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Abstract

Background: Family history information, including information on family members, side of the family of family members,
living status of family members, and observations of family members, plays an important role in disease diagnosis and treatment.
Family member information extraction aims to extract family history information from semistructured/unstructured text in
electronic health records (EHRs), which is a challenging task regarding named entity recognition (NER) and relation extraction
(RE), where named entities refer to family members, living status, and observations, and relations refer to relations between
family members and living status, and relations between family members and observations.

Objective: This study aimed to introduce the system we developed for the 2019 n2c2/OHNLP track on family history extraction,
which can jointly extract entities and relations about family history information from clinical text.

Methods: We proposed a novel graph-based model with biaffine attention for family history extraction from clinical text. In
this model, we first designed a graph to represent family history information, that is, representing NER and RE regarding family
history in a unified way, and then introduced a biaffine attention mechanism to extract family history information in clinical text.
Convolution neural network (CNN)-Bidirectional Long Short Term Memory network (BiLSTM) and Bidirectional Encoder
Representation from Transformers (BERT) were used to encode the input sentence, and a biaffine classifier was used to extract
family history information. In addition, we developed a postprocessing module to adjust the results. A system based on the
proposed method was developed for the 2019 n2c2/OHNLP shared task track on family history information extraction.

Results: Our system ranked first in the challenge, and the F1 scores of the best system on the NER subtask and RE subtask
were 0.8745 and 0.6810, respectively. After the challenge, we further fine tuned the parameters and improved the F1 scores of
the two subtasks to 0.8823 and 0.7048, respectively.

Conclusions: The experimental results showed that the system based on the proposed method can extract family history
information from clinical text effectively.

(JMIR Med Inform 2021;9(4):e23587) doi: 10.2196/23587
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Introduction

Family history information plays an important role in the
diagnosis and treatment of diseases, especially genetic disorders.

Family history information is always embedded in electronic
health records (EHRs) in a semistructured/unstructured format,
which needs to be unlocked by natural language processing
(NLP) technology.
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In order to promote research on family history information
extraction, Harvard Medical School and Mayo Clinic organized
national NLP challenges on family history information
extraction in 2018 and 2019. The family history information
extraction task includes the following two subtasks: (1)
recognizing family members, living status, and observations
and (2) determining which family members the recognized
living status and observations belong to, which correspond to
two fundamental NLP tasks, namely named entity recognition
(NER) and relation extraction (RE). The NER task is usually
regarded as a sequence labeling task, while the RE task is the
subsequent classification task, and they are tackled by pipeline
methods.

For the NER task, traditional machine learning methods, such
as hidden Markov model (HMM), conditional random field
(CRF) [1], and structured support vector machine (SSVM) [2],
and deep learning methods, such as Bidirectional Long Short
Term Memory network (BiLSTM) CRF [3] and its variants
[4,5], have been widely applied. For the RE task, the typical
machine learning methods include support vector machine
(SVM) [6], convolutional neural network (CNN) [7], and
recurrent neural network [8]. The methods mentioned above
have also been applied for clinical entity recognition and RE,
such as the NLP challenges organized by i2b2 in 2009 [9], 2010
[10], 2012 [11], and 2014 [12], the NLP challenges organized
by SemEval in 2015 [13] and 2016 [14], the NLP challenges
organized by ShARe/CLEF in 2013 [15] and 2014 [16], and
the NLP challenges organized by BioCreative/OHNLP in 2018
[17]. Most of these methods process NER and RE tasks in a
pipeline way, which can suffer from error propagation [18].

A number of joint learning methods have been proposed [18,19]
for NER and RE subtasks to avoid error propagation from NER
to RE. In the case of family history information extraction, Shi
et al [17] developed deep joint learning based on the BiLSTM
that won the 2018 BioCreative/OHNLP challenge [20]. Joint
learning methods generally used pretrained neural language
models. Neural language models pretrained on large-scale
unlabeled text have recently been proven to be surprisingly
effective in many downstream tasks, and Bidirectional Encoder
Representation from Transformers (BERT) [21] is one of the
most popular neural language models.

In this study, we proposed a novel graph-based model with
biaffine attention. Inspired by the dependency parsing task
[22,23], we designed a novel graph-based schema to represent
family history information and introduced deep biaffine attention
[22,23] to extract family history information from clinical text.
A system based on the proposed method was developed for the
2019 n2c2/OHNLP challenge on family history information
extraction, and it achieved the highest F1 scores of 0.8823 on
subtask1 and 0.7048 on subtask2.

Methods

Task Description
There were two subtasks in the 2019 n2c2/OHNLP challenge
on family history information extraction. For subtask1, we need
to recognize family members with the side of the family, living
status mentioned in clinical text, and observations in the family
history. All family members can be normalized to standard
forms in Table 1. The property of family members named “side
of family” includes the following three possible values: NA
(“not applicable”), maternal, and paternal. Following the work
of Shi et al [17], we compared two different strategies. The first
strategy recognized three types of entities (family member,
observation, and living status) and determined the “side of
family” property for each family member entity through a
postprocessing module. The second strategy recognized five
types of entities (NA, maternal, paternal, observation, and living
status), directly determining the “side of family” property of
family members.

For subtask2, we need to extract the relations between family
members, observations, and living status. Living status is used
to represent the health status of family members, and it has the
two properties of “Alive” and “Healthy.” Each property was
measured by a real-valued score (yes: 2, NA: 1, and no: 0). The
total living status score of family members was their alive score
multiplied by their health score. We also need to predict the
negation information (Negated and Non_Negated) for each
observation, that is, to judge whether the family members have
certain diseases or not.

Table 1. Normalized family member names.

Normalized family member namesDegree

Father, Mother, Parent, Sister, Brother, Daughter, Son, and Child1

Grandmother, Grandfather, Grandparent, Cousin, Sibling, Aunt, and Uncle2

Data Statistics
We conducted experiments on the corpus provided by the 2018
and 2019 n2c2/OHNLP shared task tracks on family history
information extraction. The training set of the 2019
n2c2/OHNLP shared task together with the test set of the 2018
BioCreative/OHNLP shared task was used as the final training

set of 149 EHRs for model training. The test data set of the 2019
n2c2/OHNLP shared task, including 117 EHRs, was used for
the model test. During model training, we randomly selected a
development set of 14 EHRs from the training set for parameter
optimization. The statistics of the corpus used in this study is
shown in Table 2.
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Table 2. Detailed data set statistics.

Test set, nDevelopment set, nTraining set, nItem

11714149Document

64471770Sentence

—b941128FMa: overall

—55631FM: NAc

—24272FM: maternal

—15225FM: paternal

—1271439OBd

—52596LSe

—971064FM-OB: overall

—57575FM-OB: NA-OB

—23265FM-OB: maternal-OB

—17224FM-OB: paternal-OB

—53605FM-LS: overall

—29334FM-LS: NA-LS

—12145FM-LS: maternal-LS

—12126FM-LS: paternal-LS

aFM: family member.
bNot available.
cNA: not applicable.
dOB: observation.
eLS: living status.

Graph-Based Schema
Similar to the dependency parsing task where each token has a
head token, we transformed the family history information
extraction task to a dependency parsing problem, where a
dummy root (denoted by “ROOT”) was appended to each
sentence at the beginning and arcs denoted links between two
tokens. In the “dependency parsing tree” of a sentence, tokens
in each entity were connected together by an “app” arc from
right to left, two entities with a relation were connected through
linking the right most token by an arc labeled with the entity

type, and tokens not in any entity were connected with the
“ROOT” node by “NULL” arcs. Figure 1 shows an example of
using a “dependency parsing tree” to represent family history
information extraction, where the family member entity
“children” was determined by the “Family Member” arc from
“ROOT” to “children,” the living status entity “generally

healthy” was determined by “generally generally,” and the
relation between “children” and “generally healthy” was

determined by the arc from “children” to “healthy” .

Figure 1. Example of using a graph-based schema to represent family history information.

Model Architecture
As shown in Figure 2, our model contained the following two
main parts: (1) a representation module, which represented input
text using BERT and CNN-BiLSTM and (2) a biaffine attention

module to predict label score vectors, including unlabeled arc
prediction (top left in Figure 2) and arc label prediction (top
right in Figure 2). We have presented them in the following
sections in detail.
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Figure 2. Overview architecture of our model.

Representation Layer
Given a sentence s = x1…xi…xn, where xi is the ith token of s,
we used BERT and CNN-BiLSTM to represent it separately as
follows:

where CNN [4] is first used to get the character-level
representation of each token, and BiLSTM is then used to get
the contextual representation of each token in CNN-BiLSTM.
The final representation of token xi is

Biaffine Attention Layer

Unlabeled Arc Prediction
Considering the ith token and the jth token, we fed their
corresponding representations into a bilinear transformation
extension called a biaffine function to get the score of the arc
from token i (head) to j (dependent) as follows:

where rj
(arc−dep)∈Rp and rj

(arc−head)∈Rp are the outputs of

multilayer perceptron, U(arc)∈Rp×p is a weight matrix controlling

the strength of the arc from token i to j, and u(arc)∈Rp is a bias
vector.

Assume that sj
(arc) = [s1j

(arc);…;snj
(arc)] is the score vector of all

possible heads of the jth token. We adopted the softmax function
to compute the probability distribution dj of all possible heads

of token j and the cross-entropy between the predicted dj and

gold standard dj
(arc) as the loss function as follows:

Thereafter, the best head of token j was determined according
to

Arc Label Prediction
For each unlabeled arc, we need to determine its label. Assume

that sij
(lab)∈R|L| is the label score vector for each arc from token

i to j, where |L| is the size of the label set. We can compute sij
(lab)

as follows:

where rj
(label−dep)∈R|L|×p and rj

(label−head)∈R|L|×p are outputs of the

multilayer perceptron, U(label)∈R|L|×p×p is a third-order tensor,

W(label)∈R|L|×2p is a weight matrix, and u(label)∈R|L| is a bias
vector.

We also adopted the softmax function to compute the probability
distribution dij of all possible labels of the arc from token i to j
and the cross-entropy between the predicted dij and gold standard

dij
(label) as the loss function as follows:
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Thereafter, the best label of the arc from token i to j was
determined by

The total loss function was set as

Postprocessing Rules
We designed a rule-based postprocessing module to adjust the
outputs of our model. It included the following five parts:

1. Converting the output to entities and relations.

(1) Combining all tokens connected by “app” arcs to form
entities and assigning them the label of their last token.

(2) If there was an arc between two entities, but not an “app”
arc, there was a relation between them.

2. Normalizing family members.

(1) Converting family member entities into normalized forms
as shown in Table 1. For example, we converted the recognized
“father’s father” into “grandfather” and “aunt’s son” into
“cousin.”

(2) Excluding unnecessary family members. For example, a
patient’s nonblood relatives, such as “father” in section
“partner’s father,” should be removed. If the family member
“father” belonged to section “partner’s father,” we removed
“father” since father-in-law was not in Table 1.

3. Determining the side of family members when using the
strategy of three types of entities.

(1) If a family member was a first-degree relative, the side of
the family was set as “NA.”

(2) If a family member was in the section “maternal family
history” or “paternal family history,” the side of the family was
set as maternal or paternal.

(3) If there was an indicator (“maternal” or “paternal”) near a
family member, the side of the family was determined by the
indicator.

(4) Otherwise, the side of the family of a family member was
set as “NA.”

4. Determining the living status score of family members
following the work of Shi et al [17].

(1) Determining the scores of the properties “Alive” and
“Healthy” of a family member through searching the keywords
listed in Table 3 from the family member’s living status. If a
living status entity contained some keywords listed in Table 2,
we assigned its property scores with the corresponding scores;
otherwise, both its alive score and healthy score were set as
NA=1.

(2) The total living status score was determined according to
the alive score and healthy score. For a relative with
“Alive=Yes” and “Healthy=Yes,” for example, the living status
score should be 4.

5. Determining the negation information of observations.

(1) Determining the negation information of an observation
through searching keywords (no, never, not, none, negative,
neither, nor, unremarkable, and deny) from the observation’s
context. If the context of an observation contained a keyword
mentioned above, we set its negation information as “Negated;”
otherwise, it was set as “Non_Negated.”

(2) Reversing the negation information of an observation if
there were specific phrases, such as “apart from” and “except
for,” in the observation’s context. For example, the negation
information of the observation entity “Meniere disease” in “there
is no history of hearing loss apart from the father's history of
Meniere disease” was set as “Non_Negated” rather than
“Negated.”

Table 3. Keywords used to determine the properties “Alive” and “Healthy.”

KeywordsProperty

Alive and livingAlive: Yes=2

Dead, die, deceased, death, died, stillborn, and passed awayAlive: No=0

Good, health, without problems, healthy, and wellHealthy: Yes=2

Experimental Settings
The hyperparameters used in our experiments are listed in Table
4, and all other parameters were optimized in the validation set.
The pretrained BERT model we used was [BERT-Base,
Uncased] [24].

We first investigated our model in the following two settings:
(1) a pipeline model that tackled unlabeled arc prediction and
arc label prediction separately and (2) a joint model that tackled
unlabeled arc prediction and arc label prediction simultaneously.
The joint model predicated the arc and label of each token in
our model jointly. The pipeline model first trained one model

to predict the head of each token and then trained another model
to predict the head of each token according to the result of the
predicted head. Thereafter, we compared our model with the
BERT-based model using the same architecture as that of the
model by Shi et al [17], except that we used BERT instead of
word embeddings in the input layer (denoted by
BERT-2BiLSTM). Finally, we looked into the effect of the
sentence representation based on CNN-BiLSTM on our model
and the effect of different data sets on our model. The
performance of all models for the two subtasks was measured
by precision, recall, and F1 score (F1) as follows:

JMIR Med Inform 2021 | vol. 9 | iss. 4 | e23587 | p. 5https://medinform.jmir.org/2021/4/e23587
(page number not for citation purposes)

Zhan et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


where TP denotes the number of true-positive samples, FP
denotes the number of false-positive samples, and FN denotes

the number of false-negative samples. We used the tool provided
by the organizers [25] to calculate them. The tool accepted
partial matching of the observations, for example, the recognized
observation “diabetes” whose gold standard observation is “type
2 diabetes” was considered as a true-positive sample. The source
code is available at GitHub [26].

Table 4. Major hyperparameters.

ValueParameter

256BiLSTMa size

500Arc MLPb size

100Label MLP size

768BERTc size

25Char embedding size

(3, 4, 5)CNNd kernel size

50Char-level CNN size

0.5Dropout

AdamOptimizer

2e-5Learning rate

32Batch size

100Max epoch

aBiLSTM: Bidirectional Long Short Term Memory network.
bMLP: multilayer perceptron.
cBERT: Bidirectional Encoder Representation from Transformers.
dCNN: convolutional neural network.

Results

As shown in Table 5, the performance of the model considering
five types of entities was better than that considering three types
of entities. The joint model considering five types of entities
achieved the highest F1 score of 0.8823 on the NER subtask
and 0.7048 on the RE subtask, which were higher than the values
for the joint model considering three types of entities by 1.20%
on the NER subtask and 1.87% on the RE subtask.

Compared to the pipeline model, the joint model performed
better on both the NER and RE. For example, when considering
five types of entities, the joint model outperformed the pipeline
model by 1.21% in the F1 score on the NER subtask and 1.97%
in the F1 score on the RE subtask. It indicated that error
propagation was partially alleviated in our joint model. When
considering five types of entities, the joint model achieved
higher F1 scores than BERT-2BiLSTM on the NER subtask
and RE subtask by 1.18% and 0.39%, respectively.
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Table 5. Performance of different models.

Five types of entitiesThree types of entitiesModelSubtask

F1 scoreRecallPrecisionF1 scoreRecallPrecision

0.87020.82230.92410.86170.80620.9254PipelineNERa

0.88230.85140.91540.87030.84150.9012JointNER

0.87050.83470.9096———dBERTb-2BiLSTMcNER

0.68510.60510.78950.68270.60050.7909PipelineREe

0.70480.64870.77170.68610.62000.7679JointRE

0.70090.64410.7686———BERT-2BiLSTMRE

aNER: named entity recognition.
bBERT: Bidirectional Encoder Representation from Transformers.
cBiLSTM: Bidirectional Long Short Term Memory network.
dNot available.
eRE: relation extraction.

The performance of our best model on each type of family
member information and relation (except living status not
provided in the test set) is listed in Table 6. On the NER subtask,
our model performed better on observations than family
members by 3.80% in terms of the F1 score. Among the three
types of family members, our model achieved the highest F1
score of 0.8702 for maternal family member and the lowest F1
score of 0.8411 for paternal family member. On the RE subtask,

the F1 score of our model on the family member-living status
relation was nearly the same as that of our model on the family
member-observation relation. Among the family
member-observation relations, our model performed worse on
the maternal-observation relation than the other two types of
relations. Among the family member-living status relations, our
model performed worse on the paternal-living status relation
than the other two types of relations.
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Table 6. Performance of the best model on each type of family member information.

F1 scoreRecallPrecisionTypeSubtask

0.85940.83860.8814FMb: overallNERa

0.86060.85150.8699FM: NAcNER

0.87020.82670.9185FM: maternalNER

0.84110.81080.8738FM: paternalNER

0.89740.85980.9385OBdNER

———fLSeNER

0.88230.85140.9154OverallNER

0.70470.63970.7843FM-OB: overallREg

0.71340.60980.8595FM-OB: NA-OBRE

0.68260.66010.7067FM-OB: maternal-OBRE

0.71130.71500.7077FM-OB: paternal-OBRE

0.70500.65530.7627FM-LS: overallRE

0.70500.65530.7627FM-LS: NA-LSRE

0.72390.73750.7108FM-LS: maternal-LSRE

0.68250.68250.6825FM-LS: paternal-LSRE

0.70480.64870.7717OverallRE

aNER: named entity recognition.
bFM: family member.
cNA: not applicable.
dOB: observation.
eLS: living status.
fNot available.
gRE: relation extraction.

As shown in Table 7, without using the additional data for
BioCreative/OHNLP 2018, our model considering five types
of entities achieved an F1 score of 0.8648 on the NER subtask

and 0.6612 on the RE subtask (the F1 score was significantly
reduced both on the NER subtask and RE subtask), showing
the importance of the data.

Table 7. Performance of our model with different data.

Five types of entitiesThree types of entitiesData setSubtask

F1 scoreRecallPrecisionF1 scoreRecallPrecision

0.86480.84580.88470.85840.84090.87672019NERa

0.87450.83720.9154———c2018+2019bNER

0.88230.85140.91540.87030.84150.90122018+2019dNER

0.66120.60640.72700.65450.59730.72402019REe

0.68100.62650.7459———2018+2019bRE

0.70480.64870.77170.68610.62000.76792018+2019dRE

aNER: named entity recognition.
b2018+2019: the challenge submission performances of our model.
cNot available.
d2018+2019: the performances of our best model after challenge.
eRE: relation extraction.
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Discussion

Effect of Sentence Representation
In order to investigate the effect of sentence representation based
on CNN-BiLSTM on our model, we evaluated the model
without using the representation and obtained an F1 score of
0.8802 on the NER subtask and an F1 score of 0.7059 on the
RE subtask when considering five types of entities. The sentence
representation based on CNN-BiLSTM can bring improvement
in the NER subtask, but a little loss in the RE subtask. Possibly,
we can only share BERT on NER and RE for further
improvement.

Impact of Different Decoders on the NER Subtask
Traditional approaches regarded the NER task as a sequence
labeling task, in which each token was assigned with a combined
label of entity boundary and type. The entity boundaries were
represented by the BIO schema, where “B” indicates the

beginning of an entity, “I” indicates the inside of an entity, and
“O” indicates the outside of an entity. Using a graph schema,
we can also convert NER into a graph in the following way: (1)
connect all tokens with “ROOT,” that is, the heads of all tokens
are set to 0 and (2) set the label of the nonentity token to
“NULL,” set the label of the last token in the entity to the entity
type, and set the label of the remaining token in the entity to
“app.”

We compared different decoders, that is, CRF for sequence
labeling, biaffine for NER only (biaffine-NER), and biaffine
for joint NER and RE (biaffine-Joint). As shown in Table 8,
the performance of biaffine-NER was slightly better than that
of CRF, while biaffine-Joint was considerably better than the
other two models. Although the head prediction was not directly
related to the NER task, the arcs of different types among tokens
provided global information that was beneficial to the NER
task.

Table 8. Comparison of different decoders on the named entity recognition subtask.

Five types of entitiesThree types of entitiesDecoder

F1 scoreRecallPrecisionF1 scoreRecallPrecision

0.87170.83900.90700.86390.83160.8989CRFa

0.87290.85700.88950.86410.83100.9001Biaffine-NERb

0.88230.85140.91540.87030.84150.9012Biaffine-Joint

aCRF: conditional random field.
bNER: named entity recognition.

Error Analysis
We performed error analysis on our model considering five
types of entities in the development data set. In the case of the
NER subtask, 88.24% of errors were boundary errors because
of wrong “app” arc prediction, while the remaining 11.76% of
errors were type errors that have a correct boundary but wrong
entity type. For example, in the sentence “The paternal
grandmother, age 53, has wind sucking attributed to not having
intestinal during her life,” the paternal entity “grandmother”
with the observation entity “wind sucking” was wrongly
recognized as a family member entity. In the RE subtask, all
errors were caused by incorrect entities. For example, in the
sentence “The patient’s father is 43 years old and healthy. His
father is 72 years old and was diagnosed with esophageal cancer
at age 70,” the family member entity “grandfather” with the
observation entity “esophageal cancer” was wrongly extracted
as the family member entity “father” with the observation entity

“esophageal cancer” as our model could not understand that
“his” refers to “the patient’s father,” which needs strong indirect
relative reasoning.

Limitations and Future Work
The rule-based postprocessing module in our system cannot
handle all cases properly, as shown by the example in the error
analysis section. In future work, we will try to solve indirect
relative reasoning for further improvement.

Conclusions
In this study, we proposed a novel graph-based model with
biaffine attention, where a graph-based schema was design to
represent entities and relations regarding family history in a
unified way and deep biaffine attention was adopted to extract
the entities and relations from clinical text. Our system based
on the proposed model achieved the highest F1 score of the
challenge to date.
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