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Abstract

Background: The harmonization and standardization of digital medical information for research purposes is a challenging and
ongoing collaborative effort. Current research data repositories typically require extensive efforts in harmonizing and transforming
original clinical data. The Fast Healthcare Interoperability Resources (FHIR) format was designed primarily to represent clinical
processes; therefore, it closely resembles the clinical data model and is more widely available across modern electronic health
records. However, no common standardized data format is directly suitable for statistical analyses, and data need to be preprocessed
before statistical analysis.

Objective: This study aimed to elucidate how FHIR data can be queried directly with a preprocessing service and be used for
statistical analyses.

Methods: We propose that the binary JavaScript Object Notation format of the PostgreSQL (PSQL) open source database is
suitable for not only storing FHIR data, but also extending it with preprocessing and filtering services, which directly transform
data stored in FHIR format into prepared data subsets for statistical analysis. We specified an interface for this preprocessor,
implemented and deployed it at University Hospital Erlangen-Nürnberg, generated 3 sample data sets, and analyzed the available
data.

Results: We imported real-world patient data from 2016 to 2018 into a standard PSQL database, generating a dataset of
approximately 35.5 million FHIR resources, including “Patient,” “Encounter,” “Condition” (diagnoses specified using International
Classification of Diseases codes), “Procedure,” and “Observation” (laboratory test results). We then integrated the developed
preprocessing service with the PSQL database and the locally installed web-based KETOS analysis platform. Advanced statistical
analyses were feasible using the developed framework using 3 clinically relevant scenarios (data-driven establishment of hemoglobin
reference intervals, assessment of anemia prevalence in patients with cancer, and investigation of the adverse effects of drugs).

Conclusions: This study shows how the standard open source database PSQL can be used to store FHIR data and be integrated
with a specifically developed preprocessing and analysis framework. This enables dataset generation with advanced medical
criteria and the integration of subsequent statistical analysis. The web-based preprocessing service can be deployed locally at the
hospital level, protecting patients’ privacy while being integrated with existing open source data analysis tools currently being
developed across Germany.

(JMIR Med Inform 2021;9(4):e25645) doi: 10.2196/25645
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Introduction

Background
With an increase in digitalization in the medical sciences, the
efforts to harmonize and standardize clinical data have increased.
In particular, transformation of data sets into a common format
has received increasing attention to render the data queryable
and allow for standardized model building. Two research data
repositories with appropriate analysis environments, which have
been used extensively and received increasing support, are the
OHDSI OMOP common data model [1], which has been
designed to facilitate observational research, and Informatics
for Integrating Biology and the Bedside (i2b2) [2], which
focuses on the integration of different types of data into one
clinical repository. Both OHDSI OMOP and i2b2 aim to
transform clinical data to a standardized format and vocabulary
and are appropriate for research and further analysis. However,
importing of data requires the complex implementation of
extract, transform, load (ETL) processes [3].

Conversely, the Fast Healthcare Interoperability Resource
(FHIR) standard was developed to address the limitations of
the previously developed HL7 versions 2 and 3 clinical care
document standards; therefore, it is focused on modeling the
actual clinical environment as closely as possible. Furthermore,
its lightweight nature and direct use of common data formats
(ie, JSON and XML) facilitate integration with lightweight
webservices. FHIR is now available in its first release with
normative resource specifications since version 4.0.0 in 2019
[4], suggesting further maturation of this standard. Large
companies including Google, Microsoft, and Apple have adopted
FHIR for their medical informatics–related products [5-7].
Moreover, many health system providers are now striving to
support or are already supporting the FHIR standard [8], thus
potentially facilitating the integration of new solutions into
clinical routine, as complex conversions into standards, such
as OMOP and i2b2, can be avoided when solutions are deployed
within hospitals.

The German Medical Informatics Initiative (MI-I) [9] has
recently funded 4 consortia across Germany to investigate how
heterogenous clinical data can be integrated into clinical data
repositories. One of the objectives of the MI-I is to establish
data integration centers (DICs) as the base for cross-hospital
and cross-consortia communication. These DICs would provide
different services including data integration, data harmonization,
standardized data repositories, consent management, and ID
management [10-13]. The MI-I has adopted FHIR as the
preferred format for inter-consortia communication [14]. All
34 hospitals that are currently part of the MI-I will have a FHIR
store available in one form or another and have committed to
making their hospital data available in the FHIR format.

The current state of the analysis of FHIR formatted data remains
unclear. One drawback of FHIR is that formats such as JSON
and XML are not necessarily suitable for further analysis if data

are stored in these formats and not processed further. The FHIR
standard itself contains an extensive specification for API search
operations [15], which, in turn, have their limitations [16].
Specifically, it is not directly possible to express queries with
interdata dependencies and necessary computations.
Furthermore, searching for resources on the basis of inclusion
and exclusion criteria is not possible if they are based on another
resource that is not referenced directly but rather indirectly via
another intermediary resource. To account for these limitations
and to support more complex statistical analysis, a query engine
is needed, which should be accessible to researchers without
the knowledge of SQL or database query generation and
optimization.

Over the years, different FHIR databases have been developed
to address the limitations of the FHIR search specification. The
blaze FHIR store not only implements the FHIR interface but
also introduces the possibility of using clinical quality language
to further improve the standard FHIR search and filter
possibilities [17]. This platform focuses on feasibility queries
and data exports. Another alternative to enhance the availability
of FHIR data in an easily accessible manner is to use the
PostgreSQL (PSQL) database [18] owing to its innate capability
to store, index, and query JSON as binary JSON (jsonb). The
fhirbase [19] FHIR database uses PSQL and implements a SQL
query interface, which allows a user to query FHIR resources
using the SQL syntax. Neither of these solutions currently offer
a user-friendly method for a researcher to filter and select data
for further statistical analysis, which does not require a strong
technical background.

Aim
This study aimed to investigate how a data preprocessing service
can be built directly on top of FHIR data stored in a standard
PSQL database to enable large data filter queries to generate
data sets for statistical analysis. To investigate the requirements
for filtering and subset generation, we identified different sample
medical data science scenarios. Based on the scenarios’
requirements, we defined a data preprocessor, which generates
data subsets on the basis of the inclusion and exclusion criteria
of other FHIR resources. This data preprocessor was developed
to satisfy the demand for investigating subsets of particular
FHIR observations and combine them with basic patient data.
In this study, which was approved by the institutional review
board of the University Hospital Erlangen-Nürnberg (reference#
254_19 Bc), we integrated the developed preprocessing service
with a real-world FHIR data set from our hospital, which—at
the time of writing—contained approximately 35.5 million
FHIR resources. Using this data set, we implemented three
different sample medical questions to investigate the capabilities
of the implemented web-based preprocessing service.
Furthermore, we integrated the service into the locally deployed
web-based analysis platform KETOS [20], which enables data
retrieval and analysis using Jupyter Notebooks [21] within the
hospital, thus respecting a patients’ privacy and allowing the
data custodians to have ownership of the data.
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Methods

Requirements for a Preprocessing Service
Analysis of large data sets using various statistical methods
requires the data to be standardized and harmonized.
Additionally, the data set needs to be transformed into a format
suitable for further analysis (ie, a “flat structure”). A common
approach to this end is to select a subset of data and then convert
the selected subset into a simple tabular format. To determine
which type of filters are commonly required, we referred to our
ongoing multicenter medical research study, wherein we
analyzed laboratory findings that are filtered in accordance with
the patients’ clinical criteria, including patients’ diagnoses,
clinical procedures, and the results of other laboratory analyses.
Specific time criteria (eg, time intervals) are defined for each
criterion. This analysis allowed us to identify the following
requirements: the ability to select a subset of resources and
exclude data from these resources on the basis of their
relationship with other resources as inclusion and exclusion
criteria. Further, these resources would have to be preprocessed
on premises and integrated with the existing DIC infrastructure,
so that the analysis could be performed within the hospital on
pseudonymized data to adhere to patient privacy and data
security regulations in Germany.

Integration With the Existing Infrastructure: the
German DIC
We propose that the web-based nature and the reliance on a
standard PSQL database with only one table ensures the easy
integration of this system into existing infrastructure. Figure 1
shows some components of the DIC infrastructure and some of
the analysis tools currently being developed in Germany. The
DIC, as currently deployed across 10 German University
Hospitals, includes ETL jobs to convert existing data into the
FHIR format; moreover, it has a FHIR gateway component,
which accepts FHIR resources and loads them into a FHIR
PSQL database. This PSQL database, which is the focus of this
study, is a standard PSQL database that contains a single table
with the following columns: id, fhir_id, type, and data. The data
column contains the respective FHIR resource in jsonb format,
allowing one to query each element of the JSON stored data
directly, while providing complete functionality of a PSQL
relational database, like JOINS, timestamp conversion, and
LIKE pattern searches. Therefore, a preprocessing service built
on this data structure could be run within any hospital as long
as the FHIR gateway and the FHIR PSQL database are installed.
The entire infrastructure is available in the form of Docker
containers and can be easily distributed to other sites. The
preprocessing service in this study is web-based and hence
integrates well with other web-based platforms for further
analysis, such as the KETOS platform for statistical analysis.

Figure 1. Integration with the infrastructure of the data integration center: data storage, preprocessing, and analysis environment. DIC: data integration
center, ETL: extract transform and load, FHIR: Fast Healthcare Interoperability Resources, PSQL: PostgreSQL.

The Data Set
The FHIR PSQL database, which we connected our
preprocessing service to, contains data on 170,389 patients and
323,779 encounters over 3 years from 2016 to 2018. Among
these patients, 88,473 were female, 81,914 were male, and 2
were of an unknown or unspecified gender.

The data sources included the hospital’s standardized billing
data, which each German hospital is legally required to provide,
and laboratory data from a local data warehouse. These data
had been harmonized, and laboratory data were mapped to the
LOINC vocabulary; diagnoses to International Classification
of Diseases, Tenth Revision codes; and procedures to OPS
codes. Further, the local DIC pseudonymized the data and
harmonized the laboratory units of measurement. The final data
set derived from the process included 31,697,035 FHIR

Observations, of which 31,686,060 were laboratory findings,
1,740,632 were International Classification of Diseases, Tenth
Revision–coded FHIR Conditions, 1,637,573 were FHIR
Procedures, 132 were FHIR Medications, and 10,348 were FHIR
MedicationSatements. After preprocessing this data set, the
final subsets were obtained.

Specification of the Filter Criteria
Through the aforementioned analysis, we established that the
preprocessing service should be able to filter all resources from
the initial result set (which we referred to as the “base
resources”), either on the basis of inclusion or exclusion filter
criteria or a combination of both, where a filter criterion is based
on another FHIR resource. The filter would then be applied
either if a filter criterion ever matched for a patient or if a
criterion matched for a patient within a particular time interval
of the resources from the base resource to be filtered. Further,
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as the time of a laboratory result can often not be directly
determined, it was important to determine this period on the
basis of the encounter of the filter criterion. If no encounter is
available, the laboratory result is filtered on the basis of the
criterion along with a time interval. The resulting logic for
resource matching based on the time from the base resource is
depicted in Figure 2. The figure shows three base resources: 1,
2, and 3. Resource 1 would not be filtered from the result set
because it lies outside the specified time interval. Resource 2
would be filtered because it lies within the specified time
interval from the filter criterion. Resource 3 would be filtered

if the filter criterion has an encounter because it lies within the
time interval of the encounter of the filter criterion. However,
it would not be filtered if the filter criterion does not have an
encounter.

In addition to the possibility of defining the time interval within
which a resource must be filtered, filter criteria should be
selected on the basis of their respective code (eg, LOINC code
718-7 for hemoglobin). Further, it should be possible to specify
a simple value restriction in accordance with standard
comparators.

Figure 2. Timeline for filter matching.

Data Availability
The source code of the project is available on GitHub [22].

Results

Overview of the Findings
We implemented and deployed the preprocessing service that
we implemented in this study at the University Hospital
Erlangen-Nürnberg. The whole pipeline could be easily
deployed on an existing server, as the web-based preprocessing
service was packaged as a Docker container [23].

To ensure secure functioning of the preprocessing service, we
deployed it on the same server and within the same Docker
network as the KETOS analysis environment. The preprocessing
service was then only made available within the Docker network
on the server and was not accessible outside the KETOS
platform. Finally, we applied the preprocessing service to patient
data from 2016 to 2018 stored in the local DIC FHIR database
(see The Data Set). We used the preprocessing service to
generate 3 sample data sets and analyses to demonstrate its
applicability to clinically relevant research questions. We then
analyzed the resulting prepared data sets with the KETOS
platform and a Jupyter Notebook (interactive cell-based code
development in a web browser).

Specification of the Preprocessing Service and Data
Input
Based on the data analysis and the specification of filter criteria,
we described an interface that receives the input parameters in

JSON format (Multimedia Appendix 1) and uses the input to
generate a PSQL filter query (Multimedia Appendix 2), which
is sent to the FHIR PSQL database where the query is executed.
This query yields a subset of resources. The preprocessor then
generates a feature set using this subset and combines the subset
with basic patient data to generate the final feature data set for
further statistical analysis, as specified in the feature_set part
of the input parameter JSON. The initial filtered resource set
and the final feature set are then stored in the preprocessors’
own local database ready to be downloaded for analysis. The
preprocessor itself was implemented as a webservice, using the
Python Flask-Restful library [24].

Example 1: Data-Driven Establishment of Reference
Intervals
In modern medicine, laboratory tests are an essential tool for
health assessment and substantially influence diagnostic and
treatment decisions. To support decision making among
clinicians, laboratory findings are accompanied by reference
intervals, which reflect the range of test results in a population
of healthy individuals. Conventionally, reference intervals have
been established among specifically recruited healthy individuals
(“direct approach”); however, this approach is associated with
substantial financial and logistical challenges. Therefore,
data-driven approaches (“indirect approaches”) have been
developed, which use data from laboratory information systems
and statistical analyses to estimate the proportion of samples
from healthy individuals in mixed data sets (ie, hospital data
sets containing a large fraction of abnormal test results). While
indirect approaches can tolerate a high proportion of abnormal
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findings, their accuracy is limited by the proportion of abnormal
samples.

Here, we demonstrate how reference intervals for a very
common laboratory test (hemoglobin) can be established using
the tools developed in this study and the open source kosmic
[25] algorithm, despite a very high proportion of abnormal
findings in the analyzed data set (ie, in-patient laboratory
findings from a tertiary care center). To reduce the number of
abnormal findings, we excluded all patients with cancer
diagnoses (defined by ICD codes starting with C) and those
who received transfusions (defined using OPS codes starting
with 8-80) at any time. Additionally, we excluded all findings
from patients with clearly abnormal hemoglobin values (ie,
<8.0 g/dL) at any time and those having undergone surgery
within 90 days (defined by OPS codes starting with 5-). We
then restricted the data set to a sample of interest (men aged
18-65 years), selected one random finding per patient and used
the resulting data set (n=13,721) as input for the kosmic
algorithm. This yielded a clinically useful reference interval
(13.2-17.2 g/dL), which highlights the potential of the developed
framework to handle complex medical data science scenarios.

Example 2: Anemia in Patients With Cancer
Assessment of differences in laboratory findings among different
patient cohorts enhances physicians’ understanding of the
pathophysiology of diseases and treatment effects. To assess
the feasibility of such analyses using the tools developed in this
study, we generated a data set to investigate anemia occurrence
(ie, hemoglobin levels below cut-off values defined by the
World Health Organization) among adult patients with and those
without cancer. We queried the minimum hemoglobin level
(defined using LOINC code 718-7) of patients with and those
without cancer (included or excluded using ICD codes starting
with C) and determined the number of adult patients below
anemia-defining thresholds (13 g/dL for men and 12 g/dL for
women). In total, this resulted in a data set with 686,472
hemoglobin test results from 9075 men and 9035 women with
cancer and 45,766 men and 53,777 women without cancer. We
observed a substantially larger proportion of men and women
with anemia among patients with cancer (n=6316, 69.6% and
n=5674, 62.8%, respectively) than among those without cancer
(n=16,247, 35.5% and n=22,586, 42.0%, respectively) (P<.001,
Fisher exact test). These findings indicate a high prevalence of
anemia, a condition associated with substantial morbidity and
mortality, in cancer (ie, the second most common cause of death
worldwide) and the suitability of the tools developed in this
study for such analyses.

Example 3: Adverse Effects of Drugs
Adverse effects of drugs are a major contributor to patient
morbidity and mortality among in-hospital patients and
outpatients, and a substantial proportion of drugs’adverse effects
influence laboratory findings. Here, we used the framework
developed in this study to generate a data set to investigate
changes in patients’ potassium levels during treatment with an
important anti-infective drug (liposomal amphotericin B, a
potent and essential antifungal agent that decreases potassium
levels in some patients). We selected potassium levels (defined
using LOINC code 2823-3) in patients who received liposomal

amphotericin B (defined using OPS codes starting with 6-002.q)
within 7 days (study group: 107 patients and 4568 potassium
test results) and potassium levels in patients who received
liposomal amphotericin B at any time but not within 7 days
(control group: 145 patients and 5581 potassium test results).
This example shows that this framework can be used to generate
a data set to investigate the adverse effects of drugs. Although
potassium levels did not significantly differ between both groups
in this data set (P=.12), they were lower in the study group (3.4
mM) than in the control group (3.5 mM), demonstrating the
ability of this framework to investigate the adverse effects of
drugs.

Discussion

Principal Findings
Direct retrieval of data stored using FHIR resources for further
statistical analysis is an important step to bridge the gap between
the acquisition of medical data and clinically relevant research.
To comply with patient privacy and data security regulations,
it is important to establish tools that can be directly deployed
within the hospital infrastructure, so that the data remain within
the institutions’ network and control. The preprocessor we
developed satisfies these concerns and relies on open source
tools that can be easily distributed across hospitals to improve
future research. Further, since this preprocessor relies on FHIR
resources, extra ETL jobs converting the FHIR clinical data
format—which is currently supported directly by vendors of
electronic health records into other data storage formats such
as OMOP and i2b2—are unnecessary. The largest challenge
for the FHIR standard is the ability to use the data for further
analysis. Nonetheless, even research-driven formats such as
OMOP and i2b2 often need further processing for detailed
statistical analysis. For example, for further data analysis using
DataSHIELD, a distributed privacy preserving data analysis
platform, further processing of OMOP and i2b2 data is necessary
[26]. This indicates that direct processing of FHIR resources
can reduce the overall complexity and help avoid extra
transformation steps.

This study shows that the use of PSQL to store FHIR data and
further build web-based preprocessors on this infrastructure is
a viable way to handle large amounts of clinical data without
having to rely on cloud-based or proprietary data storage
solutions. This not only retains a hospital’s ownership of its
data but also allows the hospital to avoid vendor lock-in.
Development of the preprocessor as a webservice implies that
integration into web-based tools can be easily achieved, and the
generation of a web-based JavaScript user interface, for
example, can be inherently supported. The tool developed in
this study does not require the FHIR data to be harmonized
across hospitals; however, cross-hospital data analysis is only
viable if data are harmonized. Direct integration into the DIC
infrastructure developed across Germany and the DIC ensuring
data harmonization, including LOINC mapping for laboratory
values and LOINC harmonization and unit harmonization
through conversion, would facilitate future multicenter studies.
Using 3 clinically meaningful scenarios and a real-world data
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set, we demonstrated the usefulness of the developed framework
.

This study integrated the preprocessing service with the KETOS
environment and directly interacted with the preprocessor from
within a Jupyter Notebook. We made the preprocessor available
only within the KETOS platform, allowing it to be password
protected by default. Deployment of this platform within a
hospital—after pseudonymizing the data and confining it to the
hospital for further analysis—ensures patient privacy.
Specifically, this framework facilitates retrospective analyses
of large data sets, where consent for the data to leave the hospital
confines cannot be reasonably obtained. Duplication of this
framework across institutions allows data custodians and
researchers within each institute to perform analyses and then
collaborate with researchers from other institutions. The
prerequisite for this is that only aggregated data leave the
confines of each institution for the final analysis. In a potential
workflow, researchers can establish the preprocessing
specifications and analysis scripts with a Jupyter Notebook at
their institution and share them with collaborators. This allows
them to not only check and execute the scripts at their institution
but also modify the scripts per their data requirements, if
necessary. Aggregated results or generated models can then be
shared across the collaborating institutions. Throughout the
process, the FHIR format and identical preprocessing ensures
that the scripts and specifications are applicable across the
institutions.

It is important to note that the preprocessor only generates SQL
queries and does not have large hardware requirements because
search and filtering are carried out by the well-established open
source PSQL database. A more detailed performance test of the
implementation is beyond the scope of this study because
performance largely depends on database optimization and
indexing, and the number of resources identified for the base
filter criteria. However, even the longest requests to generate
our sample datasets took minutes rather than hours, despite only
creating basic indices for resource types and IDs.

Lessons Learned
The development of a preprocessor based on FHIR data stored
in PSQL jsonb databases for statistical analysis is a viable
alternative, facilitating more advanced data processing when
compared to the FHIR Search specified as part of the FHIR
standard. The FHIR format itself is suitable for querying because
JSON queries can be used to specify preprocessing input
parameters. The performance of the PSQL database is limited
insofar as handling of large data is strongly influenced by how
well the PSQL database is administered. For the database we
used in this study, we defined some simple indices on the basis
of the fhir_id and the resource type to improve the query
performance. Here, we first attempted to implement the
preprocessor directly on a FHIR server; however, we found that
the HAPI FHIR server did not perform well with large bulk
loads, which led to the DIC switching from the HAPI FHIR
server to the PSQL database. Therefore, large amounts of data
were never directly available in a FHIR server. More complex
queries, including pattern searches and combining of data for
filtering across resources, were not directly supported by the

HAPI server. The initial implementation of the preprocessor
based on the HAPI server first downloaded the necessary
resources to be processed within the preprocessor; however,
this was less efficient than direct processing of the data on the
database side. The current implementation focuses on feature
selection, wherein one particular feature is selected, and
inclusion and exclusion criteria are based on the sought-after
feature in relation to other data. A cohort selection process could
be implemented by selecting the distinct patient IDs in the result
set. A future version of this platform should investigate how
these concerns could be separated. A feature selection module
can then be built on top of a cohort selection module in a 2-step
process.

Generalizability and Use in Other Studies
Reliance on the FHIR format and, more specifically, on fields
within the FHIR resources, which are usually set, implies that
the proposed method is applicable in various scenarios without
requiring further ETL jobs. The preprocessor could process any
combination of Observations, Procedures, and Conditions
identified by their code within the respective vocabulary. The
implementation is currently restricted to the filtering of
individual base resources, implying that the generation of data
sets where multiple resources are associated with one another
based on groups is currently not supported. One could envision
an extension, which combines the results of multiple queries
into one data set in the future, allowing for more complex
analysis. The current version will support the extraction and
investigation of any single feature in relation to others. In this
study, we demonstrate the investigation of, for example,
hemoglobin levels. Any other laboratory value, condition, or
procedure would be supported by the current platform. In
particular, the method proposed here allows one to filter each
occurrence of a feature individually, implying that one query
can filter individual occurrences of a feature over time. This
facilitates queries, such as the search for hemoglobin value
observations around which no blood transfusions have occurred.

Limitations
The preprocessor specified and implemented in this study was
developed on the basis of one projects’ requirement on data
handling. Although this study demonstrates its applicability in
various scenarios, it does not satisfy more advanced query
mechanisms including those developed by , for example, the
OMOP OHDSI group. For instance, this framework lacks deeper
temporal logic [27], such as temporal filters (eg, the first
observation after a certain event). Furthermore, it is important
to note that the preprocessor cannot be directly used to define
patient cohorts and feasibility queries because it focuses on
extracting one feature in relation to others over time. While this
restricts the use of the tool, it allows for more specific
identification of individual feature occurrences in relation to
others. The preprocessor implemented here cannot provide the
extent of out-of-the-box analysis which the OMOP and i2b2
tool suites provide; however, it clearly demonstrates the
feasibility of building preprocessing tools for FHIR-formatted
data. Overall, the data selection and extraction processes
specified here have to be used in combination with analysis
tools such as DataSHIELD or Jupyter Notebooks, allowing
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researchers to apply use-case–specific analysis tools to the
extracted data or, in the case of DataSHIELD, use the data sets
for cross-hospital analysis.

Further, this preprocessing service is dependent on JSON input,
and it lacks a user interface. Finally, building on top of a PSQL
database restricts the preprocessor to the PSQL database, which
implies that some of the interoperability that the FHIR standard
aims at is lost in the process, and the current solution cannot
replace an FHIR server. However, as the data has to be
transformed for analysis regardless, it still provides a viable
alternative for FHIR data storage for further analysis.

Future Directions
This study shows that PSQL jsonb lends itself well to being
extended with preprocessing services for data modeling. Further
studies are required to investigate how to create a preprocessing
tool for the FHIR format, which has similar capabilities to those
of the OHDSI OMOP ATLAS or the i2b2 querying tools. In
this pursuit, studies should evaluate whether the existing tools
already implement all necessary logic for developing and
analyzing statistical models. The preprocessor developed here
currently lacks a user interface, which is an important
requirement for any preprocessor to make it more accessible to
a wider audience with different technical backgrounds. We
recommend the development of a user interface as an important
subsequent step while simultaneously improving this
preprocessor. Furthermore, studies should investigate how well
different FHIR databases lend themselves to advanced

processing of data needed to generate a data set for statistical
analysis. For practical reasons (ie, the data being available in
our consortium in a simple PSQL database containing one table),
we built the preprocessor on top of this PSQL schema.
Depending on the outcome of the analysis of the available FHIR
stores, a cohort and feature selection mechanism could be
developed on the fhirbase project or other solutions, including
the clinical quality language capable blaze FHIR store or an
extended FHIR search specification and implementation.
Criteria-based resource selection is only a small part of a larger
analysis framework, similar to OHDSI OMOP and i2b2, which
is currently missing for the FHIR standard and should be
developed in the future. However, even for larger data sets,
direct preprocessing on FHIR resources is a feasible alternative
and should be further investigated.

Conclusion
The preprocessor developed in this study demonstrates how
standard open source tools including PSQL can be used to store
FHIR data in a format that can be used to generate further
filtering, cohort, and feature selection mechanisms. We further
deployed the tool at the University Hospital Erlangen-Nürnberg
and applied the preprocessor to a large pool of data, generated
3 sample data sets, and executed analyses on top of the generated
data sets to demonstrate the applicability of this preprocessor
in research. These queries included multiple FHIR resources,
such as Observation, Condition, Procedure, Patient, and
Encounter, demonstrating the capability of our implementation.
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