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Abstract

Background: Suicide is a serious public health issue, accounting for 1.4% of all deaths worldwide. Current risk assessment
tools are reported as performing little better than chance in predicting suicide. New methods for studying dynamic features in
electronic health records (EHRs) are being increasingly explored. One avenue of research involves using sentiment analysis to
examine clinicians’ subjective judgments when reporting on patients. Several recent studies have used general-purpose sentiment
analysis tools to automatically identify negative and positive words within EHRs to test correlations between sentiment extracted
from the texts and specific medical outcomes (eg, risk of suicide or in-hospital mortality). However, little attention has been paid
to analyzing the specific words identified by general-purpose sentiment lexicons when applied to EHR corpora.

Objective: This study aims to quantitatively and qualitatively evaluate the coverage of six general-purpose sentiment lexicons
against a corpus of EHR texts to ascertain the extent to which such lexical resources are fit for use in suicide risk assessment.

Methods: The data for this study were a corpus of 198,451 EHR texts made up of two subcorpora drawn from a 1:4 case-control
study comparing clinical notes written over the period leading up to a suicide attempt (cases, n=2913) with those not preceding
such an attempt (controls, n=14,727). We calculated word frequency distributions within each subcorpus to identify representative
keywords for both the case and control subcorpora. We quantified the relative coverage of the 6 lexicons with respect to this list
of representative keywords in terms of weighted precision, recall, and F score.

Results: The six lexicons achieved reasonable precision (0.53-0.68) but very low recall (0.04-0.36). Many of the most
representative keywords in the suicide-related (case) subcorpus were not identified by any of the lexicons. The sentiment-bearing
status of these keywords for this use case is thus doubtful.

Conclusions: Our findings indicate that these 6 sentiment lexicons are not optimal for use in suicide risk assessment. We propose
a set of guidelines for the creation of more suitable lexical resources for distinguishing suicide-related from non–suicide-related
EHR texts.

(JMIR Med Inform 2021;9(4):e22397) doi: 10.2196/22397
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Introduction

Background
The World Health Organization reports that suicide accounts
for 1.4% of all deaths globally and is the 18th leading cause of

death worldwide [1]. Prior history of suicide attempts is the
most robust risk factor for completed suicide, and those
requiring hospitalization are at the most serious end of the
spectrum [2]. However, current methods for assessing a patient’s
risk of attempting suicide are reported to perform little better
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than chance [3]. Therefore, new methods to understand dynamic
features from electronic health records (EHRs) before a
hospitalized suicide attempt, distinguishing such periods from
clinical narratives at other times, would be of potential clinical
utility [4].

EHRs contain structured patient data (eg, age, sex, and ethnicity)
and unstructured text that make up the clinical narrative (eg,
out-patient letters, event notes from meetings and phone calls
with patients or carers, and discharge summaries). Unstructured
text is of particular importance in mental health, as much of
what is recorded about patients follows face-to-face assessments
by clinicians, whose observations and judgments about a
patient’s experiences and presentation are inevitably influenced
by their own training, experience, and implicit biases, and these
judgments have a degree of subjectivity when they record this
in the clinical narrative [5].

The automatic identification and analysis of subjective
judgments in text is known as sentiment analysis [6,7]. This
process typically involves the classification of words as
expressing either positive or negative polarity, and numerous
resources have been developed for this task in nonclinical
domains, such as customer reviews [8-11] and social media
[12-14]. Research efforts have also focused on the analysis of
sentiment within health care–related texts, such as patient
feedback forms [15,16], online forums [17], and social networks
[18,19].

Recent work has sought to assess the utility of sentiment
lexicons for the analysis of subjective judgments in clinical
narratives. McCoy et al [20] used a general-domain sentiment
analysis tool to extract word polarity features to model the risk
of readmission and mortality. The same tool was later used to
examine the correlation between word polarity and the risk of
suicide attempts [21]. Most recently, Weissman et al [22] carried
out a thorough evaluation of six general-domain sentiment
analysis tools in predicting the risk of in-hospital mortality of
patients in intensive care, tracking the progression of sentiment
in clinical notes over time. They concluded that general-domain
sentiment tools are not suited to the processing of clinical texts
and that domain-specific resources need to be developed. Work
in this direction is beginning to emerge [23-25].

These studies have mostly focused on testing the correlation
between automatically extracted sentiment values and specific
clinical outcomes. However, to our knowledge, there has been
no close examination of the terms mapped by general-domain
sentiment analysis tools when applied to clinical texts.

Objectives
Focusing on words with negative and positive polarity, we aimed
to determine the coverage of 6 general-purpose sentiment
lexicons when applied to a corpus of EHR texts of 2 groups of
patients seen by mental health services: (1) patients who had
attempted suicide and were hospitalized (cases) and (2) patients
with no history of attempted suicide (controls). Adopting
methods used in corpus linguistics, we first sought to identify

the words that are most representative of the clinical narratives
of cases and controls. We then aimed to test the coverage of
each sentiment lexicon by comparing these 2 sets of
representative words. We sought to ascertain the extent to which
these 2 sets of representative words contained general-purpose
sentiment words and to what extent these 2 sets contained
additional sentiment words not included in the general-purpose
lexicons.

Methods

Corpus Analysis

Clinical Cohort
We studied deidentified EHRs of over 250,000 patients from
the South London and Maudsley National Health Service
Foundation Trust using the Clinical Record Interactive Search
(CRIS) database, comprising over 3.5 million text documents
[26]. CRIS has been linked with national hospital admission
data within a secure safe haven, allowing hospital admission
information to be extracted. The deidentified CRIS database
has received ethical approval for secondary analysis: Oxford
REC C, reference 18/SC/0372. Access is granted upon request
to authorized researchers working on projects that have received
prior approval from the CRIS Oversight Committee. The data
presented in this study can be viewed within the secure system
firewall.

Our data set was derived from the EHRs of 17,640 patients. It
consisted of 4235 suicide attempt–related (case) admissions
and 16,940 nonsuicide attempt–related (control) admissions,
sampled according to a 1:4 case-control ratio. Cases were
defined as any admission (acute physical or specialist mental
health) where there was a suicide attempt (indicated by any of
the following codes from the International Classification of
Diseases (ICD-10): X6*, X7*, X80-4*, Y1*, Y2*, Y30-4*, and
Y87*) with the admission lasting at least 24 hours. Admissions
starting on or after April 1, 2006, and ending before or including
March 31, 2017, were considered. Case admissions that had at
least one document in the 30 days up to and including the date
of the suicide attempt were retained. We also removed
admissions with empty documents (text from scanned documents
is not always available in CRIS), resulting in a total of 4235
suicide-related admissions. Controls did not have any of the
specified ICD-10 codes in the given period, were matched by
sex, had to be alive at the admission start date of the
corresponding case, and were matched to the same age group
(5-year age bands: <16, 16-19, 20-24 to 80-84, and >85 years).
Each control also had at least one document in the 30 days up
to and including the date of the suicide attempt of the matched
case. The controls were chosen to be representative (in terms
of age and sex) of the population from which the cases were
drawn, and the ratio was based on the epidemiological principle
that little statistical power is gained by further increasing the
number of controls beyond approximately 4 per case [27]. The
key descriptive characteristics of the cohort are presented in
Table 1.
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Table 1. Cohort patient- and admission-level statistics.

ControlsCasesUnit of observation

14,727 (83.49)2913 (16.51)Patients, n (%)

8971 (60.92)1730 (59.39)Female

5756 (39.08)1183 (40.61)Male

16,940 (80.00)4235 (20.00)Admissions, n (%)

10,392 (61.35)2598 (61.35)Female

6548 (38.65)1637 (38.65)Male

34.4 (15.4)34.4 (15.3)Age (years), mean (SD)

EHR Corpus
Our corpus comprised all EHR texts for each of the 2 subgroups
in our clinical cohort: (1) suicidal case admissions and (2)
nonsuicidal controls.

Our use of a 1:4 case-control study design for admissions means
we expect a disparity in document number and word count
between subcorpora. However, there are only 77.92%
(55,643/71,404) more control documents (n=127,047) than case
documents (n=71,404), rather than the 300% difference that

might be expected for 1:4 sampling of random patients.
Following data preprocessing (refer to the Data Preparation
subsection), the mean lexical word count for case documents
(n=117.4) is higher than that for control documents (n=103.9),
so that the overall word (token) count ratio is not 1:4 but
approximately 1:1.6, whereas the mean unique word (type)
count ratio is approximately 1.5. The basic descriptive statistics
for the corpus are shown in Table 2. The distribution of
documents per patient followed a non-normal distribution, as
shown in Multimedia Appendix 1.

Table 2. Electronic health record corpus descriptive statistics.

TotalControlsCasesUnit of observation

21,583,89313,198,2508,385,643Word tokens, n

206,866162,696109,024Word types, n

0.961.231.30Type-token ratioa, %

198,451127,04771,404Documents, n

108.8 (241.3)103.9 (252.7)117.4 (219.1)Number of words per document, mean (SD)

aType-token ratio = number of word types / number of word tokens × 100.

Data Preparation
All texts were preprocessed using the Natural Language
Processing (NLP) library spaCy (v2.0.12) [28], applying the
following steps: word tokenization, part-of-speech tagging, and
lemmatization (to use the base form of words). We removed
stop words using the Natural Language ToolKit [29] stop words
list for English and lowercased all words for our analyses. All
codes were made available on GitHub [30].

Identifying Representative Keywords
To answer our questions concerning the coverage of each
lexicon, we adopted methods based on word frequency
distributions, commonly used in corpus linguistics, as described
further in Multimedia Appendix 1 (C) [31-34]. We first
determined which keywords were most representative of each
subcorpus (suicidal case admission texts and nonsuicidal control
texts) by calculating the relative word frequency ratios between
subcorpora. Following recommendations from previous research
in corpus linguistics [31-33] and given the non-normal
distribution of documents between patients, we then applied
the nonparametric Mann-Whitney U test to determine the
statistical significance of word frequency differences (FreqDiff
(w) for a given word w) between subcorpora. We only retained

words that occurred in both the case and control subcorpora,
leaving a total of 64,854 unique token types. Words appearing
in only one or other subcorpora were relatively infrequent
compared with those that were common to both subcorpora.
For example, the most frequent case-only keywords were
identifying initials, with a maximum frequency of 20.2 words
per million (wpm), whereas the most frequent control-only
keywords were persons’ names, with a maximum frequency of
34.4 wpm.

Sentiment Lexicon Analysis

Sentiment Lexicons
We examined six different sentiment lexicons that were
developed for nonclinical domains. Various dimensions of
sentiment and affect have been studied, including emotion,
valence-arousal-dominance, and polarity. We focused solely
on lexicons that represent this last aspect, that is, negative and
positive sentiment polarity. Along with assigning negative and
positive polarity, some sentiment analysis tools also assign a
value for words that do not convey semantic polarity (ie, neutral
words). However, we only considered words that express
positive and negative sentiments, as not all the lexicons in this
study contain neutral terms. Therefore, we filtered out any
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neutral words. Furthermore, for the sake of comparison, we
only examined binary sentiment values rather than degree scores,
which only some lexicons provide. We selected the following
lexicons for this study: AFINN [35], the NRC Emotion Lexicon
(commonly known as EmoLex) [36], Linguistic Inquiry and
Word Count (LIWC) [37], the Opinion lexicon [9], the Pattern
lexicon [38], and SentiWordNet [39]. The lexicons differ in
terms of the forms they contain (words, lemmas, and regular

expressions). We applied each one as-is to the appropriately
preprocessed corpus (eg, words or lemmas) to compare them,
as they have been used in other studies. We provide details of
the lexicons, including preprocessing and filtering, in
Multimedia Appendix 1 (B) [9,35-44]. Table 3 summarizes
some of the main characteristics of each of these lexicons,
including size before (original size) and after (filtered size)
filtering out neutral entries.

Table 3. Characteristics of the 6 sentiment lexicons.

Filtered size (number
of entries), n (%)

Original size
(entries), n

Term typeIntended domainAutomatic
term selection

SourceLexicon

3478 (100.00)3478Word formsMicroblogsNoVarious web-based word listsAFINN

5555 (39.17)14,182Word formsGeneralNoMacquarie Thesaurus, General
Inquirer, WordNet

EmoLex

1371 (100.00)1371Word forms and
regular expres-
sions

Personal narrativesNoVarious dictionaries and the-
sauruses

LIWCa

6789 (100.00)6789Word formsProduct reviewsYesWeb crawl of product reviewsOpinion

2293 (79.18)2896Lemmas+POSbProduct reviewsNoSubset of WordNetPattern

39,746 (33.78)117,659 Synset Lem-
mas+POS

GeneralYesWordNetSentiWordNet

aLIWC: Linguistic Inquiry and Word Count.
bPOS: part of speech.

Lexicon Coverage
We assessed the coverage of each lexicon in three different
ways:

1. Global coverage: The percentage of sentiment-bearing
lexical entries that appeared in the list of (unique) words
for each subcorpus. Further details are provided in
Multimedia Appendix 1 (D).

2. Keyword coverage: The proportion of case and control
keywords covered by the sentiment-bearing terms of a
lexicon. First, we calculated the percentage of keywords
identified by each lexicon for each subcorpus. Second, we
used metrics common to information retrieval, namely,
weighted precision (Pw), recall (Rw), and F score (Fw),
which we calculated for each lexicon across the unordered
set of all keywords, using word ranking as the weighting.
Details of our calculations, including formulae, are provided
in Multimedia Appendix 1 (D). A lexicon’s precision shows
how many case keywords it correctly identifies as a
proportion of all the keywords it contains. The inclusion of
control keywords in a lexicon, therefore, penalizes
precision. In contrast, recall indicates the number of case
keywords that the lexicon correctly identifies from the entire

list of case keywords. The absence of case keywords from
a lexicon results in a penalty on recall. Fscore provides a
combination of the preceding 2 metrics and an overall
quantified evaluation of a lexicon’s keyword coverage.

3. Sentiment coverage: The sentiment polarity (positive or
negative) that lexicons assigned to matched keywords for
each subcorpus.

Results

Corpus Analysis
The step of generating representative keywords for each
subcorpus (refer to the Corpus analysis subsection) resulted in
a list of 3382 keywords. Sorted by decreasing the frequency
difference, the top words (with FreqDiff>0) are representative
of the suicidal case subcorpus (2360 keywords). Similarly,
sorting in ascending order, top words (with FreqDiff<0) are
representative of the nonsuicidal control subcorpus (1022
keywords). Table 4 shows the 10 top-ranking keywords for each
subcorpus. In this table, we show each word’s rank as well as
its frequency in the whole corpus, the frequency difference
between case and control subcorpora, and the frequency ratio
for the word across the subcorpora. We provide a similar list of
the top 100 keywords in Multimedia Appendix 2.
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Table 4. Ranked keyword list for suicidal case and nonsuicidal control subcorpora.

Nonsuicidal control keywordsSuicidal case keywords

Freq ratioFreq diffFreq (words per
million)

WordRankFreq ratiocFreq diffbFreqa (words per
million)

WordRank

1.1−3801.435657.1ZZZZZd11.63545.79779.1QQQQQd1

1.4−1242.53092.5mental21.92060.94278.5self2

2.0−1138.11197.9mr32.41673.42916.2harm3

1.7−1124.51583.5appointment41.41597.15554.7ward4

1.3−1017.43756.5medication55.31392.81717.0overdose5

1.3−771.12282.2health61.31389.45670.0staff6

1.5−703.61305.9please72.51256.22072.5suicidal7

1.4−694.41640.3state81.31137.75725.4said8

1.6−678.11190.6service91.91102.42276.2alcohol9

1.8−596.2729.3road103.51089.51534.1a&e10

aFreq: word frequency.
bFreq diff: frequency difference.
cFreq ratio: frequency ratio between subcorpora.
dMasking strings created by the electronic health record deidentification process: QQQQQ for relative or close contact identifiers and ZZZZZ for patient
identifiers.

For the suicidal case subcorpus, the top keyword “QQQQQ” is
a placeholder for anonymized names of relatives or close
contacts of the patient created by a bespoke deidentification
algorithm used in CRIS [45]. This could indicate concerns of
relatives or carers being reported to staff over the patient’s
status. Other top keywords directly relate to the theme of suicide
attempts (overdose, suicidal, and a&e [accident and
emergency]). The frequency ratio indicates that overdose is over
5 times and a&e is over 3.5 times more frequent in the case
subcorpus than in the control subcorpus. Other words relate to
hospitalization (ward and staff) and self-harm (self and harm).

Visual inspection shows that self and harm frequently co-occur
in noun phrases such as harm to self and self-harm (which was
incorrectly segmented into 2 tokens by the tokenizer).
Furthermore, harm also occurs with reflexive pronouns, for
example, harm himself/herself, also referencing self-harm
events. Alcohol is also clinically relevant because both chronic
alcohol use disorders and acute use of alcohol confer risk for
attempted suicide.

In contrast, for the control subcorpus, the top keyword “ZZZZZ”
is a placeholder for anonymized patient identifiers. These top

keywords are more generic terms that may be found in most
types of clinical notes (eg, mental, health, and state) and some
are likely to be derived from correspondence (eg, mr,
appointment, and please). Although the top control keywords
are significantly more frequent than those in the case subcorpus,
the frequency difference and ratio are globally less marked than
for case keywords. The median absolute frequency difference
(FreqDiff) for the top 10 control keywords is 894.2, compared
with 1391.1 for cases. The corresponding median frequency
ratios (FreqRatio) are 1.90 for cases and 1.45 for controls. This
indicates that keywords for suicide-related texts are more
strongly representative of the case subcorpus than the keywords
for the control subcorpus. This may reflect the fact that cases
have a distinct unifying feature of being included for their
hospitalized suicide attempt, whereas control admissions were
from any period as long as they did not precede a suicide
attempt. It should be noted that no suppositions about the
sentiment associated with these keywords were made.

Sentiment Lexicon Analysis
We first assessed the global coverage of sentiment lexicons
(refer to Multimedia Appendix 1 (E) for details). The figures
for global coverage are summarized in Table 5.
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Table 5. Term type and token counts for each lexicon in case and control subcorpora and whole corpus. Percentages for control words are shown as
(raw/adjusted). Figures are in descending order of lexicon (filtered) size.

Word tokensWord typesFiltered
size

Lexicon

Whole corpus, n (%)Control, n (%)Case, n (%)Whole corpus,
n (%)

Control, n (%)Case, n (%)

12,837,990 (59.48)8,603,932
(65.19/41.42)

4,234,058 (50.49)13,373 (6.46)12,429
(7.64/5.12)

9843 (9.02)39,746SentiWord-
Net

2,938,811 (13.62)1,959,007
(14.84/9.43)

979,804 (11.68)3821 (1.85)3662 (2.25/1.51)3111 (2.85)6789Opinion

4,325,569 (20.04)2,869,472
(21.74/13.81)

1,456,097 (17.36)4426 (2.14)4260 (2.62/1.75)3733 (3.42)5555EmoLex

3,806,544 (17.64)2,532,261
(19.19/12.19)

1,274,283 (15.20)2845 (1.37)2781 (1.71/1.15)2529 (2.32)3478AFINN

2,867,755 (13.29)1,957,386
(14.83/9.42)

910,369 (10.86)1296 (0.63)1243 (0.76/0.51)1101 (1.01)2293Pattern

2,450,762 (11.35)1,830,216
(13.87/8.81)

620,546 (7.40)6269 (3.03)5824 (3.58/2.40)3708 (3.40)1371LIWCa

aLIWC: Linguistic Inquiry and Word Count.

SentiWordNet, by far the largest lexicon, has the widest
coverage of approximately 60% of all tokens (6.46% types) in
the entire corpus. The pattern has the lowest word-type coverage
for both subcorpora and the whole corpus (0.63%). Although
LIWC has the fewest lexical entries (1371), its use of regular
expressions that capture multiple word forms means it maps
more individual word types (but has the lowest coverage of
tokens, 11.35% on the whole corpus). Despite having
approximately 1200 and 3300 fewer entries than Opinion,
respectively, EmoLex and AFINN both have a substantially
higher coverage of word tokens over the larger lexicon. EmoLex
also has a slightly higher coverage of token types. This may be
a consequence of the manner in which these lexicons were
constructed and the sources from which they were derived. We
review this issue in the Discussion section.

With the exception of LIWC, all lexicons show higher coverage
of word types in the case subcorpus than in the control

subcorpus. The same trend was observed when considering the
adjusted percentages for word tokens. This suggests that there
is generally more sentiment (as defined in these lexicons)
expressed in the case subcorpus than in the control subcorpus,
assuming an artificial scenario in which there are an equal
number of words of each. However, if no adjustment for word
frequency disparities across subcorpora is made, the opposite
tendency is observed for all lexicons.

This notion of coverage does not take into account the
representativeness of the words in question. To capture this
crucial characteristic, we examined the proportion of keywords
(word types) from each subcorpus containing each lexicon
(keyword coverage; refer to the Corpus Analysis subsection and
Multimedia Appendix 1 [D]). The overall proportional coverage
of keywords is shown in Table 6.

Table 6. Case and control keywords that appear in each sentiment lexicon, in descending order of lexicon (filtered) size. The total number of keywords
for the case subcorpus is 2360 and for the control subcorpus is 1022.

Control, n (%)Case, n (%)Filtered sizeLexicon

231 (22.6)604 (25.6)39,746SentiWordNet

60 (5)192 (8.1)6789Opinion

117 (11.4)277 (11.7)5555EmoLex

74 (7)238 (10.1)3478AFINN

39 (3)115 (4.9)2293Pattern

48 (4)181 (7.7)1371LIWCa

aLIWC: Linguistic Inquiry and Word Count.

As with global coverage, keyword coverage is correlated with
lexicon size, with LIWC being the exception. Again, when
examining only the most representative words for each
subcorpus, Opinion, the second largest resource, has
substantially lower coverage than both EmoLex and AFINN,

which are smaller in size, the latter resource numbering only
half as many keywords among its entries.

Evaluating the lexicons from an information retrieval perspective
revealed the extent to which each lexicon strikes a balance
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between the inclusion of case keywords and the exclusion of
control keywords, accounting for the representativeness of the
words identified. As shown in Table 7, all lexicons provided

reasonable weighted precision (0.53-0.72). However, weighted
recall and weighted F-score, which varied substantially across
lexicons, were very low (0.04-0.36).

Table 7. Weighted metrics for each lexicon in descending order of weighted F score.

Weighted F scoreWeighted recallWeighted precisionLexicon

0.470.360.68SentiWordNet

0.290.180.68EmoLex

0.250.150.72AFINN

0.180.110.68Opinion

0.170.100.69LIWCa

0.070.040.53Pattern

aLIWC: Linguistic Inquiry and Word Count.

These results show that, of all the lexicons we tested,
SentiWordNet provides the best balance between precision and
recall over keywords from the 2 subcorpora. Owing to its size,
it obtained the highest recall. This indicates that it contains more
of the most highly ranked case keywords than the other lexical
resources. It also achieved precision on par with the other
lexicons, indicating that the words it identifies are often
high-ranking keywords from the suicide-related case subcorpus.
The pattern lexicon achieved significantly lower results in terms
of weighted precision and recall than all other lexicons, despite
being larger than some of these. This suggests that its included
sentiment terms are of a somewhat different nature and do not
contribute a clear signal for distinguishing representative case
keywords from control keywords.

Overall, as tools for distinguishing suicide-related from
nonsuicide-related clinical notes, this evaluation, in particular
the recall figures, shows that the most representative keywords
in both subcorpora are not sentiment bearing, as defined in all
these lexicons, thus indicating that there is a need for further
analysis of the representative subcorpus keywords to better
understand their characteristics.

Finally, we examined the distribution of sentiment among the
top-ranking representative keywords for each subcorpus
(sentiment coverage). Figure 1 shows the ranks of the top 100
keywords each lexicon contains for the case and control
subcorpora. In addition to plotting the ranks of words featured
in each lexicon, we also indicate, through color and shape
coding, the polarity associated with each term.
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Figure 1. Comparative sentiment lexicon coverage of top 100 ranked words for the suicidal case and nonsuicidal control subcorpora.

In terms of sentiment coverage, AFINN, EmoLex, LIWC, and
Opinion mark a clear distinction between the top case and
control keywords. These lexicons assign negative sentiment to
high-ranking case keywords (eg, harm [ranked third], risk [11th],
kill [52nd], and pain [78th]) and positive sentiment to top control
keywords (eg, please [seventh], calm [40th], and pleasant
[49th]), and negative also to certain high-ranking control
keywords (eg, aggressive [61st], illness [63rd], and anxiety
[83rd]).

Only 2 high-ranking keywords for cases appeared in the Pattern
lexicon: these were safe [51st], which was the only one of the
top 100 ranked words consistently found for cases across all 7
lexicons, and past [68th], which only appeared in Pattern and
was ascribed a negative polarity (further discussed in the
Discussion section). Calm [40th] and pleasant [49th] were the
only top 100 keywords found consistently for controls across
all 6 lexicons, and these were ascribed a positive polarity by all
except SentiWordNet. This unexpected assignment of sentiment
(the adjective calm is given a heavily negative score in
SentiWordNet, whereas anxious, borderline, cutting, and
concern are positive) highlights the importance of studying the
underlying assumptions in off-the-shelf tools and their potential
implications when applying them for a new use case.

For SentiWordNet, sentiment of top keywords is mixed, with
a higher proportion of positive sentiment keywords in both
subcorpora, although it assigned more negative sentiment for
controls and for a greater proportion of the high-ranked
keywords. This shows that despite having a larger lexical
coverage, the sentiment coverage of this lexicon may not be
sufficiently consistent to reliably distinguish the 2 populations.

It is important to note that 51 of the top 100 keywords for the
case subcorpus were not identified by any of the lexicons. These
included self, staff, said, alcohol, and a&e, all in the top 10
(Table 4), as well as further highly clinically relevant (although
not necessarily sentiment bearing) words such as paracetamol
(ranked 25th, FreqDiff=524.6, FreqRatio=4.5), the abbreviation
od (used variably in psychiatry to mean either overdose or omne
in die [once a day] with respect to medication; ranked 29th,
FreqDiff=498.2, FreqRatio=2.2), ambulance (ranked 57th,
FreqDiff=340.9, FreqRatio=3.3), the plural form overdoses
(ranked 68th, FreqDiff=314.0, FreqRatio=7.6), and the acronym
dsh (deliberate self-harm; ranked 83rd, FreqDiff=275.1,
FreqRatio=3.4). The frequency ratio of these words shows that
they were many times more frequent in suicide-related case
notes than in the control corpus. Over the entire list of case
keywords, only 33.35% (787/2360) were assigned a sentiment
value by at least one of the lexicons. Furthermore, 51 of the top
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100 control keywords were also absent from all lexicons, many
of which pertain to correspondence (eg, mr, appointment, and
fax). We refer the reader to Multimedia Appendix 2 for further
details.

Discussion

Implications for Suicide Risk Assessment Lexicon
Development
The list of representative keywords extracted from our corpus
shows that the notion of sentiment generally adopted in the field
of NLP is not the most appropriate semantic category for
identifying terms that typify case notes of suicidal patients.
Many of these terms do not carry an obvious negative or positive
polarity, as defined in the tested sentiment lexicons.

Our analysis also showed that there is a need for further analysis
of the assignment of sentiment polarity by these tools when
applied on new use cases.

Furthermore, many of the keywords we identified as
representative of suicide-related case notes were neutral with
respect to sentiment, which is expected, and representative case
keywords extracted in our study indicate that they are distinct
from control keywords, but not all such terms would necessarily
be sentiment bearing.

Our results show that these sentiment lexicons built using
validated lexical resources, such as dictionaries or thesauri (eg,
EmoLex), had higher combined precision and recall results than
those derived from semiautomatic processes over large
open-domain text corpora (eg, Opinion, built by web crawling).

Guidelines for Building Sentiment Lexicons for Suicide
Risk Assessment
Following the work of Deng et al [24], one solution to the
unsuitability of general-domain lexical resources for the clinical
domain consists of defining the notion of sentiment for the
analysis of clinical texts, and in the present case, of mental
health (Guideline 1). This could allow the assignment of polarity
to terms that do not feature in general-purpose lexical resources.
In the case of suicide risk assessment, this might include the
assignment of negative polarity to terms such as a&e, overdose,
alcohol, dsh, and plan, which were not assigned a polarity value
by the lexicons we tested.

In light of our results, a suggested strategy for building a suicide
risk assessment lexicon may be to use corpus word frequencies
as a guide to inclusion of words in a lexical resource that would
remain agnostic with respect to sentiment (Guideline 2) and
instead labeling terms as trigger or risk factor words (Guideline
3). Such a strategy would avoid the problem of assigning
sentiment to words which, although highly representative of
suicide-related texts, do not have an obvious sentiment value.
This would also obviate the need to assign a polarity to terms
that may be ambiguous in the sentiment they express, being
either positive or negative depending on context (eg, low
[emotion] vs low [risk]), although the more general problem of
polysemy remains.

For clinically relevant terms, specialized psychiatric dictionaries
or health care terminologies could be beneficial in creating a
targeted lexical resource for suicide risk assessment (Guideline
4). For example, certain risk factors for suicide (eg, previous
suicide attempts, depression, and substance misuse) and
protective factors (eg, effective clinical care, family, and
community support) are already well-known clinical features.
Therefore, these concepts and associated terms should be
reflected in any lexicon aiming to identify periods of increased
suicide risk in clinical notes. One caveat that must be kept in
mind is that many terms contained in specialized clinical
terminologies are not written in EHRs by clinicians [46],
meaning that term selection should be carried out by domain
experts with a general awareness of typical target corpora.

Automated approaches to extracting terms from large corpora
have become common in the field of NLP, including the creation
of sentiment lexicons [47-49]. These techniques provide a means
to increase the coverage of relevant terms, although it is
preferable to implement some mechanism to ensure that the
criterion of relevance is respected. Incorporating a
domain-specific corpus-based notion of term representativeness
into automatic lexicon induction procedures [50] is one way of
refining term selection, filtering out terms that are deemed to
be nonrepresentative (Guideline 5). Furthermore, a manual
validation by domain experts (Guideline 6), where feasible,
would further serve to ensure the precision of the extracted
terms and could also be used to assign additional semantic
categories such as sentiment.

Summary of guidelines is as follows:

1. Define the notion of sentiment for the clinical domain
2. Use corpus word frequencies as a guide to inclusion of

words in a lexicon
3. Label terms as risk factor or trigger rather than

sentiment-bearing
4. Use specialized dictionaries and/or health care terminologies

as a source
5. Incorporate domain-specific corpus-based notion of

representativeness into automatic lexicon induction
techniques

6. Manual validation by domain experts

Summary and Limitations
Examining our data using the methods of corpus linguistics
revealed statistically significant differences between the
keywords used in EHR notes preceding an admission for
attempted suicide and those from control periods not associated
with such an attempt. Themes included hospitalized suicide
attempts, self-harm, and alcohol. Coverage of these keywords
by the general-purpose sentiment lexicons we reviewed was
varied. Although lexicon size was a determining factor in overall
coverage, the largest resource, SentiWordNet, did not distinguish
the 2 subcorpora as well as some of the smaller resources,
namely, AFINN, EmoLex, and Opinion, once both keyword
rankings and sentiment were taken into consideration. Similarly,
EmoLex and AFINN had wider coverage of relevant keywords
than Opinion, which is the largest of the 3 resources. This may
be partly a consequence of the original sampling strategy used
to select words to construct sentiment lexicons. Both EmoLex
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and AFINN were built on top of existing general-purpose
dictionaries, whereas Opinion was created semiautomatically
by crawling product reviews on the internet. As a result, the
vocabulary of the latter may be more specific to that domain,
whereas the 2 former lexicons are likely to be more generic in
their terminology, meaning they may adapt slightly better to
different domains. The same 3 lexicons also showed the most
discriminating assignment of sentiment polarity between the
case and control keywords. Although many of the terms
contained in these resources can be said to convey appropriate
sentiment values (eg, anxiety is negative and pleasant is
positive), there are also certain terms for which this is less
obvious, at least in the context of EHR text related to suicide
risk. For example, ward is assigned negative sentiment by
SentiWordNet, whereas thoughts are assigned positive
sentiment. The word plan is assigned positive sentiment by
EmoLex, whereas call is negative. Annotating word polarity in
a noncontextual manner, especially without appropriate
part-of-speech disambiguation (only 2 of the resources we tested
contained entries with part-of-speech information), could lead
to biased analyses in downstream modeling of new use cases.
Clinical texts are intended to be written in an objective style,
rather lacking what one might generally term sentiment, although
in reality this may not always be the case. Many of the most
highly relevant terms identified by our approach (eg, a&e,
overdoses, and alcohol) do not fall into what might typically
be termed a sentiment category but rather belong to categories
of risk factors, whereas other identified terms are more sentiment
bearing.

These observations lead us to concur with the conclusions of
previous research [21-24] that domain-specific resources need
to be developed for the analysis of clinical texts. We have
attempted to provide insight into why this might be and what
information such resources might need to include to address
the task of suicide risk assessment through the analysis of
clinical notes.

Our study has some limitations. First, the corpus was not
constructed according to a deliberate sampling strategy but is
the result of a 1:4 case-control selection ratio, which is typical
in epidemiology. Completed and attempted suicide is much
rarer than our sample suggests. Furthermore, the documents
were not sampled according to type. This may have led to a
preponderance of letters in the control corpus, as suggested by
the most frequent keywords. The distribution of documents
between patients also differs between the case and control
subcorpora. Cases have, on average, almost 3 times the number
of documents as controls, which is reflective of more frequent
contact with mental health services. Consequently, the resulting
corpus does not necessarily fulfill the criteria of
representativeness and balance generally recommended in
corpus linguistics.

We also acknowledge that our normalization of sentiment values
for the sake of comparison does not necessarily reflect the actual
quantity of sentiment assigned by all lexicons and invite the
reader to refer to previous studies where raw sentiment scores
are compared [20-22]. It is also worth noting that previous
studies have shown that emotions, such as happiness expressed
in social media posts, may vary with population demographics,
geographical location [51,52], movement, and residency status
in an area [53]. Although our work has focused on clinical texts
instead of social media, such factors may have influenced our
results; however, we have not controlled for this. This represents
a caveat concerning the generalizability of our results to clinical
populations in other geographical areas with potentially different
sociodemographic configurations.

Finally, we only examined keywords that were common to both
subcorpora. As a consequence, certain keywords typical of
suicidal case notes only appearing in the case subcorpus may
have been missed out, although we did find keywords appearing
in only 1 subcorpus to be relatively infrequent compared with
those we did examine.

Conclusions
This work makes several contributions to the study of sentiment
in suicide risk assessment.

First, our corpus of clinical notes drawn from a case-control
study of suicidal and nonsuicidal hospital admissions is, to our
knowledge, a novel use of EHRs in this area.

Second, by applying methods of corpus linguistics, we identified
2 lists of keywords: the first representative of the clinical notes
of patients leading up to a hospitalized suicide attempt and a
second for those who made no such attempt. We used these lists
of keywords to gauge the coverage of 6 sentiment lexicons over
our corpus, using a number of measures, including information
retrieval metrics, which we adapted for the purposes of our
evaluation. Our study provided a novel examination of the
content of these lexicons and their implications in relation to
sentiment analysis as well as deeper insights into the
characteristics of terms that distinguish suicide risk cases from
controls in EHR text. Furthermore, we found that these
general-domain resources assign polarity values that are
sometimes not clinically meaningful or consistent with clinical
judgments.

Finally, based on the outcomes of our study, we have suggested
a set of simple and clear guidelines to facilitate the creation of
more useful lexical resources for those seeking to assess risk of
suicide through the analysis of clinical notes. Such targeted
lexicons have the potential to advance research into the use of
EHRs for the study of suicide risk in clinical populations by
providing discriminative features for use in both rule-based and
machine learning classification systems.
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