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Abstract

Background: Increased work through electronic health record (EHR) messaging is frequently cited as a factor of physician
burnout. However, studies to date have relied on anecdotal or self-reported measures, which limit the ability to match EHR use
patterns with continuous stress patterns throughout the day.

Objective: The aim of this study is to collect EHR use and physiologic stress data through unobtrusive means that provide
objective and continuous measures, cluster distinct patterns of EHR inbox work, identify physicians’ daily physiologic stress
patterns, and evaluate the association between EHR inbox work patterns and physician physiologic stress.

Methods: Physicians were recruited from 5 medical centers. Participants (N=47) were given wrist-worn devices (Garmin
Vivosmart 3) with heart rate sensors to wear for 7 days. The devices measured physiological stress throughout the day based on
heart rate variability (HRV). Perceived stress was also measured with self-reports through experience sampling and a one-time
survey. From the EHR system logs, the time attributed to different activities was quantified. By using a clustering algorithm,
distinct inbox work patterns were identified and their associated stress measures were compared. The effects of EHR use on
physician stress were examined using a generalized linear mixed effects model.

Results: Physicians spent an average of 1.08 hours doing EHR inbox work out of an average total EHR time of 3.5 hours. Patient
messages accounted for most of the inbox work time (mean 37%, SD 11%). A total of 3 patterns of inbox work emerged: inbox
work mostly outside work hours, inbox work mostly during work hours, and inbox work extending after hours that were mostly
contiguous to work hours. Across these 3 groups, physiologic stress patterns showed 3 periods in which stress increased: in the
first hour of work, early in the afternoon, and in the evening. Physicians in group 1 had the longest average stress duration during
work hours (80 out of 243 min of valid HRV data; P=.02), as measured by physiological sensors. Inbox work duration, the rate
of EHR window switching (moving from one screen to another), the proportion of inbox work done outside of work hours, inbox

work batching, and the day of the week were each independently associated with daily stress duration (marginal R2=15%).

Individual-level random effects were significant and explained most of the variation in stress (conditional R2=98%).

Conclusions: This study is among the first to demonstrate associations between electronic inbox work and physiological stress.
We identified 3 potentially modifiable factors associated with stress: EHR window switching, inbox work duration, and inbox
work outside work hours. Organizations seeking to reduce physician stress may consider system-based changes to reduce EHR
window switching or inbox work duration or the incorporation of inbox management time into work hours.
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Introduction

Background
Inbox management is an important component of electronic
health record (EHR) work for physicians and a key potential
stressor [1]. Through their EHR inbox, physicians receive
messages from other physicians, staff, and patients. Studies of
inbox management in other professions repeatedly report inbox
management as a source of stress due to the time it takes to go
through an ever-increasing volume of emails, the task demands
associated with emails, and the interruptions they create [2-4].
Similarly, EHR inbox management has been identified as a
possible contributor to physician stress and burnout [5,6]. To
understand the relationship between EHR adoption and use and
stress, it is critical to examine how physicians spend time on
the EHR inbox.

Although several studies have addressed the stress or burden
related to EHR use, there are two main limitations in previous
work. First, scant research focusing on the inbox component of
the EHR exists [1,5,7,8]. Second, previous studies relied on
self-reported stress measured at a single time point (or a few
time points) [5], which fails to capture the detailed and continual
stress and EHR work patterns throughout the day and is prone
to bias [9,10].

Our study investigates physicians’ EHR inbox use patterns and
associated stress, as measured unobtrusively and continuously
by EHR system logs and wearable sensors. The objectives of
this study are as follows:

1. Collect EHR use and stress data through unobtrusive means
that provide objective and continuous measures.

2. Cluster and visualize distinct EHR inbox work patterns and
identify their characteristics.

3. Identify physicians’ daily stress patterns.
4. Evaluate the association between EHR inbox work

characteristics and physician stress.

Previous Work on Physician Workload Related to the
EHR and EHR Inbox
Studies have noted the burden of EHR digital work for
physicians [11-13]. EHR-related factors that could lead to
physician stress and burnout include the extra time needed,
often beyond work hours, to complete EHR-related work
[14-17], usability issues [18-20], risks associated with errors
[21], and taking time out from face-to-face interactions with
patients [22].

For EHR inbox management, a 2017 study [14] using EHR logs
found that time spent in the inbox accounted for 24% of total
EHR time, and of the time spent in the inbox, a larger proportion
was spent after work hours compared with the time spent on
other EHR activities. A study reported that 86% of surveyed
physicians worked outside of work hours to respond to inbox

messages [23], whereas another study reported that 37% of
inbox work was done outside of work hours [24]. In addition
to the time it takes within and outside of work hours,
inbox-related burden has been attributed to the volume and
source of EHR messages [5,7] and information overload from
notifications (ie, asynchronous alerts) [25]. A 2012 study based
on EHR logs [26] found that primary care physicians (PCPs)
received a mean of 56.4 alerts per day and spent an estimated
average of 49 minutes per day processing their alerts. A more
recent study [1] found that PCPs received a mean of 77 (SD 38)
inbox message notifications per day compared with the 30
notifications for specialists. Message quantity has been
associated with increased attention switching and inbox work
duration [27]. However, although these studies quantified EHR
inbox–related factors and measured self-reported workload,
well-being, or burnout at a single time point, they did not
measure daily stress associated with EHR inbox use.

Unobtrusive Sensing of Stress
One of the main limitations of previous studies on EHR and
stress is the reliance on self-reported measures of well-being
and burnout collected at a single time point [7,18]. In addition
to not directly measuring stress per se, self-report approaches
have several limitations for stress monitoring in the workplace.
When people subjectively report how they feel, their evaluation
could be affected by memory bias and emotion recognition,
regulation, and expression biases [9,10,28,29]. Administering
surveys for self-reports can also be disruptive, as they require
the full cognitive attention of the user and do not allow
continuous or frequent measurement that could be correlated
with inbox use.

Advances in wearable sensors and algorithms that filter and
analyze their data enable objective, continuous unobtrusive
sensing of physiological measures directly associated with stress,
such as heart rate variability (HRV). HRV is the variation in
time between one heartbeat and the next. When relaxing and
recovering, HRV increases, and it decreases during stress
[30-32]. Thus, measuring HRV throughout the day can provide
an objective and continuous measure of stress and relaxation,
which can be used to identify events associated with stress in
more granularity than is possible with self-reports.

Compared with other physiological stress measures that can be
obtained from wearable sensors in daily life, HRV is more
reliable in real-world settings (outside the laboratory). For
example, skin conductance (ie, electrodermal activity [EDA])
can be difficult to measure in dry, indoor air-conditioned settings
as the electrodes rely on sweat to measure conductance. In
addition, some people do not naturally produce adequate EDA
signals [33]. HRV sensors in wrist-wearable devices are light
based (photoplethysmography sensors) and are more commonly
used in consumer-grade wearables.
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HRV is affected by a number of factors other than stress, such
as physical activity and overall health. Thus, HRV as a measure
of stress is most reliable for healthy participants in sedentary
settings. Previous studies used HRV from wearable devices as
a measure of stress in office settings where participants were
working on a computer [34-37], making this method applicable
to computer-based work by physicians.

Methods

Study Setting
Data collection was conducted at one of the largest medical
groups in the United States. The medical group has 9200
physicians and serves 4.4 million members in 21 hospital-based
medical centers.

Since 2008, the participating medical group has been using a
comprehensive EHR (Epic Systems) that integrates inpatient,
emergency, and outpatient care, including primary care,
specialty, laboratory, pharmacy, and imaging data. The EHR
inbox, named the Inbasket, receives messages sent by patients
via a portal website (also available through patient-facing mobile
apps) and messages from other physicians, clinical staff, the
pharmacy, laboratory, and other departments. Physicians can
access the Inbasket on computers or mobile devices. Physicians
are expected to respond to each patient message within 2
business days. Patients are encouraged to use the messaging
functionality of the EHR to enhance access to their physicians
and the care experience.

Typical work hours when clinical settings are open and patient
appointments are booked are from 8:30 AM to 12:30 PM and
1:30 PM to 5:30 PM. Clinic time is dedicated to patient
appointments, which are conducted in person in the clinic or
via telephone or video telemedicine. Some physicians also do
clinical work during weekends, with work hours that might
differ from weekdays.

Recruitment and Protocol
Adult PCPs from 5 medical facilities within the medical group
were recruited. Between 7 and 12 physicians were enrolled at
each facility, with a total of 47 eligible physicians enrolled.

Physicians were eligible if they performed outpatient clinical
work for at least 3.5 days a week. Physicians who were taking
cardiac medications, had pacemakers or defibrillators, or had
been diagnosed with cardiac arrhythmias were not eligible
because of the interference of these factors with the HRV-based
stress measure. Eligibility was confirmed via a recruitment
email.

After obtaining written informed consent, the staff assigned a
wearable device with heart rate sensors (Garmin Vivosmart 3)
and configured the associated mobile apps (Garmin Connect
and Tesserae Phone Agent [38]) on the physician’s work-issued
mobile phone. The apps streamed data from the wearable device
via Bluetooth and uploaded the data to a server. The research
team also installed an experience sampling app [39] on the
physician’s mobile phone to send short questions at specified
times (see the Experience Sampling section). At enrollment,

physicians completed a brief 5-question written survey about
their EHR inbox management and stress.

Physicians were asked to wear the device and respond to the
daily short survey prompts for 7 consecutive days and keep
their phones and the wearable device charged. Physicians were
free to keep their wearable devices after data collection. The
study protocol was approved by the institutional review board
of Kaiser Permanente Northern California.

Data

EHR System Logs
We used system access logs, which contained granular
timestamped data on the Epic system EHR use. We created
hourly time bins and variables from the log data to quantify
how time was attributed to different activities and different
types of inbox messages per hour. These variables, which were
collected for every hour, included the number of minutes spent
in the EHR, the number of minutes spent in the inbox, the
number of minutes spent working on each inbox message type,
the number of tasks performed, and the number of window
switches (ie, clicking a new computer window).

We categorized the system-generated labels for message type
description into high-level categories by analyzing the frequency
of the labels along with input from our clinical collaborators
who are familiar with the meanings and patterns of different
types of messages. This approach resulted in 4 message types:
(1) messages from patients; (2) results, such as laboratory test
results; (3) requests, which ask the physician to perform an
action such as approving a medication refill or signing clinical
orders; and (4) informational and administrative messages. No
message content or metadata (ie, sender, receiver, and message
ID) were collected.

HRV-Based Measure of Stress
The device used to measure HRV (Garmin Vivosmart 3) was
a wrist-worn device with an optical heart rate sensor. It produces
a stress score based on HRV in still moments (ie, excluding
times with physical activity that interfere with HRV readings)
and accounts for the physiological norm of each user. The stress
score ranges from 0 to 100 and is provided via the Garmin
application programming interface as 3-minute averages of the
real-time stress scores generated on the device. The stress
analysis method used by the device has been empirically tested
and validated [40]. Garmin heart rate sensors were also
compared with other devices and were found to be among the
most accurate devices [41-44].

In our analyses, the HRV-based stress measure was the duration
(number of minutes) of medium and high stress (stress score of
>50). We excluded low stress periods (scores from 25 to 50)
because a certain amount of physiological stress indicates
arousal which is expected (and needed) for performing daily
tasks [45].

There were some gaps in the continuous HRV stress data (see
the Analysis section). Missing HRV stress data could be
attributed to loose fitting of the sensors on the wrist, removing
the device for charging, or forgetting to wear the device or
physical activity. We set a minimum of 20 minutes of HRV

JMIR Med Inform 2021 | vol. 9 | iss. 4 | e24014 | p. 3https://medinform.jmir.org/2021/4/e24014
(page number not for citation purposes)

Akbar et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


data per hour for hourly stress measures and 2 hours of data for
daily measures to be included in the analyses. We further report
the number of valid minutes of data on which each reported
stress measure is based.

Experience Sampling
During the data collection period, physicians received 3 short
daily surveys via the experience sampling app. The survey
consisted of 3 questions asking physicians to rate their stress in
the last 5 minutes (from no stress to high stress), their arousal
level (from low energy to high energy), and their mood (from
unpleasant to pleasant). The experience sampling app triggered
a phone notification asking physicians to take the survey 3 times
a day: morning (between 9:30 AM and 10:30 AM), lunchtime
(between 1 PM and 1:30 PM), and afternoon (between 3 PM
and 4 PM). The survey expired 45 minutes after the notification
if not opened.

Self-Reported Inbox Management Strategies and Related
Stress
At enrollment, physicians were asked to complete a 5-question
survey on their strategies for and feelings about Inbasket (their
EHR inbox) management. Physicians were asked to indicate
how distressful they found inbox management and whether they
had responsibilities that restricted their ability to work before
or after formal work hours.

Physician Characteristics
We also obtained physicians’ age, sex, years of experience, and
full-time equivalent (FTE) status, which is a measure of clinical
workload where 40 hours per week of scheduled work is 1.0
FTE. According to internal analyses by the medical group, FTE
is strongly correlated with the patient panel size for physicians.

Analysis
We used the Gaussian Mixture Models clustering algorithm
[46] to find distinct patterns of inbox work. Features in the
model included the distribution of inbox time in work hours
and outside of work hours contiguous and noncontiguous to
work hours. Multiple feature and cluster counts were tested,
and the clustering that yielded more balanced clusters and had
a reasonable silhouette score (a score that indicates how distinct
or overlapping the clusters are) [47] was selected.

To capture whether physicians dedicated certain blocks of time
for inbox work or consistently checked their inbox throughout
the day, we defined days with inbox work batching as days
where 70% or more of the total inbox work duration occurred
in 3 separate blocks of time or less. With consistent inbox
checking, a uniform distribution of inbox duration over the day
would typically be observed, whereas batching would show 2-3
daily peaks of high inbox duration [35]. We compared this
measure across clusters and used it as an independent variable
in the mixed effects model along with the other EHR inbox use
characteristics.

To compare clusters (ie, groups of different inbox work
patterns), each comparison variable was tested for normality
and homogeneity of variances before conducting an analysis of
variance for normal distributions with equal variances or the
Kruskal-Wallis test otherwise. For pairwise comparisons, a

posthoc analysis was conducted using the Tukey honestly
significant difference test for normally distributed variables and
Dunn test for nonparametric posthoc comparisons. Categorical
variables were tested using the Chi-square test.

To plot hourly stress patterns, we removed hours with less than
20 minutes of valid HRV data to avoid overestimating the stress
duration as a ratio of the measurement period (the measurement
period being valid HRV measurement duration). From a total
of 4245 hours, this filter removed 1177 hours (27.73%) of the
workdays’ HRV data. For daily stress measures, workdays with
less than 2 hours of valid HRV data were removed from the
analysis, as well as workdays that are Saturdays or Sundays,
and those with no inbox activity. This filter removed 21 days
in total, keeping 178 workdays for the daily stress analyses
(cluster comparison and a regression model).

We investigated the relationship between daily EHR inbox use
and stress through a generalized mixed effects model with
physicians as random effects. A Poisson distribution was used
to represent stress minutes as events within the observation
period (ie, valid HRV minutes as an offset in the model). The
distribution of the dependent variable (ie, stress duration) was
right skewed, as expected in a Poisson distribution. The
independent variables were centered (ie, mean subtracted). The
variance inflation factor was under 5 for all independent
variables, indicating that multicollinearity was not a problem.
Several models were compared, starting with a base model and
incrementally adding variables, to ensure that the improvement
in the model justified the added complexity of adding variables.
The model with the lowest Akaike information criterion and

highest marginal (fixed effects) R2 is presented.

Results

Participants
The 47 physicians (32/47, 68% female) were aged an average
of 43.83 years (SD 9.51; range 31-68), had an average of 15.17
(SD 9.93; range 4-42) years of experience in medicine, and had
an average FTE of 81% (SD 14%). On average, physicians in
the data set had 5.26 workdays (SD 0.94) and 2.74 nonworkdays
(SD 0.94) over the 8 days of data collection (the day of
enrollment plus 7 days in the study).

The HRV-based stress analyses included 42 physicians, because
5 physicians (1 male and 4 female) had technical issues, thereby
causing loss of the wearable device data.

The inbox strategies and stress survey was completed by 44
physicians.

Three Distinct Patterns of EHR Inbox Work
On workdays, physicians spent an average of 3.5 hours (SD
0.69) in the EHR, of which 1.08 hours (SD 0.38) were spent
doing inbox work. On nonworkdays, physicians spent an average
of 23.88 minutes (SD 36.3) in the EHR, including an average
of 13.78 minutes in inbox (SD 23.78). The majority of time in
the inbox was spent on patient messages (mean 37%, SD 11%),
followed by laboratory results (mean 31%, SD 8%), requests
(mean 20%, SD 6%), and administrative messages (mean 13%,
SD 5%).
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Using the Gaussian Mixture Models clustering algorithm, we
found 3 temporal patterns of work, with a silhouette score of
0.41, indicating moderate separation between these clusters (ie,
distinct groupings). Figure 1 shows the average hourly time
spent in the inbox and other EHR work (such as charting and
order entry) for physicians in each cluster. Group 1 (n=10)

represented physicians who spent time in the inbox outside work
hours, in the evenings and early mornings; group 2 (n=17)
represented physicians who worked mostly within work hours;
and group 3 (n=20) represented physicians who spent some
time on inbox work after hours that were mostly contiguous to
work hours.

Figure 1. Temporal patterns of inbox and other EHR work. The green background indicates work hours. EHR: electronic health record.

Free-text responses from the survey on inbox management
strategies supported these computationally generated inbox
work patterns. Responses from physicians in group 1 indicated
working beyond work hours, either by staying late in the office
or taking work home. Some representative comments were as
follows. A physician in group 1 reported, “I find when I sacrifice
sleep to do more at home, I’m too tired during the day and I’m
very inefficient at night,” indicating that they were working late
at night. Physicians in group 2 indicated working mostly within
work hours. For example, one physician in this group asserted,
“I arrive around 8:30 and prefer to leave around 5:30.” Another

stated: "I just like to work and finish work during my allotted
work time. I do not like to work at other times or at home."

Physicians in group 3 also indicated not taking work home but
at the cost of staying late in the office to clear their inbox. For
example, a physician in group 3 said, “I generally try not to take
work home [...] so often stay very late to clean out inbasket.”

Physician characteristics (age, sex, years of experience, and
FTE) did not show statistically significant differences across
the 3 work patterns. In terms of EHR use, total daily time spent
on inbox work and other EHR work on workdays (24-hour
period) did not differ across groups (P=.38 and P=.15,
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respectively). However, as shown in Table 1, physicians in
group 1 spent more time in the inbox after work hours compared
with other groups, both in minutes and as a percentage of daily

inbox time (P<.001). Posthoc comparisons showed that all the
groups differed from each other. Group 1 also spent more time
in the inbox work on nonworkdays (P=.03).

Table 1. Comparing inbox use characteristics across 3 work patterns.

P valueGroup 3, mean (SD)Group 2, mean (SD)Group 1, mean (SD)Inbox use characteristics

Clustering factors (percentage of all-day inbox duration)

<.00162 (9)82 (8)37 (12)Work hours inbox duration

<.00112 (5)1 (2)42 (11)Outside and noncontiguous to work hours

.0326 (13)17 (7)21 (11)Contiguous to work hours

Duration of inbox work on workdays and nonworkdays (min)

.00242.13 (16.56)47.97 (13.35)25.36 (13.03)Work hours inbox duration

<.00126.97 (13.26)10.91 (5.63)41.37 (13.81)Outside work hours inbox duration

.036.54 (11.3)11.13 (19.69)32.74 (37.46)Inbox duration on nonworkdays

Message types (percentage of all inbox time)

.0242 (10)35 (10)32 (10)Patients

.1026 (10)32 (11)30 (9)Results

.3121 (6)20 (6)24 (7)Requests

.1411 (4)13 (4)14 (5)Admin

Physicians in group 1 were more likely to batch their inbox
work (ie, do most of their inbox work in a few chunks of time
rather than consistently throughout the day) than group 2, as
50% (5/10) of physicians in group 1 batched their inbox work

compared with 6% (1/17) in group 2 (X2
1=4.03; P=.045). The

rate of switching windows within the EHR was not statistically
different among the 3 groups (P=.24), with all groups switching
windows 4-4.5 times per minute of EHR use, on average. The
groups spent different amounts of time per message (P=.004).
The time per message was higher for group 1 (mean 0.46 min,
SD 0.11 min) than for group 2 (mean 0.35 min, SD 0.06 min)
and group 3 (mean 0.38 min, SD 0.07 min). Groups 2 and 3 did
not differ significantly (P=.21). In terms of inbox message types,
there were statistically significant differences among groups in
patient-initiated messages (P=.02), with group 3 spending a
higher average percentage of their inbox time on patient-initiated
messages than group 1, and no differences for other group pairs
(Table 1).

Stress Patterns
Visualizing stress patterns throughout the day showed that stress
was high at the beginning of the workday. The first hour of
work (8:30 AM to 9:30 AM) had an average stress duration of
35% of the hour (SD 26%; SE 4%). Stress then started to
decrease until the lunch hour and increased again at the start of
the afternoon clinic shift. Toward the end of the workday, the
stress duration decreased. There was another increase in stress
in the evening, followed by a decrease in stress at night and
during typical sleep hours (Figure 2). This 3-wave pattern of
daily stress was consistent across the 3 work patterns, although

group 2 had their highest stress an hour earlier (ie, 7:30 AM to
8:30 AM) than the other groups (Figure 2).

There was a difference in the average duration of stress during
work hours among the groups (Kruskal-Wallis; P=.02). A
posthoc comparison showed that group 1, the group with the
highest after-hours inbox work duration, had a longer duration
of stress during work hours than group 2 and group 3, with 33%
(SD 27%) of work hours for group 1 being stressful (80 out of
243 min of valid HRV data indicated medium to high stress)
compared with the 18% (SD 18%) for group 2 (47 out of 265
min of valid HRV data) and 22% (SD 24%) for group 3 (58 out
of 265 min of valid HRV data). There was no significant
difference between group 2 and 3 (P=.73). The number of valid
minutes of HRV measurements was not significantly different
across groups.

On average, physicians missed 45% (SD 20%; 9.4 out of 21)
of the experience sampling prompts over the study period. Of
the 485 submitted responses, 188 (38.8%) reported a stress level
of over 50% (the midpoint of the slider). There was no
significant difference in the average daily self-reported stress
across the 3 inbox work patterns (P=.99).

Finally, in the survey on inbox management strategies and stress,
physicians reported that 60% (SD 19%) of their work-related
distress came from inbox management. Regarding the question
of how distressful they find inbox management overall, of the
44 physicians, 19 (43%) said it was moderately stressful, 15
(34%) said it was very stressful, 6 (14%) said it was extremely
stressful, and 4 (9%) said it was not very stressful. There were
no statistically significant differences in survey responses across
the 3 inbox work patterns.
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Figure 2. Workday stress patterns of each group. Error bars represent the SE of the mean. HRV: heart rate variability.

EHR Use Characteristics Associated With Stress
We investigated detailed EHR use characteristics associated
with stress using a mixed effects model, with workdays as the
unit of analysis. The model showed that fixed effects accounted
for 15% of the variation in duration of stress during work hours
(Table 2). The physician’s age, sex, and FTE worked were not
associated with stress. The rate of switching windows when
using the EHR was positively associated with stress (P=.001).
Time spent on inbox work during work hours was positively
associated with stress (P<.001), whereas time spent on other

EHR activities during work hours was negatively (but very
weakly) associated with stress (P<.001). Inbox work outside of
work hours was positively associated with stress during work
hours (P<.001). Interestingly, the proportion of inbox time spent
on patient messages was not associated with stress. Surprisingly,
batching inbox work for the day was also positively associated
with stress (P<.001). Finally, days of the week were predictive
of stress, with Mondays and Thursdays negatively associated
with stress, whereas Tuesdays and Wednesdays positively
associated with stress (P<.001 for each).
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Table 2. Generalized linear mixed effects regression model.

P valueStandard βbβ (SE)Fixed effectsa

.16.271.94 (1.39)Full-time equivalent

.79−.05−.01 (.02)Age

.24.21.45 (.38)Female

.001.08.1 (.03)Window switching rate

<.001.08.003 (.001)Work hours inbox duration

<.001−.06−.002 (0)Work hours noninbox EHRc duration

<.001.09.35 (.07)Nonwork hours inbox duration proportion

.28−.01−.09 (.08)Patient messages proportion

<.001.06.13 (.03)Batching

<.001−.10−.22 (.04)Monday

<.001.06.16 (.03)Tuesday

<.001.20.53 (.03)Wednesday

<.001−.05−.13 (.04)Thursday

aThe dependent variable is duration of stress during work hours. Friday is the reference category for the variable day of week.
bStandard β is the standardized coefficient.
cEHR: electronic health record.

Discussion

Principal Findings
To our knowledge, this study is the first to measure physician
stress using wearable sensors over several days of outpatient
practice and the first to identify distinct EHR inbox work
patterns and their associations with stress. Although the topic
of EHR use and stress (specifically, self-reported burden,
burnout, workload, and well-being) has been addressed in
previous studies, this study is novel in that we measured stress
unobtrusively and continuously through physiologic measures
and used system logs to gain detailed insight about EHR use
factors associated with stress. Higher rates of EHR window
switching, longer inbox work duration, and a higher proportion
of inbox work done outside of work hours were associated with
higher stress. Daily stress patterns showed 3 waves of stress:
in the first hour of work, at or after lunch hours, and in the
evening.

In addition, we found that physicians fell into 3 groups with
different patterns of inbox work. Some physicians tended to do
most of their inbox work within work hours, whereas others did
inbox work before or after but contiguous to work hours. The
third group did inbox work in late evenings. These groups
differed in characteristics such as inbox work batching, time
per message, and the proportion of inbox time spent on patient
messages. Physicians who did most of their inbox work outside
of work hours were more likely to batch email and spend more
time per message, whereas physicians who mostly do their inbox
work within work hours were more likely to continually check
their inbox throughout the workday, potentially in the short
periods of time between patient appointments, and spent less
time per message. The group that did most of their inbox work

outside of work hours had the longest stress duration during
work hours.

A strength of this study is that we measured stress using 3
different methods. The HRV-based stress provided a continuous
timestamped stress measure that could be correlated with inbox
use patterns throughout the day, the experience sampling
measure provided momentary self-assessment of stress 3 times
a day, and the survey provided a reflective measure on perceived
overall stress related to inbox work. HRV-based stress differed
across groups but self-report measures did not. It is well
established in the literature that short-term self-reported (ie,
perceived) stress and acute physiological stress do not always
align linearly in daily life settings [48-50]; however, both are
important to monitor as they both have health and well-being
implications [51-54].

Comparison With Previous Work
Previous studies on EHR use patterns have quantified the time
spent on different EHR activities within and outside of work
hours [14,24]. However, variation among physicians is not well
studied, and no previous study has attempted to characterize
physicians based on their patterns of daily inbox use. One study
[16] found that physician-to-physician variation explains most
of the variability in EHR use time. We extend the findings on
the variation in EHR use, focusing on inbox use and comparing
physician characteristics across work patterns based on work
hours and after-hours EHR inbox use. Aligned with previous
findings [16], we did not find differences in physicians’ sex
distributions between the group with the longest after-hours
inbox time and the group with the shortest after-hours inbox
time. We also did not find differences based on FTE, contrary
to previous findings [16] that more work relative value units
generated by physicians (another measure of workload) were
associated with more EHR time after work hours.

JMIR Med Inform 2021 | vol. 9 | iss. 4 | e24014 | p. 8https://medinform.jmir.org/2021/4/e24014
(page number not for citation purposes)

Akbar et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Most studies use basic measures to characterize EHR usage,
such as the duration of time [14,15,55]. In one study, researchers
used more complex measures to characterize mobile EHR usage,
such as the number of log-ins and features used and usage paths
(ie, the frequency and complexity of consecutive actions) [56].
They compared doctors across medical specialties and found
that physicians other than surgeons had more diverse mobile
EHR usage patterns with higher complexity and repetitive loops
compared to surgeons [56]. In this study, we also used detailed
EHR and inbox usage characteristics such as window switching,
inbox work batching, the time per message, message types, and
the time distribution between work and nonwork hours. Our
finding that the window switching rate was positively associated
with stress could reflect the complexity and repetitiveness of
physicians’ EHR interactions, as indicated in prior work [56],
and the efficiency issues often associated with physicians’
satisfaction with EHRs [57]. Another study on EHR inbox
burden [8] also reported that excessive steps were needed to
process messages and that physicians recommended reducing
the number of mouse clicks necessary to process messages.

A recent study suggested a relationship between patient call
messages and clinician burnout [58]. Their category of patient
messages included all messages related to patient care tasks,
such as phone calls, refill requests, and patient care forms. In
our study, the category of patient messages included only
patient-initiated messages and was not found to be associated
with stress, although it comprised most of the inbox time for
physicians.

It is not surprising that the differences among groups in
HRV-based stress did not align with self-reported perceived
stress. Previous studies have noted several issues in the
interrelationship between perceived and physiological stress
[59]. For example, the timing of the perceived stress prompt
(before, during, or after a stressor event) could determine
whether and how perceived stress correlates with physiological
stress measured during the stressor event [60-62]. This has
important implications for real-time stress monitoring for
physicians, as it suggests that daily prompts to measure
perceived stress in situ could fail to capture physiological stress.
Increased and prolonged physiological stress reactions are
associated with several health and well-being risks [63].

The results also suggest practical implications for organizational
changes and system design. Previous studies have recommended
a fundamental redesign of the EHR to improve data entry and
retrieval [11]. On the basis of our finding that window switching
is associated with stress, a redesign that minimizes the need to
navigate to different windows to record or obtain information
may be beneficial. For example, contextual information for
inbox messages can be made visible from the inbox [8]. Our
findings lend support to recommendations from a previous study
to automate frequently performed actions such as message
routing and leverage team support for inbox management [8].
Allocating time for inbox management within work hours, also
recommended in a previous study, may also help reduce stress
[8].

Limitations
In this study, the regression model with EHR use characteristics
explained 15% of the variation in duration of stress during work
hours, which is a considerable proportion given the myriad
factors that can potentially influence stress. However, stress
was likely to have also been influenced by other variables that
were beyond the scope of this study. In addition, the associations
we observed between stress and window switching, inbox work
duration, and inbox work outside work hours do not necessarily
prove that the latter factors cause stress. It is possible that
physicians who are busier during work hours have more stress
and also make more window switches, have more inbox work,
and have to do more inbox work outside work hours.

HRV-based measures are affected by several factors, such as
health and physical activities. Although we tried to control these
effects with our participant inclusion criteria and by removing
periods that had physical activity registered by the wearable
device, it is possible that carry-over effects of physical activity
are still present in the HRV data of sedentary moments.
Moreover, removing periods with physical activities could have
removed periods when psychological stress was experienced.
For example, walking to an important meeting could be mentally
stressful but it will not be captured in our data because of the
elimination of periods when walking is detected.

HRV data were excluded during periods of physical activities
and were occasionally missing because of sensors losing contact
with the skin. We set a minimum threshold (measurement
period) of 20 minutes of valid data per hour for hourly stress
measures and 2 hours for daily stress measures. Although not
complete, we do feel that this is a reasonable proxy for the stress
experience of that hour and day and a reasonable mitigation
method for missing data.

Inbox use patterns might differ from one setting to another based
on the organization’s policies and norms. For example, the
medical group where this study was conducted encouraged
patients to use EHR portal messages to communicate with
physicians. Simultaneously, system-generated messages and
administrative reminders are kept to a minimum whenever
possible. Thus, the distribution of different message types may
differ from that in other settings. These factors must be
considered when generalizing our findings.

Finally, some physicians might have had panel management
time (ie, time designated by departments specifically for tasks
such as inbox management) incorporated within their work
hours. In this study, we did not have access to data on panel
management time. Thus, we cannot make assumptions about
why inbox work patterns differed among physicians. We can
only report the relationship of these different work patterns with
stress.

Conclusions
This study is the first to use continuous and unobtrusive
measures of stress to evaluate associations between EHR inbox
use and stress among physicians. A total of 3 potentially
modifiable factors were associated with stress: window
switching, inbox work duration, and inbox work outside work
hours. These findings have implications for research and
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organizational policies on stress measurement and EHR inbox management time and EHR system design.
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