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Abstract

Background: Without timely diagnosis and treatment, tachycardia, also called tachyarrhythmia, can cause serious complications
such as heart failure, cardiac arrest, and even death. The predictive performance of conventional clinical diagnostic procedures
needs improvement in order to assist physicians in detecting risk early on.

Objective: We aimed to develop a deep tachycardia onset prediction (TOP-Net) model based on deep learning (ie, bidirectional
long short-term memory) for early tachycardia diagnosis with easily accessible data.

Methods: TOP-Net leverages 2 easily accessible data sources: vital signs, including heart rate, respiratory rate, and blood oxygen
saturation (SpO2) acquired continuously by wearable embedded systems, and electronic health records, containing age, gender,
admission type, first care unit, and cardiovascular disease history. The model was trained with a large data set from an intensive
care unit and then transferred to a real-world scenario in the general ward. In this study, 3 experiments incorporated merging
patients’personal information, temporal memory, and different feature combinations. Six metrics (area under the receiver operating
characteristic curve [AUROC], sensitivity, specificity, accuracy, F1 score, and precision) were used to evaluate predictive
performance.
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Results: TOP-Net outperformed the baseline models on the large critical care data set (AUROC 0.796, 95% CI 0.768-0.824;
sensitivity 0.753, 95% CI 0.663-0.793; specificity 0.720, 95% CI 0.645-0.758; accuracy 0.721; F1 score 0.718; precision 0.686)
when predicting tachycardia onset 6 hours in advance. When predicting tachycardia onset 2 hours in advance with data acquired
from our hospital using the transferred TOP-Net, the 6 metrics were 0.965, 0.955, 0.881, 0.937, 0.793, and 0.680, respectively.
The best performance was achieved using comprehensive vital signs (heart rate, respiratory rate, and SpO2) statistical information.

Conclusions: TOP-Net is an early tachycardia prediction model that uses 8 types of data from wearable sensors and electronic
health records. When validated in clinical scenarios, the model achieved a prediction performance that outperformed baseline
models 0 to 6 hours before tachycardia onset in the intensive care unit and 2 hours before tachycardia onset in the general ward.
Because of the model’s implementation and use of easily accessible data from wearable sensors, the model can assist physicians
with early discovery of patients at risk in general wards and houses.

(JMIR Med Inform 2021;9(4):e18803) doi: 10.2196/18803
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Introduction

Tachycardia, a heart rhythm disorder, is defined as an adult
resting heart rate that exceeds 100 bpm [1]. According to the
mechanisms, causes, expressions and outcomes, tachycardia
can be classified as sinus tachycardia, atrial fibrillation, atrial
flutter, ventricular tachycardia, or ventricular fibrillation [2].
Spontaneous ventricular tachyarrhythmia is a major cause of
sudden cardiac death; approximately 180,000 to 300,000 people
suffer from this condition in the US yearly [3,4]. Atrial
fibrillation is a risk factor for stroke, congestive heart failure,
and premature death. Patients suffering from atrial fibrillation
for the first time have a high rate of mortality [5,6]. In addition,
tachycardia has been correlated to poor outcomes [7].
Conventional tachycardia detection depends on cardiologists
or clinical experts reading electrocardiogram (ECG) signals.
Due to limited numbers of measurements and the intermittent
nature of the diseases, the symptoms of tachycardia might not
be captured when ECGs are recorded in hospitals [8]. Therefore,
continuous monitoring enables clinicians to early diagnose,
predict the disease, and have enough time to prevent patients
from deteriorating.

Recently, several hospitals have attempted to utilize wearable
devices for continuous monitoring of vital signs such as heart
rate, respiration rate, and oxygen saturation (SpO2) [9,10]. The
adoption of wearable devices in hospitals facilitates the
acquisition of patient status anywhere and anytime to reduce
the workload of nurses. Compared with the use of
single-threshold alarm monitoring devices and commonly used
early warning scores defined by clinical experts [11], machine
learning methods can automatically discover patterns and
relationships within data without human instructions. Thus,
machine learning has been proven as an effective clinical tool
to identify abnormal events or provide early warning of diseases
based on electronic health record, biomarker, gene expression,
and imaging data [12-14]. Forkan et al [15] leveraged a hidden
Markov model to predict 7 clinical onsets, including tachycardia
onset, and further improved performance by using random forest
algorithms to forecast events within 1 to 2 hours [16]. Lee et al
[17] developed an artificial neural network to predict ventricular
tachycardia within 1 hour. Szep et al [18] utilized an archetypal
cardiac monitoring system with regression and boosting models

to detect arrhythmia and predict the fatal arrhythmia several
minutes before onset.

With nonlinear computation and flexible feature extraction,
deep learning models show strong performances in
representation learning and exploration of unknown information
[19]. Researchers have recently used deep learning models for
disease diagnosis and prediction based on physiological signals
or electronic health records [20-22]. Since measuring and
acquiring vital signs are easily measured and some open-source,
labeled physiological signal (especially ECG signals) data sets
are available [23,24], there exist many studies employing deep
learning in cardiology [25]. Hannun et al [26] reported a
convolutional neural network algorithm that detects heart
arrhythmias using ECG signals acquired with a single-lead
wearable sensor. Shashikumar et al [27] also presented a
convolutional neural network model that detects and monitors
atrial fibrillation. Teijeiro et al [28] introduced a long short-term
memory (LSTM) network based on a set of features extracted
from ECG records to classify normal sinus rhythm, atrial
fibrillation, and anomalies. Gotlibovych et al [8] constructed a
model combining a convolutional neural network and LSTM
to achieve nearly real-time identification of atrial fibrillation.
Cho et al [29] obtained a convolutional neural network model
to predict atrial fibrillation within 4 to 6 minutes using ECG
signals.

Cardiovascular diseases are complex and heterogeneous;
multiple factors such as genetics, environment, age, and gender
can affect the occurrence and severity of cardiovascular disease
[30,31]. Age has been proven to be an independent risk factor,
and being female is a greater risk factor for cardiovascular
disease when elderly [31]. Few studies have attempted to
develop a prediction tachycardia onset model that accounts for
the patient’s personal information. Respiratory dysfunction and
common lung diseases, such as asthma, chronic obstructive
pulmonary disease, and lung fibrosis are significantly more
likely to cause cardiovascular disease [32]. Abnormal respiratory
rate and its relative changes are a critical indicator to predict
cardiac arrest [33], and SpO2 has also been shown as a
diagnostic marker of acute heart failure [34]. However, this
useful information has not been used effectively, though it can
be easily acquired with wearable sensors.
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The aim of this study was to develop a bidirectional long
short-term memory (BiLSTM) model—TOP-Net—that is
applicable to both intensive care units and general wards [35],
leverages easily accessible data, enables real-time evaluation
and early prediction of tachycardia onset with a long forecast
range, and is based on vital signs and electronic health record
data with the following contributions: (1) combining electronic
health record (sparse records) and biosensor data (high
frequency records) to accomplish early prognosis and real-time
prediction of tachycardia onset, and its performance of early
prediction; (2) being the first to consider 2 other important vital
signs and explore their different combinations being with deep
learning models to predict tachycardia onset, which can improve
the precision of early forecast; and (3) utilizing a large critical
care data set and a model that is transferrable to real clinical
scenarios wards where patients are monitored by medical-grade
wearable embedded systems, for example, transferable between

different countries (US to China), ethnicities (multiracial to
Asian), and medical departments (intensive care unit to general
ward).

Methods

Overview
We leveraged a large data set from the Medical Information
Mart for Intensive Care III (MIMIC-III) [24] and its matched
physiological waveform database (recorded with monitors) [36]
to develop the TOP-Net model (codes available [37]). The
pretrained model was transferred to a relatively small data set,
from patients who were continuously monitored with a
medical-grade wearable embedded system (SensEcho, Beijing
SensEcho Science & Technology Co Ltd) in a real clinical
environment [38]. The process is presented in Figure 1.

Figure 1. The process of developing and transferring the early tachycardia onset model, TOP-Net. GW: general ward; ICU: intensive care unit.

Methodology
We combined 2 types of data to develop TOP-Net: (1)
information from biological sensors (wearable), including heart
rate, respiratory rate and SpO2; (2) patients’personal information
from electronic health records, which represents their individual
health status when admitted to the hospital, including age,
gender, admission type, first care unit, and history of
cardiovascular disease.

TOP-Net Tachycardia Onset Early Prediction Using
BiLSTM Model

Model Overview
BiLSTM [39], a sequential model, can capture the complex and
multivariate dynamics in longitudinal electronic health record
data and continuously collected physiological signals that is
typically used in acute condition prediction, classification, and
subphenotype identification [40]. We developed the model
(Figure 2) using BiLSTM to take advantage of potential
long-term and short-term changes and associated characteristics
of physiological state.
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Figure 2. An overview of TOP-Net using the cohort admission and personal measurement data in hospital. BiLSTM: bidirectional long short-term
memory; EHR: electronic health record; HR: heart rate; RR: respiratory rate; SpO2: blood oxygen saturation.

Step 1: Calculate Statistical Features
We used a BiLSTM algorithm to represent the relationship
between the multiple timeseries collected by biological sensors.
Data from an observing window before tachycardia onset were
used to train the model. Inspired by convolutional-LSTM model
[41], we designed the model to use the statistical features of the
raw timeseries signals as inputs within a sliding sub–observing
window. The results for all sub–observing windows were
concatenated along the time and fed into the model.

We explored 8 types of statistical features—mean, standard
deviance, slope, quantiles, sum, absolute energy (ƒ1),
aggregation function of autocorrelation (ƒ2), and measurement
of discrimination power (ƒ3)—that are commonly used to
describe the timeseries characteristics. Herein, we focus on
explaining the calculation process of ƒ1, ƒ2, and ƒ3.

The absolute energy of the timeseries is calculated as

The correlation of a timeseries and its time lag is described by
ƒ2,

which is a similarity measurement index where Xi is a timeseries

value at one time point, n is the length of X, σ2 and μ are
estimations of the timeseries variance and mean, respectively,
and l is the time lag [42].

The nonlinearity of a timeseries is quantized using

where lag is a time delay operator (equal to l) [43].

Step 2: Fuse Patient Characteristics
We extracted the previously mentioned static patient information
which was merged with the statistical features. The concatenated
vectors were normalized and input to the BiLSTM model.

Step 3: Obtain Tachycardia Onset Risk Score
In this step, TOP-Net determines a real-time risk score that
evaluates an individual risk probability of tachycardia onset.
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When the risk score continuously exceeds the threshold set by
the doctor for a period of time, the caregiver is alerted.

Medical Information Mart for Intensive Care (MIMIC)
MIMIC III is a large, publicly available critical care database
(version 1.4 [24]), with 38,557 adult patients’ (52,955 ICU
admissions) detailed hospital information such as demographic
information, laboratory test results, and diagnosis codes.
Patients’ multiple physiological signals (waveforms) and
corresponding numeric format of vital signs are stored in the
MIMIC III Waveform Database, which contains 10,282 patients’

time alignment information and 22,247 numeric records that
can be matched to the clinical database [36]. The basic
information is stored in the tables of admissions, patients’
hospital admission information; icustays, ICU transfer (in and
out) information; patients, individual birth and death dates; and
diagnoses_icd, diagnosis codes during hospitalization. All of
the tables can be associated with subject_id, a unique identity
of patients. The waveform database includes the header files
(name, unit, and recording frequency) and segments of
recordings (numeric signals). Figure 3 presents the method used
to link tables of information with the temporal waveforms.

Figure 3. The connection between clinical and waveform information in the MIMIC-III database.

Continuous Monitoring Database for the General
Ward
The use of general ward data was approved by the ethics
committee of the General Hospital of PLA (S2018-095-01). In
the general ward, we utilized a SensEcho medical-grade
monitoring system, which can monitor patients anytime and
anywhere. SensEcho contains 3 parts (Figure 4): a wearable
multisensor system unit, a wireless network and data
transmission unit, and a central monitoring system [35,38]. The
multisensors include a single-lead ECG sensor (200 Hz), a
sensor for respiratory inductive plethysmography (25 Hz), a

noninvasive photoplethysmogram sensor for SpO2 monitoring
(1 Hz) based on near-infrared spectroscopy, and a posture
recognition sensor using a 3-axis accelerometer. These signals
are collected and stored in a data logger. The logger has an
ultra–low power Wi-Fi module and supports long-term data
transmission by relying upon hospital networks. The central
monitoring system receives information, processes data, and
delivers and displays information. The algorithms deployed on
the system included signal quality evaluation, signal processing,
real-time abnormal event monitoring and early prediction, and
patients’ health assessment, which were packaged as a toolkit
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(Midas). The accuracy, stability, and effectiveness of our system
have been validated in previous studies [44-46].

Patients admitted to the hospital were assessed by a doctor using
the system. Continuous monitoring physiological signals were
transmitted to the hospital server and the data in numeric format

were acquired based on the waveform processing function in
Midas. The clinical information was stored separately in the
hospital information system. Data from the different sources
were linked (Figure 5) using patient_id, a unique identification
of patients similar to subject_id in MIMIC III.

Figure 4. Overview of the SensEcho system.

Figure 5. The connection between clinical and waveform information monitored by SensEcho.
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Tachycardia Onset Diagnostic Criteria
Diagnostic tachycardia onset criteria were determined by 3
clinical experts from the Emergency Department, the general
ward, and surgical ICU. A tachycardia event was defined as
any of the following: (1) heart rate above 100 bpm sustained
over 30 minutes; (2) heart rate above 130 bpm sustained over
20 minutes; (3) heart rate above 150 bpm sustained over 5
minutes. The initial timepoint meeting of any of these conditions
was recognized as tachycardia onset.

Experiments

Data Set
In the ICU environment, we selected 5699 patients with the
following criteria: age over 18 years old, admitted to the hospital
and ICU for the first time, monitoring data longer than 14 hours
with heart rate, respiratory rate, and SpO2 recordings. The size
of the observing window was chosen as 2 hours, which was
used to extract the statistical features. The negative sample set
was built by extracting information in the observing window
with a 1-hour sliding step throughout monitoring for patients
without tachycardia. The positive sample set was acquired by

selecting the same features in the observing window before the
occurrence of tachycardia with a forecast range. To balance the
ratio of positive and negative samples, we kept extracting
positive samples with a 5-minute delay based on the former (for
target replication), which is a method used in a previous study
[47]. The data were downsampled from per second to per minute
by averaging. If more than 30% were null or 0 values of all
variables at a certain time, the missing values were filled using
the forward interpolation method. We randomly picked the
number of negative samples close to the positive samples to
further decrease class imbalances. There were 2748 and 2130
negative and positive samples, respectively.

In the general ward, we deployed the wearable grade monitoring
system (Figure 6a) in a cardiovascular disease department in
January 2018. We collected data from 367 patients for research.
The inclusion criteria for monitoring duration was reduced to
from 14 hours to 4 hours to take into account patient length of
stay. A total of 259 patients were included, and 2300 negative
samples and 270 positive samples were extracted. Figure 6b
shows a patient wearing a multisensor shirt, and Figure 6c shows
an example of a patient encountering tachycardia.

Figure 6. Continuous monitoring using (a) SensEcho system with (b) example of a patient with sensors attached, and (c) sample data. HR: heart rate;
RR: respiratory rate; SpO2: blood oxygen saturation.
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Developing the Prediction Model
In the early prediction model, developed from the MIMIC-III
data set, predictions (forecast ranges) with TOP-Net were
explored from 0 hour to 6 hours with a 2-hour interval. A total
of 21 statistical features were included (Table 1). The size of
sub–observing window and sliding step were individually set
to 20 minutes and 5 minutes, respectively. We calculated all
statistical values in sub–observing windows, sequentially
amalgamated, and fed them into the model. The data set was
randomly split to 80% of the training set and 20% of the testing

set according to the patient’s hospitalization number. The 5-fold
cross-validation together with random search was used to tune
the hyperparameters based on the training set considering the
sample size [48]. The hidden size was set to 32. We tested

learning rates ranging from 1-4 to 1-2 with an interval of 1-4 and
training epochs from 5 to 100 with an interval of 10. The best
hyperparameters were determined by minimizing validation
loss. We retrained the model using the optimal hyperparameters
on the training set, and the performance of the model was
assessed on the test set.

Table 1. Statistical features constructed in this study.

Feature descriptionFeature type and name

Heart rate (n=10)

Mean heart ratehr_mean

Heart rate SDhr_std

Sum of heart ratehr_sum

Slope of heart ratehr_slope

ƒ1 of heart ratehr_abs_energy

ƒ3 of heart rate with lag=2hr_c2

ƒ3 of heart rate with lag=3hr_c3

10% quantile of heart ratehr_quantiles_01

30% quantile of heart ratehr_quantiles_03

70% quantile of heart ratehr_quantiles_07

Respiratory rate (n=5)

Mean respiration rateresp_mean

Respiration rate SDresp_std

Slope of respiration rateresp_slope

ƒ1 of respiration rateresp_abs_energy

ƒ3 of respiration rate with lag=3resp_c3

SpO2
a (n=5)

Mean SpO2spo2_mean

SD of SpO2spo2_std

Slope of SpO2spo2_slope

ƒ3 of SpO2 with lag=3spo2_c3

ƒ1 of SpO2spo2_abs_energy

Together (heart rate, respiratory rate, SpO2) (n=1)

Mean value of ƒ2 using all vital signs with the default l=40all_autocorrelation

aSpO2: blood oxygen saturation.

Comparison With Baseline Models
To further investigate the performance of TOP-Net, we designed
subexperiments 1, 2, and 3 to obtain a comprehensive
assessment. In subexperiment 1, the model was acquired without
considering personal information and bidirection memory
functions. That is, LSTM and convolutional neural network

models were obtained in a total cohort without considering the
personal information of patients. The structure of the LSTM
was consistent with that of a BiLSTM, and the convolutional
neural network model had 2 convolutional layers. In
subexperiment 2, conventional machine learning methods,
including extreme gradient boosting [49], multilayer perceptron,
and random forest, were compared with TOP-Net with default
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model parameters. In subexperiment 3, different feature
combinations were examined: (1) all vital signs, (2) heart rate,
(3) heart rate and respiratory rate, and (4) heart rate and SpO2.

Performance Evaluation Metrics
Prediction performance was measured with 6 metrics:
sensitivity, specificity, accuracy, F1 score, precision, and area
under the receiver operating characteristic curve (AUROC).

Model Validation and Transfer to the General Ward
The performance of TOP-Net was validated using the data
collected in the general ward (small data set obtained within 1
year) by the SensEcho system. A transferrable model suitable
for non-ICU patients was acquired by finetuning the ICU
scenario model. The model performance was also assessed with
the 6 metrics using 5-fold cross-validation due to the small
sample size.

Experimental Platform
We utilized PostgreSQL (version 9.6; PostgreSQL Global
Development Group) to extract the clinical data. All data
processing and analyses, model development, and result
visualization was performed with Python (version 3.7.1) and
CUDA (version 10.0).

Results

Data Sets
Table 2 shows admission information summary statistics for
the study cohorts. The patients’ ages were slightly higher in the
ICU cohort and most of them were admitted to the hospital for
emergencies. A large proportion of patients were admitted for
elective reasons in the cardiovascular disease department of our
hospital. Furthermore, a higher proportion of patients had a
history of cardiovascular diseases in the general ward.

Table 2. Study cohorts.

General ward cohort (n=259)ICUa cohort (n=5699)

61.00 (53.00, 67.50)66.15 (53.97, 77.78)Age (years), median (IQR)

Gender, n (%)

105 (40.5)3262 (57.2)Female

154 (59.5)2437 (42.8)Male

Admission type, n (%)

227 (87.6)979 (17.2)Elective

32 (12.4)4550 (79.8)Emergency

—b170 (3.0)Urgent

First care unit, n (%)

—1190 (20.9)Coronary care

—1118 (19.6)Cardiac surgery recovery

—1501 (26.3)Medical ICU

—1320 (23.2)Surgical ICU

—570 (10.0)Trauma/surgical ICU

234 (90.3)4933 (86.6)Cardiovascular diseases, n (%)

aICU: intensive care unit.
bNo data.

Model Performance

Evaluation Based on the ICU Cohort
We leveraged 5-fold cross-validation to select optimal
hyperparameters with the training set and assessed the
performance of the model on the test set. The hyperparameter
values that we selected were learning rate =0.0002, epoch=20,
and batch size=64. Figure 7 and Table 3 summarize the results
from subexperiment 1 and subexperiment 2. The AUROC and
F1 score for TOP-Net were consistently better than those of
other models, with the exception of F1 score (TOP-Net’s was
slightly lower than that of the LSTM model for 6 hours

prediction, though TOP-Net’s sensitivity was slightly higher
than of the LSTM at this time).

Although the 95% CI in subexperiment 1 overlaps, TOP-Net
has better performance than LSTM and convolutional neural
network in each prediction range above 0.5%-1%. Therefore,
fusing patient personal information and bidirection memory
makes the prediction model more accurate and robust. In
subexperiment 2, TOP-Net was consistently superior to the
other machine learning models, especially 6 hours before
tachycardia onset; TOP-Net performs well (AUROC 0.796,
95% CI 0.768-0.824; sensitivity 0.753, 95% CI 0.663-0.793;
specificity 0.720, 95% CI 0.645-0.758; and F1 score 0.718).
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In Table 4, the results for models using heart rate (n=10), heart
rate and respiratory rate (n=15), heart rate and SpO2 (n=15),
and statistical features of all vital signs (n=21) are shown. For
2- to 6-hour forecast ranges the model with all of the features
input has the best performance with highest AUROC values.
The performance is slightly reduced when inputting heart rate
and respiratory rate, or heart rate and SpO2. The performance
was the worst when including only heart rate statistical features.

The statistical characteristics of heart rate play a dominant role
in real-time diagnosis. Furthermore, we employed the extreme
gradient boosting algorithm to rank the importance of 21
designed features for a forecast range of 6 hours. The top 8
features (Figure 8) were hr_abs_energy, hr_quantiles_01, hr_c3,
hr_c2, hr_quantiles_03, resp_c3, hr_mean, and hr_quantiles_07.
The nonlinearity features—hr_c3 and hr_c2 (ƒ3 with lag=3 and
lag=2)—were ranked third and fourth, respectively. The
respiratory feature resp_c3 was ranked sixth.

Figure 7. TOP-Net performance: (a) AUROC and (b) F1 score. AUROC: area under the receiver operating characteristic curve; CNN: convolutional
neural network; LSTM: long short-term memory; XGBoost: extreme gradient boosting; MLP: multilayer perceptron; RF: random forest; TO: tachycardia
onset.
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Table 3. The detailed information of performance comparison (TOP-Net vs other models).

Precision (%)F1 score (%)Specificity (%) (95% CI)Sensitivity (%) (95% CI)Accuracy (%)AUROCa (%) (95%
CI)

Forecast range and
model

0 hours

90.589.892.1 (85.9-94.3)89.1 (81.9-91.8)90.195.5 (94.2-96.8)TOP-Net

92.188.992.3 (87.0-95.1)85.9 (80.7-89.4)89.394.5 (93.0-96.0)CNNb

89.989.490.8 (81.1-93.8)88.9 (83.9-91.8)89.894.4 (92.9-96.0)LSTMc

94.987.993.0 (87.4-96.0)81.9 (75.7-85.6)88.393.2 (91.5-94.9)XGBoostd

89.587.589.9 (84.6-93.2)85.6 (80.2-88.9)87.993.0 (91.3-94.8)MLPe

88.686.889.0 (82.1-92.8)85.1 (80.2-88.8)87.392.3 (90.5-94.2)Random forest

2 hours

80.679.181.6 (74.2-85.1)77.6 (70.8-81.3)79.685.6 (83.2-88.0)TOP-Net

75.677.177.8 (71.2-81.4)78.6 (71.3-83.2)77.684.6 (82.1-87.1)CNN

76.877.767.4 (56.8-71.5)88.6 (81.0-92.0)78.285.1 (82.7-87.5)LSTM

80.577.480.9 (73.9-84.5)74.5 (66.7-79.1)78.083.8 (81.2-86.3)XGBoost

75.877.077.7 (69.9-82.0)78.3 (71.3-82.2)77.583.9 (81.4-86.4)MLP

83.777.182.3 (76.4-86.0)71.5 (63.6-76.6)77.782.8 (80.2-85.4)Random forest

4 hours

69.475.872.2 (63.8-74.7)83.5 (75.5-85.9)76.383.3 (80.7-85.8)TOP-Net

77.874.578.8 (70.0-82.5)71.5 (63.6-76.3)75.280.9 (78.2-83.7)CNN

74.173.676.3 (69.6-80.1)73.1 (65.5-77.9)74.281.9 (79.2-84.5)LSTM

77.872.678.5 (72.0-82.8)68.1 (60.2-72.7)73.480.4 (77.7-83.2)XGBoost

70.672.272.0 (65.1-76.3)73.9 (66.9-78.7)72.980.1 (77.3-82.8)MLP

82.572.479.9 (73.4-84.8)64.5 (60.6-71.4)73.379.0 (76.1-81.9)Random forest

6 hours

68.671.872.0 (64.5-75.8)75.3 (66.3-79.3)72.179.6 (76.8-82.4)TOP-Net

63.570.564.1 (57.1-69.1)79.3 (72.8-83.7)70.978.3 (75.4-81.1)CNN

70.572.271.8 (64.1-76.0)74.0 (67.0-78.4)72.578.7 (75.9-81.5)LSTM

62.068.464.1 (55.1-68.9)76.3 (69.5-75.4)69.176.1 (73.1-79.0)XGBoost

68.470.169.4 (61.7-74.5)71.9 (65.1-76.7)70.676.7 (73.8-79.6)MLP

63.966.466.7 (59.3-70.6)69.1 (59.0-74.3)67.274.4 (71.4-77.5)Random forest

aAUROC: area under the receiver operating characteristic curve.
bCNN: convolutional neural network.
cLSTM: long short-term memory.
dXGBoost: extreme gradient boosting.
eMLP: multilayer perceptron.
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Table 4. Performance of TOP-Net with the different types of features.

Precision (%)F1 score (%)Specificity (%) (95%
CI)

Sensitivity (%) (95%
CI)

Accuracy (%)AUROCa (%) (95%
CI)

Forecast range and feature
type

0 hours

90.589.892.1 (85.9-94.3)89.1 (81.9-91.8)90.195.5 (94.2-96.8)All

90.890.191.9 (85.9-94.1)89.4 (84.7-93.1)90.495.2 (93.8-96.6)HRb+SpO2
c

89.689.691.0 (84.8-94.3)89.6 (84.7-92.3)90.095.3 (93.9-96.7)HR+RRd

80.689.892.1 (86.5-94.9)89.1 (83.9-92.3)90.195.5 (94.2-96.9)HR

2 hours

80.679.181.6 (74.2-85.1)77.6 (70.8-81.3)79.685.6 (83.2-88.0)All

75.176.176.4 (69.4-80.4)77.1 (70.6-81.0)76.983.3 (80.8-85.9)HR+SpO2

82.178.682.0 (75.3-86.5)75.4 (69.1-79.3)79.184.4 (81.9-86.9)HR+RR

74.176.373.9 (66.7-78.0)78.6 (71.8-82.7)76.982.9 (80.3-85.5)HR

4 hours

69.475.872.2 (63.8-74.7)83.5 (75.5-85.9)76.383.3 (80.7-85.8)All

73.675.074.9 (67.6-79.2)76.5 (70.0-81.3)75.882.3 (79.6-84.9)HR+SpO2

77.575.077.9 (70.0-82.3)72.7 (66.4-77.7)75.682.1 (79.5-84.8)HR+RR

70.572.972.7 (66.0-77.0)75.5 (67.2-79.9)73.680.4 (77.6-83.2)HR

6 hours

68.671.872.0 (64.5-75.8)75.3 (66.3-79.3)72.179.6 (76.8-82.4)All

73.071.574.5 (66.5-78.6)70.0 (62.6-74.4)71.977.6 (74.7-80.5)HR+SpO2

65.671.667.6 (61.2-72.0)78.8 (71.6-83.3)72.078.7 (75.8-81.5)HR+RR

71.769.473.3 (66.9-77.7)67.2 (59.5-72.1)70.075.5 (72.5-78.6)HR

aAUROC: area under the receiver operating characteristic curve.
bHR: heart rate.
cSpO2: blood oxygen saturation.
dRR: respiration rate.
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Figure 8. Statistical feature rankings.

Model Validation in the General Ward
We assessed the performance of the model 2 hours before
tachycardia onset because the interval between the tachycardia
onset and the admission time to the department was short in our
scenario of the general ward. Given the limited training data,
we used the transfer learning method to finetune the model. The
parameters were learning rate=0.0002, epoch=18, and batch
size=32. The 5-fold cross-validation was also used to assess the
performance and prevent possible overfitting. The retraining
results can be seen in Table 5. TOP-Net had a stable outcome
and outperformed the other 5 models (AUROC 0.965, accuracy
0.937, sensitivity 0.955, specificity 0.881, F1 score 0.793, and
precision 0.680. Compared with the model in ICU, the difference

in prediction performance might be caused by the difference in
the severity of the patient’s disease. Although convolutional
neural network’s F1 score was much higher, its sensitivity, to
which clinicians pay more attention, was lower than that of
TOP-Net.

Figure 9 shows real-time risk scores of tachycardia onset and
an example of early tachycardia onset prediction with TOP-Net.
In Figure 9a, the patient encountered a tachycardia event after
admission from 675 to 725 minutes. The risk probability was
assessed every 5 minutes; Figure 9b presents real-time risk. We
set the alarm threshold to 0.40 with a trade-off predictive effect
of sensitivity and specificity. The risk score begins to rise after
the 555th minute, showing that our model can predict the
tachycardia event 125 minutes beforehand.
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Table 5. TOP-Net performance based on transfer learning in the general ward (2-hour forecast range).

Precision (%), mean
(SD)

F1 score (%), mean
(SD)

Specificity (%),
mean (SD)

Sensitivity (%),
mean (SD)

Accuracy (%), mean
(SD)

AUROCa, mean
(SD)

Model

68.0 (5.99)79.3 (4.33)88.1 (4.28)95.5 (4.85)93.7 (1.02)96.5 (1.92)TOP-Net

78.8 (9.85)83.8 (5.38)88.1 (8.4)90.1 (2.88)95.3 (1.43)93.8 (2.02)CNNb

60.0 (4.89)73.0 (3.4)81.5 (5.6)93.6 (2.76)92.6 (0.61)93.2 (1.89)LSTMc

66.6 (6.8)73.7 (3.7)82.6 (7.9)83.4 (5.2)92.9 (1.1)89.9 (2.1)XGBoostd

54.0 (2.9)62.6 (2.0)78.9 (9.1)75.9 (9.6)91.0 (0.7)84.2 (4.1)MLPe

73.8 (4.9)75.0 (3.7)86.8 (4.7)76.6 (5.2)92.5 (1.0)87.3 (3.0)Random forest

aAUROC: area under the receiver operating characteristic curve.
bCNN: convolutional neural network.
cLSTM: long short-term memory.
dXGBoost: extreme gradient boosting.
eMLP: multilayer perceptron.

Figure 9. Example of a tachycardia event and our risk score of predicting tachycardia onset. HR: heart rate.

Discussion

General
In this study, we developed a model using a publicly accessible
data set and transferred it to a real clinical scenario. The
performance of TOP-Net for predicting tachycardia onset 0 to
6 hours in advance was better than that of the baseline models
(timeseries prognosis methods and conventional machine

learning methods without timing characteristics); TOP-Net
outperformed benchmarks of 2 deep learning models, 2
ensemble, and 1 neural network models for predictions 6 hour
in advance.

Many continuous monitoring physiological status studies have
indicated the deterioration of vital signs occurred more than 6
to 12 hours before serious adverse events [50]. Continuous
monitoring, early prediction, and intervention tachycardia can
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reduce the occurrence of heart failure, cardiac arrest, and death.
This paper proposed TOP-Net, a tachycardia onset early
prediction model leveraging the BiLSTM algorithm with 8
easily accessible vital signs and personal information. TOP-Net
was trained using a large ICU data set and transferred to the
general ward scenario with patients monitored by wearable
sensors. TOP-Net has been validated to be consistently superior
to the baseline models when predicting tachycardia onset from
0 to 6 hours in advance. Including patient characteristics allowed
more accurate tachycardia onset prediction than those by other
models without this information. Moreover, TOP-Net achieved
forecasting tachycardia onset 6 hours beforehand, and the
transferred model also performed well in our clinical scenario.

In recent years, some novel models for early risk prediction of
adverse events have been developed based on electronic health
records or physiological signals. Pan et al [51] utilized a
self-correcting deep learning approach to predict whether acute
kidney injury would occur in a subsequent 6 hours. Futoma et
al [52] developed a multitask Gaussian process recurrent neural
network classifier to early detect sepsis achieving 4 hours in
advance. Tonekaboni et al [53] trained a convolutional neural
network and LSTM fusion model to predict cardiac arrest from
physiological signals 24 hours in advance. For tachycardia onset
prediction, Lee et al [17] used an artificial neural network–based
model and 104 samples to predict ventricular tachycardia 1-hour
before occurrence. Yoon et al [54] adopted a random
forest–based model and 1494 samples achieving detection 75
minutes in advance. Our real-time prediction model, using the
deep neural architecture on 4878 sample sets, demonstrated
better and more robust performance than those of multiple
baseline models, which included artificial neural network and
random forest models, when predicting tachycardia onset 0 to
more than 6 hours beforehand.

It is necessary for clinicians to combine a patient’s current
symptoms, basic information, and past medical history to
diagnose disease severity [55]. For example, the proportion who
might have cardiovascular disease and the risk of sustained high
heart rate is not the same for patients of different ages with
different histories of disease. This useful information is usually

recorded in electronic health records. Recently, several
researchers have tried to combine the analysis of 2 kinds of
materials to represent comprehensive information and improve
the performance of the models: Xu et al [56] proposed a model
to predict physiological decompensation and length of ICU stay
by analyzing ECG and medical records data, and Nemati et al
[57] employed high-resolution vital signs and electronic health
records to achieve early sepsis prediction. However, little
attention has been paid to tachycardia prognosis. In this paper,
we integrated electronic health record and biosensor data to
accomplish early prediction. The results of subexperiment 1
show that fusing electronic health record information can
improve the accuracy of early prediction compared with the
LSTM and convolutional neural network models.

Risk prediction is a core task in the artificial
intelligence–assisted medical domain. Cardiovascular disease
prediction models based on electronic health record analysis
have been studied [58-60]. Doctor AI [58] requires diagnosis
codes, medication codes, or procedure codes to achieve
multilabel predictions including heart failure. Jin et al [60]
utilized 1864 diagnostic events to train a sequential model to
predict the risk of heart failure but because they were limited
by the need to obtain more information, the model cannot be
used in hospitals with low information integration or in homes.
Deep learning models using ECG signals have also been used
for predictive health care tasks [61]. While ECG signals are
susceptible to interference from physical artifacts, sensors can
obtain heart rate using photoplethysmography instead of ECG
signals. Therefore, models based on core vital signs can easily
be used and to improve prediction performance. We selected 3
vital signs and 5 types of personal information that can easily
be acquired from wearable sensors and hospital information
systems, respectively. TOP-Net was developed using a large
data set and transferred to our actual demand scenario. The
results show that it has the potential to be used in ICU and the
general ward, which also can be extended to home use. Table
6 presents a comparison between TOP-Net and other
state-of-the-art approaches based on input information, model
types, scenario for evaluating the model, sample sizes, and
performance.

Table 6. Review of the performance of related algorithms.

PerformanceSample sizesScenarioModel typesInformationReference

1 hour before ventricular tachycardia:
sensitivity 88%; specificity 82%; AU-

ROCb 93%

52 (positive records); 52
(negative records)

ICUaNontemporal, classic
machine learning

High-frequency vital
signs (1)

Lee et al 2016
[17]

1-2 hours before tachycardia onset: accu-
racy 95.85%

4893 (positive and nega-
tive records)

ICUNontemporal, classic
machine learning

High-frequency vital
signs (6)

Forkan et al
2017 [16]

75 minutes before tachycardia onset: ac-
curacy 84.7%-78.2%; AUROC 92.1%-
84.2 %

787 (positive records);
707 (negative records)

ICUNontemporal, classic
machine learning

High-frequency vital
signs (3)

Yoon et al
2019 [54]

6 hours before tachycardia onset: accura-
cy 72.1%; AUROC 79.6%

2130+270 (positive
records); 2748+2300
(negative records)

ICU and the
general ward

Temporal, deep
learning

High-frequency vital
signs (3) and electronic
health record data (5)

TOP-Net

aICU: intensive care unit.
bAUROC: area under the receiver operating characteristic curve.
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Limitations
This study had some limitations. Because SensEcho was
deployed in the clinic for only 1 year after our research project
began, the limited data collected prevented us from directly
developing a general ward model. Moreover, interventions such
as beta-blocker medication may affect the occurrence of
tachycardia onset and cause it to not be captured by the input
features. Electronic health records contain rich information such
as laboratory tests, clinical orders, and nursing notes that can
characterize a patient’s health status and depict the trajectory
of diseases. Further studies involving the integration of
multivariate timeseries from electronic health records are
expected to improve the prediction performance of tachycardia
onset, and more data from the general ward for TOP-Net
performance evaluation are required.

Conclusions
TOP-Net for real-time evaluation and early prediction of the
risk of tachycardia onset, which made it possible to achieve an
early forecast of tachycardia onset 6 hours in advance with
clinically acceptable performance. TOP-Net was assessed using
6 metrics, 3 subexperiments, different prediction times from 0
to 6 hours. The comparison between the TOP-Net and the other
5 approaches (2 deep learning models, 2 ensemble models, and
1 artificial neural network model) showed that TOP-Net was
superior to the other models. The model with personal
information from electronic health records had better
performance than those without. The easily accessible input
data of the model (3 vital signs and 5 types of personal
information) and the good performance of the transferred model
in the general ward indicated the early prediction of tachycardia
onset using wearable sensors is possible in hospitals or houses.
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