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Abstract

Background: Cardiovascular disease (CVD) is the greatest health problem in Australia, which kills more people than any other
disease and incurs enormous costs for the health care system. In this study, we present a benchmark comparison of various artificial
intelligence (AI) architectures for predicting the mortality rate of patients with CVD using structured medical claims data.
Compared with other research in the clinical literature, our models are more efficient because we use a smaller number of features,
and this study could help health professionals accurately choose AI models to predict mortality among patients with CVD using
only claims data before a clinic visit.

Objective: This study aims to support health clinicians in accurately predicting mortality among patients with CVD using only
claims data before a clinic visit.

Methods: The data set was obtained from the Medicare Benefits Scheme and Pharmaceutical Benefits Scheme service information
in the period between 2004 and 2014, released by the Department of Health Australia in 2016. It included 346,201 records,
corresponding to 346,201 patients. A total of five AI algorithms, including four classical machine learning algorithms (logistic
regression [LR], random forest [RF], extra trees [ET], and gradient boosting trees [GBT]) and a deep learning algorithm, which
is a densely connected neural network (DNN), were developed and compared in this study. In addition, because of the minority
of deceased patients in the data set, a separate experiment using the Synthetic Minority Oversampling Technique (SMOTE) was
conducted to enrich the data.

Results: Regarding model performance, in terms of discrimination, GBT and RF were the models with the highest area under
the receiver operating characteristic curve (97.8% and 97.7%, respectively), followed by ET (96.8%) and LR (96.4%), whereas
DNN was the least discriminative (95.3%). In terms of reliability, LR predictions were the least calibrated compared with the
other four algorithms. In this study, despite increasing the training time, SMOTE was proven to further improve the model
performance of LR, whereas other algorithms, especially GBT and DNN, worked well with class imbalanced data.

Conclusions: Compared with other research in the clinical literature involving AI models using claims data to predict patient
health outcomes, our models are more efficient because we use a smaller number of features but still achieve high performance.
This study could help health professionals accurately choose AI models to predict mortality among patients with CVD using only
claims data before a clinic visit.
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Introduction

Background
In Australia, cardiovascular disease (CVD) is the most
concerning health problem, killing more people than any other
disease and placing heavy burdens on the health care system
because of enormous costs and on individuals and the
community owing to resulting disabilities. CVD was the leading

cause of death among Australians in 1997, accounting for 52,641
deaths, 41% of all deaths [1]. An estimated 1.2 million (5.6%)
Australian adults aged 18 years and more had one or more
conditions related to heart or vascular disease, including stroke,
in 2017-2018, based on self-reported data from the Australian
Bureau of Statistics 2017-2018 National Health Survey. The
prevalence of CVD by age group and sex, in 2017-2018, is
shown in Table 1.

Table 1. Prevalence of cardiovascular disease by age group and sex, 2017-2018.

Total, % (95% CI)bWomen, % (95% CI)bMen, % (95% CI)bTotal, naWomen, naMen, naAge group (years)

1.0 (0.7-1.3)1.2 (0.7-1.8)0.7 (0.3-1.1)88,00056,60031,40018-44

3.0 (2.4-3.6)2.6 (1.7-3.5)3.3 (2.4-4.2)92,90042,30050,60045-54

8.9 (7.4-10.5)7.9 (6.0-9.9)10.0 (7.6-12.4)251,500114,700136,70055-64

15.9 (14.3-17.5)12.2 (10.0-14.4)19.8 (17.2-22.4)344,500135,600208,90065-74

25.7 (23.1-28.2)20.3 (17.5-23.1)32.1 (27.1-37.0)373,300160,100213,20075+

5.6 (5.2-5.9)4.8 (4.3-5.3)6.5 (5.9-7.0)1,150,200509,300640,800Persons (number/age-

standardized ratec)

aDue to rounding, discrepancies may occur between sums of the component items and totals.
bCI is a statistical term describing a range (interval) of values within which we can be “confident” that the true value lies, usually because it has a 95%
or higher chance of doing so.
cAge-standardized to the 2001 Australian Standard Population (Source: AIHW analysis of ABS 2019).

The major risk factors for CVD are tobacco smoking, high blood
pressure, high blood cholesterol, overweight, insufficient
physical activity, high alcohol use, and type 2 diabetes [1]. CVD
treatments are usually prescribed in combination with other
drugs such as antidiabetics, antihypertensives, lipid-lowering
drugs, anticoagulants, and antiplatelet agents [2]. Medication
use is an important management factor for patients diagnosed
with heart disease besides eating a healthy diet and maintaining
fitness with regular physical activity. Medications are used to
minimize symptoms, reduce the risk of exacerbation, and
improve the quality of life.

Many methods have been developed to predict the mortality
rate of patients with CVD by using many algorithms and
predictor variables. There are 3 main methods for forecasting
mortality: explanation, expectation, and extrapolation [3]. Of
these, the most common basis of forecasting mortality is
extrapolation, which assumes that the future state is highly
correlated to the past. In the clinical literature, historical
electronic health records (EHRs) are widely used to develop
artificial intelligence (AI) models that can predict the health
outcomes of patients. Information commonly extracted from
EHR as input for AI models includes patient demographics,
health indices, medical conditions, biomedical images, or
clinical notes, whereas structured medical claims data are rarely
used. Although medical claims data inadequately inform patient
health conditions, this source of information is crucial in
reflecting patient health care access frequency and level of
participation in disease prevention or treatment, which has a
great impact on patient health outcomes.

In this study, we present a benchmark comparison of the
performance of different AI architectures: 4 classical machine
learning (ML) algorithms (logistic regression [LR], random
forest [RF], extra trees [ET], and gradient boosting trees [GBT])
and a deep learning algorithm, which is a densely connected
neural network (DNN) that uses medical scheduling and
pharmaceutical dispensing information from historical claims
data to predict the mortality rate of patients with CVD.
Compared with other research in the clinical literature involving
AI models using claims data to predict patient health outcomes,
our models are more efficient because we use a smaller number
of features but still achieve high performance. Furthermore, we
also propose Synthetic Minority Oversampling Technique
(SMOTE), a technique to enrich training data and handle class
imbalance, as a tool to improve the performance of the
developed AI models.

Related Work
Recent trends involve using AI models to learn patterns from
large data sets to predict mortality with higher accuracy [4].
The American College of Cardiology Foundation’s National
Cardiovascular Data Entry conducted a study that used statistical
analysis to predict the rate of risk in percutaneous coronary
intervention. The study results show that ML models perform
better in terms of accuracy than classical statistical models [5].
One study showed that ML models such as RF, decision tree,
and LR perform exceptionally well owing to today’s
computational power, which allows them to process data from
the electrical health records [6] of patients. ML models deployed
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on routine clinical data performed better than standard
cardiovascular risk assessment models and had great merits in
terms of preventive treatment and avoidance of mistreatment
for CVD according to a study conducted on a large sample of
patients in the United Kingdom [7]. Moreover, using neural
networks for predictive analysis of illnesses was shown to be
fruitful as early as in 2005 [8]. Wang et al [9] predicted the
mortality rate because of heart failure by deploying a
convolutional, layered neural network that inculcated feature
rearrangement to select the best features. Another study has
shown that deep neural networks perform better than traditional
ML models with respect to accuracy and available sample size
[10].

Many factors have been considered to predict the health
outcomes of patients with heart disease. Some techniques used
to extract learning features include automated imaging
interpretation [11,12], natural language processing or text mining
[13,14], and EHR extraction [15-18]. Imaging interpretation
has been carried out by using deep neural networks [12] with
promising results. Natural language processing of clinical notes
has been shown to be able to correctly identify risks of CVD
patients [13], whereas systematic application of text mining to
the EHR has had variable success in the detection of
cardiovascular phenotype [14]. It has been proven that applying
ML helps identify clinically relevant patterns in the data [19].
Feature extraction from EHR allows the use of many factors,
such as patient demographics, characteristics, and health
conditions, including cardiovascular health (CVH) indices [20]
or percutaneous coronary intervention indices [16,17] in
predicting mortality risks.

On the basis of these studies, the mortality rate of patients in
the cardiology cohort has been accurately predicted using a
variety of algorithms, methods, and predictor features. However,
there has been little focus on using medical claims to predict
the health outcomes of patients with CVD. This information
reflects patient medication usage, health care access frequency,
and level of participation in disease prevention or treatment,
which have a great impact on the determination of patient health
outcomes [21]. Hence, to close this literature gap, in this study,
mortality will be predicted based on patient medical schedule
information and pharmaceutical dispensing history acquired
from medical claims.

The Pharmaceutical Benefits Scheme (PBS) and Medicare
Benefits Schedule (MBS) claims data collected by the
Department of Human Services and held by the Department of
Health have great potential to provide further insight into the
medical scheduling and pharmaceutical dispensing history of
patients with CVD. This study uses the PBS and MBS claims
data in the period between 2004 and 2014 to investigate the
mortality rate of patients with heart disease conditions in
Australia and to build and compare 5 AI models to predict the
mortality risk of a patient under these conditions. We built
prediction models based on the patient’s age, gender, relevant
medication prescriptions, medical schedule information, and
pharmaceutical dispensing history obtained from the data set.
We then assessed and compared the performance of each model
and suggested recommendations for future work.

Objectives
The primary aim of this research is to support health clinicians
to accurately predict mortality among patients with CVD using
only claims data before a clinic visit. Compared with other
research in the clinical literature involving AI models using
claims data to predict patient health outcomes, our models are
more efficient because we use a smaller number of features but
still achieve high performance. This study has applications in
supporting health clinicians to accurately predict mortality
among patients with CVD using only claims data before a clinic
visit.

Methods

AI Architectures
In this study, 4 classical ML algorithm architectures, LR, RF,
ET, and GBT, along with a deep learning algorithm called DNN
were used to develop mortality prediction models. The MBS
and PBS data sets are well structured and very informative and
allows simple algorithms to learn better. Because our study
deals with a probabilistic prediction problem, we put more
emphasis on the discrimination and calibration of the model
performance. Through initial experiments we found that LR,
RF, ET, and GBT are classical ML algorithms that produce the
best performance in terms of these two criteria. On the other
hand, we were curious about how a state-of-the-art deep learning
algorithm might perform on the data set. We developed the
simplest neural network, a DNN, for further comparison and
insights. We chose not to develop more complex deep learning
architectures such as RNN or CNN because these algorithms
are not necessary for such structured data sets to perform well.
In this section, these experimental algorithms are described and
their architectures proposed.

Logistic Regression
LR is a supervised ML algorithm. It is a powerful and
well-established method for binary classification problems [22].
LR is extended based on linear regression and can be used to
calculate the probability of an event that has 2 possible outcomes
by assigning weights to a number of predictor variables
(features). Given a set of independent variables

x1,x2,x3,…,xn (1)

and a dependent variable y, which takes values between 0 and
1, first, LR is designed to find a set of weights

b1,b2,b3,...,bn (2)

for each of the independent variables so that the following linear
equation outputs a logit score:

logit = b0 + b1x1 + b2x2 + b3x3 + ... + bnxn (3)

From this logit score, probability y is then derived by the
following formula:

To use the LR as a binary classifier, a threshold must be assigned
to differentiate between 2 classes. Normally, LR will classify
an input instance with P>.50 as a positive class; otherwise, it is
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classified as a negative class. Depending on the problem, 0 and
1 can be translated into different meanings.

Random Forest
Before describing the RF algorithm, it is important to understand
the concept of the decision tree algorithm [23]. DT is one of
the simplest and earliest ML algorithms. It structures the
decision logic into a tree-like model. The nodes in a DT tree
are partitioned into different levels, where the uppermost node

is called the root node, whereas other nodes that have at least
one child represent tests on input variables/features [24].
Depending on some criterion of the test, higher nodes are split
into lower nodes repeatedly toward the leaf nodes [25], which
have no child at all and correspond to the decision outcomes.
An illustration of a simple DT is shown in Figure 1. According
to Figure 1, the 3 circles -Sex, Age, and A10- are tested on the
corresponding input variables, whereas the rhombuses at the
end are the classification outcomes (deceased or alive).

Figure 1. Decision tree.

An RF is an ensemble classifier consisting of many DTs similar
to a forest with many trees [26]. Different DTs in an RF are
trained using different parts of the training data set and tested
on different subsets of input variables. To classify a new
instance, the input vector of the instance is pushed through each
DT in the forest. Each DT makes decisions on a different part
of the input vector and provides a classification outcome. The
forest then makes a final prediction by majority vote in
classification problems and by arithmetic average in regression
problems. Because the RF algorithm aggregates outcomes from

many different DTs to make a decision, the result has a smaller
variance compared with the consideration of a single DT for
the same data set. In addition, similar to other tree-based
ensembles, variables for each tree in RF are randomized,
whereas node-splitting cut points are locally optimized according
to the criterion [26]. Figure 2 illustrates the RF algorithm. As
shown in Figure 2, the training data set is randomly split into
the desired number of trees in the forest, and each random
subsample is then used to train a decision tree that is tested on
a randomly selected subset of input variables.
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Figure 2. Random forests.

Extra Trees
The extremely randomized trees or the ET algorithm is also an
ensemble classifier consisting of many single DTs similar to
RF. The ET method also uses a random subset of features to
train each base estimator [27]. However, the two main
differences between RF and other tree-based ensemble methods
are that RF splits nodes by choosing cut points fully at random
(or random selection of threshold), and RF uses the whole
learning sample to grow each tree in the ensemble rather than

a subset of training data [28]. The final prediction produced is
the aggregate of the predictions of all trained trees, yielded by
the majority vote or arithmetic average in classification problems
or regression problems, respectively. In terms of bias variance,
ET is able to reduce the variance more effectively than the
weaker randomization schemes used by other ensemble methods.
On the other hand, a full training sample rather than bootstrap
batches is used to train each base estimator in an attempt to
minimize bias [28]. A simple illustration of the ET model is
shown in Figure 3.

Figure 3. Extra trees.
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Gradient Boosting Trees
GBT is another popular ML algorithm that uses a tree-based
ensemble method, and was first proposed by Friedman [29].
This approach trains learners (decision trees) by minimizing
the loss function, which is computed using the gradient descent
method [30]. To train a GBT, the algorithm first selects a very
simple decision tree from the learning sample with equal

weights. On the basis of the results of this weak learner, it tries
to create a new learner who assigns higher weights to nodes
that are more difficult to split and lower weights to those that
are easier to split [30]. By doing this, the new learner is able to
minimize the errors of the previous learner. As this process
continues, the loss function is optimized [29], making each new
model have a better goodness of fit with the observation data.
Figure 4 illustrates the mechanism of the GBT algorithm.

Figure 4. Gradient boosting trees workflow.

Densely Connected Neural Network
An artificial neural network (ANN) [3] is a deep learning
architecture that replicates the neuron system inside the human
brain. McCulloch and Pitts [31] first proposed ANN, and the
concept was later popularized by the research work of Rumelhart
et al [32]. In the human brain, neurons are linked together by
numerous axon connections [33] and are responsible for
adapting, processing, and storing information toward (inputs)
and away (outputs) from the brain. Likewise, an ANN has
hundreds or even thousands of artificial neurons called
processing units, which are interconnected by nodes. In the
ANN architecture, nodes are grouped into layers, depending on
the activation they implement on the data. In the ANN, the
output of one node is the input to another node. Subsequently,

the input node after receiving information from the previous
output node, based on an internal weighting system, attempts
to produce the next output. Through repeated training, the weight
system can amplify or weaken the level of communication
between nodes. After mature training, which optimizes the
weight system, a trained ANN can predict the test data. Because
ANNs can be constructed by many layers and neurons, this
method is considered a deep learning algorithm. Many types of
ANNs are currently used in the literature, including feedforward
neural networks, recurrent neural networks, convolutional neural
networks, and modular neural networks. In this study, because
our input data are well structured, allowing a neural network to
learn effectively, we present the simplest form of ANN, which
is a DNN. Figure 5 shows an illustration of the proposed DNN
with 3 hidden layers.
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Figure 5. Artificial neural network architecture. ReLU: Rectified Linear Unit.

Results

Benchmark Data
On August 1, 2016, the Department of Health released
approximately 1 billion lines of anonymous historical health
data relating to approximately 3 million Australians on
data.gov.au. The information released includes details on
medical services provided to Australians by health professionals,
along with details of subsidized information. Claims data for a
random 10% sample of Australians are made available for
research institutions, health professionals, and universities. The
data release includes historical medicare data (from 1984) and
PBS data (from 2003) up to 2014. The release comprises 2 files
corresponding to the 2 types of service information (MBS and
PBS) and a separate patient demographic file. The data set used
in this study was obtained from the MBS and PBS service
information and patient demographic data by patient IDs. It
originally included 346,201 records corresponding to 346,201
patients; however, 19 patients who had inadequate information
were removed. Following this exclusion, the final data set
comprised a total of 346,182 patients.

The data set included four classes of variables (ie, features):

1. Demographic variables: year of birth, sex, and age
(calculated until January 1, 2015).

2. Numerical variables: A total of 13 continuous measurements
are presented in the data set, including the number of MBS
records, number of states, total amount of medical fees
charged, total amount of medicare schedule fees, total
amount of medical rebates paid, total number of MBS
services, total duration of patients accessing medical
services, number of PBS records, number of patient’s PBS
codes, total amount of medication cost paid by the
government, total amount of medication cost self-paid, total

number of prescriptions, and total duration of patients
accessing PBS services.

3. Categorical variables: These are 3 relevant medications
classified by the Anatomical Therapeutic Chemical code
and patient state. The medications presented are drugs used
in diabetes (code: A10), drugs used for the cardiovascular
system and hypertension (code: C0), and lipid-modifying
agents or drugs used for patients with high cholesterol
(code: C10).

4. Date variables: The 4 date variables include the date of the
first medical schedule, date of the last medical schedule,
date of the first PBS claim, and date of the last PBS claim.

Among these variables, except for the year of birth, age, and
numerical variables that were kept constant, other variables
were transformed as follows: sex and medication variables were
mapped into binary values, whereas patient state was converted
into 6 binary variables corresponding to 6 states. The year of
birth, date of first medical schedule, and date of first PBS claim
were used to calculate the age at which the patient had the first
medical schedule and the first PBS claim, respectively, and then
removed. Regarding the prediction target variable, because PBS
and MBS claim data on their own do not include information
about patients’ health outcomes, the labels must be inferred.
Between the date of the last medical schedule and date of the
last PBS claim, the latter was used to calculate the duration of
patients discontinuing PBS and MBS services until January 1,
2015. Following this calculation, any patient who discontinued
PBS and MBS for more than 180 days (6 months) was labeled
deceased, otherwise alive. After preprocessing, the data set had
26 features and 1 label that used for model development.

In terms of feature scaling, each feature value was standardized
to center around its mean with a unit standard deviation. This
means that the mean of the attribute becomes zero and the
resultant distribution has a unit standard deviation [34]. This
step allows the algorithm to learn effectively as it eliminates
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sensitivity to multiple features spanning varying degrees of
magnitude, range, and units.

In terms of class distributions, there are only 93,164 patients
out of the total number of 346,182 classified into the deceased
group, whereas the rest are alive patients. This reflects a highly
imbalanced class distribution, which might affect the learning
performance of the infrequent class [35] because of the lack of
samples. To address this issue, a separate experiment using
SMOTE was conducted as a trial to enrich the training set.

Evaluation Metrics
Descriptive statistics were used to learn the characteristics of
the study population, stratified by health outcome status (ie,
alive or deceased). Models were derived from the training set
and then assessed on the testing set by calculating the traditional
accuracy, precision, and recall scores with the addition of brier
loss. In addition, reporting discrimination and calibration is
important for assessing a prediction model [36]. The area under
the receiver operating characteristic curve (AUROC) score and
the plotting reliability diagram (calibration curves) were also
calculated to assess the performance of the AI models.

• Brier loss from scikit-learn measures the accuracy of
probabilistic predictions by calculating the mean squared
difference between the predicted probability assigned to
the possible classes and the actual classes. It is composed
of refinement loss and calibration loss so that the lower the
Brier score is for a set of predictions, the better the
predictions are calibrated or the better the model is.

• The AUROC score is used to measure the probability that
the model ranks a random deceased patient higher than a
random alive patient in terms of mortality rate. A higher
AUROC score means that the model has a better ability to
discriminate between deceased and alive populations.

• Calibration curve, a reliability diagram, is a line plot of the
relative frequency of what was observed versus the
predicted probability frequency. The closer the points
appear along the main diagonal from the bottom left to the
top right, the better calibrated a forecast or more reliable a
model [37].

Hyperparameters
To develop the models, the study population was stratified into
a training set, in which the mortality risk algorithms were
derived, and a testing set, in which the algorithms were applied
and tested. The training set consisted of 90.00%
(311,564/346,182) of the study data set, and the testing set
consisted of the remaining 10.00% (34,618/346,182). The
training and testing sets were split at the patient level and in a
stratifying manner according to class ratio so that patients did
not appear in both the training and testing sets and the ratio of
patient labels (deceased or alive) in both sets were equivalent
to that of the study population. After stratified assignment, the
hyperparameters were determined by using a grid search of
5-fold cross-validation to determine the values that led to the
best accuracy. After the grid search, each algorithm was refitted
to the training set with its best hyperparameters to derive the
final models. Table 2 presents the parameter search space of
the 4 algorithms and the grid results.

Table 2. Hyperparameters for grid search.

OptimalSearch spaceAlgorithms and parameter name

Logistic regression

••• l2(‘l1’, ‘l2’, ‘none’)Penalty
••• 1.0(0.01, 0.1, 1.0)C

• ••tol 0.0001(0.0001, 0.001, 0.01)
•• •(‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’) (‘au-

to’, ‘ovr’, ‘multinomial’)
solver lbfgs

•• automulti_class

Random forest

••• 100(5, 10, 50, 100, 150)n_estimators
••• None(1, 2, 3, 5, None)max_depth

• ••max_features auto(’auto’, ’sqrt’)
•• •(2, 5, 10)min_samples_splitmin_samples_leaf 2

•• 1(1, 2, 4)

Extra trees

••• 100(5, 10, 50, 100, 150)n_estimators
••• None(1, 2, 3, 5, None)max_depth

• ••max_features auto(’auto’, ’sqrt’)
•• •(2, 5, 10)min_samples_splitmin_samples_leaf 2

•• 1(1, 2, 4)

Gradient boosting trees

••• deviance(‘deviance’, ‘exponential’)Loss
••• 100(5, 10, 50, 100, 150)n_estimators

• ••max_depth 3(1, 2, 3, 5)
•• •(0.001, 0.01, 0.1)learning_rate 0.1

••• friedman_mse(’friedman_mse’, ’mse’, ’mae’)criterion
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After the grid search, it was found that LR with L2
regularization, which is also known as Ridge Regression [38],
produces the most accurate predictions in cross-validation, with
the C value and tolerance rate of 1.0 and 0.0001, respectively.
This can be explained by the fact that our data set had a small
number of features, making L1 regularization, which is Lasso
Regression and works well for feature selection in a data set
with high dimensionality [39], less favorable. Next, both RF
and ET achieved optimal accuracy after grid search with the
max_depth None scheme. According to the scikit-learn team,
in this scheme nodes are expanded until all leaves are pure or
until all leaves contain less than min_samples_split samples,
which is optimized at 2 in both cases. Besides, the number of
trees grown in both algorithms is the same, 100 (n_estimators).
Last, errors in GBT are minimized using the deviance loss
function; there are also 100 trees built with the maximum
number of nodes equal to 3.

To develop the DNN model, the study population was stratified
into training and testing sets with ratios of 90% and 10%,
respectively. The training set was then broken down into training
and validation sets with the same ratio. The purpose of the
validation set was to provide an unbiased evaluation of the
model while tuning the weights of the model [40]. The input
layer had 26 units corresponding to the number of features,
whereas the output layer had one unit. At the last step, sigmoid
was used as the activation function to return the sigmoid values
of the final output. The architecture of the DNN used is
composed of 3 fully connected hidden layers. The number of
neurons in each hidden layer are 128, 64 and 32, respectively,

and the rectified linear unit is used as the activation function.
During the training process, the parameters of the DNN are
initialized using uniform initialization [41]. For each batch of
training data, parameters of the DNN were modified gradually
to decrease the cross-entropy of the loss function. A callback
was set to stop the training process after 10 epochs when the
model reached the highest value of AUROC.

After the training process, all models were evaluated using the
holdout (10%) testing set. The final results were compared and
used to make recommendations.

Model Performance
In our experiments, we trained the models using the original
learning sample and then applied SMOTE to further improve
their performance.

Performance Without SMOTE
The details of the model performance without SMOTE are
presented in Table 3. After adjusting for multiple comparisons,
there was no significant difference in accuracy among RF
(98.5%), GBT (98.4%), LR (97.8%), ET (97.9%), and DNN
(97.1%). In terms of discrimination, GBT and RF achieved the
highest AUROC (97.8% and 97.7%, respectively), followed by
LR and ET (96.4% and 96.8%, respectively), whereas DNN
was the least discriminative (95.3%). In terms of brier loss,
GBT and RF produced the smallest difference between the
probability assigned to the predicted classes and the probability
of the actual class (both 0.012), whereas DNN predictions
showed the largest difference (0.024).

Table 3. Performance metrics of machine learning models without the Synthetic Minority Oversampling Technique.

Brier lossRecallPrecisionArea under the receiver operating characteristic curveAccuracyAlgorithms

0.01693.498.5a96.497.8Logistic regression

0.012c96.198.197.798.5bRandom forest

0.01694.298.196.897.9Extra trees

0.012c96.5e97.597.8d98.4Gradient boosting trees

0.02491.896.695.397.1Artificial neural network

aThe highest precision.
bThe highest accuracy.
cThe least Brier loss.
dThe highest area under the receiver operating characteristic curve.
eThe highest recall.

According to Table 4 showing the training times, LR turns out
to be superior compared with other models with less than 1-min
training time. However, DNN takes up to 30 minutes to train.
This could be explained by the complexity level of the 2
algorithms; whereas LR is a very simple and straightforward
model based on a linear regression equation, DNN is an
architecture that is composed of many neurons, layers, and more
complex activation functions.

Clearly, all of our models show very similar behavior for the 2
classes (Figures 6-10). According to the confusion matrices,
RF and GBT managed to identify the deceased patients with
higher accuracy than other algorithms. Compared with other
models, DNN classifies a larger number of deceased patients
as alive.
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Table 4. Training time of machine learning models without Synthetic Minority Oversampling Technique.

Training time (seconds)Algorithms

6.6aLogistic regression

106.8Random forest

46.8Extra trees

186Gradient boosting trees

1277.4Artificial neural network

aThe least training time.

Figure 6. Confusion matrices of logistic regression.

Figure 7. Confusion matrix of random forest.
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Figure 8. Confusion matrix of extra trees.

Figure 9. Confusion matrix of gradient boosting trees.
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Figure 10. Confusion matrix of artificial neural network.

In terms of prediction reliability, calibration curves for the 5
models in Figures 11-20 show that LG was the least calibrated
compared with the other 4 algorithms, highly overestimating
patient death risks at all levels of probabilities. RF was well
calibrated for patients with a lower mortality rate and
overestimated the risk of death when the probability of risk was
more than 50%. ET’s goodness of fit was only seen in the

probability of death at 30%, whereas it underestimated and
overestimated the risk for patients with lower and higher
probabilities of death, respectively. Predictions by GBT and
DNN were the most well calibrated, whereas DNN slightly
overestimated patients with probabilities of death greater than
10% and less than 90%.

Figure 11. Calibration curve of random forest without Synthetic Minority Oversampling Technique.
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Figure 12. Calibration curve of random forest without Synthetic Minority Oversampling Technique.

Figure 13. Calibration curve of extra trees without Synthetic Minority Oversampling Technique.
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Figure 14. Calibration curve of gradient boosting trees without Synthetic Minority Oversampling Technique.

Figure 15. Calibration curve of artificial neural network without Synthetic Minority Oversampling Technique.
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Figure 16. Calibration curve of logistic regression with Synthetic Minority Oversampling Technique.

Figure 17. Calibration curve of random forest with Synthetic Minority Oversampling Technique.
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Figure 18. Calibration curve of extra trees with Synthetic Minority Oversampling Technique.

Figure 19. Calibration curve of gradient boosting trees with Synthetic Minority Oversampling Technique.
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Figure 20. Calibration curve of artificial neural network with Synthetic Minority Oversampling Technique.

Performance With SMOTE
Details of the model performance with SMOTE are presented
in Table 5, and their calibration plots are displayed in Figure 8.
As can be seen in Table 5, SMOTE slightly improves the
performance (in italics) of the 5 models. However, it helps
calibrate the predictions of LR significantly. After upsampling,
the LR model no longer overestimates death risks of the patient,
and its predictions are more closely aligned with the perfectly
calibrated line. Meanwhile, ET is now seen as having goodness

of fit in predictions of patients with death risk between 50%
and 60% but still underestimates and overestimates those with
low and high death risks, respectively. On the other hand, RF
predictions change from being well calibrated for less than 50%
probabilities of death risk and overestimating higher ones into
being well calibrated for greater than 80% probabilities of death
risk and underestimating the rest. More interestingly, DNN and
GBT are subject to adversarial effects from the upsampling
technique, generally underestimate the risk.

Table 5. Performance metrics of machine learning models with the Synthetic Minority Oversampling Technique.

Brier lossRecallPrecisionArea under the receiver operating characteristic curveAccuracyAlgorithms

0.01595.997.3a97.498.2Logistic regression

0.012d97.396.898.0c98.4bRandom forest

0.01695.897.197.498.1Extra trees

0.01497.7e95.297.998.1Gradient boosting trees

0.02695.193.096.296.7Artificial neural network

aThe highest precision.
bThe highest accuracy.
cThe highest area under the receiver operating characteristic curve.
dThe least Brier loss.
eThe highest recall.

In short, SMOTE is only helpful for further improving the model
performance and prediction calibration of LG. Meanwhile, using
or not using SMOTE does not affect the performance of RF and
ET in predicting mortality in patients with CVD. Last, SMOTE
introduces an adversarial effect into the GBT and DNN models,

making their predictions less reliable, and these 2 models already
work well with class imbalanced data.

In terms of training duration, as shown in Table 6, using SMOTE
requires more computing time for all the algorithms. However,
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LR is still the most time-efficient model even when applying
SMOTE and produces higher accuracy and better prediction
performance in terms of AUROC, recall, and brier loss
compared with LR with original data. Furthermore, SMOTE

helps LR outperform ET and become the second-best algorithm
after RF. Clearly, when introducing SMOTE into the table, ET
and LR are worth considering for this data set.

Table 6. Training time of machine learning models with the Synthetic Minority Oversampling Technique.

Training time (seconds)Algorithms

292.9aLogistic regression

497.9Random forest

347.5Extra trees

648.1Gradient boosting trees

5480.3Artificial neural network

aThe least training time.

Discussion

Principal Findings
This study shows that structured medical and pharmaceutical
claims data can be used as input for AI models to accurately
predict the mortality risk of individuals with CVD. The LR, RF,
ET, GBT, and ANN models trained in this study had high
accuracy (ie, 97.0%-98.0%) and discrimination (ie, AUROC
95.0%-98.0%) in predicting the mortality rate, which are much
higher than for traditional statistical models such as the Cox
Proportional-Hazards model [42] or the models trained with
traditional electrical health records [43-45].

Although there was no statistically significant difference in
accuracy among the 5 experimental algorithms, the RF model
had an advantage over the other models. In addition, the RF
model outperformed the other models in terms of recall and
brier loss. In terms of discrimination and calibration, the GBT
proved to be the most superior. Without SMOTE, LR is unable
to make highly calibrated predictions while using SMOTE
significantly improves the reliability of the model’s predictions.
All models with SMOTE had very high precision (ie,
93.0%-97.0%) and recall (ie, 95.0%-97.0%), particularly when
compared with other LR and RF prognostic models that did not
deal with class imbalance published in the literature [44,45].
On the other hand, although the ANN had the most moderate
performance among the experimental algorithms, it was proven
to be efficient even with class imbalanced data. It is also
suggested that ANNs are capable of predicting CVD mortality
rates more accurately than other ML algorithms if more
feature-engineering techniques are applied [46,47], indicating
it is a very promising area for further research.

To our knowledge, this is the first study comparing AI
algorithms using medical and pharmaceutical claims data to
predict mortality in a large general cardiology population. Unlike
previously developed ML-based prognostic tools in cardiology
that used the clinical information of patients, including clinical
features [43-45], our models were trained only on claims data
of patients with CVD. These claims data primarily provide
information about a patient’s medical scheduling and
pharmaceutical dispensing history, which reflect the patient’s
disease treatment cost, access patterns, and medications but not

the patient’s state of health or other clinical indices.
Furthermore, compared with previously published classifiers
in cardiology, our models used fewer features and are
comparatively more efficient than previously trained models in
the general cardiology setting.

Limitations
Despite high accuracy and strong discrimination, some models,
including RF, ET, and ANN, still have not yielded optimal
calibrations. This means that the distribution and behavior of
the predicted probability is not similar to the distribution and
behavior of the probability observed in training data. To increase
the reliability of AI algorithms, other techniques should be
investigated to better calibrate and improve the performance of
these models, especially ANNs.

Conclusions
We developed, validated, and compared 5 AI architectures to
predict the mortality rate of patients with CVD. On the basis of
the evaluation results, we can draw the following conclusions
or insights that could help with the choice of AI models: (1)
without health indices or health condition information, AI
architectures are able to accurately predict mortality of patients
with CVD before a clinic visit using only medical scheduling
and pharmaceutical dispensing claims data; (2) although there
was no statistically significant difference in accuracy among
the experimental AI algorithms, the tree-based, that is, RF and
GBT models have an advantage compared with other models;
(3) although the regression-based LR method produces
predictions having the least calibration level because of a lack
of minority class samples, the upsampling technique, that is,
SMOTE helps significantly improve the reliability of this
algorithm's predictions; and (iv) tree-based algorithms and
densely connected neural networks perform well with class
imbalanced data. Finally, this study showed the feasibility and
effectiveness of different AI architectures based on structured
medical scheduling and pharmaceutical dispensing claims data
in identifying patients with CVD who had a risk of mortality;
AI algorithms can be a useful tool for precise decision making.
Future research, considering the promising potential of the ANN,
should focus on improving the prediction performance of this
algorithm. It is suggested that ANNs are capable of predicting
CVD mortality rates more accurately than other ML algorithms
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if more feature-engineering techniques are applied, indicating they are a very promising area for further research.
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