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Abstract

Background: Family history information is important to assess the risk of inherited medical conditions. Natural language
processing has the potential to extract this information from unstructured free-text notes to improve patient care and decision
making. We describe the end-to-end information extraction system the Medical University of South Carolina team developed
when participating in the 2019 National Natural Language Processing Clinical Challenge (n2c2)/Open Health Natural Language
Processing (OHNLP) shared task.

Objective: This task involves identifying mentions of family members and observations in electronic health record text notes
and recognizing the 2 types of relations (family member-living status relations and family member-observation relations). Our
system aims to achieve a high level of performance by integrating heuristics and advanced information extraction methods. Our
efforts also include improving the performance of 2 subtasks by exploiting additional labeled data and clinical text-based embedding
models.

Methods: We present a hybrid method that combines machine learning and rule-based approaches. We implemented an end-to-end
system with multiple information extraction and attribute classification components. For entity identification, we trained bidirectional
long short-term memory deep learning models. These models incorporated static word embeddings and context-dependent
embeddings. We created a voting ensemble that combined the predictions of all individual models. For relation extraction, we
trained 2 relation extraction models. The first model determined the living status of each family member. The second model
identified observations associated with each family member. We implemented online gradient descent models to extract related
entity pairs. As part of postchallenge efforts, we used the BioCreative/OHNLP 2018 corpus and trained new models with the
union of these 2 datasets. We also pretrained language models using clinical notes from the Medical Information Mart for Intensive
Care (MIMIC-III) clinical database.

Results: The voting ensemble achieved better performance than individual classifiers. In the entity identification task, our
top-performing system reached a precision of 78.90% and a recall of 83.84%. Our natural language processing system for entity
identification took 3rd place out of 17 teams in the challenge. We ranked 4th out of 9 teams in the relation extraction task. Our
system substantially benefited from the combination of the 2 datasets. Compared to our official submission with F1 scores of
81.30% and 64.94% for entity identification and relation extraction, respectively, the revised system yielded significantly better
performance (P<.05) with F1 scores of 86.02% and 72.48%, respectively.

Conclusions: We demonstrated that a hybrid model could be used to successfully extract family history information recorded
in unstructured free-text notes. In this study, our approach to entity identification as a sequence labeling problem produced
satisfactory results. Our postchallenge efforts significantly improved performance by leveraging additional labeled data and using
word vector representations learned from large collections of clinical notes.
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Introduction

Family history (FH) information included in the electronic health
record (EHR) is important to assess the risk of inherited medical
conditions. For certain diseases such as breast cancer [1,2] and
colorectal cancer [3,4], FH is an important risk factor. FH
information has been recorded in both structured and narrative
free text, but often documented only in the latter. Polubriaginof
et al [5] reported that free-text notes contained more
comprehensive information than structured data. Natural
language processing (NLP) has the potential to extract this
information from unstructured free-text notes to improve patient
care and decision making.

This manuscript describes the end-to-end information extraction
(IE) system the Medical University of South Carolina (MUSC)
team developed when participating in the 2019 National Natural
Language Processing Clinical Challenge (n2c2)/Open Health
Natural Language Processing (OHNLP) track on FH extraction
[6]. This shared task is built on the BioCreative/OHNLP 2018
FH extraction task [7]. It involves (1) identifying mentions of
family members and observations in EHR text notes and (2)
recognizing the relations between family members, observations,
and living status.

Entity identification and relation extraction are often considered
subtasks of IE. The semantic types of concepts of interest have
been defined for different target tasks. Named entity recognition
(NER) was introduced in the sixth of a series of Message
Understanding Conferences [8] and Automatic Content
Extraction programs [9]. The goal of NER is to extract and
classify proper named or specialized entities into predefined
categories [8]. Relation extraction deals with a pair of concepts
[10] (ie, binary relations) or higher-order relations, which are
n-ary relations among n typed entities [11]. It aims to determine
whether entities are in a relation and how they are semantically
related. Medical concept extraction is closely related to our
target task and has advanced from the general text NER by
sharing the algorithms and features. It has aimed to extract
medical information such as disease diagnoses, medications,
laboratory data, and appliances from EHR text notes [12-16].

Several studies focusing on FH information have been reported.
Goryachev et al [17] created a rule-based system for identifying
family members and their related diagnoses. They observed that
FH was often mentioned intermixed with the patient's own
medical history, making this task challenging. Bill et al [18]
developed an NLP system for extracting FH information from
History and Physical notes. Their NLP pipeline identified family
member and observation entities, relations between them, and
attributes such as vital status and age. FH information extraction
was the focus of the BioCreative/OHNLP 2018 task [7]. The
best performance on this shared task was achieved by Shi et al
[19] with F1 scores of 89.01% on subtask 1 and 63.59% on

subtask 2. They proposed joint modeling of entities and relations
by 2 stacked neural networks with shared parameters.

The goal of this study was to extract the health information of
patients and their relatives from unstructured EHR notes. Our
system aims to achieve a high level of performance in this task
by integrating heuristics and advanced information extraction
methods. We approach entity identification as a sequence
labeling problem. We applied a bidirectional long short-term
memory (Bi-LSTM) [20] algorithm, a widely used structured
prediction algorithm. The input of the LSTM network included
vector representations generated by Embeddings from Language
Models (ELMo) [21] contextual embeddings. We hypothesized
that applying the LSTM to this problem can yield accurate FH
information extraction. Our voting ensemble is created based
on the fact that the LSTM algorithm is not deterministic; that
is, every time the model is trained, the results vary. The
proposed ensemble can provide efficient and convenient
integration of individual LSTM models. For relation extraction,
we implemented online gradient descent (OGD) [22] models
with lexical features.

This study's contribution also includes improved performance
on both subtasks by exploiting additional labeled data and
clinical text–based embedding models. We added other labeled
data used in the previous shared task to the training set. We
retrained the classifier using a larger set of training data. We
also used word embeddings pretrained with large quantities of
clinical text. Our experimental results show that these efforts
significantly improve the performance of both subtasks,
especially relation extraction.

The following sections describe the details of the 2 subtasks
and discuss IE models developed to recognize the entities and
their relations from EHRs. We then present the experimental
results and investigate the performance improvements resulting
from our postchallenge efforts.

Methods

Our research focuses on the extraction of mentions of family
members and related information recorded in EHR text notes.
The first subtask, entity identification, involves detecting 2 types
of entities: family members and observations. Only relatives in
the first degree (eg, ‘Mother’ and ‘Son’) and second degree (eg,
‘Grandparent’ and ‘Cousin’) are annotated [7]. Other relatives
such as ‘Spouse’ and ‘Nephew’ are excluded. The normalized
name and the side of family are annotated as attributes of each
family member. Observation (disease) entities in the family
history are also annotated. The second subtask, relation
extraction, is to determine the existence of relations between
family members and other information (ie, living status or
observation). Two types of relations were therefore annotated:
family member-living status and family member-observation.
For relations between a family member and living status, the
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score representing the health status of the family member is
annotated. Negation information is annotated to indicate whether
the observation is negated in the relation between a family
member and the associated observation.

Data Description
Clinical text notes representing patient FH information were
selected from the Mayo Employee and Community Health

cohort [7]. Table 1 shows the number of annotated entities and
relations in the training set. The training set includes 99 clinical
notes with 801 family member and 978 observation entities.
Living status entities are less common and account for about
half of the number of family members. For the observation
category, the number of relations is less than the number of
entities. This means that some observations are not related to
any family member.

Table 1. Number of annotated entities and relations in the training set.

RelationsEntitiesVariable

N/Aa801Family member

425415Living status

753978Observation

aN/A: not applicable because relations between family members were not annotated.

Entity Identification Methods
We addressed entity identification with rule-based and machine
learning–based approaches. We describe each approach and
present a voting ensemble–based method.

Rule-Based System for Family Member Entities
Our rule-based system for family member entity recognition
uses a sliding window with simple term matching and
part-of-speech filtering. We used NLTK [23] (a Python Natural
Language Toolkit) to split each note into sentences and then
each sentence into tokens annotated with part-of-speech tags.
Each token matching a relevant family member term (eg,
“daughter”, “son”, or “child”) that was also tagged as a noun
(ie, NN, NNP, or NNS) was flagged as a valid mention.

Machine Learning–Based Models
We trained sequence labeling models using Bi-LSTM [20,24]
to assign a semantic category label to each word in a sequence.
Bi-LSTM can combine both forward and backward information
of each word.

For this sequence labelling problem, we tokenized the input
text. The training data were annotated with BIO token tags (B:
beginning, I: inside, or O: outside of an entity; eg,
“B-observation” for a token at the beginning of an observation
mention). We also included the outputs of the 2 external
resources (the 2010 Informatics for Integrating Biology and the
Bedside [i2b2] [25] and MetaMapLite [26]) described in the
following paragraphs as inputs to the LSTM network. Similar
to the word token, the prediction from each external resource
was also encoded with BIO tags.

First, we used the medical concept extraction model trained
with the 2010 i2b2 challenge data [25]. The training set
containing 349 text documents was used to create a Bi-LSTM
model that identified medical problem, treatment, and test
concepts from the FH extraction task corpus. We also used
MetaMapLite [26] (2019 AA version) to identify Unified

Medical Language System (UMLS) Metathesaurus concept
mentions along with their semantic type. We aligned MetaMap
outputs with the entity types of subtask 1 to choose the relevant
semantic types. Table 2 lists the 10 most frequently aligned
UMLS semantic types used by MetaMap for observation entity
extraction. The first and second columns display semantic type
names and abbreviations. The third column shows the number
of observation entities from the training corpus aligned with
each semantic type. The last column shows the mapping
probability for each semantic type and observation category.
For instance, “Disease or Syndrome” was mapped to the
observation category with a probability of 79.89%. We used
the training data to automatically create these heuristics. We
used all (21) semantic types with a mapping probability of over
70%. The output semantic type was converted to a family
member or observation entity, such as B-family_member or
I-observation.

Our Bi-LSTM model incorporated 2 embedding layers for
pretrained word embeddings. We used dependency-based
embeddings by Komninos and Manandhar [27] as static word
embeddings. These embeddings were trained using the structure
of dependency graphs. They were built with the English
Wikipedia Dump of August 2015. As context-dependent
embeddings, we used the ELMo [21] model trained on a dataset
of 5.5 billion tokens from Wikipedia and the news crawl corpus.
The output of each external resource (the 2010 i2b2 and
MetaMapLite) was represented as a one-hot vector and mapped
to a 10-dimensional embedding. The concatenation of these
embeddings (2 pretrained embeddings and 2 one-hot vectors)
was fed to the LSTM layer.

To fine-tune the parameters of LSTM models, we randomly
selected 10 documents from the training set (about 10% of the
training set) as held-out data. We tuned the hyperparameters to
maximize the F1 score with the held-out data. After
experimenting with different dropout [28] rates of 10%, 20%,
30%, 40%, and 50%, the models were trained using the Nadam
[29] optimizer for 30 epochs with a dropout rate of 50%.
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Table 2. The 10 most frequent Unified Medical Language System (UMLS) semantic types aligned with labeled observations in the training set.

Probability, %CountAbbreviationSemantic type name

79.89433dsynDisease or syndrome

78.20165neopNeoplastic process

74.6859mobdMental or behavioral dysfunction

70.0028sosySign or symptom

90.0027cgabCongenital abnormality

83.3310anabAnatomical abnormality

72.738bdsyBody system

100.007tisuTissue

83.335cellCell

80.004phsfPhysiologic function

We trained 10 different Bi-LSTM models that use the same
hyperparameters but differ in random weight initialization and
shuffling of training data. Then, we created a voting ensemble
method that combined the predictions of all Bi-LSTM trials.
Although these LSTM models were trained with the same
hyperparameters, we hypothesized that they can be contributory
to the voting ensemble in terms of diversity. Reimers and
Gurevych [30] showed that nondeterministic LSTMs can even
lead to statistically significant differences between multiple
runs.

The voting ensemble collected candidate entities that received
more votes than the voting threshold. When there were
overlapping text spans on 2 different entities, the entity with
more votes was selected. For overlapping entities with the same
vote count, the one produced by the higher-ranking model was
selected. To determine the ranking of 10 individual models, we
measured how each model agreed with the other 9 models.
Rankings were based on F1 scores measured with other models.
The higher the average F1 score, the higher the model ranking.

Heuristic Rules for Family Member Attributes
We assigned each family member entity a normalized form
using a simple dictionary-based mapping. For example, a family
member with the text “his dad” was assigned ‘Father.’ We
changed the text to lower case and removed the numeric values
(eg, “three uncles” becomes 'Uncle'). We also looked at the
preceding words to search for another family member term that
modified the target entity. When such a term was found,
normalization was performed taking it into account. For
example, in the phrase “mother has sister,” the family member
‘sister’ was normalized to ‘Aunt.’

Our rule-based system looked at words in sentences near the
family member and considered the degree of relatives to
determine the family side. For each family member who was
not a first-degree relative, the side of family (ie, ‘Paternal’ or
‘Maternal’) was assigned. For each label, we compiled the list
of cue words indicating the side of family. For example, the
cues for Paternal included ‘paternal,’ ‘patient's father,’ ‘father
had,’ and ‘paternal family history.’ First, we searched for cue
words within the entity term itself. If no cue word was found,
the search was expanded to sentence boundaries.

Relation Extraction Methods
Subtask 2 aimed to identify related pairs of 3 entity types: family
members, observations, and living status. Two types of relation
exist between the 2 entities: family member-living status
relations and family member-observation relations. We trained
2 relation extraction models. The first model determined the
living status of each family member. The second model
identified observations associated with each family member.

For 2 binary-class models, we defined lexical features: words
contained in each concept, 7 preceding and 7 following words
for each concept, and the words between the 2 concepts. We
also created 1 feature to measure the number of family member
entities appearing between the pair. We created 2 binary-class
OGD (also called stochastic gradient descent) [22] classifiers
using the Vowpal Wabbit [31] online learning library. This
online learning algorithm is getting more attention recently in
large-scale machine learning problems. Using the default
hyperparameters, each model was trained for 100 iterations.

Training examples included positive examples (participating in
a relation) and negative examples (pairs of entities that are not
related to each other). Pairs of reference standard entities were
used to train the classifiers. Entity pairs identified by the
aforementioned voting ensemble were used as test examples.
We filtered out the negative examples when there was a carriage
return character (‘\n’) between the pair.

For living status relations, once we extracted phrases that
represent the living status of each family member, we assigned
scores for the alive and healthy attributes. We compiled not
alive (ie, dead) and healthy cues from the training data and
calculated the score using the text phrase of each living status
entity. If our algorithm detected any trigger phrase of not alive
(eg, “deceased,” “passed away,” and “no longer living”), the
algorithm assigned a score of 0. Otherwise, if the family member
was in good health (eg, “good general health,” “healthy,” and
“alive and well”), the algorithm assigned a score of 4. If no cues
of not alive or healthy were found, a score of 2 was assigned.

For each observation entity in the relation, we needed to
determine whether it was negated or not. We used FastContext
[32], an efficient and scalable Java implementation of the
ConText algorithm [33] with customized trigger terms. After
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manually analyzing the examples from the training data, we
added new trigger terms such as “not aware of,” “not
significant,” and “no family history of.” For this binary
classification, the algorithm detected the negated contextual
attribute in the sentence for the observation entity and assigned
1 of 2 values: Negated or Non_Negated.

In summary, we built an end-to-end system with multiple IE
and attribute classification components, as shown in Figure 1.
The architecture includes a voting ensemble with Bi-LSTM
models that accept the outputs of the MetaMap and 2010 concept
models, an OGD model that extracts relations between entities,
and postprocessing modules for family side, name normalization,
living status, and negation classification.

Figure 1. End-to-end system architecture. Bi-LSTM: bidirectional long short-term memory; EHR: electronic health record; i2b2: Informatics for
Integrating Biology and the Bedside; OGD: online gradient descent.

Improvements to Both Subtasks After the Shared Task
Challenge
This subsection describes further improvements to both entity
identification and relation extraction as postchallenge efforts.
We made 2 major changes in the pipeline system. The first
revision was the addition of labeled examples to the training
data. We used another text collection created for the 2018
BioCreative/OHNLP shared task [7] to build new Bi-LSTM
and OGD models. The combined dataset included the original
99 clinical notes and 50 text files used in the 2018
BioCreative/OHNLP test set. Extending from the previous
models used for submission to the shared task, we investigated
how well the new model trained with the union of 2 datasets
performed. We trained the new models by reusing the classifier
configuration optimized with the 2019 training data.

Next, we used word embeddings trained with clinical text to
construct vector representations of words. We pretrained 2
language models. One was trained using fastText [34] as static
word embeddings, and the other was trained using ELMo [21]
contextual embeddings. We used all clinical notes from the
Medical Information Mart for Intensive Care (MIMIC-III)
clinical database (version 1.4) [35]. We pretrained ELMo
embeddings by following the default hyperparameter setting
used for other publicly available ELMo models [21]. Pretraining
lasted about 3 months, and it was manually stopped after
1,073,750 iterations. This process was performed on a NVIDIA
Tesla P4 GPU.

From these pretrained language models, we generated word
vectors as input features. Then, we created new Bi-LSTM
models for entity identification. As with the previous models,
these models were trained for 30 epochs with 50% dropout to
the recurrent units. Naturally, the predictions of these new
Bi-LSTM models were used to create test instances that paired

the 2 entities for relation extraction. In the next section, we
present the experimental results from our official submission
and revised systems.

Results

The input for subtask 1 (entity identification) was clinical text
notes. The entity annotation file for subtask 1 contains family
member and observation entities, one entity per line. The family
side is provided for each family member entity. For subtask 2
(relation extraction), entity annotations were additionally used
as input. The relation annotation file for task 2 contains 2 entities
with their relation, 1 relation per line. Each living status relation
has a score to represent living status. In each observation
relation, the negation of the observation entity was identified.

Evaluation Metrics
We measured recall, precision, and F1 score (harmonic mean
of recall and precision with equal weight). We used the 2019
n2c2/OHNLP shared task [6] evaluation script to calculate
performance measures. To be considered a true positive, the
entity attributes must also match. For observation entities, a
match was counted if the reference annotation contained 1 or
more words in common with the system-detected concept.

Results for the 2019 n2c2/OHNLP Shared Task
The 2019 n2c2/OHNLP shared task corpus consisting of a test
set of 117 clinical notes was used for the evaluation. First, we
present the results generated by systems implemented for the
2019 n2c2/OHNLP shared task submission.

Table 3 shows the microaveraged overall precision, recall, and
F1 score for each of our submissions. The following 3 systems
were submitted for subtask 1: System 1.1 was a rule-based
system for collecting family member entities and a voting
ensemble with a voting threshold of 5 for extracting observation
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entities, system 1.2 was a voting ensemble consisting of 10 trials
with a voting threshold of 5 for extracting family member and
observation entities, and system 1.3 was a voting ensemble with

a voting threshold of 6. Among them, system 1.2 achieved the
highest F1 score, 81.30%, in subtask 1.

Table 3. Results produced for the 2019 National Natural Language Processing Clinical Challenge (n2c2)/Open Health Natural Language Processing
(OHNLP) shared task.

F1 scoreRecall scorePrecision scoreSystem

Subtask 1 (entity)

78.7486.0172.61System 1.1

81.3083.8478.90System 1.2

81.1381.9880.29System 1.3

Subtask 2 (relation)

64.9464.4165.48System 2.1

64.5362.7866.37System 2.2

63.7359.7968.23System 2.3

Similarly, we submitted 3 systems for subtask 2: System 2.1
was an OGD model with input pairs generated from predictions
of the voting ensemble with a voting threshold of 4, system 2.2
was an OGD model with outputs from system 1.2, and system
2.3 was an OGD model with outputs from system 1.3. System
2.1 achieved a higher F1 score than the others. The range of
vote thresholds for task submission was selected after
experimenting with values from 1 to 10 on the validation set.

The highest F1 score was obtained in subtask 2 with a voting
threshold of 5 on the validation set.

Improved Results After the Shared Task
We report the results of further improvements for both subtasks
as described earlier. The contributions of features or data are
shown in Table 4. Systems from rows 1 to 3 were developed
for the 2019 n2c2/OHNLP challenge, and rows 4 and 5 were
postchallenge efforts.

Table 4. Improved performance by feature or data accumulation.

F1 scoreRecall scorePrecision scoreSystem

Subtask 1 (entity)

81.2684.2878.50(1) word

81.4884.3478.87(2) + MetaMap, i2b2a 2010

81.3083.8478.90(3) + voting

85.1386.6983.63(4) + 2018 data (postchallenge)

86.0287.2484.83(5) + MIMICb embeddings (postchallenge, [2018 + 2019]mim)

Subtask 2 (relation)

63.1461.1465.35(1) word

63.6661.2466.34(2) + MetaMap, i2b2 2010

64.5362.7866.37(3) + voting

71.4670.7972.15(4) + 2018 data (postchallenge)

72.4871.7073.27(5) + MIMIC embeddings (postchallenge, [2018 + 2019]mim)

ai2b2: Informatics for Integrating Biology and the Bedside.
bMIMIC: Medical Information Mart for Intensive Care.

As a baseline, only sequences of word tokens were used as input
to train the Bi-LSTM models (row 1). The system was enhanced
with the output of MetaMapLite [26] and the 2010 i2b2 [25]
concept model as inputs (row 2). For rows 1 and 2, we report
the average value between the 10 trials of each Bi-LSTM model.
From row 3, the results of applying the voting ensemble are
displayed. For comparison, we report results with a voting

threshold of 5. Row 4 shows a further performance improvement
when the 2018 BioCreative/OHNLP shared task [7] data were
added. This additional training example achieved substantial
performance improvements in both subtasks. Compared to the
submission for the challenge (row 3), the recall increased by
8.01% (70.79%-62.78%) in subtask 2. MIMIC embeddings
(row 5) allowed for an improvement over general text
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embeddings. They led to F1 scores of 86.02% and 72.48% for
subtask 1 and subtask 2, respectively. We used a chi-squared
test to measure statistical significance. The significance level
was set to .05. The performance of the full-featured system,
called (2018 + 2019)mim, (row 5) was significantly better than
other systems with P values <.001 except the system with the
2018 BioCreative/OHNLP shared task data (row 4).

Table 5 displays the precision, recall, and F1 scores of relation
categories produced by the (2018 + 2019)mim system. F1 scores

for living status relations were 84.62% and 74.72% for subtask
1 and subtask 2, respectively. It was more challenging to
determine whether the pair of family member and observation
was related. For observation relations, the F1 score was 71.79%,
which was lower than for living status relations. A manual
analysis of labeled examples from the training set revealed that
distant pairs of family member and observation appeared more
often than living status entities. In addition, there were more
unrelated entity pairs (ie, negative examples) because many
observation entities were not involved in the relation.

Table 5. Results of full-featured system for each relation category.

F1 scoreRecall scorePrecision scoreSystem

Subtask 1 (entity)

84.6286.2183.08Living status

86.9487.9285.99Observation

86.0287.2484.83Overall

Subtask 2 (relation)

74.7276.2273.28Living status

71.7970.3773.27Observation

72.4871.7073.27Overall

Discussion

The experimental results show that our end-to-end pipeline
system substantially benefited from the combination of the 2
datasets. Another finding is that a voting ensemble could achieve
better performance than individual classifiers. This section
analyzes the improvements resulting from the voting ensemble
method. We also describe the detailed results of attribute
classification.

Voting Ensemble Analysis
We analyzed the performance of the voting ensemble at each
voting threshold. Figure 2 shows the results of the voting

ensembles with 5 trials of the (2018 + 2019)mim system. The
graphs on the left and right represent the results of subtask 1
and subtask 2, respectively. The y-axis scale of each graph does
not start at zero to focus on the value ranges of interest. The
results with voting thresholds ranging from 1 to 10 are presented.
The curves show that as the threshold gets higher, precision
increases but recall simultaneously decreases. When the
threshold was set to 3, the ensemble achieved the highest F1

score (86.07%) in subtask 1. For subtask 2, the ensemble
obtained an F1 score of 72.48% at the voting threshold of 5.

Figure 2. Results of the voting ensemble for (A) subtask 1: entity identification and (B) subtask 2: relation extraction.
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Attribute Classification Analysis
We applied heuristics to determine the attributes of entities. As
the entity-level reference standard in the test set was being
withheld, we evaluated the performance of these rule-based
methods on the training set. Table 6 shows the accuracy of the
4 classification tasks with the given reference standard concepts.
Accuracy was computed as the percentage of correct predictions
among total instances. The accuracy of family member
normalization was 94.01%. Our classifier rarely failed to assign

normalized terms to some entities. For example, our dictionary
did not contain normalized terms for “twin” and “paternal
relatives.” Most errors occurred when the normalized term did
not match the actual relationship with the patient. For example,
although it said “brother” in the text, it sometimes referred to
the relationship with the patient’s parents, not the patient
himself. The classifier often could not determine the family
member as the patient's “Uncle.” This type of error was
propagated in family-side decisions because the family-side
information should only be provided to first-class relatives.

Table 6. Accuracy of attribute classification of given reference standard concepts.

Accuracy (%)Task

94.01Normalization of family members

95.38Determination of the side of family

92.53Assessment of family member’s living status

98.06Detection of negation information for observations

In addition to the entity-level assessment described in the
previous paragraph, we conducted another document-level
evaluation of the entity attributes against the test set. To measure
the performance impact of each attribute classification, the
system was tested by ignoring one attribute of the entity. Table
7 shows the results of the 2 subtasks on the test set by the (2018
+ 2019)mim system. We report results for living status and
negative information only for subtask 2 because they are not
considered in subtask 1. A match is made if the system correctly

detects an entity while the attribute is ignored. Compared to the
default evaluation, which considered all attributes, it led to
higher values for all metrics. Ignoring living status scores had
the biggest impact. If the living status of every family member
was correctly determined, the F1 score could be increased by
about 2%. Negative information had the least impact because
it only applied to observations and might have been determined
more accurately than other attributes.

Table 7. Performance impact of attribute classification.

F1 scoreRecall scorePrecision scoreSystem

Subtask 1 (entity)

86.0287.2484.83Default evaluation

87.4989.1185.92Ignoring the side of the family

N/AaN/AaN/AaIgnoring the living status

N/AbN/AbN/AbIgnoring negation

Subtask 2 (relation)

72.4871.7073.27Default evaluation

74.4873.6475.33Ignoring the side of the family

74.5873.7875.40Ignoring the living status

73.3772.9073.85Ignoring negation

aN/A: not applicable as the living status information was removed from evaluation for subtask 1.
bN/A: not applicable as the negation information was removed from evaluation for subtask 1.

Limitations
We observed in this study that determining the voting threshold
can be challenging for both subtasks. Our results showed that
the best performing voting ensemble for one task did not achieve
the highest accuracy for the other task. More efficient ensemble
approaches will be desired to provide more diversity between
individual models and reduce the error rate through optimal
control of agreements among them. In the relation extraction
task, the negative examples were filtered out when there was a

carriage return character between the pairs, because they rarely
appeared in the training data (about 2.6%). This instance pruning
would make it impossible to find pairs of entities that existed
in different sentences but were related. When training new
models by combining 2 corpora, we reused the classifier
configuration optimized for the 2019 n2c2 model. New
development data randomly selected from both corpora would
be needed for hyperparameter tuning.
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Conclusions
We presented a hybrid method that combined machine learning
and rule-based approaches developed as part of the 2019
n2c2/OHNLP track on FH extraction [6]. The MUSC team
ranked 3rd and 4th among the participating teams in subtask 1
and subtask 2, respectively. This study demonstrated that our
end-to-end pipeline system could successfully extract FH
information recorded in unstructured narrative free text. Our
experimental results confirmed that the voting ensemble of
multiple trials outperformed the individual classifiers that
produced nondeterministic results. Our postchallenge efforts
significantly improved performance by leveraging additional

labeled data and using word vector representations learned from
large collections of clinical notes.

Further research includes creating machine learning–based
classifiers that will replace rule-based systems that determine
the attributes of entities. They could lead to more accurate results
on attribute classification as reported in several studies carried
out for similar clinical NLP tasks [36-39]. Another direction
for future work is to exploit unlabeled data to collect texts from
the family history section. For efficient extension of the amount
of training data, semisupervised learning can be employed with
an instance selection method that uses text similarity measures
to consider representativeness and diversity [40].
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