLS RSA tasks, it should be noted that our test
set of 412 sentence pairs represents a relatively small amount
of data and as such it may be difficult to assess whether our
results would generalize to more data-rich contexts. One
potential method for partially mitigating this problem would be
to cross-validate our results across the full set of 2054 sentence
pairs, rather than restricting the analysis to the original test set
from the clinical STS task. While this approach may lead to
insights into the robustness of our interpretation, we consider
it to be outside of the scope of this work as we aim to analyze
the errors and representational strategies that both result from
the inductive biases of transformer models and reflect biases
learned from the task’s data. Restricting our analysis to the
original 412 sentence-pair test set thus enables direct comparison
with other models trained on the same data. Another issue with

cross-validating across the whole data set is that we will always
be limited to a relatively small amount of data for this task, as
even testing on a slice of 50% of the total data would still only
allow for 1027 sentence pairs for evaluation. It could also be
insightful to carry out our analysis on models trained using
larger general domain semantic similarity tasks that feature
more sentence pairs. We again consider this line of research to
be out of scope for this work.

In future work we wish to investigate to what extent we can
directly use a layer’s token representations to automatically
learn interpretable explanations that minimize the distance
between a reweighted RDM and the ground-truth model RDM.
We expect that incorporating our models’attention weights will
be essential at that level of analysis. Additionally, we wish to
set alternative target RDMs to examine how we can recombine
the token vectors in a sentence pair to best explain the model’s
classification token, thereby further exploring the inner
representational dynamics of fine-tuned transformer models.

Conclusion
We tackled a recent clinical STS task using a variety of
transformer models, including both those trained on general
domain language and models that were further trained on clinical
text. After achieving a high correlation between the predictions
of a mean-pooled ensemble of these models and the test-set
ground truth, we analyzed the error cases of our model both
qualitatively and quantitatively, finding groups of semantically
related sentences that are generally difficult for our transformers
to model and identifying surface features of the sentence pair
that significantly correlate with loss for particular ranges of the
semantic similarity space. These findings suggest potential
avenues for further improvement, for example, by augmenting
our models to allow them to directly take traditional NLP textual
features into account.

We then carried out 2 types of representational analyses, namely,
linear decoding and RSA, to shed light on the heuristics on
which these models have learned to rely. These approaches were
shown to be complementary and revealed divergent
representational strategies for predicting textual similarities
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between BERT-style models and XLNet. Furthermore, our
search through the representational space for the best
explanatory model of the ground-truth data suggests that a large
amount of this information can be captured using a combination
of a classification token and the cosine distance between

sentence-pair representations in the first layer of a transformer
model that did not produce the best predictions on the test set,
suggesting interesting directions for research in model
distillation and sentence embedding extraction.
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BERT: bidirectional encoder representations from transformers
NLP: natural language processing
NNLS: non-negative least squares
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RSA: representational similarity analysis
STS: semantic textual similarity

Edited by Y Wang; submitted 31.07.20; peer-reviewed by M Torii, L Ferreira; comments to author 13.11.20; revised version received
07.01.21; accepted 23.01.21; published 26.05.21.

Please cite as:
Ormerod M, Martínez del Rincón J, Devereux B
Predicting Semantic Similarity Between Clinical Sentence Pairs Using Transformer Models: Evaluation and Representational Analysis
JMIR Med Inform 2021;9(5):e23099
URL: https://medinform.jmir.org/2021/5/e23099 
doi:10.2196/23099
PMID:34037527

©Mark Ormerod, Jesús Martínez del Rincón, Barry Devereux. Originally published in JMIR Medical Informatics
(https://medinform.jmir.org), 26.05.2021. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete
bibliographic information, a link to the original publication on https://medinform.jmir.org/, as well as this copyright and license
information must be included.

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e23099 | p.342https://medinform.jmir.org/2021/5/e23099
(page number not for citation purposes)

Ormerod et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://medinform.jmir.org/2021/5/e23099
http://dx.doi.org/10.2196/23099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34037527&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Original Paper

Application of Intelligent Computer-Assisted Taylor 3D External
Fixation in the Treatment of Tibiofibular Fracture: Retrospective
Case Study

Hongfeng Sheng1, MM; Weixing Xu1, MD; Bin Xu1, MM; Hongpu Song1, MM; Di Lu1, MM; Weiguo Ding1, MM;

Henry Mildredl2, PhD
1Department of Orthopaedics, Tongde Hospital of Zhejiang Province, Hangzhou, China
2Federal Institute for Drugs and Medical Devices, Medical Devices Division, Bonn, Germany

Corresponding Author:
Hongpu Song, MM
Department of Orthopaedics
Tongde Hospital of Zhejiang Province
234 Gu-cui Road
Hangzhou, 310012
China
Phone: 86 0571 89972000
Email: hongpusongzj@yeah.net

Abstract

Background: With the development of modern society, severe and complex tibial fractures caused by high-energy injuries such
as traffic accidents have gradually increased. At present, the commonly used methods for the treatment of tibial fractures include
plate fixation, intramedullary nail fixation, and external fixation. Most of these fractures are open wounds with severe soft tissue
injury and wound contamination, and some involve bone defects, which makes internal fixation treatment difficult.

Objective: This study aims to explore the use of intelligent computer-assisted Taylor 3D external fixation for the treatment of
tibiofibular fractures.

Methods: In total, 70 patients were included and divided into the Taylor 3D external fixation (TSF) group (28 patients with
severe tibial fractures treated with TSF) and the internal fixation group (42 patients with complicated tibiofibular fractures treated
by internal fixation). After the treatment, the follow-up evaluation of TSF for the treatment of tibiofibular fractures noted the
incidence of complications, as well as the efficacy and occurrence of internal fixation for the treatment of tibial fractures in our
hospital.

Results: The results showed that TSF was superior to orthopedics in the treatment of tibiofibular fractures in terms of efficacy
and complications.

Conclusions: TSF for the treatment of tibiofibular fractures is more effective than internal fixation and the incidence of
complications is low. This is a new technology for the treatment of tibiofibular fractures that is worthy of clinical promotion.

(JMIR Med Inform 2021;9(5):e21455)   doi:10.2196/21455

KEYWORDS

intelligent computer-assisted instruction; Taylor three-dimensional external fixation; tibial fracture; internal fixation; external
fixation

Introduction

With the development of modern society, severe and complex
tibial fractures caused by high-energy injuries such as traffic
accidents have gradually increased. At present, the commonly
used methods for the treatment of tibial fractures include plate
fixation, intramedullary nail fixation, and external fixation.

Most of these fractures are open wounds with severe soft tissue
injury and wound contamination, and some involve bone defects,
which makes internal fixation treatment difficult. Potential
complications include postoperative wound infection, chronic
osteomyelitis, delayed fracture healing, and fracture nonunion.
The incidence of malunion healing is high, often resulting in
treatment failure [1]. External fixation technology is a good
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method for the treatment of such fractures. External fixation
can reduce the damage to soft tissue, and reduce the risk of
postoperative wound infection, osteomyelitis, delayed fracture
healing, and fracture nonunion. While complications occur,
fracture fixation can be performed in the early stages after an
injury, which provides a better prognosis for soft tissue repair,
limb care, and early functional exercise [2]. However, in the
past, external fixation stents for the treatment of complicated
tibiofibular fractures have had poor stability for fracture fixation.
They can only be used as a temporary fixation method. Most
of the latter require secondary surgery to replace internal
fixation, which makes the treatment period prolonged and
significantly increases the cost of fracture treatment.
Additionally, the fracture healing time is prolonged.

Based on the Ilizarov circular fixator (ICF), a previous study
[3] applied the Stewart platform and Charles theory to the field
of orthopedics, and combined these with computer software to
invent the Taylor 3D space frame. Taylor 3D external fixation
(TSF) is a good complement to the deficiencies of the ICF for
multidimensional planar fractures and deformity correction.
TSF has the following advantages in the treatment of tibial
fractures: TSF is quick and easy to learn; accurate closed
reduction of fractures can be achieved with computer software
assistance during or after surgery; TSF is a better option for
ensuring fixation stability of fractures; and the external fixator
can be used as a long-term fixation method. The stent is
maintained during the entire process of fracture healing. The
needle is fixed during the installation process. It does not cause
secondary damage to the local soft tissue. The risk of
postoperative infection is low, and the rate of fracture nonunion
is low. Fracture surgery can be performed soon after the injury
to achieve early functional exercise. Postoperative bone defects
can be repaired by adjusting the external frame. There are many
reports on the use of TSF in the treatment of limb deformities,
although there is little literature on the use of TSF in the
treatment of tibial fractures.

To further explore the efficacy and possible complications of
this technique in the treatment of severely complex fractures,
this study retrospectively analyzed 28 cases of severe tibial
fractures treated with TSF. This study will provide a theoretical
basis for the clinical application and improvement of this
technology. The follow-up data of 42 patients with severe
tibiofibular fractures treated with internal fixation were
compared with that of the TSF group to further evaluate the
efficacy of TSF.

Methods

General Information
The TSF group included 28 patients with severe tibial fractures
treated with TSF in our department from May 2015 to June
2018. These cases included 23 males and 5 females, aged 19 to
65 years (mean 38.5 years). These cases included 18 traffic
accidents, 6 heavy bruises, 4 high fall injuries, 17 open fractures
(according to Gustilo classification: 12 of type II and 5 of type
III), and 11 closed fractures (according to Tscherne
classification: there were 8 level 2 cases and 3 level 3 cases).
According to the fracture line classification, there were 10 cases

of transverse shape fracture line, 6 cases of oblique shape, 3
cases of spiral shape, 5 cases of comminuted fracture, and 4
cases of multiple fractures. According to the location of the
fracture, there were 7 cases in the proximal one-third of the
bone, 5 cases in the middle one-third, 11 cases in the middle
and distal junctions, and 5 cases in the distal one-third.
Compartment syndrome occurred and 4 cases underwent open
decompression.

The internal fixation group included 42 patients with severe
complicated tibiofibular fractures treated by internal fixation
from January 2011 to March 2017, including 33 males and 9
females aged 17 to 70 years (mean 40.3 years old). There were
26 cases of traffic injuries, 10 cases of heavy bruises, 6 cases
of high fall injuries, 22 cases of open fractures (according to
Gustilo classification: 12 cases of type II, 10 cases of type III),
20 cases of closed fractures (according to Tscherne
classification: 13 cases of grade 2, 7 cases of grade 3).
According to fracture line classification, there were 16 cases of
transverse fracture, 9 cases of oblique, 6 cases of spiral, 7 cases
of comminuted, and 4 cases of multiple fractures. According
to the location of fracture, there were 11 cases in the proximal
one-third, 9 cases in the middle one-third, 14 cases in the middle
and distal junctions, and 8 cases in the distal one-third.
Compartment syndrome was treated with incision
decompression in 6 cases. There were 18 cases treated with
steel plates and 24 cases treated with intramedullary nails.

Inclusion Criteria and Exclusion Criteria
Inclusion criteria were the following: (1) high-intensity injury
resulting in severe soft tissue injury or open severe complex
tibiofibular fracture, Gustilo type II-III or Tscherne grade 2-3
and (2) follow-up time ≥6 months. Exclusion criteria were the
following: (1) Simple low-energy tibiofibular fracture, Gustilo
type I or Tscherne grade 1. (2) Total tibial plateau, pilon
fracture, and other cumulative articular surface fracture patients.
(3) Follow-up time <6 months. (4) Cases involving serious
internal medicine. (5) Patients with interruption of follow-up
or impaired case data. Finally, (6) patients with severe
neurovascular injury.

Surgical Methods

TSF Group
Epidural anesthesia is often used in the TSF group, and general
anesthesia can be used in patients with other combined injuries.
The patient is often placed in a supine position to reduce
ischemia and reperfusion injury; it is generally not recommended
to use a tourniquet. Open wound treatment involves the
following: emergency (6 to 8 hours) wound debridement, Taylor
frame fixation, for a small wound surface; if contamination is
not serious, the wound can be closed in one stage; if the wound
is large, heavy contamination can be removed with a vacuum
sealing drainage (VSD) negative pressure device. A
second-stage skin graft or flap transfer is used to close the
wound. Closed fracture treatment involves the following:
generally, you do not need to wait for the swelling to subside;
rather, the fracture can be fixed in the early stage of the Taylor
frame, resulting in early exercise of the limbs, and gradual
exercise after 2 to 3 weeks.
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The Taylor external fixator installation procedure is the
following: after the affected limb is sterilized, the C-arm
machine monitors the axial traction of the distal end of the
affected limb, roughly resets the fracture end displacement
(shortening, angulation, and rotational displacement), and
initially restores the length of the tibia. Cantering on the fracture
line, a TSF ring is inserted into the distal and proximal fractures
(if the fracture segment is ≥3 cm, ensure that each fracture
segment is fitted with one ring, because the TSF ring and the
tibia are placed ≥2 cm from the fracture line). When the
anatomical axis is vertical, at least 2 full needles or olive needles
are inserted into the safety channel of each level of the tibia,
and connected with the TSF ring. If the stability is poor, a half
needle can be implanted to increase stability and, according to
the adjacent TSF ring, install 6 adjustable connecting rods.
Under the perspective of the C-arm machine, the fracture
displacement parameters were preliminarily calculated and the
fracture was repaired by adjusting the 6 connecting rods. If the
fracture is difficult to reset and the local soft tissue can be
finitely cut at the fracture end, a comminuted fracture can be
transformed into a relatively simple fracture by temporary
fixation with Kirschner wire or by using plate fixation to
maximize the recovery of the bone shaft. The tubular
morphology was further reset after surgery with computer
software.

Internal Fixation Group
The anesthesia method and the surgical position of the internal
fixation group are the same as in the TSF group. Open fracture
emergency (6 to 8 hours) wound debridement is performed,
followed by temporary external fixation of the fractured
unilateral outer frame; if there is a small wound surface and
contamination is not serious, the wound can be closed in one
stage; if the wound is large and contamination is heavy, VSD
negative pressure is used and a second-stage skin graft or flap
transfer is used to close the wound. After the soft tissue recovers,
open reduction and internal fixation are performed. After the
swelling of the closed fracture subsides (indicated by the
appearance of dermatoglyphics) and the local soft tissue
recovers, open reduction and internal fixation are performed
once tension blisters have subsided. The open reduction and
internal fixation process is the following: the surgical approach
is determined according to the soft tissue condition and the type
of fracture. In the process of fracture reduction, as much as
possible is done to protect and reduce soft tissue damage,
including avoiding using long incisions to pursue excessive
anatomical reduction. For the reduction, it is required to fully
reduce the longitudinal, axial, and rotational displacement of
the tibia.

Postoperative Treatment
In the TSF group, the standard lateral radiograph was improved.
The fracture displacement parameters were measured according
to the x-ray film. The parameters were input into the TSF
computer software system, and 6 adjustable connecting rods
were used to make adjustments. After the fracture was reset,
the film was reviewed again. If the reset was not good, the
fracture displacement parameter could be measured again and
imported into the computer software to adjust the parameters

again until ideal. Postoperative nail dressing and regular dressing
care were provided. Knee and ankle joint functional exercise
began the first day after surgery, with gradual weight-bearing
2 to 3 weeks after surgery, and a monthly review following
filming; the external fixator was dismantled after the fracture
healed.

When evaluating fracture reduction and fixation, the internal
fixation group had an improved positive lateral radiograph.
After the operation, the affected limb promoted blood return.
On the second day, active and passive functional exercises of
the knee and ankle joints were increased. Regular incision
dressing was provided (if the wound dressing had exudation,
the dressing was changed), and the wound was not bandaged
after exudation. The incision healing was complete 10 to 14
days after surgery. If the wound became infected, the secretion
was assessed in the laboratory for bacteria, and an antibiotic
was intravenously provided according to the result; the drug
was changed frequently, and if necessary, vacuum suction
treatment was used. The patient avoided weight-bearing
activities for 6 weeks after surgery, and then gradually added
weight with the help of progressive ablation. In this study, the
x-ray films were reviewed in January, February, March, and
June. One year later, fracture healing was judged according to
the films. After the fracture healed, the internal fixation was
removed.

Observation Indicators
The main follow-up details recorded were the patient's surgical
preparation time, operation time, fracture healing time, total
weight-bearing time, length of hospital stays and expenses,
postoperative complications, as well as other indicators.

Statistical Methods
We used SPSS Statistics software (Version 21.0; SPSS Inc) for
the following statistical analysis: the categorical variable data
was analyzed by chi-square test, the countable data was analyzed
by t test, and the test standard was α=.05.

Results

Clinical Follow-up Results of the TSF Treatment
Group
All 28 cases were followed up for an average of 23.5 months
(range 10-48 months); the average preoperative preparation
time was 3.5 days (range 0.5-8 days); the average operation
time was 112.3 minutes (range 90-131 minutes); and 4 cases of
bone defects occurred. Bone grafting and internal fixation were
used to obtain healing. In 3 cases of delayed fracture healing,
late adjustment of the external frame fracture resulted in good
healing. The fracture healing rate was 85.71%, with an average
fracture healing time of 20.3 weeks (range 16-48 weeks). The
external fixation frame was worn for an average of 26 weeks
(range 17-48 weeks). Overall, 4 cases of compartment syndrome
occurred, emergency decompression was given, the TSF external
fixation frame was installed after the wound was closed, and
the patient was discharged after adjustment and resetting. The
average weight-bearing time was 90.5 days (range 65-180 days);
the average number of days spent in hospital was 10.8 days
(range 6-24 days); and the average hospitalization cost was 5.6
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million (range 3.8-97 million). Postoperative wound infection
occurred in 2 cases, and 13 cases occurred in the needle.
Infections were cured after wound dressing and oral antibiotics.
No cases of chronic osteomyelitis occurred. In 1 case, there was
another fracture after the removal of the external frame, and the
fracture was healed after internal fixation. At the last follow-up,
all patients could step onto the ground and 21 patients could
participate in daily housework. There were no patients with
joint stiffness.

Clinical Follow-up Results of the Internal Fixation
Group
A total of 42 patients were followed up for an average of 19.5
months (range 7-34 months). This included 18 patients in the
plate fixation group and 24 patients in the intramedullary nail
fixation group. The average preoperative preparation time was
10.5 days (range 6-24 days) and the average operation time was
152.4 minutes (range 120-185 minutes). Overall, 3 cases of
nonunion occurred, which healed after internal bone grafting.
In total, 4 cases had delayed fracture healing. The fracture
healing rate was 92.86% and the average fracture healing time
was 23.8 weeks (range 17-54 weeks). A total of 6 cases of
compartment syndrome occurred; acute incision decompression

was provided and internal fixation was performed after the
closure of the wound. All healed well and the average time to
weight-bearing was 110.3 days (range 60-185 days). The
average hospital stay was 18.2 days (range 14-33 days) and
hospitalization costs averaged 6.2 million (range 5.3-11.2
million). Postoperative wound infection occurred in 20 cases;
infections were cured after dressing change, intravenous
antibiotic, and/or VSD negative pressure treatment. In total, 5
cases of chronic osteomyelitis occurred. One patient’s bone
fractured after internal fixation. There was no joint stiffness
among patients.

Comparison of the Efficacy of TSF and Internal
Fixation in the Treatment of Severe Tibiofibular
Fractures
The fracture healing rate was 85.71% (24/28) in the TSF
treatment group and 92.86% (39/42) in the internal fixation
group (Table 1). In the TSF treatment group, the time spent on
preoperative preparation time, operation time, fracture healing
time, total time to full weight-bearing, and hospitalization stays
were shorter than those in the internal fixation group, and the
hospitalization cost was lower; the difference was statistically
significant (P<.05).

Table 1. Comparison of surgical-related indicators between the two groups ( ).

P valuet valueInternal fixation group (n=42)TSFa group (n=28)Group

<.00110.5010.5 (3.2)3.5 (1.8)Preoperative preparation time (days)

<.0014.59152.4 (40.3)112.3 (27.5)Operation time (minutes)

<.0014.7923.8 (2.7)20.3 (3.4)Fracture healing time (week)

<.0016.24110.3 (14.5)90.5 (10.3)Full weight-bearing time (days)

<.0016.2418.2 (3.1)10.8 (2.8)Hospital stay (days)

.022.336.8 (2.2)5.6 (1.3)Hospitalization expenses (million)

aTSF: Taylor 3D external fixation.

Comparison of Postoperative Complications Between
the TSF and Internal Fixation Groups
The incidence of postoperative infection and osteomyelitis was
lower in the TSF group than in the internal fixation group

(P<.05). There was no significant difference in the probability
of nonunion and refracture (P>.05; Table 2).

Table 2. Comparison of postoperative complications between the two groups.

P valueχ2 valueInternal fixation group (n=42)TSFa group (n=28)Project

<.00112.77220 (47.62)2 (7.14)Postoperative infection

>.99cN/Ab4 (9.52)3 (10.71)Delayed fracture healing

.43cN/A3 (7.14)4 (14.29)Nonunion

.08cN/A5 (11.90)0 (0.00)Osteomyelitis

>.99cN/A1 (2.38)1 (3.57)Refracture

aTSF: Taylor 3D external fixation.
bN/A: not applicable.
cThis was determined using the Fisher exact probability method.
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Typical Cases Figures 1 and 2 showed the open fracture of left tibia and
postoperative recovery of patient A.

Figure 1. Patient A: car accident leading to open fracture of the left tibia.

Figure 2. Postoperative recovery of patient A.

Case-Related Information
Clinicians at an external hospital completed the wound
debridement and closure. Later, in our hospital, the soft tissue
injury was found to be considerable. The preoperative x-ray
showed a fracture. The third day of admission, TSF external
fixation was performed. Software-assisted adjustments were

performed to achieve a good reduction of the fracture end.
Finally, 10 months later, a review of computed tomography
scans showed good fracture healing; the affected limb had
normal function 11 months after the removal of the outer frame.

Figure 3 showed the comminuted fracture of the left tibia of
patient B with severe soft tissue injury. Figures 4 and 5 showed
the patient's TSF treatment and postoperative recovery.
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Figure 3. Patient B had a car accident–caused comminuted fracture of the left tibia, combined with severe soft tissue injury.

Figure 4. Patient with TSF treatment. TSF: Taylor 3D external fixation.
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Figure 5. Postoperative recovery of patients.

Patient-Related Information
The patient was 48 years old. A car accident caused injuries of
the left tibia including severe soft tissue injury and three
comminuted fractures (Tscherne grade 3). The lateral position
of the left tibia showed three fractures of the proximal, middle,
and distal bone, and the proximal and middle fractures were
clearly displaced. On the fourth day of admission, the proximal
and middle fractures were treated with TSF external fixation,
the distal fracture was fixed with internal fixation, and a lateral
x-ray was performed. After the operation, soft tissue damage
was severe and many tensional blood vessels could be seen; in
addition, the anterior tibial skin was black and necrotic.
Combined with the TSF computer software, the positive lateral
radiographs after fracture reduction were good. Finally, 11
months after the operation, the skin was restored to a good
condition with soft tissue treatment such as skin grafting. The
limb functioned well 20 months after surgery, and knee joint
function was good.

Discussion

Principal Findings
In trauma orthopedics, tibiofibular fractures are common,
accounting for about 12% of total long bone fractures. The
prognosis after fracture is affected by the energy level of the
injury. When the damage energy is higher, the probability of
an open fracture, the degree of fracture complications, and the
degree of soft tissue injury increase accordingly, increasing the

incidence of postoperative complications. High-energy damage
is mainly seen in traffic accidents, falls from high places, and
direct injuries by heavy objects. In contrast, low-energy injuries
are more common in sports (about 80.1%) and regular falls. As
countries develop, there is a corresponding increase in the
incidence of traffic accidents, leading to an increase in
high-energy fractures. Since there are fewer subcutaneous tissues
on the anterior aspect of the lower leg, these fractures are prone
to be open fractures, and account for 9.72% to 13.7% of open
fractures.

An epidemiological survey of 523 cases of tibiofibular fractures
showed that 400 cases (76.5%) involved closed fractures and
123 cases (23.5%) involved open fractures [4]. These were a
result of traffic accident injuries (37.5%), falling (17.8%), sports
(30.9%), and beatings or direct hits (4.5%). The majority of the
blood supply of the tibia is provided by the nourishing artery.
This artery enters the tibia from the upper one-third, and the
trophoblast descends into the skeletal cortex. In a fracture, most
of the arteries providing cortical nourishment are broken,
resulting in insufficient blood supply to the distal one-third of
the tibia, which slows down healing and is not conducive to the
patient’s recovery. There are many treatment methods for tibia
fractures, each with its own advantages and disadvantages. The
choice is mainly based on the way the injury occurred, the
fracture type, other injuries, and the patient’s condition. Gypsum
or splint fixation is generally suitable for stable fractures from
a low-energy injury and those without obvious displacement.
Due to the risk of calf compartment syndrome and venous
thrombosis, it is currently used for fractures of the tibia. If there
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is a lower risk of calf compartment syndrome and venous
thrombosis, there is less indication that the fracture was caused
by a high energy injury.

Open reduction and internal fixation treatment can achieve good
fracture reduction, which is beneficial for early functional
training of the limb. The intramedullary nail is currently the
preferred treatment for humerus shaft fractures. This technique
has many advantages and a long history in the treatment of tibial
fractures. It has a central fixed biomechanical advantage,
involves a minimally invasive operation away from the fracture
end, retains the hematoma at the fracture end, and involves less
soft tissue exfoliation, which is conducive to fracture healing.
Therefore, it is widely used in clinical practice. However, any
given treatment is not perfect, and the intramedullary nail still
has its limitations. In a previous study, 32 cases of proximal
humeral fractures were treated with intramedullary nails and
the malunion rate was 19%, indicating the treatment was not
satisfactory [5]. Kumar et al [6] compared the biomechanical
characteristics of the treatment of tibiofibular fractures with
steel plate, interlocking intramedullary nail, and external
fixation. The results from the intramedullary nail treatment are
better than those of the other two techniques, but this treatment
is associated with malunion.

The orthopedic surgeon’s philosophy of fracture treatment has
gone from Association for the Study of Internal Fixation
(AO)-led anatomical reduction to strong internal fixation to the
promotion of biological fixation. The four principles of treatment
of fractures as proposed by the AO concept are as follows: (1)
anatomical reduction, (2) compression fixations at the fracture
end, (3) protection of blood supply, and (4) early functional
exercise. Early dynamic compression plate (DCP) treatment
increased friction at the end of the fracture through the
compression of the fracture end, and achieved first-stage healing
of the fracture. The DCP is in close contact with the bone, and
the fracture is stabilized by increasing friction, which destroys
the blood supply at the fracture end. Influenced by the AO
concept, many orthopedic surgeons remove large amounts of
soft tissue to destroy blood supply and achieve anatomical
reduction. Strong fixation causes stress shielding, and the bone
is prone to refracture after the removal of internal fixation. The
concept of biological fixation puts more emphasis on the
protection of local soft tissue and the blood supply of the
fracture.

The biological fixation principle is as follows. First, fracture
reduction is performed as far as possible from the fracture end,
to protect local soft tissue. To minimize soft tissue dissection,
comminuted fracture block reduction cannot excessively destroy
the blood supply. Fracture fixation involves a low elastic
modulus and good biocompatibility. The contact area between
the built-in material and the bone surface is minimized, avoiding
excessive fixation and causing stress to discourage refracture.
The patient is preoperatively fully evaluated and there is a
preoperative design process, which shortens operation time and
reduces surgical exposure.

Through the transformation of the fracture fixation concept and
related biomechanical research, the locking compression plate
(LCP) came into being. It combines two completely different

fixation techniques, both a compression plate as well as steel
plates and nail tails. The locking component between them is
used as an inner bracket. The LCP provides both angular and
axial stability to prevent the screws from slipping. In one study,
28 patients with fractures of the lower tibia were treated with
DCP and 20 patients were treated with LCP [7]. The fracture
healing time was 16.2 months for DCP and 15.4 months for
LCP. The LCP effect was better than the DCP result.

In another study, 25 cases of tibiofibular fracture were treated
with the minimally invasive percutaneous plate osteosynthesis
(MIPPO) technique, which is considered safe and effective [8].
The most ideal fracture treatment should be as minimally
invasive as possible and avoid the use of implants such as steel
plates and intramedullary nails. The internal fixation treatment
is beneficial for the anatomical reduction of the fracture, but at
the same time, this invasive operation increases the risk of
infection. Due to the development of internal fixation equipment
and the improvement of fracture fixation, the results of internal
fixation for the treatment of severe tibial fractures have been
greatly improved. However, due to the high incidence of
complications such as postoperative infection and osteomyelitis,
the combination of open and severe soft tissue injury, and the
treatment of multiple comminuted fractures and infected
tibiofibular fractures, this technique is challenging.

External fixation is a good solution to the abovementioned
shortcomings of internal fixation in the treatment of severe tibial
fractures. The external fixator is simple to install and the
technique is easy to learn. It causes minor secondary damage
to soft tissue and can be used for early fixation of open
tibiofibular fractures or fractures with severe soft tissue injury.
It is beneficial for the early care of the affected limb, such as
functional exercise, adjacent joint function, and exercise. This
study compared the postoperative complications of TSF external
fixation and internal fixation in the treatment of severe complex
tibiofibular fractures (Table 2). The incidence of postoperative
wound infection and osteomyelitis was significantly lower in
TSF than in the internal fixation group (P<.05), and there were
no significant differences in the rates of delayed fracture healing,
nonunion, and refracture. A study by Herrera-Pérez et al [9]
included a total of 14 internal fixation and external fixation
cases for the treatment of severe tibial fractures. A meta-analysis
showed that the difference in the rate of refracture following
either external or internal fixation was not statistically
significant. The 41 patient cases in this study showed that
external fixation was better than internal fixation in the treatment
of open tibial fractures.

The commonly used single-sided and half-needle external fixator
is quick and easy to operate, and is often used for
postdebridement fracture fixation of open fractures. However,
its fracture stability is not ideal, so it is also often used for
temporary fixation, and other fixation methods are used later
on. Sabesan et al [10] reported that patients over 12 years of
age with humeral shaft fractures were treated with a unilateral
external fixator due to the risk of lost fracture reduction.

In this study, 28 patients with severe tibiofibular fractures were
treated with TSF and achieved good results (a fracture healing
rate of 85.71%). TSF can achieve early and accurate reduction
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of fractures aided by a computer. TSF can be the final method
of fracture fixation due to good fracture stability. It enables the
precise treatment of tibial fractures caused by complex
high-energy injuries. This study compared the preoperative
preparation time, operation time, fracture healing time, total
time to weight-bearing, hospitalization days, and other outcomes
of TSF and internal fixation in the treatment of tibial fractures.
The operation and healing times of the TSF group were shorter
than in the internal fixation group [11].

The authors’ experience in the treatment of complex tibial
fractures with TSF includes the following insights: postoperative
computer-assisted adjustment of external frame fractures
requires the addition of two parallel links on both sides of the
outer ring to increase stability; it is important to measure the
fracture displacement parameters; the distance between the
proximal and distal rings in the TSF installation process needs
to be prejudged to avoid the longest distance between the two
rings being greater than the longest model connecting rod, or
shorter than the minimum model connecting rod, as the short

length makes postoperative resetting impossible. Overall, our
experience shows that TSF is effective in treating patients with
severe tibial fractures caused by high-energy injuries. Compared
with the internal fixation method, the incidence of postoperative
wound infection and osteomyelitis was reduced. TSF can enable
early fracture fixation surgery and early functional exercise,
shorten hospitalization time, and reduce treatment costs.

Conclusions
TSF has a low complication rate, with the advantages of fracture
closure and accurate reduction, providing a new treatment
method for complex tibiofibular fractures. Compared with the
internal fixation method, it has a shorter preoperative preparation
time, operation time, fracture healing time, and total time to
weight-bearing, as well as shorter hospital stays and lower
hospitalization costs for the treatment of severe complex tibial
fractures. There is a lower chance of complications such as
postoperative infection and osteomyelitis, and there is no
significant difference in the incidence of nonunion, delayed
healing, and refracture.
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LCP: locking compression plate
MIPPO: minimally invasive percutaneous plate osteosynthesis
TSF: Taylor 3D external fixation
VSD: vacuum sealing drainage
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Abstract

Background: Privacy should be protected in medical data that include patient information. A distributed research network
(DRN) is one of the challenges in privacy protection and in the encouragement of multi-institutional clinical research. A DRN
standardizes multi-institutional data into a common structure and terminology called a common data model (CDM), and it only
shares analysis results. It is necessary to measure how a DRN protects patient information privacy even without sharing data in
practice.

Objective: This study aimed to quantify the privacy risk of a DRN by comparing different deidentification levels focusing on
personal health identifiers (PHIs) and quasi-identifiers (QIs).

Methods: We detected PHIs and QIs in an Observational Medical Outcomes Partnership (OMOP) CDM as threatening privacy,
based on 18 Health Insurance Portability and Accountability Act of 1996 (HIPPA) identifiers and previous studies. To compare
the privacy risk according to the different privacy policies, we generated limited and safe harbor data sets based on 16 PHIs and
12 QIs as threatening privacy from the Synthetic Public Use File 5 Percent (SynPUF5PCT) data set, which is a public data set
of the OMOP CDM. With minimum cell size and equivalence class methods, we measured the privacy risk reduction with a trust
differential gap obtained by comparing the two data sets. We also measured the gap in randomly sampled records from the two
data sets to adjust the number of PHI or QI records.

Results: The gaps averaged 31.448% and 73.798% for PHIs and QIs, respectively, with a minimum cell size of one, which
represents a unique record in a data set. Among PHIs, the national provider identifier had the highest gap of 71.236% (71.244%
and 0.007% in the limited and safe harbor data sets, respectively). The maximum size of the equivalence class, which has the
largest size of an indistinguishable set of records, averaged 771. In 1000 random samples of PHIs, Device_exposure_start_date
had the highest gap of 33.730% (87.705% and 53.975% in the data sets). Among QIs, Death had the highest gap of 99.212%
(99.997% and 0.784% in the data sets). In 1000, 10,000, and 100,000 random samples of QIs, Device_treatment had the highest
gaps of 12.980% (99.980% and 87.000% in the data sets), 60.118% (99.831% and 39.713%), and 93.597% (98.805% and 5.207%),
respectively, and in 1 million random samples, Death had the highest gap of 99.063% (99.998% and 0.934% in the data sets).

Conclusions: In this study, we verified and quantified the privacy risk of PHIs and QIs in the DRN. Although this study used
limited PHIs and QIs for verification, the privacy limitations found in this study could be used as a quality measurement index
for deidentification of multi-institutional collaboration research, thereby increasing DRN safety.

(JMIR Med Inform 2021;9(5):e24940)   doi:10.2196/24940
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Introduction

As medical data include sensitive personal patient information,
various challenges are being studied to protect patient
information and optimize research results, including artificial
intelligence, federated learning, and distributed research
networks (DRNs) [1-11]. Among the above challenges, the
DRN is a multi-institutional collaboration network [1] for
standardizing the data of participating institutions into a common
structure, terminology, and software called a common data
model (CDM) [12-16]. In such research networks, data are not
shared directly, and only analysis results are shared [1,3,6,17].
In research where sharing sensitive patient information has
limitations or where large-scale data privacy needs to be
preserved, the DRN structure is applied to standardize the data,
terminology, and software [4-6]. There are several CDMs in
DRNs, including the Observational Medical Outcomes
Partnership (OMOP) CDM of Observational Health Data
Sciences and Informatics (OHDSI), Sentinel CDM of the Food
and Drug Administration, and Patient‐Centered Outcomes
Research Network of the Patient-Centered Outcomes Research
Institute [18,19].

A DRN was recently recognized as a platform for protecting
large-scale data [16,20-22]. DRN-based studies have argued
two factors that enable the DRN infrastructure to mitigate
privacy issues relative to other data sharing–based studies
[1,6,23-29]. First, a DRN process protects patient information
without directly sharing data [1,3,6,17]. Second, a CDM
structure excludes some direct identifiers that could threaten
the privacy of patient information, such as names and exact
birthdays, by complying with the Health Insurance Portability
and Accountability Act (HIPAA) [30-33]. Therefore, a DRN
protects patient information through processes and structures.

However, previous studies have revealed limitations of DRNs
in terms of data privacy. First, a DRN in a single site has privacy
issues similar to a conventional database owing to repeated
reuse [34-41]. Second, DRN privacy may be threatened when
the remaining age and local information are used, even if direct
identifiers are removed [34-43]. DRN researchers have
recognized that there are no satisfactory solutions to privacy
risk [43]. Despite such privacy risks, few studies have
objectively measured these risks as compared to conventional
data sharing–based studies [44-46]. To mitigate the possible
risk to a DRN, an objective measurement of the privacy risk
should be performed.

Thus, this study aimed to quantify DRN privacy risk by
comparing different deidentification levels focusing on personal
health identifiers (PHIs) and quasi-identifiers (QIs) of patient
information. The key research questions in this study are as
follows: (1) What PHIs and QIs are included in a DRN, and
how many exist? (2) Using a PHI and QI, when comparing the
deidentification level of a CDM to a safe harbor policy, how
much will be the decrease in the DRN privacy risk? and (3)
What is the true privacy risk of the PHI or QI itself when
adjusted for the number of records?

Methods

Data Sources
We used the Synthetic Public Use File 5 Percent (SynPUF5PCT)
data set, which is a sample data set of the OMOP CDM. The
OMOP CDM (version 5.2.2), which was developed by OHDSI
[18,47], is a database of relational schema and consists of 37
tables with demographic information, disease natural history,
health care cost, etc [48]. The SynPUF5PCT is a synthetic data
set with 5% random sampling from a synthetic public use file
of the Centers for Medicare and Medicaid Services [49] and
complies with the limited data set policy of the HIPAA [32].
The SynPUF5PCT consists of 33 of 37 OMOP CDM tables and
is provided from the OHDSI [50]. We used only 12 tables with
patient information without missing and null variables from the
SynPUF5PCT [51].

Target PHIs and QIs
In this study, PHIs and QIs were focused on as
privacy-threatening patient information by referencing previous
studies [52-54]. For the PHIs, we manually matched the structure
of the OMOP CDM based on 18 HIPAA identifiers (Figure 1)
[55]. For the QIs, we selected the target range in demographic
variables (eg, year of birth and gender) and clinical variables
(eg, clinical order code) based on previous studies on the privacy
risk of QIs [52-54,56,57]. In the 18 HIPAA identifiers, however,
dates (excluding the year) and zip codes are defined as PHIs
with a QI characteristic [56]. We prioritized the 18 HIPAA
identifiers and fixed the dates and zip codes as PHIs instead of
QIs. Forty-five PHIs and 17 QIs were detected from the OMOP
CDM structure (Multimedia Appendix 1) [58]. Because there
were missing tables in the SynPUF5PCT compared to the
OMOP CDM, 16 PHIs and 12 QIs were targeted from the
SynPUF5PCT (Figure 1 and Table 1). Detailed information for
the 28 targeted variables is presented in Multimedia Appendix
2.
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Figure 1. Study workflow. PHI: personal health identifier; QI: quasi-identifier.
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Table 1. Sixteen personal health identifiers and 12 quasi-identifiers targeted in the Observational Medical Outcomes Partnership common data model
based on not null values in the Synthetic Public Use File 5 Percent data set.

Clinical variable of quasi-identifierDemographic variable of quasi-
identifier

Variable of personal health identifierStandard clinical tables in the

OMOPa CDMb

N/AcYear_of_birth, Gender_con-
cept_id, Race_concept_id, and
Ethnicity_concept_id

Month_of_birth and Day_of_birthPerson

N/AN/ADeath_dateDeath

Device_concept_idN/ADevice_exposure_start_date and De-
vice_exposure_end_date

Device_exposure

Drug_concept_idN/ADrug_exposure_start_date and
Drug_exposure_end_date

Drug_exposure

N/AStateCountyLocation

Measurement_concept_idN/AMeasurement_dateMeasurement

Observation_concept_idN/AObservation_dateObservation

Procedure_concept_idN/AProcedure_dateProcedure_occurrence

N/AN/AVisit_start_date and Visit_end_dateVisit_occurrence

Condition_concept_idN/ACondition_start_date and Condi-
tion_end_date

Condition_occurrence

N/AN/ANPIdProvider

Place_of_service_concept_idN/AN/ACare_site

aOMOP: Observational Medical Outcomes Partnership.
bCDM: common data model.
cN/A: not applicable.
dNPI: national provider identifier.

Study Design
We conducted privacy risk experiments of the PHIs and QIs.
We generated data sets for each experiment. The workflow for
this study is shown in Figure 1. In the privacy risk experiment
of the PHIs, 16 limited data sets were generated, with each
comprising one of the 16 PHIs merged with five common
demographic variables (Year_of_birth, Gender_concept_id,
Race_concept_id, Ethnicity_concept_id, and State), as in
previous clinical studies [53,54]. For example,
Condition_start_date, which is the name of data set 1 of the 16
limited data sets, consists of one PHI (Condition_start_date
variable) and five common demographic variables. Another
example is the Procedure_date data set consisting of one PHI
(Procedure_date variable) and five common demographic
variables. Thus, each limited data set consists of six variables.

In the QI privacy risk experiment, we mocked up seven
scenarios based on the core tables of the OMOP CDM
[16,59-61], which are frequently used in the real world. The
seven scenarios are as follows: (1) diagnosis, (2) procedure, (3)
drug treatment, (4) lab test, (5) device treatment, (6) death, and
(7) medical history (Multimedia Appendix 3). Based on the
scenarios, seven limited data sets were generated: 10 PHIs and
seven QIs were assigned according to the characteristics of each
scenario differently, and five demographic variables and six
PHIs were used as common variables (Multimedia Appendix
3). For example, the diagnosis scenario consisted of 14 variables
as follows: two PHIs (Condition_start_date and

Condition_end_date) and one QI (Condition_concept_id), which
followed the characteristics of the diagnosis scenario, and 11
common variables were merged.

To compare different deidentification levels for the same data
set, we applied the safe harbor policy to the 16 limited data sets.
For example, when the safe harbor policy was applied to the
limited data set, the PHIs were partially or completely masked.
The date type (such as start date, end date, and death date) was
masked from “YYYY-MM-DD” to “YYYY-**-**.” In other
words, they used only the “year”. The others (such as
Month_of_birth, Day_of_birth, NPI, and County) were
completely masked. We additionally generated 16 and seven
safe harbor data sets for PHIs and QIs, respectively, by applying
the safe harbor policy on the limited data sets.

Privacy Risk Evaluation Metrics
An equivalence class (EC) denotes a group of indistinguishable
record forms with common attributes. The common attribute
sizes that are included in each group can be represented as the
calculated size of the EC [46]. An EC size of one represents the
highest possibility of privacy disclosure for a certain patient’s
information [56]. In contrast, if the size is maximum, it indicates
the highest deidentification level of the data set. In previous
studies, the minimum cell size was an empirically defined
threshold with the calculated EC size [56,57]. The minimum
cell size determines the level of deidentification and measures
the privacy risk in the data set. The most commonly used
minimum cell size in practice is five, and a larger size, such as
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20, is used for data sets that include highly sensitive patient
information [56]. The minimum cell size, calculated by the EC,
was compared for both the limited and safe harbor data sets.

The trust differential mechanism represents the privacy risk of
a data set with a gap obtained by comparing two different
deidentification levels [54]. The gap represents the following
two factors: (1) the quantified difference of the deidentification
level and (2) the degree of decrease in privacy risk. In other
words, when a certain privacy policy applies to the data set that
complies with another privacy policy, a gap will occur between
the two different privacy policies, which have different
deidentification levels. Therefore, the gap indicates that the data
set’s privacy level with the lower deidentification privacy policy
could be protected as the difference that arises when the higher
privacy policy is applied.

Through the PHI and QI privacy risk experiments, we measured
privacy risk in terms of the following two aspects: (1)
measurements based on the number of total records in each data
set and (2) measurements based on the identical number of
records through random sampling from each data set. In the
first aspect, we considered that clinical studies perform analysis
with clinical tables according to clinical scenarios [16,59-61];
thus, we measured privacy risk with the number of total records
in the data set generated by referring to previous studies [53,54].
With the number of total records, we compared the limited and
safe harbor data sets based on the total records of each PHI and

QI. Then, we measured with different minimum cell sizes from
each PHI and QI experiment. To measure PHI privacy risk, we
compared the limited and safe harbor data sets with the
maximum EC size and a minimum cell size of one. In the QI
privacy risk experiment, we compared the limited and safe
harbor data sets with a minimum cell size of 1 to 20. In the
second aspect, we extracted 1000, 10,000, 100,000, and 1
million random samples from each limited and safe harbor data
set and iterated them 100 times. With the iterated random
samples, we calculated the average of the minimum cell size 1
and then compared the limited and safe harbor data sets for PHIs
and QIs.

Results

Overview
Overall, when compared with the limited and safe harbor data
sets, privacy risk was reduced in both PHIs and QIs according
to the trust differential gap. For the trust differential gap of a
minimum cell size of one, there are two overall results. In the
number of total records, the trust differential gaps of PHIs and
QIs averaged 31.448% and 73.798%, respectively. In the random
samples, the trust differential gaps of PHIs and QIs averaged
18.869% and 6.493% (1000 samples), 50.730% and 33.248%
(10,000 samples), 74.013% and 60.306% (100,000 samples),
and 50.744% and 71.868% (1,000,000 samples), respectively
(Table 2).

Table 2. The averaged trust differential gap according to total records and random samples.

Trust differential gapc with a minimum cell size of onedNumber of total recordsa and sampleb

Quasi-identifier (mean percentage)Personal health identifier (mean percentage)

73.798%31.448%Number of total records

Sample

6.493%18.869%1000

33.248%50.730%10,000

60.306%74.013%100,000

71.868%50.744%1,000,000

aNumber of total records is each personal health identifier’s total record.
bSample is the number of random samples (ie, 1000, 10,000, 100,000, or 1 million) from the limited and safe harbor data sets.
cTrust differential gap is the difference obtained by comparing two data sets to measure privacy risk.
dMinimum cell size of one is the percentage of unique records. This can be expressed with the number of unique records as the numerator and the
number of total records as the denominator.

Evaluation of the Personal Health Identifier Privacy
Risk of the DRN
In the number of total record results of the limited data set, the
variable with the most included minimum cell size of one was
Death_date, which was 98.787% (1141/1155). In addition, the
maximum EC size of two for Death_date means that every
record consists of only two value types. In Death_date of the
safe harbor data set, the minimum cell size of one was 87.359%
(1009/1155), and the maximum EC size was three. Even though
the safe harbor policy was applied, privacy was still threatened.
In the Death_date trust differential gap, the gap with a minimum
cell size of one was 11.428%, and the maximum EC size was

one. The maximum EC size of one is the lowest trust differential
gap among all the maximum EC size gaps. In the limited data
set, the variable with the least minimum cell size of one was
Condition_end_date, which was 4.540% (146,727/3,231,730).
In Condition_end_date from the safe harbor data set, the
minimum cell size of one was 0.003% (125/3,231,730). Even
though the safe harbor policy was applied, the records of a
minimum cell size of one did not significantly decrease. In the
Condition_end_date trust differential gap, the minimum cell
size of one was 4.536%, and the maximum EC size was 2348.
This maximum EC size of 2348 was the highest trust differential
gap among all the maximum EC size gaps. In the trust
differential gaps with a minimum cell size of one, the NPI
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variable had the highest trust differential gap of 71.236%, which
was the difference between the limited (71.244%) and safe
harbor (0.007%) data sets. For Drug_exposure_start_date and
Drug_exposure_end_date, both data sets exhibited the same
maximum EC size and a minimum cell size of one.

Day_of_birth consists of the day part of the date of birth and
was already deidentified as “1” in the SynPUF5PCT data set
(eg, “dd” to “1”); thus, every patient had the exact same
Day_of_birth value. Because it was the same deidentified
method as for the safe harbor policy, the Day_of_birth trust

differential gap was zero (Table 3). It could be provided as a
statistical baseline for five demographic variables without any
PHI variables. When the measured result of the Day_of_birth
variable (13.079%) was compared with that of the
Condition_end_date variable, the result of the
Condition_end_date variable was lower by 8.539 percentage
points (from 13.079% to 4.540%), and when it was compared
with that of the Death_date variable, the result of the Death_date
variable was higher by 85.708 percentage points (from 13.079%
to 98.787%).

Table 3. Comparison of 16 personal health identifier variables and five demographic variables of the SynPUF5PCT with limited and safe harbor data
sets in terms of a minimum cell size of one and the maximum size of the equivalence class.

Trust differential gapcSafe harbor data setLimited data setNumber of
total

recordsb

Variablea

Maximum
size of the
equiva-
lence class

Minimum
cell size
of one
(%)

Maximum
size of the
equiva-

lence classf

Minimum
cell size of

onee (%)

Number of
unique

recordsd

Maximum
size of the
equiva-

lence classf

Minimum
cell size of

onee (%)

Number of
unique

recordsd

87862.9528880.0475811063.310771,6841,218,881Visit_start_date

87962.9608890.03955811063.327771,8911,218,881Visit_end_date

111.428387.3591009298.78711411155Death_date

23464.53823910.004137454.543146,8283,231,730Condition_start_date

23484.53623930.003125454.540146,7273,231,730Condition_end_date

21168.49521800.006201648.502257,1613,024,452Procedure_date

53222.6105750.0805954322.691168,180741,161Measurement_date

30743.1153350.2339832843.349182,497420,986Observation_date

17821.0732186.69331904027.76613,23247,655Device_expo-
sure_start_date

14721.0431876.69631914027.73913,21947,655Device_expo-
sure_end_date

36432.9704091.79728454534.76755,042158,316Drug_expo-
sure_start_date

36432.9704091.79728454534.76755,042158,316Drug_expo-
sure_end_date

4144.4924913.0793296857.57114,50825,200Month_of_birth

004913.07932964913.079329625,200Day_of_birth

217771.23622470.007917071.244865,8401,215,317NPIg

3758.7574913.07932961271.83718,10325,200County

771.93731.448829.4378.999N/A34.7540.488N/AN/AhAverage

aVariable refers to the variable targeted from the Observational Medical Outcomes Partnership common data model as the personal health identifier.
bNumber of total records is each personal health identifier’s total record.
cTrust differential gap is the difference obtained by comparing two data sets to measure privacy risk.
dNumber of unique records is the number of records with a common attribute size of one within the total record.
eMinimum cell size of one is the percentage of unique records. This can be expressed with the number of unique records as the numerator and the
number of total records as the denominator.
fMaximum size of the equivalence class is the largest size of the indistinguishable common attributes.
gNPI: national provider identifier.
hN/A: not applicable.

In randomly sampled PHIs, privacy risk reduction was different
depending on the number of samples (Table 4 and Multimedia
Appendix 4). The variables with a highly ranked trust

differential gap were Device_exposure_start_date (1000
samples) (33.730%; 87.705% and 53.975% in the limited and
safe harbor data sets, respectively), NPI (10,000 samples)
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(83.852%; 98.945% and 15.094% in the limited and safe harbor
data sets, respectively), Visit_start_date (100,000 samples)
(92.566%; 95.583% and 3.016% in the limited and safe harbor
data sets, respectively), and NPI (1,000,000 samples) (73.588%;
73.599% and 0.011% in the limited and safe harbor data sets,
respectively).

Overall, for 1000 random samples, both data sets consisted
primarily of the minimum cell size of one. In the limited data
set, the variables with the most and fewest included minimum
cell size of one records were Visit_end_date (99.978%) and
Day_of_birth (73.754%), respectively. In the safe harbor data
set, the variables with the most and fewest included minimum
cell size of one records were Death_date (89.044%) and NPI
(67.377%), respectively (Table 4). For Visit_end_date in the
limited data set with the most included minimum cell size of
one records, after applying the safe harbor policy, the minimum
cell size of one records of the Visit_end_date variable decreased
to 86.171% (861.710/1000). Even though the safe harbor policy
was applied, the minimum cell size of one records did not

decrease significantly. Death_date, with the most included
minimum cell size of one records in the safe harbor data set,
had a trust differential gap of 9.862% (98.906% and 89.044%
in the limited and safe harbor data sets, respectively). The
privacy risk did not decrease significantly after applying the
safe harbor policy. In the trust differential gap, the variable with
the highest gap was Device_exposure_start_date (33.730%;
87.705% and 53.975% in the limited and safe harbor data sets,
respectively). When the safe harbor policy was applied, the
Death_date privacy risk could be significantly reduced. In the
number of total records of the limited and safe harbor data sets,
with a minimum cell size of one, the most privacy-threatening
variables were Death_date (98.787%) and Death_date
(87.359%), respectively. However, in the random sample of
1000, it was Visit_end_date (99.978%) and Death_date
(89.044%), respectively. Therefore, we verified that
privacy-threatening variables could differ depending on the
number of records. Detailed random sampled results are
displayed in Multimedia Appendix 4.
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Table 4. Comparison of records with a minimum cell size of one between the limited and safe harbor data sets from 16 personal health identifier data
sets.

Trust differential

gapc (%)

Safe harbor data setLimited data setSamplea and variableb

Number of minimum cell sizes of onedNumber of minimum cell sizes of oned

Percentageg (%)Meane (SDf)Percentageg (%)Meane (SDf)

1000 samples

13.95885.968859.68 (16.229)99.926999.26 (1.125)Visit_start_date

13.80786.171861.71 (15.086)99.978999.78 (0.629)Visit_end_date

9.86289.044890.44 (7.478)98.906989.06 (2.155)Death_date

14.08585.759857.59 (15.178)99.844998.44 (1.766)Condition_start_date

13.94285.87858.7 (16.45)99.812998.12 (2.006)Condition_end_date

13.96385.861858.61 (16.504)99.824998.24 (1.804)Procedure_date

14.00385.511855.11 (15.321)99.514995.14 (2.971)Measurement_date

14.27585.479854.79 (14.238)99.754997.54 (2.162)Observation_date

33.7353.975539.75 (16.877)87.705877.05 (13.107)Device_exposure_start_date

33.56653.968539.68 (20.112)87.534875.34 (16.05)Device_exposure_end_date

23.56472.07720.7 (17.729)95.634956.34 (8.669)Drug_exposure_start_date

23.56472.07720.7 (17.729)95.634956.34 (8.669)Drug_exposure_end_date

23.30773.84738.4 (17.707)97.147971.47 (7.612)Month_of_birth

073.754737.54 (17.774)73.754737.54 (17.774)Day_of_birth

32.50367.377673.77 (19.212)99.88998.8 (1.775)NPIh

24.12373.846738.46 (16.856)97.969979.69 (6.59)County

18.869N/AN/AN/AN/AiAverage

aSample is the number of random samples (ie, 1000, 10,000, 100,000, or 1 million) from the limited and safe harbor data sets.
bVariable is the variable targeted from the Observational Medical Outcomes Partnership common data model as the personal health identifier.
cTrust differential gap is the difference obtained by comparing two data sets to measure privacy risk.
dNumber of minimum cell sizes of one is the number of records with a unique record among the total records.
eMean is the average of the quantity with a minimum cell size of one obtained by iterating the random sampling of each variable 100 times.
fSD is the standard deviation of the quantity with a minimum cell size of one obtained by iterating random sampling of each variable 100 times.
gPercentage is the percentage of the quantity with a minimum cell size of one. The numerator is the mean of the minimum cell size of one, which was
obtained from 100 iterations, and the denominator was the number of random samples.
hNPI: national provider identifier.
iN/A: not applicable.

Evaluation of the Quasi-Identifier Privacy Risk of the
DRN
In the results for the number of total records, the privacy risk
of the QI with a minimum cell size of 1 to 20 was measured in
the limited and safe harbor data sets. As shown in Figure 2, for
the minimum cell size of one, the minimum and maximum
percentages in the seven scenarios were 71% and 99%,
respectively, in the limited data set (Figure 2A) and 0.7% and
41%, respectively, in the safe harbor data set (Figure 2B). The
QI privacy risk was represented with a minimum cell size of
one to five (Multimedia Appendix 5 and Table 5). For the

minimum cell size of one in the limited data set, the Diagnosis
(71.465%) and Procedure (76.123%) scenarios showed lower
privacy risks than the other five scenarios (Drug treatment
[95.475%], Lab test [93.012%], Medical history [92.353%],
Death [99.997%], and Device treatment [97.647%]). For the
Death scenario, the limited data set records were concentrated
in the minimum cell size of one to two. The average gaps
between the limited and safe harbor data sets, with the minimum
cell size of one to five decreased from 73.798% to 54.548%.
For the gaps of the minimum cell size of one, the Diagnosis
scenario showed the smallest gap (28.869%), whereas the Death
scenario showed the largest gap (99.212%).
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Figure 2. Percentage of records measuring the quasi-identifier privacy risk with a minimum cell size of 1–20 for the (A) limited and (B) safe harbor
data sets. The flattened lines are expanded (inner graph).
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Table 5. Percentage of records measuring quasi-identifier privacy risk with gaps between the limited and safe harbor data sets with a minimum cell
size of one, two, and five.

Trust differential gapbSafe harbor data setLimited data setNumber of
total

recordsa

Scenarios

Minimum cell size of one,

two, and five, percentagec
Minimum cell size of one, two, and five,

percentagec (recordd)

Minimum cell size of one, two, and five,

percentagec (recordd)

521521521

19.98635.36129.8694.412
(29,737)

14.248
(240,043)

41.595
(1,401,556)

2.333
(15,726)

11.049
(186,162)

71.465
(2,407,996)

3,369,468Diagnosis

33.17342.30144.8714.460
(27,708)

12.472
(193,672)

31.251
(970,568)

1.731
(10,752)

9.902
(153,767)

76.123
(2,364,135)

3,105,665Procedure

88.61189.18789.9170.356
(927)

1.625
(10,569)

5.558 (72,292)0.306 (796)0.895
(5826)

95.475
(1,241,796)

1,300,649Drug treatment

64.95873.55876.2632.385
(7744)

7.748
(62,875)

16.749
(271,819)

0.138 (448)5.043
(40,923)

93.012
(1,509,486)

1,622,884Lab test

76.75980.09480.2741.550
(4183)

4.466
(30,115)

12.079
(162,898)

0.224 (606)4.286
(28,900)

92.353
(1,245,455)

1,348,569Medical history

098.52999.2120.719
(1755)

0.686
(4185)

0.784 (9557)0 (0)0.003 (18)99.997
(1,218,845)

1,218,881Death

95.62595.95596.1820.139
(348)

0.380
(2372)

1.464 (18,271)0.059 (149)0.152 (954)97.647
(1,218,368)

1,247,726Device treatment

54.45873.56973.798N/AN/AN/AN/AN/AN/AN/AeAverage

aNumber of total records denotes each total record of the scenarios.
bTrust differential gap indicates the differences obtained by comparing two data sets to measure privacy risk.
cMinimum cell size of one, two, and five represents the percentage of records that have a common attribute size of one, two, and five, respectively. This
percentage is presented as the records of minimum cell size of one, two, and five as the numerator and the total number of records as the denominator.
dRecord is the number of records with a common attribute size of one, two, and five within the total records.
eN/A: not applicable.

In the random samples with a minimum cell size of one, (1) the
average percentage of the limited data set decreased from
99.986% to 99.327%, (2) the average percentage of the safe
harbor data set decreased from 93.493% to 21.460%, and (3)
the average trust differential gap increased from 6.493% to
71.868% (Table 6). In the limited data set with 1000 to 1 million
random samples, the scenario with the most included records
of a minimum cell size of one was the Death scenario (1000 to
100,000 random samples had 99.999% and 1 million had
99.998%). In the safe harbor data set with 1000 to 1 million
random samples, the scenario with the most included records
of a minimum cell size of one was the Diagnosis scenario (1000
random samples had 99.858%, 10,000 had 98.685%, 100,000
had 89.758%, and 1 million had 60.361%). In the order of the
four random samples, the scenarios with the highest trust
differential gap were Device_treatment (1000 random samples:
12.980%, 99.980% and 87.000% in the limited and safe harbor
data sets, respectively; 10,000 random samples: 60.118%,

99.831% and 39.713% in the limited and safe harbor data sets,
respectively; 100,000 random samples: 93.598%, 98.805% and
5.207% in the limited and safe harbor data sets, respectively)
and Death (1 million random samples: 99.063%, 99.998% and
0.934% in the limited and safe harbor data sets, respectively).
When the safe harbor policy was applied, privacy risks were
significantly reduced. In the number of total records, the most
privacy-threatening scenarios were Death (99.997%) and
Diagnosis (41.595%) in the limited and safe harbor data sets,
respectively, with a minimum cell size of one. In the random
samples with a minimum cell size of one in the limited data set,
the most privacy-threatening scenario was Death, which had
privacy risks of 99.999% (1000 to 100,000 random samples)
and 99.998% (1 million random samples). In the safe harbor
data set, Diagnosis had privacy risks of 99.858% (1000 random
samples), 98.685% (10,000 random samples), 89.758% (100,000
random samples), and 60.361% (1 million random samples).
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Table 6. Comparison of records with a minimum cell size of one between the limited and safe harbor data sets from seven scenarios.

Trust differential

gapc (%)

Safe harbor data setLimited data setSamplea and scenariob

Number of minimum cell sizes of onedNumber of minimum cell sizes of oned

Percentageg (%)Meane (SDf)Percentageg (%)Meane (SDf)

1000

0.12299.858998.58099.980999.800Diagnosis

0.23699.740997.40099.976999.760Procedure

11.03988.947889.47099.986999.860Drug_treatment

4.29995.691956.91099.990999.900Lab_test

6.76493.232932.32099.996999.960Medical_history

10.01689.983899.83099.999999.990Death

12.98087.000870.00099.980999.800Device_treatment

6.49393.493N/A99.986N/AhAverage

10,000

1.07398.6859868.54099.7599975.850Diagnosis

2.30997.4389743.83099.7479974.680Procedure

53.37846.4284642.82099.8069980.620Drug_treatment

26.73973.2017320.07099.9399993.920Lab_test

37.63062.2676226.70099.8979989.730Medical_history

51.48748.5124851.23099.99909999.980Death

60.11839.7133971.31099.8319983.140Device_treatment

33.24866.606N/A99.854N/AAverage

100,000

7.96789.75889,757.54097.72597,724.930Diagnosis

15.64982.09382,093.25097.74397,742.680Procedure

86.35612.06312,062.98098.41998,419.410Drug_treatment

57.21242.16442,164.13099.37699,375.690Lab_test

70.46928.55328,552.75099.02299,022.020Medical_history

90.8929.1079106.63099.99999,999.640Death

93.5985.2075206.99098.80598,804.960Device_treatment

60.30638.420N/A98.727N/AAverage

1,000,000

24.32160.361603,607.95084.682846,819.090Diagnosis

39.20747.250472,502.94086.458864,575.710Procedure

89.7255.98359,825.33095.708957,078.730Drug_treatment

74.47220.681206,809.13095.153951,528.090Lab_test

80.15413.462134,617.45093.616936,158.630Medical_history

99.0630.9349344.16099.998999,975.900Death

96.1311.55015,496.02097.680976,802.140Device_treatment

71.86821.460N/A93.327N/AAverage

aSample is the number of random samples (ie, 1000, 10,000, 100,000, or 1 million) from the limited and safe harbor data sets.
bScenario is the variable targeted from the Observational Medical Outcomes Partnership common data model as the personal health identifier.
cTrust differential gap is the difference obtained by comparing two data sets to measure privacy risk.
dNumber of minimum cell sizes of one is the number of records with a unique record among the total records.
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eMean is the average of the quantity with a minimum cell size of one obtained by iterating the random sampling of each variable 100 times.
fSD is the standard deviation of the quantity with a minimum cell size of one obtained by iterating random sampling of each variable 100 times.
gPercent is the percentage of the quantity with a minimum cell size of one. The numerator is the mean of the minimum cell size of one, which was
obtained from 100 iterations, and the denominator was the number of random samples.
hN/A: not applicable.

Discussion

Principal Findings
In this study, we quantified the DRN privacy risk focusing on
PHIs and QIs using 18 HIPAA identifiers and the findings of
previous studies [34-43]. To measure the DRN privacy risk, we
compared the limited data set, consisting of PHIs and QIs from
the SynPUF5PCT data set, with the safe harbor data set
generated by applying the safe harbor policy on the limited data
set. More specifically, privacy risk was measured with the gap
obtained between the two data sets, based on the trust
differential, applying the threshold of the minimum cell size
with the calculated size by the EC. We verified that the PHIs
and QIs increased the DRN privacy risk. However, the privacy
risk decreased overall when the safe harbor policy was applied
to the DRN. To the best of our knowledge, this is the first study
to verify that PHIs and QIs may threaten patient privacy within
DRNs.

Prior studies have shown that patient privacy is threatened by
PHIs and QIs within clinical databases [53,54]. The DRN of
this study may have the same privacy risk as those in previous
studies because the DRN at a single site follows a conventional
database, although it does not share data [34-41]. Therefore,
the privacy risk in a DRN should be quantified and objectively
measured for three important reasons. First, because existing
patient information in a CDM affects the privacy risk, the DRN
privacy risk can be mitigated by providing objectively measured
PHI and QI privacy risks [62]. Second, researchers can
understand the mechanism of privacy risk change with the
objective differences measured by comparing two different
deidentification levels of data sets [63]. Finally, an objective
measurement of privacy risk will contribute to the design of
more secure privacy protection methods suitable for a DRN.

Consideration for Measuring Privacy Risk From
Variable Characteristics
The PHI results, which measure the privacy risk, were verified
in two different deidentification levels and indicated a much
greater privacy risk reduction in the safe harbor data set than in
the limited data set. In addition, we found that privacy risks
differ depending on PHI characteristics. The privacy risk of the
Visit_start_date variable, which occurs multiple times per
patient, was significantly reduced after applying the safe harbor
policy. However, the Death_date variable, which occurs only
once per patient, still had many remaining unique records after
the safe harbor policy was applied. The State variable, which
is one of the demographic variables in the data set of the
Death_date variable, still had unique values because it had not
been deidentified by the safe harbor policy. Although the NPI
variable had the highest reduction rate of privacy risk after
applying the safe harbor policy, we found that it could not be
used as data because it was completely masked. For the

Day_of_birth as a statistical baseline, we compared the
Day_of_birth with other PHI variables and could interpret a
privacy risk according to the characteristics of the variable as
follows. First, because each patient had multiple points for the
Condition_end_date value in the SynPUF5PCT, there were
fewer unique records relatively. Thus, the privacy risk of
Condition_end_date was lower than that of Day_of_birth.
Second, because every patient had only one point for the
Death_date value, most of them had unique records. Thus, the
privacy risk of Death_date was higher than that of Day_of_birth.

In the results of QI, when the limited data set had a minimum
cell size of one, the privacy risk differed based on the
characteristics of the scenario. In our study, we found that the
QI privacy risks of the Drug treatment, Lab test, Medical history,
Death, and Device treatment scenarios decreased on average
1.3 times more than those of the Diagnosis and Procedure
scenarios, with a minimum cell size of one. The reason for the
relatively low reduction in privacy risk under the Diagnosis and
Procedure scenarios is that clinical order codes, such as
Condition_concept_id and Procedure_concept_id, which used
QIs, were prescribed three times on average with the same code.

The privacy risk could differ depending on the characteristics
of variables, and the “balls and bins problem” theoretical basis
supports our research [64]. As the number of bins increases, it
could frequently take only one ball to fill than fewer bins.
Similarly, the Visit_end_date variable, with 1096 distinct values
(“bins”), consisted of more unique records (“only one ball”)
than the Month_of_birth with 12 distinct values. Consequently,
a privacy protection approach must be customized or optimized
by considering the characteristics of each variable.

Consideration for Measuring Privacy Risk From
Record Extraction
Through the random samples, we found the following two facts:
(1) Depending on the number of records, the privacy-threatening
variable or scenario could differ and (2) The influence of safe
harbor policy could differ depending on the number of records,
because the number of unique records, which are included with
PHI data sets or QI scenarios, differs according to each random
sampling. Therefore, to measure the true privacy risk of PHIs
and QIs, it is necessary to compare the same records through
random sampling.

A minimum cell size of five, which has been a commonly used
threshold in previous studies [56], may be difficult to apply as
a threshold for measuring the DRN privacy risk. In the QI
privacy risk experiment, the Death scenario of the limited data
set was not appropriate for a minimum cell size of five because
the records were concentrated in a minimum cell size of one to
two. Therefore, our results reflect the fact that a minimum cell
size of five may not be suitable for the current DRN. However,
it should be recognized that the captured features may differ
according to the data set used. Therefore, further research is
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required using various real-world data sets to find an appropriate
minimum cell size that can contribute to the measurement of
the DRN privacy risk.

Limitations
This study has some limitations. First, this study used a public
data set (SynPUF5PCT), which does not handle all PHIs or QIs
existing in a DRN. Therefore, we could not consider the CDM
of real-world data sets generated by each institution. However,
the results of this study are reliable because the SynPUF5PCT
data set is an officially published data set by the OHDSI [50].
Second, when measuring the QI privacy risk, some QIs were
considered based on scenarios and not based on all variables.
Thus, we did not handle the privacy risk considering the
combination of all QIs. However, the CDM does not use all
variables because the research is based on clinical questions
[59]. In addition, we focused on the frequently used scenarios.
Third, we did not consider some PHIs and QIs within free text
from Note and Note_nlp tables [48], because in our research
methodology, PHIs and QIs are detected in the structure of
OMOP CDM based on 18 HIPAA identifiers and not in the free
text. However, previous studies have indicated that free text
includes not only PHIs and QIs but also direct identifiers

[65,66]. Therefore, further research needs to include a free text
data set. Fourth, we did not consider privacy risk depending on
the timespan. Because the SynPUF5PCT data set used in this
study contained only 3-year records (2008-2010) and the
Day_of_birth variable had already been deidentified as “1,” we
could not measure privacy risk according to an extended (such
as 20-year records) or a narrowed (such as single-week records)
timespan. A future study should consider timespan-related
privacy.

Conclusions
In this study, we validated and quantified the privacy risks of
PHIs and QIs in the DRN. We objectively measured the privacy
risk reduction with the gaps obtained by comparing a safe harbor
policy with the DRN. In addition, we measured the true privacy
risk of PHIs and QIs by random sampling to adjust for the
influence of the number of records. Therefore, it is necessary
to reinforce a level of privacy protection for each institution
because the DRN involves big data research based on
multi-institution collaboration. Our study findings can help in
constructing an advanced DRN environment that protects these
privacy risks as a quality measurement index.
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Abstract

Background: Improving the understandability of health information can significantly increase the cost-effectiveness and
efficiency of health education programs for vulnerable populations. There is a pressing need to develop clinically informed
computerized tools to enable rapid, reliable assessment of the linguistic understandability of specialized health and medical
education resources. This paper fills a critical gap in current patient-oriented health resource development, which requires reliable
and accurate evaluation instruments to increase the efficiency and cost-effectiveness of health education resource evaluation.

Objective: We aimed to translate internationally endorsed clinical guidelines to machine learning algorithms to facilitate the
evaluation of the understandability of health resources for international students at Australian universities.

Methods: Based on international patient health resource assessment guidelines, we developed machine learning algorithms to
predict the linguistic understandability of health texts for Australian college students (aged 25-30 years) from non-English speaking
backgrounds. We compared extreme gradient boosting, random forest, neural networks, and C5.0 decision tree for automated
health information understandability evaluation. The 5 machine learning models achieved statistically better results compared to
the baseline logistic regression model. We also evaluated the impact of each linguistic feature on the performance of each of the
5 models.

Results: We found that information evidentness, relevance to educational purposes, and logical sequence were consistently
more important than numeracy skills and medical knowledge when assessing the linguistic understandability of health education
resources for international tertiary students with adequate English skills (International English Language Testing System mean
score 6.5) and high health literacy (mean 16.5 in the Short Assessment of Health Literacy-English test). Our results challenge
the traditional views that lack of medical knowledge and numerical skills constituted the barriers to the understanding of health
educational materials.

Conclusions: Machine learning algorithms were developed to predict health information understandability for international
college students aged 25-30 years. Thirteen natural language features and 5 evaluation dimensions were identified and compared
in terms of their impact on the performance of the models. Health information understandability varies according to the demographic
profiles of the target readers, and for international tertiary students, improving health information evidentness, relevance, and
logic is critical.
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Introduction

Background
The World Health Organization recommends a set of principles
for effective health communication, including accessibility,
actionability, credibility, relevance, timeliness, and
understandability [1]. Health information understandability can
be achieved by using familiar language and good writing
practice that highlights health information directness, clearness
of the desired health outcome, easy-to-follow informational
organization, and discourse explicitness, that is, clear
explanation of health and medical knowledge using simple,
plain, and purposeful language [2-5]. Approaches to health
information evaluation can be divided into 2 large categories,
that is, expert-led qualitative evaluation based on clinical
experiences [6-9] and automated health information analyzers
using medical readability formulas or natural language
processing tools [10-13]. The strengths and limitations of both
approaches are well-known [14-16]. Expert-led health material
evaluation draws upon the domain knowledge of medical and
health professionals, which are insightful and clinically reliable.
This approach, however, is costly and requires much longer
evaluation timeframes when compared to automated evaluations.
They have important limitations with the evaluation of health
materials in large quantities or in situations that require more
regular, instant evaluation such as health information updates
in health emergencies. Further, this approach is not flexible
with user-oriented health information evaluation that requires
the evaluation criteria adjust with flexibility to align with the
actual reading abilities of the patient education resource users
[17,18]. For example, the same piece of health information can
be of varying understandability for users with different education
levels, health literacy, or existing knowledge of specific health
topics. By contrast, the computerized approach of evaluating
health information based on natural language features is gaining
importance in health informatics [19-22].

Developing health resources of adequate understandability can
have important impact on the trust, acceptance, and voluntary
adherence to the health advice and recommendations delivered
in the health texts [23-26]. Information simplification is an
effective strategy to increase the understandability of health
materials. However, with specialized health texts,
oversimplification can result in critical information loss and
reduced believability and persuasiveness of health information
for educated readers with higher health information appraisal
abilities and health risk assessment autonomies. How to maintain
a balance between the understandability and the informativeness
of health materials holds the key to optimal health
communications. This paper leverages machine learning
techniques to develop automated health information evaluation
tools of English health materials for a specific group of readers,
that is, students in tertiary education from non-English speaking
backgrounds with intermediate English reading skills (they

achieved an average 6.5 score in the International English
Language Testing System test). The stress of living away from
home and the adjustment difficulties among international
students is known as the “foreign student syndrome” [27,28].
Previous research with students in Australia and internationally
showed that international students were less likely to seek for
help from health organizations than from residents [29]. English
health materials available on the websites of health authorities
thus provide important sources of information for international
students. Whether and how health information from health
authorities developed for native English readers is
understandable to international students with intermediate
English skills and limited health literacy remains unknown. In
this study, new machine learning algorithms were developed
to predict the linguistic readability of original English health
information for international students. Our study illustrates the
training and validation of machine learning algorithms to predict
the understandability of health education materials on infectious
diseases for this group of English health information users. The
strength of machine learning algorithms, that is, adaptiveness
and flexibility can significantly improve the cost-effectiveness
and efficiency of automated health educational resource
evaluation for specific user groups.

The contributions of our study are three-fold: first, we translated
clinical health education material evaluation guidelines to
machine algorithms to enable the quantitative evaluation of
understandability of health materials. This has, for the first time,
materialized the automation of health resource understandability
assessment with specific reader groups, which represents a
significant advance in user-oriented health information
evaluation. Second, the results of the machine learning–based
evaluation identified important new dimensions in information
readability assessment, which are health information
purposefulness and the logical structure of health texts. These
new findings challenged traditional views that lack of health
text readability was caused by morphological complexity and
domain-specific terminology. Such views largely simplified the
complex issue of the cognitive processing of health information
by populations of varying education and health literacy levels
and language and cultural backgrounds. Our study shows that
for nonnative English readers with tertiary education and high
health literacy levels, health information evidentness, logical
sequence, and relevance for educational purposes weigh more
than health domain knowledge and numeracy demands when
assessing the understandability of health texts for readers from
similar backgrounds. Lastly, our study identified textual
linguistic features having large impact on the performance of
machine learning algorithms. For information evidentness, these
were words describing mental actions and processes (X2),
general/abstract terms (A1), and for relevance to educational
purposes, these were words of anatomy, physiology (B1),
medicines, and medical treatment (B3). For logical sequence,
these were grammatical words (Z5), negative (Z6), and
conditional expressions (Z7). Different from statistics, machine
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learning cannot compute the regression coefficients of these
variables within different models, but the large impact of these
features on health text readability suggests that linguistic
interventions to these features of health texts can significantly
improve the performance of machine learning algorithms as
automated health text readability evaluation applications.

Data Sets and Feature Selection

Data Collection and Classification
The health educational resources were collected from diverse
sources, including governmental health agencies and
not-for-profit health organizations in Australia. Health education
resource genres are highly diverse, which may be classified into
fact sheets, health topics, patient guidelines, clinical guidelines,
administrative guidelines, manuals, reports, booklets, brochures,
posters, leaflets, checklists, and flipcharts. In this study, we
purposely selected health education resources from fact sheets,
health topics, and patient guidelines, which are some of the
most used health resource varieties. The main sources of credible
health information were the Australian Federal and State Health
departments and not-for-profit organizations: Arthritis Australia,
Australian Food Safety Information Council, Australian
Melanoma Research Foundation, Australian Rotary Health,
Breast Cancer Network Australia, Cancer Council Australia,
Diabetes Australia, National Breast Cancer Foundation, National
Heart Foundation of Australia, and National LGBTI Health
Alliance. The total corpus contained 1000 full-length health
educational texts (running tokens of over 500,000 words). Five
international students in tertiary education enrolled in Australian
universities classified the collected health texts independently
into easy versus hard-to-understand categories (Cohen kappa
0.705). They were aged 25-30 years with advanced English
skills (International English Language Testing System test score
6.5 or above). Their mean health literacy level (16.5 [SD 1.69],
IQR 13-18) was measured using the Short Assessment of Health
Literacy-English [30,31], and their mean level was 87.5% over
the threshold 14 of low health literacy.

Textual Features as Health Information
Understandability Predictors
In order to develop automated health resource evaluation
algorithms, we identified a set of key linguistic features as
relevant to the understandability of written health resources.
Table 1 lists some of the evaluation criteria in the Patient
Education Materials Assessment Tool (PEMAT) developed by
the Agency for Healthcare Research and Quality, United States
Department of Health and Human Services [32]. These include
the evaluation of health content, word choice and style, use of
numbers, and textual organization. Each evaluation criterion
was then mapped onto one or multiple semantic classes of the
UCREL English Semantic Analysis System (USAS) developed
by the University of Lancaster, United Kingdom [33]. We used
USAS to annotate the raw English corpus texts collected. USAS
is one of the most used English semantic annotation systems.
It has a multi-tier structure with 21 major discourse fields
covering (A) general and abstract terms, (B) the body and the
individual, (C) arts and crafts, (D) emotion, (E) food and
farming, (G) government and public, (H) housing and home,
(I) money and commerce, (K) sports and games, (L) live and
living things, (M) movement and transport, (N) numbers and
measurement, (O) substances, materials, objects, and equipment,
(P) education, (Q) language and communication, (S) social
actions, states, and processes, (T) time, (W) world and
environment, (X) psychological actions, states and processes,
(Y) science and technology, and (Z) names and grammars.
Within each large semantic category (A-Z), there are
subcategories providing fine-grained classification of the word
semantics. For example, the A category contains A1 general
and abstract terms, A2 affect, A3 being, A4 classification, A5
evaluation, A6 comparison, A7 probability, A8 seem, A9
possession, and so on. These natural language features were
then mapped onto the PEMAT evaluation criteria as shown in
Table 1.

Table 1. Natural language features relevant to Patient Education Materials Assessment Tool guidelines.

Machine learning evaluationLanguage featuresEvaluation criteria in the Patient Education Materials Assessment Tool

Content

Information evidentnessA1, X1, X2, X7The material makes its purpose completely evident.

Relevance to education purposeB1, B3The material does not include information that distracts from its purpose.

Word choice and style

Domain knowledgeB2Medical terms are used only to familiarize audience with the terms.

Use of numbers

Numeracy demandN1, N2, N3The material does not expect the user to perform calculations.

Organization

Logical sequenceZ5, Z6, Z7The material presents information in a logical sequence.

To quantify the PEMAT guideline item “the material makes its
purpose completely evident,” 4 USAS classes were used as
quantitative measures, that is, A1: general and abstract terms;
X1: psychological actions, states, and processes; X2: mental
actions and processes (such as think, analyze, study, look over,

go over); and X7: wanting, planning, choosing (such as aim,
objective, goal, target, intention, purpose, plan, idea, point). To
quantify the PEMAT guideline item “the material does not
include information or content that distracts from its purpose,”
2 USAS classes were used as quantitative measures, that is, B1:
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anatomy and physiology and B3: medicines and medical
treatment. Typical examples of content distraction include
excessive detail about the equipment used for a procedure that
distracts from the material’s purpose or excessive detail about
other procedures or treatments that are not related to the
material’s purpose. To quantify the PEMAT guideline item
“medical terms are used only to familiarize audience with the
terms,” the USAS class B2: health and disease terms were used
as the main quantitative measure. To quantify the PEMAT
guideline item “the material does not expect the user to perform
calculations,” 3 USAS classes were selected from the USAS
semantic tag set as relevant quantitative measures. To quantify
the PEMAT guideline item “the material presents information
in a logical sequence,” 3 USAS classes were identified as
relevant to the logical structure of health materials, that is, Z5:
grammatical bin, Z6: negative, and Z7: if (conditional). In total,
13 semantic annotation classes were selected from the extensive
tag set of USAS. Information evidentness of written health texts
is measured by A1, X1, X2, X7; information relevance to
educational purposes by B1 and B3; health domain knowledge
by B2; health numeracy demand by N1, N2, and N3; and lastly,
text logical sequence by grammatical and functional features
Z5, Z6, and Z7.

Analysis of the Differences Between Easy and Difficult
Texts
Table 2 shows the statistical results of the differences between
easy and difficult health educational texts for international
college students. All the predictor variables were continuous
variables, and the P values were derived using Mann-Whitney
U test. The result shows that statistically significant differences
(P<.05) exist in most of the semantic features. Easy and difficult
health texts, however, did not differ significantly in the semantic
classes of B1 (anatomy, physiology), N1 (numbers), N2
(mathematics), and N3 (measurement). The mean values of the
7 semantic classes of easy health texts were significantly higher
than those of difficult health texts. In terms of health information
purposefulness, 4 semantic features contributed to the linguistic
understandability of health resources, that is, A1 (14.09 easy
vs 10.10 difficult), X1 (0.42 easy vs 0.18 difficult), X2 (10.41
easy vs 6.57 difficult), and X7 (3.24 easy vs 1.79 difficult). This
suggests that the increased use of words describing the
psychological and mental actions, states, and processes can help
the target readers to understand the textual information. A1 is
defined as general and abstract words.

Table 2. Differences between easy and difficult medical texts derived by the Mann-Whitney U test.

P valueMann-Whitney UDifficult texts, mean (SD) scoreEasy texts, mean (SD) scoreVariables

<.00197905.0010.10 (13.13)14.09 (14.52)A1

.02120325.500.18 (1.49)0.42 (3.89)X1

<.00189487.506.57 (9.14)10.41 (11.26)X2

<.001103350.501.79 (3.12)3.24 (5.41)X7

.12117882.5015.69 (21.78)17.10 (31.14)B1

<.00199536.5024.68 (34.04)15.04 (21.53)B2

<.001103338.0012.80 (18.02)9.25 (14.30)B3

.66123009.005.42 (6.51)5.74 (8.54)N1

.52123284.500.21 (0.70)0.21 (0.70)N2

.38120978.504.77 (5.60)5.73 (9.38)N3

<.001108744.00122.77 (119.05)133.63 (118.93)Z5

<.001100719.003.01 (5.01)4.13 (5.28)Z6

<.00181063.502.10 (4.03)4.22 (4.62)Z7

Table 3 shows some of the words annotated as A1 in a typical
health text classified as difficult. These general and abstract
words were not typical medical and health terms. They were
classified and tagged in the corpus study as general English
terms. However, the statistically significant P value attributed
to this word category as shown in Table 2 indicated that they
can be used as a discriminating feature to separate easy versus
difficult health educational materials for international students
in tertiary education. Regarding health domain knowledge, the
result shows that the mean of B2 (health and disease) of easy
health texts (15.04) was significantly lower than that of difficult

texts (24.68). In terms of numeracy demand, the 2 sets of health
texts did not different significantly, suggesting that for
international students in tertiary education, the use of numbers
and quantitative measures in health educational texts did not
represent an important barrier. Lastly, the logical sequence of
English health texts can be improved using functional words
(Z5, Z6, Z7), as the mean scores of these 3 linguistic features
in easy health educational resources proved to be significantly
higher than those of difficult texts: Z5 (133.63 easy, 122.77
difficult), Z6 (4.13 easy, 3.01 difficult) and Z7 (4.22 easy, 2.10
difficult).
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Table 3. A1 in difficult texts.

Keyword concordancesA1

infections in humans are limited to one case of Taï Forest Ebola viruslimited to

There are five strains that have been identified: Zaire, Sudan, Bundibugyo, Taï Forest, and Reston.strains

Previous outbreaks had been limited to remote areas allowing initial containment efforts to be more effective.containment

This outbreak was unprecedented in scale, being larger than all other outbreaks combined.combined

The virus spread across multiple international boundaries.spread

The virus spread across multiple international boundaries.boundaries

Seven other countries had minor outbreaks with nonsustained transmission or isolated cases.isolated

This article aims to summarize the events by country in chronological order.events

Methods

Machine Learning Algorithms
The 5 machine learning methods used in this study were extreme
gradient boosting (XGBoost) tree, random forest, deep neural
networks, and C5.0 decision tree. Logistic regression was used
as the baseline model for the evaluation of the performance of
the 5 machine learning models. Both XGBoost and random
forest are ensemble learning techniques that can be used for
both classification and regression issues. Ensemble learning
can boost the predictive performance of a single learning
algorithm, which is merely better than random guesses. Random
forest uses bagging or bootstrap to combine base learners to
significantly improve the prediction of the model. XGBoost
uses gradient boosting to combine decision trees as base
learners. The C5.0 decision tree is a typical tree-based machine
learning algorithm. XGBoost, random forest, and C5.0 can be
used to learn any patterns underlying the training data without
implicit assumptions of the data profiles, such as distribution
normality, nonlinearity, multi-linearity, or higher order
interactions between the variables. The type of neural networks
used in this study is multilayer perceptron, which is a class of
feedforward artificial neural network. This technique has been
used to provide a nonlinear mapping between the input vector
and the output vector. Between the input and output layers, there
could be an arbitrary number of hidden layers, which perform
complex computations. The strength of multilayer perceptron
is to map nonlinear relations between input features and
outcomes. The major uses of multilayer perceptron are pattern
classification, recognition, prediction, and approximation. The
research work of this paper can be seen as a text classification
task. Random forest is suitable for analyzing data of high
dimensions, as the algorithm builds separate trees and uses
bootstrapping to combine these tree-based single learners trained
on random subsets of input features. Like random forest,
gradient boosting tree is a type of supervised learning algorithm
known for its high prediction accuracy.

Hyperparameters of Machine Learning Algorithms
In this study, hyperparameter tuning of XGBoost involved the
following steps. The maximum tree depth for base learners
(max_depth) controls the depth of the tree. The larger the depth,
the more complex is the model, and the higher are the chances
of model overfitting. There is no standard value for max_depth.

Larger data sets require deep trees to learn the rules from a
complex data set. The value ranges between 0 and infinite. In
the cross-validation process, we set max_depth to the default
value 8. The number of estimators or boosted trees was set to
the default value 20. The minimum sum of instance weight
needed in a child node (min_child_weight) is another effective
overfitting prevention method. It is calculated by second-order
partial derivatives and ranges between 0 and infinite. The larger
the value, the more conservative the algorithm is. This was set
to the default value of 1 in this study. The maximum delta step
(max_delta_step) specifies the maximum step size that a leaf
node can take. It ranges between 0 and infinite. Increasing the
positive value will make the update step more conservative.
The learning objective was set to binary logistic regression, as
the target variable has 2 outcome categories, that is, easy versus
difficult health education texts. Subsample refers to the
subsample ratio of the training instance. For example, setting
a subsample to 0.5 means that the algorithm randomly collects
half of the entire data set to build the tree model. The value of
the subsample was set to the default value 1. Eta refers to the
machine learning rate at which the algorithm learns the latent
patterns and structures in the training data set. Smaller eta leads
to slower computation and thus prevents overfitting. Smaller
etas can be compensated by increasing the number of boosted
trees or estimators; 0.6 was set as the value in this study. The
hyperparameter colsample_bytree controls the number of
features or variables supplied to a tree model. It was set to 1.
Lastly, alpha and lambda values, which control L1 and L2
regularization, respectively, were set to 1 and 0 to prevent
overfitting. Random forest is another powerful ensemble
learning technique that outperforms single learning algorithms
in machine learning model development. In random forest,
decision trees are used as the base learner and bootstrapping
aggregation combines these decision trees together to achieve
high prediction accuracy. The minimum number of samples
and training data required to be at a leaf node
(min_samples_leaf) was set to 1. The maximum depth was set
to 10. The number of features to use for splitting was set to auto.
In the model construction process, the ensemble learning
methods selected to increase the prediction accuracy included
bootstrapping, bagging, and extremely randomized trees. In the
process of hyperparameter optimization, on each iteration, the
algorithm will choose a different combination of the features.
The maximum number of iterations was set to 1000, and the
maximum evaluations were set to 300. The neural networks
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model used in this study is multilayer perceptron. Only one
hidden layer was configured, which contained 13 nodes as the
input features (Table 1). The overfitting prevention rate was set
to 30%.

Results

Predictive Performance Evaluation
The predictive performance of the 5 machine learning algorithms
is shown in Figure 1 and Table 4, and the results of the pairwise
corrected resampled two-tailed t test are shown in Table 5. The

mean scores and their standard deviations of area under the
receiver operating characteristic curve (AUC), sensitivity,
specificity, and accuracy were obtained through five-fold
cross-validation. The cross-validation divided the entire data
set into 5 folds of equal size. In each iteration, 5 folds were used
as the training data and the remaining fold as the testing data.
As a result, on completion of the five-fold cross-validation, each
fold was used as the testing data exactly once. We used the
pairwise corrected resampled t test to counteract the issue of
multiple comparisons. The significance level was adjusted to
.005 using Bonferroni correction.

Figure 1. Mean receiver operating characteristic curve for the 5 machine learning algorithms. C5: C5 decision tree; LR: logistic regression; MLP:
multilayer perceptron; ROC: receiver operating characteristic; RF: random forest; XGB: extreme gradient boosting.

Table 4. Performance of the 5 machine learning models on predicting language understandability of the health texts for international students in tertiary
education.

Accuracy, mean (SD)Specificity, mean (SD)Sensitivity, mean (SD)Area under the receiver operating
characteristic curve, mean (SD)

Algorithm

0.945 (0.01)0.944 (0.011)0.947 (0.011)0.979 (0.006)Extreme gradient boosting

0.904 (0.064)0.885 (0.094)0.924 (0.034)0.967 (0.033)Random forest

0.895 (0.008)0.893 (0.014)0.897 (0.006)0.946 (0.006)Multilayer perceptron

0.945 (0.014)0.941 (0.023)0.95 (0.009)0.981 (0.005)C5.0 decision tree

0.732 (0.004)0.627 (0.016)0.837 (0.009)0.804 (0.002)Logistic regression

The 5 machine learning models (ie, XGBoost, random forest,
multilayer perceptron, and C5.0 decision tree) achieved
significantly higher AUCs than the linear logistic regression
algorithm: XGBoost (P<.001), random forest (P<.001), C5.0

(P<.001), multilayer perceptron (P<.001) (Table 4). To be more
specific, C5.0 decision tree had a mean score of 0.981 in terms
of AUC, followed by XGBoost (0.979), random forest (0.967),
neural networks (0.946), and logistic regression (0.804).
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XGBoost and C5.0 had significantly higher AUC (Table 5) than
multilayer perceptron (XGBoost vs MLP, P<.001; MLP vs
C5.0, P=.001), whereas no significant differences were found
between the mean AUCs of XGBoost, random forest, and C5.0
decision tree (XGBoost vs RF, P=.44; XGBoost vs C5.0, P=.66;
RF vs C5.0, P=.34). Similarly, all 5 machine learning algorithms
had significantly higher mean sensitivity scores than the baseline
logistic regression (P=.005). C5.0 had the highest mean
sensitivity score (0.95) followed by XGBoost (0.947), random
forest (0.924), neural networks (0.897), and logistic regression
(0.837). XGBoost and C5.0 achieved significantly higher
sensitivity scores than multilayer perceptron (XGBoost vs MLP,
P<.001; MLP vs C5.0, P<.001), whereas no significant
differences were found between the mean sensitivity scores of
XGBoost, C5.0 decision tree, and random forest (XGBoost vs
C5.0, P=.40; RF vs C5.0, P=.15; XGBoost vs RF, P=.21). With
regards to specificity, that is, the ability of the models to
accurately identify health texts classified as easy health
education resources, the 5 machine learning models

outperformed logistic regression (XGBoost vs LR, P<.001; RF
vs LR, P=.003; MLP vs LR, P<.001; C5.0 vs LR, P<.001).
Again, the mean specificity score of multilayer perceptron was
significantly lower than that of XGBoost tree (XGBoost vs
MLP, P=.001), but not significantly lower than C5.0 (MLP vs
C5.0, P=.01) and random forest (RF vs MLP, P=.86) at the
adjusted .005 significance level using Bonferroni correction.
Lastly, in terms of overall accuracy, XGBoost and C5.0 achieved
the highest mean scores of 0.945, followed by random forest
(0.904) and neural networks (0.895). These scores were
significantly higher than the mean overall accuracy of logistic
regression (0.732) (XGBoost vs LR, P<.001; RF vs LR, P=.003;
MLP vs LR, P<.001; C5.0 vs LR, P<.001). Again, the
differences in the model accuracy were insignificant among
XGBoost, C5.0, and random forest (XGBoost vs C5.0, P>.99;
XGBoost vs RF, P=.21; RF vs C5.0, P=.17), but significant
between the 2 best performing models (XGBoost vs MLP,
P<.001; MLP vs C5.0, P=.002).

Table 5. Results of the pairwise comparison of the model predictive performance by two-tailed t test.

Accuracy differenceSpecificity differenceSensitivity differenceAUCa differenceComparisonPair number

P valueMean (SD)P valueMean (SD)P valueMean (SD)P valueMean (SD)

.210.041 (0.062).210.059 (0.089).210.023 (0.034).440.013 (0.034)XGBb vs RFcPair 1

<.001e0.050 (0.010).001e0.051 (0.013)<.001e0.049 (0.009)<.001e0.034 (0.007)XGB vs MLPdPair 2

>.990.000 (0.015).760.003 (0.022).40–0.003 (0.008).66–0.001 (0.006)XGB vs C5.0Pair 3

<.001e0.213 (0.012)<.001e0.317 (0.021)<.001e0.109 (0.006)<.001e0.175 (0.004)XGB vs LRfPair 4

.770.009 (0.066).86–0.008 (0.095).190.026 (0.037).270.021 (0.036)RF vs MLPPair 5

.17–0.041 (0.054).18–0.056 (0.076).15–0.026 (0.032).34–0.014 (0.029)RF vs C5.0Pair 6

.003e0.172 (0.062).003e0.258 (0.090).005e0.086 (0.034)<.001e0.163 (0.033)RF vs LRPair 7

.002e–0.050 (0.016).01–0.048 (0.023)<.001e–0.052 (0.011).001e–0.035 (0.008)MLP vs C5.0Pair 8

<.001e0.163 (0.008)<.001e0.266 (0.015)<.001e0.060 (0.007)<.001e0.142 (0.005)MLP vs LRPair 9

<.001e0.213 (0.014)<.001e0.314 (0.020)<.001e0.112 (0.010)<.001e0.177 (0.004)C5.0 vs LRPair 10

aAUC: area under the receiver operating characteristic curve.
bXGB: extreme gradient boosting.
cRF: random forest.
dMLP: multilayer perceptron.
eSignificant at the adjusted .005 significance level using Bonferroni correction.
fLR: logistic regression.

Variable Ranking
To have a deeper understanding of the 5 machine learning
algorithms, including the baseline logistic regression, we ranked
the impact of the 13 predictor variables on the mean AUCs of
the 5 algorithms. This was achieved through the successive

permutation of the values of the input linguistic features. To
ensure the stability and reliability of the experimental models,
five-fold cross-validation was repeated with each permutation
exercise. As a result, we obtained the mean decease (in
percentage) in the AUCs of the 5 machine learning algorithms
as shown in Table 6 and Figure 2.
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Table 6. Mean decrease in the area under the receiver operating characteristic curve of the 5 machine learning algorithms.

Logistic re-
gression (%)

C5.0 decision
tree (%)

Deep neural
networks (%)

Random forest (%)Extreme gradient
boosting (%)

Predictor
variable

Feature

1.471.750.352.170.62A1General and abstract terms

0.170.920.321.310.45X1Psychological actions, states, processes

2.071.651.422.911.09X2Mental actions and processes

0.130.790.491.940.19X7Wanting, planning, and

choosing

0.501.191.152.970.75B1Anatomy and physiology

1.231.391.193.160.99B2Health and disease

0.932.791.921.870.69B3Medicines and medical

treatment

0.001.890.620.471.12N1Numbers

0.330.550.094.140.39N2Mathematics

0.102.120.891.270.15N3Measurement

1.471.121.853.370.65Z5Grammatical bin

0.771.951.321.810.35Z6Negative

3.932.652.322.270.82Z7If

Figure 2. The impact of different linguistic features on the machine learning algorithms. AUC: area under the receiver operating characteristic curve;
C5: C5 decision tree; LR: logistic regression; NN: neural networks; RF: random forest; XGB: extreme gradient boosting. A1: general and abstract terms;
X1: psychological actions, states, and processes; X2: mental actions and processes; X7: wanting, planning, and choosing; B1: anatomy and physiology;
B2: health and disease; B3: medicines and medical treatment; N1: numbers; N2: mathematics; N3: measurement; Z5: grammatical bin; Z6: negative;
Z7: if.

JMIR Med Inform 2021 | vol. 9 | iss. 5 |e28413 | p.377https://medinform.jmir.org/2021/5/e28413
(page number not for citation purposes)

Ji et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


The results showed that for the best performing algorithm, that
is the XGBoost tree, linguistic features that had relatively larger
impact on the mean model AUC were N1 (numbers, 1.12%),
X2 (mental actions and processes, 1.09%), B2 (health and
disease, 0.99%), and Z7 (if, conditional, 0.82%). Textual
features that had relatively large impact on C5.0 decision tree
were B3 (medicines and medical treatment, 2.79%), Z7 (if,
conditional, 2.65%), N3 (measurements, 2.12%), Z6 (negative,
1.95%), N1 (numbers, 1.89%), A1 (general and abstract terms,
1.75%), X2 (mental actions and processes, 1.65%), B2 (health
and disease, 1.39%), B1 (anatomy and physiology, 1.19%), and
Z5 (grammatical bin, 1.12%). For random forest, most linguistic
variables had impact on the decrease of the mean AUC larger
than 1% and the only exception was N1 (numbers), which
reduced the AUC by 0.47%. For the baseline logistic regression,
5 linguistic features reduced the model AUC by more than 1.0%:
Z7 (if, conditional, 3.93%), X2 (mental actions/processes,
2.07%), A1 (general and abstract terms, 1.47%), Z5
(grammatical bin, 1.47%), and B2 (health and disease, 1.23%).

AUC Impact of Individual Textual Features
It is worth noting that the AUC impact of these linguistic
features on each of the 5 machine learning algorithms did not
correlate with their significance to discriminate between easy
and difficult health texts. For example, Table 2 shows that there
were no statistically significant differences between easy and
difficult health texts in their means of B1 (anatomy and
physiology, P=.12), N1 (numbers, P=.66), N2 (mathematics,
P=.52), and N3 (measurement, P=.38). As a result, these features
had limited impact on the mean AUC of logistic regression. By
contrast, B1 had large impact on the mean AUC of random
forest (2.97% AUC decrease), C5.0 (1.19% AUC decrease),
and neural networks (1.15% AUC decrease); N1 had large
impact on the AUC of XGBoost (1.12% AUC decrease) and
C5.0 (1.89% AUC decrease); N2 had large impact on random
forest (4.14% AUC decrease) and N3 had large impact on
random forest (1.27% AUC decrease) and C5.0 (2.12% AUC
decrease). It became clear that XGBoost was the most
parsimonious model that achieved the highest mean AUC with
less textual features as large predictor variables. The 4 linguistic

features with large impact on the AUC of XGBoost, N1, X2,
B2, Z7 suggest that 5 evaluation dimensions were critical to the
quantitative analysis of the understandability of health education
resources.

Impact of the 5 Evaluation Dimensions on the
Algorithm Performance (AUCs)
As shown in Table 7, for XGBoost, the evaluation dimension
that had the largest impact on the AUC of the algorithm was
information evidentness (2.35%), followed by information in
logical sequence (1.82%), numeracy skills (1.66%), and the
relevance of health information for educational purposes
(1.44%). Medical domain knowledge was ranked as the
dimension with the least AUC impact (0.99%). Similar patterns
were found with random forest. Health information evidentness
(8.33%) was ranked as the most impactful dimension, followed
by textual logical sequence (7.45%), numeracy skills (5.88%),
and the relevance of health information for educational purposes
(4.84%). Again, medical knowledge (3.16%) had the smallest
impact on the AUC of random forest. C5.0 decision tree differs
from XGBoost tree and random forest in that logical sequence
(5.72%) replaced information evidentness (5.11%) as the
dimension with the largest impact on the C5.0 tree model.
Neural networks identified logical sequence (5.49%), relevance
to health educational purposes (3.07%), and information
evidentness (3.07%) as the 3 evaluation dimensions with the
largest impact on the model performance, followed by numeracy
skills (1.6%) and domain knowledge (1.19%). Similar to the
first 4 machine learning algorithms, logistic regression also
identified logical sequence (6.17%) as the most impactful
dimension on the model performance, followed by information
evidentness (3.84%), educational relevance (1.43%), domain
knowledge (1.23%), and numeracy skills (0.43%). It is useful
to note that for all models, logical sequence, information
evidentness, and educational purpose relevance were identified
as the most important dimensions with the largest impact on
the model prediction accuracy, whereas medical domain
knowledge was ranked as the dimension with the least impact
on the algorithm performance.

Table 7. Impact of the different dimensions on the area under the curves of the algorithms.

Logistic re-
gression (%)

C5.0 decision
tree (%)

Deep neural
networks (%)

Random forest
(%)

Extreme gradient
boosting (%)

Predictor vari-
able

UnderstandabilityEvaluation di-
mensions

3.845.112.588.332.35A1, X1, X2, X7Information evidentnessDimension 1

1.433.983.074.841.44B1, B3Relevance to education
purpose

Dimension 2

1.231.391.193.160.99B2Domain knowledgeDimension 3

0.434.561.605.881.66N1, N2, N3Numeracy demandDimension 4

6.175.725.497.451.82Z5, Z6, Z7Logical sequenceDimension 5

Discussion

Principal Findings
The study of the readability of health educational resources has,
for long, relied on medical readability calculators among which
the Flesch Reading Ease Score [34], Gunning Fog [35],

Flesch-Kincaid Grade Level Readability [34], Coleman-Liau
Index [36], Simple Measure of Gobbledygook Index [37],
Automated Readability Index [38], and Lensear Write Formula
[39] are some of the most influential and widely used ones.
However, this medical formula–based approach to linguistic
readability evaluation, despite being convenient and fast, has
known limitations, including interformula inconsistency and
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reported lack of flexibility and adaptability with populations
with diverse language, cultural backgrounds, as well as cognitive
abilities. Furthermore, these evaluation tools were originally
designed for readers from native English-speaking backgrounds,
assuming the health educators who developed the health
resources and the target readers have similar knowledge and
understanding of the general English vocabulary, logical
organization of health materials, and communication of the
intentions and purposes of health educational materials. These
assumptions, which underlined the design of existing medical
readability formula, were increasingly challenged by
applications of these tools with diverse populations and
communities with limited exposure to the health care systems
of English-speaking countries [40-42]. The limitation of the
existing medical readability tools also reflects in their exclusive
focus on the morphological, syntactic complexity, using
low-frequency polysyllabic words, medical terminology, and
sentence lengths as the main textual complexity measures.

The more recent patient-oriented health resource evaluation
guidelines such as PEMAT has greatly enriched the dimensions
of readability evaluation, expanding the evaluation criteria from
medical domain knowledge (using familiar, everyday language)
to encompass dimensions such as health information relevance,
purposefulness to the target readers (information classified as
distractor or key information), numeracy demand, and the logical
sequence of health texts. Despite the wide adoption of these
more comprehensive and user-adaptive evaluation guidelines,
no quantitative tools have been developed to implement the
multidimensional evaluation in a cost-effective, instant manner.
This represents a critical research gap in current health material
evaluation, as there are growing demands from both clinical
and research settings for automated evaluation tools of the
understandability of written health materials. Advances in
computational methods such as machine learning algorithms
can help address the increasing gap between the practical needs
for more cost-effective, integrated quantitative tools that are
able to deal with health texts in large quantities and the known
limitations of medical readability formulas and expert-led
evaluation guidelines, which are slow and time-consuming to
implement and update.

Our study developed the first quantitative tool for the evaluation
of written health education materials based on the PEMAT
guidelines. We developed and compared 5 machine learning
algorithms by using logistic regression as the baseline model.
The results showed that all 5 models (XGBoost, C5.0, random
forest, multilayer perceptron) outperformed logistic regression
in terms of AUC, sensitivity, specificity, and overall accuracy.

We found that in the evaluation of health information
understandability, information evidentness, educational
relevance, and logical sequence were ranked consistently more
important than numeracy skills and medical domain knowledge.
This ranking of the importance of these evaluation dimensions
may be explained by the demographical profiles of the target
readership: international students in tertiary education with
adequate English skills (International English Language Testing
System mean score 6.5) and high health literacy (mean score
16.5 in the Short Assessment of Health Literacy-English test).
These results challenged the traditional view that lack of medical
knowledge and numeracy skills caused the lack of health
information understandability. Improving the writing style and
health information organization can significantly improve the
understandability of health information for non-English
speakers, especially for those of higher educational attainment
and health literacy levels and with distinct language and cultural
backgrounds.

Limitations and Future Research
The textual linguistic features used in the model development
were limited. In future research, we will increase the features
to be studied in the evaluation of health material
understandability, by adding, for example, syntactic and
morphological features of texts. The underlying evaluation
framework we used was PEMAT. There are, however, other
studies that explored health information accessibility from
cognitive and psychological experiments. These studies may
help expand the current scope of PEMAT, which is intended
for the evaluation of written health resources for readers with
average cognitive skills, rather than those with cognitive
impairments caused by physical or mental health issues. The
new quantitative tools have the potential to be further adapted
for different readerships as well as written health materials in
languages other than English.

Conclusions
An important contribution of this paper lies in its efforts to
bridge the gap between the 2 distinct approaches to health
information evaluation. This was achieved via the translation
of clinically developed patient health education materials
assessment guidelines to quantitative evaluation models, that
is, machine learning algorithms by using a limited number of
semantic features to accurately predict the readability (binary
outcome) of health educational resources for international
students in tertiary education with adequate English proficiency
and health literacy but distinct language and cultural
backgrounds.
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