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Abstract

Background: Accurate and timely diagnosis and effective prognosis of the disease is important to provide the best possible
care for patients with COVID-19 and reduce the burden on the health care system. Machine learning methods can play a vital
role in the diagnosis of COVID-19 by processing chest x-ray images.

Objective: The aim of this study is to summarize information on the use of intelligent models for the diagnosis and prognosis
of COVID-19 to help with early and timely diagnosis, minimize prolonged diagnosis, and improve overall health care.

Methods: A systematic search of databases, including PubMed, Web of Science, IEEE, ProQuest, Scopus, bioRxiv, and medRxiv,
was performed for COVID-19–related studies published up to May 24, 2020. This study was performed in accordance with the
PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. All original research articles
describing the application of image processing for the prediction and diagnosis of COVID-19 were considered in the analysis.
Two reviewers independently assessed the published papers to determine eligibility for inclusion in the analysis. Risk of bias was
evaluated using the Prediction Model Risk of Bias Assessment Tool.

Results: Of the 629 articles retrieved, 44 articles were included. We identified 4 prognosis models for calculating prediction of
disease severity and estimation of confinement time for individual patients, and 40 diagnostic models for detecting COVID-19
from normal or other pneumonias. Most included studies used deep learning methods based on convolutional neural networks,
which have been widely used as a classification algorithm. The most frequently reported predictors of prognosis in patients with
COVID-19 included age, computed tomography data, gender, comorbidities, symptoms, and laboratory findings. Deep convolutional
neural networks obtained better results compared with non–neural network–based methods. Moreover, all of the models were
found to be at high risk of bias due to the lack of information about the study population, intended groups, and inappropriate
reporting.

Conclusions: Machine learning models used for the diagnosis and prognosis of COVID-19 showed excellent discriminative
performance. However, these models were at high risk of bias, because of various reasons such as inadequate information about
study participants, randomization process, and the lack of external validation, which may have resulted in the optimistic reporting
of these models. Hence, our findings do not recommend any of the current models to be used in practice for the diagnosis and
prognosis of COVID-19.

(JMIR Med Inform 2021;9(4):e25181) doi: 10.2196/25181
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Introduction

Since the COVID-19 outbreak was first reported in December
2019 in Wuhan, China, the number of people infected worldwide
has exceeded 33 million (as of September 28, 2020) [1]. The
World Health Organization declared COVID-19 as a global
health emergency that requires international cooperation [2,3].
Despite many efforts to control the spread of the disease, many
countries are facing a crisis of intensive care [4,5]. In order to
reduce the burden on the health care system and provide the
best possible care for patients, accurate and timely diagnosis
and effective prognosis of COVID-19 is important and
necessary. Moreover, early diagnosis of the disease helps health
care providers prevent delays in providing the best possible
treatment.

The diagnostic method currently used for COVID-19 is a
positive result of a nucleic acid test such as real-time reverse
transcription–polymerase chain reaction (RT-PCR) or
next-generation sequencing [6]. Despite the advantages of this
method, the number of false-negative test results due to unstable
specimen processing is relatively high in clinical practice, which
makes COVID-19 diagnosis difficult [7,8]. Moreover, laboratory
testing for COVID-19 requires a rigorous platform, which is
not assembled in all hospitals. Thus, COVID-19 testing may
involve transfer of clinical specimens, which may delay
diagnosis for days. Computed tomography (CT) plays a
fundamental role in the diagnosis of disease progression, because
of its excellent diagnostic accuracy and clinical outcomes [9].
For instance, lung CT images can be used to detect characteristic
abnormalities associated with COVID-19 [10,11]. Characteristic
imaging manifestations of COVID-19, such as ground-glass
opacities, bilateral involvement, and peripheral distribution,
have been described in various studies [12,13]. Consolidation,
cavitation, and interlobular septal thickening imaging features
have also been reported in some patients with COVID-19
[14,15].

Machine learning techniques have achieved considerable success
in the field of medical imaging and image analysis owing to the
use of deep learning technologies that allow for improved feature
extraction [16,17]. Machine learning is a popular method of
data analytics that uses different learning algorithms to teach
computers to learn from data for performing related tasks. It is
principally based on the learning methods and can be divided
into three groups, namely, supervised (classification, regression,
and ensembling), unsupervised (association, clustering, and
dimensionality reduction), and reinforcement learning, with
each category consisting of various methods for specific aims,
such as instance-based algorithm, regression analysis,
regularization, and classifiers for particular aims. Numerous
studies have suggested the use of machine learning techniques
in the diagnosis of diseases. For example, some studies have
used deep learning techniques to diagnose and differentiate
between bacterial and viral pneumonia using pediatric chest

radiographic images [18,19]. Considerable effort has also been
invested in diagnosing various chest CT imaging features that
are characteristic of different diseases [20,21]. Various models
ranging from rule-based systems to advanced machine learning
models (deep learning) have been published in the context of
the diagnosis and prognosis of COVID-19, which have
substantially contributed to the field of health care by aiding
the diagnosis and treatment of this disease and helped saved
lives [22].

The objective of this systematic review was to identify
publications in the existing literature that have used image
processing methods based on CT images for the diagnosis and
prognosis of COVID-19. We believe that this review would aid
clinical practice by informing future research and development
about improved diagnostic and treatment techniques for patients
with COVID-19.

Methods

Information Source and Search Strategy
We conducted a systematic search of the databases, including
PubMed, Web of Science, IEEE, ProQuest, Scopus, bioRxiv,
and medRxiv, for articles published up to May 24, 2020. The
study was performed according to the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-analyses)
guidelines [23]. We used two groups of keywords for searching
these databases—keywords related to the novel coronavirus and
those related to machine learning and image processing.

Inclusion and Exclusion Criteria
All studies that applied image processing techniques for the
prediction and diagnosis of COVID-19 were considered. We
included original research articles regardless of the language of
publication. We excluded editorials, commentaries, letters,
books, presentations, conference papers, and papers without
full text or those with insufficient information. To prevent
duplication in data collection, we also excluded all types of
review articles.

Study Selection
The selection process was initiated by removing duplicated
articles. Thereafter, two reviewers worked independently to
screen the titles and abstracts of the selected articles against the
eligibility criteria. We further excluded articles that did not
apply image processing for the prediction and diagnosis of
COVID-19. The detailed process regarding the selection of
articles is presented in Figure 1. After the initial screening, the
same authors independently reviewed the full text of the relevant
articles. Any disagreements were resolved through mutual
discussion. During the screening of the articles, the reviewers
documented the reasons for the exclusion of each article. We
used a free web and mobile application platform (Rayyan, Qatar
Computing Research Institute) for the screening of articles [24].
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Figure 1. Study identification and selection process.

Data Extraction and Synthesis
A standard data extraction form based on the Critical Appraisal
and Data Extraction for Systematic Reviews of Prediction
Modeling Studies (CHARMS) checklist was used by five
reviewers [25]. A data extraction form was used to extract
specific details about each article. This form consisted of
information on imaging modality, database, scope, setting, data
source and outcome, sample size (including training, validation,
and testing), machine learning technique, performance,
validation type, risk of bias (Multimedia Appendix 1). We
investigated several forms of validation, for example, external
(ie, evaluation in an independent database) and internal
validation (ie, bootstrap validation, cross validation, random
training test splits, and temporal splits).

Risk of Bias Assessment
The risk of bias was assessed using the Prediction Model Risk
of Bias Assessment Tool (PROBAST) [26].

Results

Overview
We retrieved 623 relevant studies through database searches.
Six studies were identified from the reference lists of the
selected publications. After title and abstract screening, 82
articles were selected for full-text assessment, which led to the
exclusion of 38 articles due to various reasons.

In total, 44 studies were included in this systematic review
(Figure 1). All included studies documented that patients’ CT
and chest x-ray (CXR) images were processed for segmentation
and classification tasks to enable the diagnosis and prognosis
of COVID-19. These studies described a total of 89 deep
learning and machine learning models applied for COVID-19
screening of CT and CXR images (Table 1).
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Table 1. Deep learning architecture and parameters.

Batch sizeLearning rateOptimizerNetwork architectureStudy

———aU-Net[27]

641e-4SGDbEfficient Net B4+2 FC [29][28]

———ResNet-50-2D [31][30]

———CPMc-Nets [33][32]

321e-5—U-Net (segmentation)[34]

321e-5—ResNet 152 (classification)[34]

———U-Net[35]

640.01SGDAlexNet, GoogLeNet, and ResNet-18 + GANd[36]

—0.01SGDAlexNet, VGG-16, VGG-19, SqueezeNet, GoogLeNet, MobileNet-
V2, ResNet-18, ResNet-50, ResNet-101, and Xception

[37]

32Optimize beside L2
regularization and
momentum

Adam50×5 layers + 8FCe + 1 global average pooling + softmax

5 layers = (2 Conv + 3MP)

[38]

150.001AdamVGG-19[39]

321e-5AdamDenseNet-201 + Inception_resnet_V2 + Inception_V3 + Mo-
bilenet_V2 + ResNet-50 + VGG16 + VGG19 +

[40]

40.01SGD2D (U-net + DRUNET + FCNf + SegNet + DeepLabv3)[41]

80.001Adam3D (ResNet-18)[41]

41e-5RmspropCNNg network base on the modification of ResNet-50 architecture[42]

———DenseNet like structure [44][43]

—0.001AdamModel A, 22 layers[45]

—0.001AdamModel B, 28 layers[45]

—0.001AdamModel C, 29 layers[45]

———TB detection DLh model[46]

641e-5SGDMobileNetV2, SqueezeNet[47]

—3e-3AdamDarknet-19[48]

———2D (ResNet-50)[49]

———3D (U-Net)[49]

160.001AdamResNet-18[50]

———MobileNetV2[51]

32—SGDDenseNet[52]

160.001AdamGAN + VGG16[53]

—1e-4AdamU-Net[54]

21e-4AdamFC-DenseNet-103[55]

161e-5AdamResNet-18[55]

321e-5AdamDeCoVNet[56]

—1e-4Momentum3D-ResNet (prediction)[57]

—1e-4Momentum3D-UNet (segmentation)[57]

641e-4AdamConvNet [59][58]

161e-4AdamINF-Net[60]

161e-10SGDFCN8s[60]

———UNet++ [62][61]
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Batch sizeLearning rateOptimizerNetwork architectureStudy

—1e-4AdamFCN-8s, U-Net, V-Net, and 3D U-Net++[63]

———VB-Net[64]

———VB-Net[65]

———M-Inception (6Conv + 3MP + inception + softmax + 2FC)[66]

———VNET_IR_RPN [68][67]

———DRE-NET (ResNet-50 as the backbone)[69]

11e-5AdamU-Net as segmentation[70]

11e-5AdamDeconvNet as prediction[70]

———MLPi + LSTMj (single layer) + FC + softmax[71]

———U-Net[72]

aNot available.
bSGD: stochastic gradient descent.
cCPM: cross partial multiview networks.
dGAN: generative adversarial network.
eFC: fully connected layer.
fFCN: fully convolutional network.
gCNN: convolutional neural network.
hDL: deep learning.
iMLP: multilayer perceptron.
jLSTM: long short-term memory.

Dataset
Distribution of the 44 collected datasets showed that 12 (27%)
studies used data on patients with COVID-19 from China; 3
(7%) studies used data on patients from China and USA
[27,28,30]; 1 (2%) study used data on patients from China and
Japan [32]; 1 (2%) study used data from China, USA, and
Switzerland [34]; and 1 (2%) study used data from Italy [73],
the Netherlands [35], and Canada [36]. Moreover, 11 (25%)
studies were based on international data. Finally, the datasets
used in 25 (56%) studies are publicly available, whereas those
used in the rest of the studies (19/44, 43%) are nonpublic. The
duration of follow-up was unclear for most studies. Only 2 (4%)
studies reported follow-up time; the first one reported a
follow-up of more than 5 days [28] and the other reported a
follow-up of 3-6 days [37].

We categorized the reviewed studies (N=44) into three broad
categories: (1) the CT scan category comprised 28 (63%) studies
in which the models used chest CT images for abnormality
analysis and COVID-19 diagnosis; (2) the x-ray category
consisted of 14 (32%) studies in which the models use patients’
CXR images; and (3) the hybrid category consisted of 3 (7%)
studies in which the models use a combination of CT, CXR,
lung ultrasound, and other information such as the patient’s age
and medical history.

Machine Learning Methods
Several machine learning techniques have been used for
COVID-19 detection, prediction, and diagnosis. For the
classification algorithms, the dataset is divided into training and
test datasets. The model was developed using the training
dataset, following which the validation of the training model

was accomplished using the test dataset. For the segmentation
algorithm, most studies used deep learning methods based on
convolutional neural networks (CNNs) that have been used
widely as a classification algorithm. In all, 40 studies used
diagnostic models, whereas 4 studies used prognostic models
for patients who had received a COVID-19 diagnosis
[41,43,71,72]. Table 1 illustrates the deep learning architectures
and hyperparameters used in the included studies using deep
learning methods. In this table, the three most important
parameters such as optimizer method, learning rate, and
mini-batch size were considered. In the case of the optimizing
algorithm Adam and RMSProp, all reported learning rates are
initial values except in one study [29] that used a constant
learning rate value.

Diagnostic Models to Detect COVID-19 in Patients
With Suspected Infection
For better categorization among the various machine learning
methods used in the studies analyzed, we classified the models
into two groups: CNN-based models (n=31) and other machine
learning algorithms (n=8). Among these, 31 studies used 61
CNN-based algorithms, which were further subdivided as
follows: U-Net (n=10), ResNet (n=11), SqueezeNet (n=3),
MobileNet (n=4), multiple types of VGG networks (n=4),
GoogLeNet (n=2), and others (n=4). A total of 8 studies used
26 other machine learning methods, of which support vector
machine (SVM) was the most commonly used algorithm as a
classifier (n=5) [32,73-76], followed by random forest (n=1)
[65,76], logistic regression (n=1) [34], and other machine
learning algorithms (n=3). In addition, 1 study [77] used a
multi-objective, differential, evolution-based algorithm to
automatically build CNN. In addition, 4 models were developed
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and externally validated in the same study (in an independent
dataset, excluding random training test splits and temporal splits)
[28,30,46,55].

Prognostic Models for Patients With a COVID-19
Diagnosis
We identified 4 prognostic models for patients who had received
a COVID-19 diagnosis. One of these models used a CNN-based
model to estimate mortality risk in patients with suspected or
confirmed COVID-19 and externally validate using another
dataset [43]. Two models aimed to predict disease progression
to a severe or critical state, and one of these two models used
five CNN-based algorithms [41]. The fourth prognostic model
used an LSTM network and compared it with other traditional
methods such as principal component analysis, linear
discriminant analysis, SVM, and multilayer perceptron [71].
Furthermore, 1 study [72] aimed to develop a random forest

algorithm and a logistic regression model to predict the length
of hospital stay (greater than 10 days) and estimated C indices
of 0.92 and 0.96, respectively. The other studies did not report
the C index. Figure 2 shows the bar graph for all methods used
in the included studies.

In our analysis, we found that almost all studies had problems
with the lack of sufficient data. To address this problem, some
studies used data augmentation to synthesize new data, some
others attempted to use a combination of different datasets or
different kinds of data in their study, and other studies tried to
take advantages of non–neural network–based methods such as
k-nearest neighbor, SVM, and feature extraction methods. In
general, studies that used deep CNNs produced better results
than those using non–neural network–based methods. Moreover,
18 studies used K-fold cross-validation, whereas 19 of them
used random training test split as a validation method.

Figure 2. Number of deep learning and other machine learning methods used in the reviewed studies. CNN: convolutional neural network.

Risk of Bias
According to the PROBAST assessment tool [26], all included
studies were at a high risk of bias, which suggests that their
predictive performance when used in practice is probably lower
than that reported. Most of the studies were at high risk in the
participant domain due to the lack of information about patients
and intervention groups. Moreover, almost all studies obtained
a high index in the analysis domain, which shows that most of
the deep learning models did not have interpretability and that
the results were probably lower than those obtained using real
datasets.

As shown in Table 2, 15 of the 44 (34%) studies had a high risk
of bias for the participant domain, which indicates that these
articles did not contain adequate information about the enrolled

study participants and intervention groups. In addition, any
imbalances in the datasets could cause problems in the
randomization process (eg, imbalances between the number of
images of normal cases and COVID-19 or other pneumonia
cases), leading the study to a risk of bias. Unclear reporting on
the inclusion of participants prohibited a risk of bias assessment
in 15 (34%) studies. On the other hand, 19 (43%) studies had
a high risk of bias due to the predictor domain; this may be
attributed to the high false-negative ratio of COVID-19
diagnostic tests (eg, RT-PCR) due to which CT and x-ray images
may be wrongly classified as COVID-19, thus leading to
inaccurate learning of the models and missing outcome data to
predicting processes. In addition, an unclear index was reported
in 13 (30%) articles, implying that these articles did not provide
specific information about the missing outcome data.
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Table 2. Risk of bias assessment (using Prediction Model Risk of Bias Assessment Tool) based on four domains conducted for all studies included in
the review.

Overall risk of
bias

DomainStudy

AnalysisOutcomePredictorsParticipants

HighUnclearHighLowUnclear[27]

HighHighHighHighHigh[28]

HighHighHighUnclearUnclear[30]

HighHighHighHighUnclear[32]

HighHighUnclearUnclearHigh[34]

HighHighUnclearUnclearUnclear[73]

HighHighHighHighHigh[35]

HighUnclearLowHighHigh[36]

UnclearUnclearUnclearLowLow[37]

HighHighLowHighUnclear[38]

UnclearHighUnclearUnclearHigh[39]

HighHighLowLowUnclear[40]

HighHighLowLowLow[41]

HighUnclearLowHighSome concern[42]

HighHighHighHighHigh[76]

HighUnclearHighLowUnclear[43]

HighHighLowHighHigh[45]

HighHighHighHighHigh[46]

HighHighUnclearHighUnclear[75]

UnclearUnclearUnclearLowUnclear[74]

HighUnclearHighLowUnclear[47]

HighHighUnclearLowUnclear[48]

HighHighLowUnclearLow[49]

HighHighHighHighUnclear[77]

HighHighHighHighLow[50]

HighHighHighHighUnclear[51]

HighHighHighHighHigh[52]

HighHighLowHighHigh[53]

HighHighHighHighHigh[54]

HighHighLowHighHigh[55]

HighHighUnclearLowLow[56]

HighHighHighLowUnclear[57]

HighHighHighHighHigh[58]

HighHighHighHighHigh[60]

HighHighLowUnclearHigh[61]

HighHighHighUnclearHigh[63]

HighHighHighUnclearUnclear[64]

HighHighLowUnclearHigh[65]

HighHighLowUnclearHigh[66]
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Overall risk of
bias

DomainStudy

AnalysisOutcomePredictorsParticipants

HighHighHighUnclearHigh[67]

HighHighLowUnclearUnclear[69]

HighHighHighUnclearUnclear[70]

HighHighUnclearUnclearLow[71]

HighLowLowUnclearUnclear[72]

Published research articles often do not provide clear
information about the preprocessing steps, such as cropping of
images. Furthermore, due to the complexity of the machine
learning algorithms used to process images into predictors, it
is challenging to fully apply the PROBAST predictors. Most
models were at high risk of bias in the outcome domain because
most of the studies used inappropriate measurement, or there
was no reason that the measurement or ascertainment of the
outcome differed among intervention groups. Finally, none of
the models were identified to be at low risk of bias in the
analysis domain. Although many datasets have been made
available to researchers in recent months to diagnose COVID-
19, there remains a lack of training data, which increases the
risk of overfitting. Five models were developed and externally
validated in the same study (in an independent dataset, excluding
random training test splits and temporal splits).

Metrics
For a more comprehensive review, we classified machine
learning–based COVID-19 diagnostic techniques into three
major categories based on the imaging modality used in the
study. In the following sections, we discuss each category in
detail.

CT Scan Category
all machine learning methods that were classified in the CT
category used CT scan images in their analyses. Since CT scan
data have a 3D nature, two approaches were generally followed.
The first is a slice-based approach in which each slice of a CT
scan image is analyzed independently; then, at the stage of
decision-making, voting is used to decide whether the CT scan
image belongs to COVID-19–positive class or
COVID-19–negative class. In the second approach, all slices
of a CT scan were used as a 3D-like set and used in a 3D CNN
[45,57]. The investigations showed that methods utilizing a
slice-based approach have a better performance in terms of
COVID-19 diagnosis.

For example, Pu et al [45] proposed three 3D CNN models to
classify pneumonia and COVID-19 cases by using CT scans.
They analyzed 498 CT scans of patients with COVID-19 and
497 CT scans of patients with pneumonia in their experiments.
Thus, 256 slices of each CT scan were used as input to the
models. Although the results showed that the model with a
higher number of layers had the best performance with an area
under the curve (AUC) of 0.7, their model could not distinguish
between pneumonia and COVID-19 well enough.

Among the methods utilizing a slice-based approach, the
proposed method by Ardakani

et al [37] reported the best performance with an accuracy of
0.99 and a sensitivity of 1.0. They trained 10 different
well-known CNNs by using 1020 slices of 108 CT scans to
distinguish COVID-19 from other pneumonias and normal
cases. ResNet-101 demonstrated the best sensitivity and was
reported as an efficient model for COVID-19 diagnosis by using
CT images. Although ResNet-101 had the best sensitivity, it
had the weakest results in terms of specificity as compared to
Xception and ResNet-50 models, which implies that ResNet-101
might be involved in overfitting.

Some other studies [28,41,56] also reported an accuracy higher
than 0.96. The common factor in these approaches was the high
level of augmentation used. For instance, Zhang et al [41] used
4695 CT slices that was increased to more than 600,000 slices
by using augmentation techniques. Owing to the significance
of the number of available images in the training of deep CNN
models, some studies attempted to use non–CNN-based methods
such as feature extraction, thresholding, and
transformation-based methods.

As an example, Fang et al [74] used a radiometric feature
extraction technique for all slices of available CT scans
(including CT scans of 46 COVID-19–positive and 26 other
pneumonia cases); the extracted features were used to train an
SVM classifier for further classification. In the test phase, their
method achieved an AUC of 0.76. Because other measurements
such as accuracy and sensitivity were not reported [74], high
risk of bias is very probable.

Due to the difference in color and texture of healthy and infected
regions in the lung images, some researchers tried to exploit
texture information in their studies. For example, El Asnaoui
et al [40] used different feature descriptors such as local binary
pattern, gray level co-occurrence matrix, and discrete wavelet
transform to analyze local features in images. Finally, in the
decision-making stage, an SVM classifier was used to determine
whether an input image belongs to the COVID-19 class or not.
The results show that this method could achieve a sensitivity
of 0.93 and a specificity of 1.0.

X-ray Category
Although a CT scan generates high-quality images with more
details than an x-ray image, some studies have attempted to use
x-ray images to investigate the probability of COVID-19
diagnosis. Among the studies we reviewed, 14 studies used
CXR images in their analyses. Yi et al [46] proposed a
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hypothesis that a deep CNN model trained on a similar dataset
can be useful in COVID-19 diagnosis. They trained a ResNet
model for pulmonary tuberculosis (TB) detection by using CXR
images from the NIH Chest X-ray dataset [78], which did not
have any information of TB, yet the trained model achieved a
high performance with regard to TB detection. The same
approach had been used for COVID-19 diagnosis, and the x-ray
images of 88 COVID-19–positive patients were inputted into
the trained model. The results showed that the model could
correctly classify 78 of the 88 (89%) input x-ray images and
that it misclassified 10 input x-ray images. Although the reported
results are satisfactory, they did not consider
COVID-19–negative inputs and did not measure the
false-positive rates of the proposed methods.

A continuously growing dataset has been provided by a group
of researchers at the University of Montreal [79], which includes
annotated CXR images of patients with COVID-19. Several
studies [39,40,47,48,51,55] have used this dataset in their
analyses. For instance, Han et al [55] proposed a DenseNet
model with a relatively small number of parameters and used
a combination of x-ray images from various datasets, including
the COVID Chest X-Ray dataset (180 COVID-19–positive
images), JSRT (20 normal images), NLM (73 normal and 57
tuberculosis images), and CoronaHack (98 normal and 54
pneumonia images), for the training and testing phases. The
trained model achieved an accuracy of 0.88 and a precision of
0.83.

Another study [27] utilized images from a pneumonia dataset,
including 22,000 CXR images, to train a U-Net model to
compute the probability of pneumonia using x-ray images at
the pixel level. By integrating the probability values of pixels
as a single image, a class activation map is obtained that can be
used to show which region in the input image has the most
relevance to pneumonia. After model training, they fed 10 CXR
images from 5 patients that were captured on several consecutive
days. They reported that their model could detect localized areas
of pneumonia with increasing likelihood as the subtle airspace
opacities increased over time. However, no technical information
and measurements were described.

Some other studies [35,48,55] also used a class activation map
to not only classify each image into COVID-19–positive and
COVID-19–negative classes but also to localize suspected areas
in CXR images.

Hybrid Category
Given that most of the included articles mentioned data shortage
as a major problem in developing an efficient COVID-19
diagnosis model, some studies tried to exploit two or more types
of data in their analyses. For instance, in the study by Wang et
al [43], at the first stage, a CNN model was trained on 4106 CT
slices with epidermal growth factor receptor data. In the second
stage, 709 COVID-19–positive images from patients from
Wuhan city were used to retrain the model. Finally, 458 images
from four different cities in China were used as test images, and
the model achieved an accuracy of 0.85 and a sensitivity of
0.80.

In the study by Mei et al [50], clinical data such as patient’s
age, gender, symptoms, and laboratory findings were used in
addition to CT scans of 905 patients with suspected COVID-19
from 13 provinces in China. A modified ResNet model was
proposed by the authors to accept clinical data alongside the
CT scan slice images. The results showed that their proposed
model achieved an accuracy equivalent to a senior chest
radiologist with an AUC of 0.86. Although their dataset is not
publicly available, the trained models are available for others
to download.

Discussion

Principal Findings
In this study, we reviewed 44 studies related to the diagnosis
and prognosis of COVID-19 that used advanced machine
learning techniques based on clinical images to diagnose
COVID-19 or COVID-19–related pneumonia, or to assist with
the segmentation of lung images by using chest CT and x-ray
images with their proposed machine learning methods. The
predictive performance measures showed a high to almost
perfect ability to detect COVID-19. Overall, 24 different
methods, such as deep CNNs, local feature descriptors, and
decision trees, were used in the reviewed studies; however,
some of them used similar models with a different setup or
configuration.

Due to the complexity of the clinical images used and the need
to obtain the best results for an early diagnosis of COVID-19,
most of the reviewed articles (36/44, 82%) had based their
learning algorithm on neural networks and deep learning as
proven, powerful learning methods. However, deep CNNs,
which are developed in principle to work with images, require
sufficient amount of data for fine-tuning the network parameters.

Given that the COVID-19 outbreak was in the early stage at the
time of this review and that there was a lack of proper data
available, most of these CNN-based studies were endangered
by overfitting, which causes a high risk of bias. Nevertheless,
some of the studies used previously available data of chest CT
or x-ray images to compensate with data shortage and to enrich
the training data. For instance, Ucar and Korkmaz [38] used 66
COVID-19–positive lung x-ray images, which were not
sufficient to train a CNN. To overcome this problem, they added
these images to the images of a publicly available pneumonia
dataset called Chest X-Ray Images (Pneumonia) [80], which
was used to obtain access to a larger number of images for
network training. Although the pneumonia dataset does not
provide any information about COVID-19, it can enhance the
model performance to better distinguish between healthy and
unhealthy lungs. Another approach used for compensating the
lack of data was to utilize data augmentation techniques such
as image mirroring and blending. Although most of the reviewed
studies used simple augmentation methods, some used more
complicated techniques. For example, in the study by Ucar and
Korkmaz [38], a generative adversarial network was trained to
synthesize new images from the limited 307 images available
that were not considered enough for network training.
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This systematic review is in its early stage, and we will continue
to update our findings and evaluation to provide new information
to health care professionals and decision makers as more
international studies are conducted over time.

Study Limitations
With the rapid publication of COVID-19 prediction models in
the medical image processing domain in the recent past, this
systematic review cannot be considered as an up-to-date list of
all the current prediction models.

Conclusions
Different models have been proposed for the diagnosis and
prognosis of COVID-19, demonstrating varying levels of
discriminative performance. The results show that deep CNNs

dedicated a larger number of models than non–neural
network–based methods; moreover, deep networks achieved
better results than other machine learning models. However,
the rapid spread of COVID-19 and the lack of data for machine
learning approaches and training may have increased the
likelihood of overfitting and vague reporting. Furthermore, the
lack of adequate information about patients and study
participants likely led to the high risk of bias, which made the
results seem optimistic. Therefore, the performance of these
models is misleading, and we do not recommend their practical
use. Future studies aimed at using deep neural networks for
diagnosing COVID-19 should address aspects of appropriate
model performance by using a larger training dataset with no
imbalance and complete information about patients and
intervention groups.
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Abbreviations
AUC: area under the curve
CNN: convolutional neural network
CT: computed tomography
CXR: chest x-ray
GAN: generative adversarial network
PROBAST: Prediction Model Risk of Bias Assessment Tool
RT-PCR: reverse transcription–polymerase chain reaction
SVM: support vector machine
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