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Abstract

Background: A 12-lead electrocardiogram (ECG) is the most commonly used method to diagnose patients with cardiovascular
diseases. However, there are a number of possible misinterpretations of the ECG that can be caused by several different factors,
such as the misplacement of chest electrodes.

Objective: The aim of this study is to build advanced algorithms to detect precordial (chest) electrode misplacement.

Methods: In this study, we used traditional machine learning (ML) and deep learning (DL) to autodetect the misplacement of
electrodes V1 and V2 using features from the resultant ECG. The algorithms were trained using data extracted from high-resolution
body surface potential maps of patients who were diagnosed with myocardial infarction, diagnosed with left ventricular hypertrophy,
or a normal ECG.

Results: DL achieved the highest accuracy in this study for detecting V1 and V2 electrode misplacement, with an accuracy of
93.0% (95% CI 91.46-94.53) for misplacement in the second intercostal space. The performance of DL in the second intercostal
space was benchmarked with physicians (n=11 and age 47.3 years, SD 15.5) who were experienced in reading ECGs (mean
number of ECGs read in the past year 436.54, SD 397.9). Physicians were poor at recognizing chest electrode misplacement on
the ECG and achieved a mean accuracy of 60% (95% CI 56.09-63.90), which was significantly poorer than that of DL (P<.001).

Conclusions: DL provides the best performance for detecting chest electrode misplacement when compared with the ability of
experienced physicians. DL and ML could be used to help flag ECGs that have been incorrectly recorded and flag that the data
may be flawed, which could reduce the number of erroneous diagnoses.

(JMIR Med Inform 2021;9(4):e25347)   doi:10.2196/25347

KEYWORDS

deep learning; ECG interpretation; electrode misplacement; feature engineering; machine learning; ECG; engineering; cardiovascular
disease; myocardial infarction; myocardial; physicians
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Introduction

Background
Clinicians routinely face the challenge of making sense of a
large amount of high-dimensional and heterogeneous data to
inform their clinical decision making. Poor clinical decisions
can fail to provide the correct diagnosis and treatment, which
can have a large impact on patient safety and health care costs
[1,2]. Artificial intelligence technologies such as deep learning
(DL) and machine learning (ML) could play an important role
in developing smarter clinical decision-making algorithms that
can assist clinicians in making accurate diagnoses. To
operationalize artificial intelligence in health care, interactions
between data scientists and clinicians are essential to maximize
the use of clinical data in the development of automated and
predictive systems [2,3].

Cardiovascular diseases are heterogeneous and complex in
nature, as they can be caused by a plethora of environmental,
genetic, or behavioral factors. To diagnose a cardiac disease,
the provision of incorrect data such as electrocardiogram (ECG)
data can have a high impact on clinical decision making. A
known error is an incorrectly recorded ECG caused by placing
precordial electrodes (chest electrodes: V1, V2, V3, V4, V5,
and V6) in incorrect positions, resulting in erroneous ECG
signals that are interpreted by physicians to inform patient
diagnostic signs and treatment plans. This is complicated by
the fact that many physicians and cardiologists are not normally
present when the ECG is being recorded by a nurse or ECG
technician [4-7]. Therefore, ECG interpreters are unaware of
the electrode positions that were used to record the ECG that
they are reading. Electrode misplacement errors can affect the
clinical interpretation of ECGs [8].

Research has shown that signals recorded by electrode V2 are
very sensitive to misplacement, followed by electrodes V3, V1,
and V4, whereas electrodes V5 and V6 have little visible
changes in ECG morphology [9]. The most common error in
electrode misplacement is placing electrodes V1 and V2 too
high in the third or second intercostal space (ICS). The correct
position of electrode V1 is in the fourth ICS at the right sternal
edge and that of V2 is in the fourth ICS at the left sternal edge.
Correctly placing the electrodes V1 and V2 is crucial, given
that their misplacement is also known to cause subsequent
misplacement of the remaining chest electrodes (V3 to V6) [9].

Electrode misplacement in ECG acquisition can occur between
40% and 60% of the time [10,11]. Approximately 50% of V1
and V2 electrodes are placed wide and high of their correct
anatomical position [10,11].

According to one study, incorrect electrode placement could
lead to incorrect diagnoses in 17% to 24% of patients [12]. ECG
signals recorded from vertically misplaced V1 and V2 electrodes
could also result in a false diagnosis of Brugada syndrome [13]
and a failure to detect myocardial infarction (MI) and left
ventricular hypertrophy (LVH) [10]. Misplacement can not only
conceal but also mimic other cardiac diseases, such as MI
[14-16]. Less than 20% of cardiologists and 50% of nurses can
correctly place V1 and V2 in their correct positions [17]. Several
devices have been devised and used to correctly place precordial
electrodes. One of the technologies involves using a sliding
ruler to facilitate the positioning of electrodes in the correct
position [18]. Unfortunately, these technologies have not been
widely adopted, likely because of an increase in cost.

To date, research in this area has focused on algorithm
development to detect limb electrode interchanges [17-20] rather
than precordial electrode misplacement, because the latter is
more challenging. Schijvenaars et al [21] used body surface
potential maps (BSPMs) to derive transformation matrices to
mimic electrode misplacement errors; therefore, BSPMs are
suitable for studying electrode misplacement errors.

Objectives
The aim of this study is to determine the performance of ML
and DL algorithms for detecting V1 and V2 electrode
misplacement when recording ECGs (as V1 and V2 electrode
misplacement can also result in misplacement of the other chest
electrodes [V3-V6]) and to benchmark this performance against
a group of physicians.

Methods

ECG Data Set Description
ECGs (V1 and V2 electrodes) were extracted from a
high-resolution BSPM (Figure 1). Each BSPM comprises 117
nodes (ECG electrodes) and is known as the Kornreich data set
[22-24]. This data set has been used in a large number of
publications from groups around the world; however, no
researcher has used it to train an algorithm to detect the
misplacement of electrodes V1 and V2.
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Figure 1. Body surface potential map. Symbols after letters represent column numbers, while symbols after numerals represent row numbers.

The ECG data set consisted of three different subject types,
including normal ECGs and ECGs showing MI and LVH. In
this study, we have ECGs for 453 patients (normal: n=151,
LVH: n=151, and MI: n=151). Each ECG was acquired at a
sampling frequency of 300 Hz. For each BSPM, we extracted
a correct ECG and an incorrect ECG (where electrodes V1 and
V2 were misplaced). This provided a natural class balance where
50% of the cases are correct and 50% are incorrect. This is
important given that algorithms improve their performance
when being equally exposed to the same number of cases in
each class so as to avoid bias and maximize learning. For
preprocessing, the 117 nodes or electrodes in each BSPM are
multiplied using a transformation matrix to obtain 352 nodes

that provide greater resolution (using the Dalhousie torso [22],
which is a standard approach). According to the recorded data
set [25], nodes 169 and 171, denoted in green (Figure 1),
represent electrodes V1 and V2, respectively, in their correct
positions (fourth ICS). We used nodes 126 and 128, denoted in
blue (Figure 1), to represent the misplaced electrodes V1 and
V2 in the third ICS and nodes 83 and 85, in blue color, to
represent V1 and V2 as misplaced in the second ICS. For each
patient, we have recorded the ECG signals simultaneously for
electrodes V1 and V2 and one cardiac cycle comprising PQRS
deflections. Figure 2 shows an overview of the methodology
used in this study.
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Figure 2. The data pipeline of this study using 3 phases (data engineering, analytics, and delivery). (a) The data engineering phase that includes data
collection (extracting electrocardiograms from body surface potential maps) and data preparation (removing noise from extracted data). (b) The analytics
phase that includes traditional machine learning (linear support vector machine, quadratic support vector machine, fine decision tree, coarse decision
tree, logistic regression, and bagged tree) and deep learning (convolutional neural network and bidirectional long short-term memory network). (c) The
delivery phase that is used to show traditional machine learning and deep learning model inferences. BLSTM: bidirectional long short-term memory;
CNN: convolutional neural network; ECG: electrocardiogram.

Detecting V1 and V2 Electrode Misplacement in the
Second and Third ICSs Using Feature Engineering
Given that we have one ECG cycle for each patient, the signal
was normalized using Equation 1 to reduce signal distortion
and baseline drift.

y [n]=s[n]/max (|s[n]|) (1)

where s[n] is the input signal and y[n] is the output signal.

For feature extraction, a total of 16 ECG features were extracted
using 3 different methods: (1) time-domain features (we
considered 6 time-domain features, including P-wave amplitude,
PR interval, QRS onset value, R-wave peak amplitude, offset
of the QRS, and S-wave amplitude), (2) statistical domain
features (including the mean, SD, skewness, and kurtosis of the
ECG signal; Pearson correlation coefficient; and the
root-mean-square error between V1 and V2 electrodes, given
that these electrodes are commonly misplaced together), and
(3) time-frequency features. The latter involved a discrete
wavelet transform using 4 levels and a symlets mother wavelet
function, 4 detailed coefficients (D1, D2, D3, and D4), and 4
approximation coefficients (A1, A2, A3, and A4). We also
considered the maximum, minimum, and mean values of D4 as
features.

For feature selection, a hybrid approach feature selection
algorithm was used, which combined the filter and wrapper
methods. A total of 16 features were ranked using different filter
methods, including mutual information feature selection,

maximum relevance minimum redundancy, joint mutual
information (JMI), entropy, and relief. Second, a backward
elimination algorithm was performed on ranked features to find
an optimal set of features as inputs to the ML classifier. The
backward elimination algorithm started with all 16 features and
removed feature by feature until the best result was achieved.

For classification, we used 6 ML classifiers. This involved the
use of three different types of decision trees (DTs): (1) fine DT,
which is used to make many leaves that can enable the tree to
make fine distinctions between classes; (2) a coarse DT (CDT)
that is used to make a small number of leaves that can enable
the tree to make coarse distinctions between classes; and (3) a
bagged tree that uses bootstrapping with replacement to produce
multiple training data sets and takes the majority outcome from
multiple trees. Data will be presented using Equation 2.

(X;Y)=(x1,x2,... ..,xn; Y) (2)

where X represents features and Y represents classes.

Gini impurity (GI) was the splitting criterion used to split the
tree into branches. In this study, there are two classes: (1) label
0 represents the incorrect electrode placement class and (2) label
1 represents the correct electrode placement class. Equation 3
is used to compute the GI for each class.

where n is the number of classes and pi is the fraction of subjects
labeled with class i in the data set.
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In addition to DT techniques, we used variants of the support
vector machine (SVM) and logistic regression (LR). This
includes a linear SVM that incorporates two parallel hyperplanes
that are selected to separate the data set into two classes where
the distance (margin) between hyperplanes should be as large
as possible. Equations 4 and 5 describe the two hyperplanes.

w.x−b=1 (4)

w.x−b=−1 (5)

where w represents the weight corresponding to each feature,
x features the data set, and b represents the biased term. Cases
above this hyperplane or on the hyperplane should be in class
1, and cases below this hyperplane should be in class 0.

A quadratic SVM was used, where the quadratic kernel function
was used to split the data set into two classes. The difference
between linear SVM and quadratic SVM was the kernel function
used to split the cases. Finally, LR or logit was used because
this was a common statistical technique for binary classification.
This technique used log odds (L) as computed using Equation
6, which represents a linear combination of features and model
parameters.

L= α0 + α1.x1+...+ αn.xn (6)

where α0 coefficients are model parameters and xn are features.

Odds (o) computation was the exponent that was used to
compute odds using Equation 7, and the corresponding
probability was computed using Equation 8.

Detecting V1 and V2 Electrode Misplacement in the
Second and Third ICSs Without Feature Engineering
DL does not require feature engineering (ie, feature extraction
and selection). Therefore, raw ECG signals are fed into a deep
neural network without specifying features. DL can entail
different types of networks and architectures. This study uses
two different DL networks: (1) convolutional neural networks
(CNNs) and (2) bidirectional long short-term memory (BLSTM)
networks. A CNN has been built using 15 layers that comprise
1 input layer (used to feed in the ECG signals), 3 hidden
convolutional layers (which uses a filter with a variable length
to transform the input signal into a convolution layer), 3 batch

normalization layers (used to normalize the output of a previous
layer by subtracting the mean of batch and dividing this by the
SD of the batch), 3 rectified linear unit layers (an activation
function that is used to remove negative values), 2 max-pool
layers (which combine the sequence output of the previous layer
into one single value to reduce the number of parameters and
computation in the network), 1 fully connected layer (which
connects every neuron in one layer to every neuron in the next
layer), 1 soft-max layer (which uses LR to generate probability
for each class), and 1 final classification output layer. The
BLSTM network comprises 1 sequence input layer, 2 BLSTM
hidden layers (which are used to learn the network through each
complete time series at each time step), 1 fully connected layer,
1 soft-max layer, and 1 classification output layer.

Physician Detection of V1 and V2 Electrode
Misplacements Using Visual Inspection of the ECG
A web-based survey including 30 random ECGs of V1 and V2
(ECGs of correct placement of V1 and V2 [n=15] and ECGs of
incorrect placement of V1 and V2 [n=15]) was emailed to 20
participants at the International Society for Computerized
Electrocardiology 2019 Conference and Computing in
Cardiology 2019 Conference. Of the 20 participants, 11
responded to the survey. They were asked to classify V1 and
V2 and whether they were placed correctly. In addition, they
were asked about their age, employment status, and experience
of reading an ECG (the number of ECGs they read in the past
year). A total of 11 physicians responded to the web-based
survey. Ethical approval was granted by the Faculty of
Computing, Engineering, and Built Environment in Ulster
University, Northern Ireland, United Kingdom.

Results

Feature Engineering
As mentioned earlier, 16 features were extracted using three
different domains: (1) time domain, (2) statistical domain, and
(3) time-frequency domain. Table 1 lists each feature ID along
with the feature description. In feature selection (filter process),
each feature selection algorithm sorts features from the highest
priority feature to the lowest priority feature.

After feature selection, the 6 classifiers were applied, and the
best classifier accuracy for detecting misplacement in the second
ICS was a bagged DT, followed by CDT, fine DT, LR, quadratic
SVM, and linear SVM.
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Table 1. Feature IDs and descriptions.

Feature descriptionDomainFeature ID

P-wave amplitudeTime1

PR intervalTime2

QRS beginning valueTime3

R amplitudeTime4

End of QRS valueTime5

S-wave amplitudeTime6

Mean of ECGa signalStatistical7

Variance of ECGStatistical8

SD of ECG signalStatistical9

Skewness of ECGStatistical10

Kurtosis of ECG signalStatistical11

Maximum value of D4bTime-frequency domain12

Minimum value of D4Time-frequency domain13

Mean value of D4Time-frequency domain14

Correlation coefficient between V1 and V2 ECGsStatistical15

Root-mean-square error between V1 and V2 ECGsStatistical16

aECG: electrocardiogram.
bD4: decomposition coefficient 4.

For detecting electrode misplacement in the third ICS, the best
classifier accuracy was also a bagged DT, followed by CDT,
LR, quadratic SVM, linear SVM, and fine DT. Table 2 shows
the accuracy of each classifier corresponding to each feature
selection algorithm. The numeric appended to the label of each

feature selection algorithm shows the optimal number of features
that was used to achieve the best accuracy. On the basis of
classifier accuracy, the best feature selection algorithm
performance was JMI for detecting misplacement in the second
ICS and RELIEF and JMI for the third ICS.

Table 2. Accuracy of the feature engineering classifiers using machine learning.

Percent accuracy in the third ICSPercent accuracy in the second ICSaClassifier

RELIEF16MRMR15MIFS14JMI16ENTROPY14RELIEF16MRMRd13MIFSc14JMIb15Entropy15

59586059608482858585Fine tree

69696969698785878787Coarse tree

63636563648281838282Logistic

60616160597876757878SVMe

60606260587979787979Q-SVMf

70696670699092909288Bagged

aICS: intercostal space.
bJMI: joint mutual information.
cMIFS: mutual information feature selection.
dMRMR: maximum relevance minimum redundancy.
eSVM: support vector machine.
fQ-SVM: quadratic support vector machine.

Superscripts such as MIFS13 represent the best number of
features to provide a good accuracy in feature selection
algorithm.

DL (Without Feature Engineering)
As mentioned previously, two different DL networks were
developed using different architectures. BLSTM achieved the
best accuracy compared with the CNN (Table 3) and also
outperformed the best accuracy achieved by the
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feature-engineered ML classifiers for detecting electrode
misplacement in both the second and third ICSs. Figure 3 shows
the accuracy, sensitivity, specificity, and receiver operating

characteristic curve for BLSTM, CNN, and bagged tree in the
second and third ICSs.

Table 3. Classification accuracy using two deep learning networks.

Percent accuracy in the third ICSPercent accuracy in the second ICSaClassifier

74.793.0BLSTMb

73.592.3CNNc

aICS: intercostal space.
bBLSTM: bidirectional long short-term memory.
cCNN: convolutional neural network.

Figure 3. Receiver operating characteristic curves and other metrics results for deep learning and machine learning for detecting electrode misplacement
in the second and third intercostal spaces. BLSTM: bidirectional long short-term memory; CNN: convolutional neural network; PNT: predictivity of
negative test; PPT: predictivity of positive test.

Physicians Performance in the Second ICS
Performance of 11 physicians (age 47.3, SD 15.5) who were
experienced in reading ECGs (mean number of ECGs interpreted
in the past year 436.54, SD 397.9) were evaluated using F1
(mean 0.57, SD 0.14), sensitivity (mean 54.5%, SD 15),

specificity (mean 65.4%, SD 21), and accuracy (mean 60%, SD
15) when detecting misplacement electrodes V1 and V2 in the
second ICS (Figure 4). The accuracy achieved by DL was
greater by a factor of 1.5, when compared with the average
accuracy of physicians (P<.001).

Figure 4. Physicians’performance for classifying electrocardiograms as correctly recording or as recording with V1 and V2 misplacement in the second
intercostal space: (a) physicians’ performance and (b) comparison of deep learning performance with physicians' performance regarding different
metrics. Error bars were derived using 95% CI (constant=1.96); the pale red bars represent the deep learning performance, whereas the other colors
(green, light blue, and purple) represent the physicians’ performance (best, mean, and lowest performance, respectively).
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Discussion

Principal Findings
On the basis of the medical literature review, ECG electrode
misplacement is one of the most critical issues affecting ECG
interpretation [8], especially given that it can cause misdiagnoses
and inappropriate treatment and potentially a lack of appropriate
treatment for the patient. The most common error in chest
electrode placement is misplacing electrodes V1 and V2 too
high from their correct position that can change ECG
morphology and as a result cause a misdiagnosis. In this paper,
we present new methods for detecting chest electrode
misplacement using 2 approaches: (1) feature-engineered
traditional ML algorithms and (2) DL (without any feature
engineering) to detect V1 and V2 misplacement. This study
describes the first experiment that uses DL to autodetect chest
electrode misplacement, whereas previous work mainly focused
on limb electrode interchanges. The BLSTM DL network
achieved the highest performance in detecting V1 and V2
misplacement in the second ICS with an accuracy of 93.0% and
in the third ICS with an accuracy of 74.7%. The ML algorithm
(bagged tree) achieved a similar performance with an accuracy
of 92.7% (for the second ICS detection) and 70.0% (for the third
ICS detection). The performance of the bagged tree and the DL
algorithms (BLSTM and CNN) are quite similar, whereas the
performance of the other ML algorithms (F tree, C tree, LOG,
SVM, and quadratic SVM) is statistically significantly different
(P=.01) when compared with the performance of BLSTM, CNN,
and bagged tree. A total of 11 medical doctors who were
experienced in reading ECGs were recruited to detect electrode
misplacement in the second ICS using the same data set to
benchmark the ML and DL models. Furthermore, the physicians
were biased as they were instructed to identify ECGs that
appeared to be recorded incorrectly with respect to the V1 and
V2 electrodes. On the basis of their performance, there was a
significant difference (P<.001) when compared with the
performance achieved by the ML and DL algorithms. Therefore,
DL and ML can be used to help flag ECGs that have been
incorrectly recorded and flag that the data may be flawed.

More generally, this study is particularly unique as many studies
have focused on demonstrating the ability of DL to diagnose
patients by automatically interpreting x-rays or ECGs, whereas
this study focuses on using DL to detect medical errors. The
use of DL to diagnose patients seems to be heavily criticized,
given that DL lacks transparency and its decision logic cannot
be easily explained to an end user. Therefore, DL for diagnostics
elicits many trust issues and may not be widely adopted for this
reason. However, physicians may accept black-box systems if
they are being used for other subtasks, such as detecting errors,
as opposed to providing a patient diagnosis.

Limitations
This study has a number of limitations. The data set is limited
and contains only three types of patients (those with MI, LVH,

or normal sinus rhythm). Therefore, in further research, new
types of patient cases need to be included to increase the data
set size and to augment DL performance. Furthermore, the
number of participants that manually detected correct or
incorrect ECGs was small (n=11), with the limitation being that
this cohort may not be a representative sample to benchmark
with the ML algorithm. However, the results can be used as a
direction for future investigations. The algorithms used were
binary in nature and were not tested on many different types of
misplacements and variations of ECG recordings. Therefore, a
small random variation should be included for all chest
electrodes (V1-V6). The performance of the presented
algorithms in the real-world setting might not be as accurate as
in the study because the algorithm would need to be
prospectively tested with patient cases and with different data
sets in diverse settings. Moreover, because the misplacement
of V1 and V2 can also result in the misplacement of the
remaining leads (V3-V6), there is also a need to further
understand the impact of the misplacement of V3-V6 electrodes.
The performance of the physicians in detecting the misplacement
of V1 and V2 electrodes is likely to be lower in the real world
as we instructed the subjects to look out for and detect the
misplacement of V1 and V2 electrodes, which is not likely a
condition or a high priority that is at the forefront of a
physician’s mind when reading an ECG in clinical practice.
Given that the ML features used to detect V1 and V2 are
somewhat generic, this feature set could be reduced or refined
by further clinical insight from experts and the literature that
detail V1 and V2 signal morphology when misplaced.

Conclusions
Implementing the algorithms invented in this study could
improve ECG data quality, which can, in turn, improve decision
making in cardiac care. We can conclude that DL provides the
best performance for detecting chest electrode misplacement
when compared with ML-based models and the ability of
experienced physicians. Therefore, the medical device industry
should consider DL to detect chest electrode misplacement. The
results clearly show that the greater the misplacement (ie, in
the second ICS), the greater the model accuracy. Therefore, in
our future research, we aim to improve the accuracy of detecting
chest electrode misplacement in the third ICS using alternative
techniques rSr’ prime. However, adopting these algorithms in
health care will take time and will be expensive as it may require
prospective testing as part of a trial and approval from different
regulatory organizations such as the Food and Drug
Administration. However, given that this algorithm is used to
flag potential errors and does not provide a diagnosis or
recommend treatment, the risks are perhaps less severe. There
may still be other costs, including staff training and integrating
the algorithm into ECG machines. Future work will also involve
the generation of saliency maps that can be used to explain how
the DL algorithm is making its decision. This will facilitate
knowledge discovery and may result in new ECG features that
are characteristic of electrode misplacement.
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Abstract

Background: The harmonization and standardization of digital medical information for research purposes is a challenging and
ongoing collaborative effort. Current research data repositories typically require extensive efforts in harmonizing and transforming
original clinical data. The Fast Healthcare Interoperability Resources (FHIR) format was designed primarily to represent clinical
processes; therefore, it closely resembles the clinical data model and is more widely available across modern electronic health
records. However, no common standardized data format is directly suitable for statistical analyses, and data need to be preprocessed
before statistical analysis.

Objective: This study aimed to elucidate how FHIR data can be queried directly with a preprocessing service and be used for
statistical analyses.

Methods: We propose that the binary JavaScript Object Notation format of the PostgreSQL (PSQL) open source database is
suitable for not only storing FHIR data, but also extending it with preprocessing and filtering services, which directly transform
data stored in FHIR format into prepared data subsets for statistical analysis. We specified an interface for this preprocessor,
implemented and deployed it at University Hospital Erlangen-Nürnberg, generated 3 sample data sets, and analyzed the available
data.

Results: We imported real-world patient data from 2016 to 2018 into a standard PSQL database, generating a dataset of
approximately 35.5 million FHIR resources, including “Patient,” “Encounter,” “Condition” (diagnoses specified using International
Classification of Diseases codes), “Procedure,” and “Observation” (laboratory test results). We then integrated the developed
preprocessing service with the PSQL database and the locally installed web-based KETOS analysis platform. Advanced statistical
analyses were feasible using the developed framework using 3 clinically relevant scenarios (data-driven establishment of hemoglobin
reference intervals, assessment of anemia prevalence in patients with cancer, and investigation of the adverse effects of drugs).

Conclusions: This study shows how the standard open source database PSQL can be used to store FHIR data and be integrated
with a specifically developed preprocessing and analysis framework. This enables dataset generation with advanced medical
criteria and the integration of subsequent statistical analysis. The web-based preprocessing service can be deployed locally at the
hospital level, protecting patients’ privacy while being integrated with existing open source data analysis tools currently being
developed across Germany.

(JMIR Med Inform 2021;9(4):e25645)   doi:10.2196/25645
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Introduction

Background
With an increase in digitalization in the medical sciences, the
efforts to harmonize and standardize clinical data have increased.
In particular, transformation of data sets into a common format
has received increasing attention to render the data queryable
and allow for standardized model building. Two research data
repositories with appropriate analysis environments, which have
been used extensively and received increasing support, are the
OHDSI OMOP common data model [1], which has been
designed to facilitate observational research, and Informatics
for Integrating Biology and the Bedside (i2b2) [2], which
focuses on the integration of different types of data into one
clinical repository. Both OHDSI OMOP and i2b2 aim to
transform clinical data to a standardized format and vocabulary
and are appropriate for research and further analysis. However,
importing of data requires the complex implementation of
extract, transform, load (ETL) processes [3].

Conversely, the Fast Healthcare Interoperability Resource
(FHIR) standard was developed to address the limitations of
the previously developed HL7 versions 2 and 3 clinical care
document standards; therefore, it is focused on modeling the
actual clinical environment as closely as possible. Furthermore,
its lightweight nature and direct use of common data formats
(ie, JSON and XML) facilitate integration with lightweight
webservices. FHIR is now available in its first release with
normative resource specifications since version 4.0.0 in 2019
[4], suggesting further maturation of this standard. Large
companies including Google, Microsoft, and Apple have adopted
FHIR for their medical informatics–related products [5-7].
Moreover, many health system providers are now striving to
support or are already supporting the FHIR standard [8], thus
potentially facilitating the integration of new solutions into
clinical routine, as complex conversions into standards, such
as OMOP and i2b2, can be avoided when solutions are deployed
within hospitals.

The German Medical Informatics Initiative (MI-I) [9] has
recently funded 4 consortia across Germany to investigate how
heterogenous clinical data can be integrated into clinical data
repositories. One of the objectives of the MI-I is to establish
data integration centers (DICs) as the base for cross-hospital
and cross-consortia communication. These DICs would provide
different services including data integration, data harmonization,
standardized data repositories, consent management, and ID
management [10-13]. The MI-I has adopted FHIR as the
preferred format for inter-consortia communication [14]. All
34 hospitals that are currently part of the MI-I will have a FHIR
store available in one form or another and have committed to
making their hospital data available in the FHIR format.

The current state of the analysis of FHIR formatted data remains
unclear. One drawback of FHIR is that formats such as JSON
and XML are not necessarily suitable for further analysis if data

are stored in these formats and not processed further. The FHIR
standard itself contains an extensive specification for API search
operations [15], which, in turn, have their limitations [16].
Specifically, it is not directly possible to express queries with
interdata dependencies and necessary computations.
Furthermore, searching for resources on the basis of inclusion
and exclusion criteria is not possible if they are based on another
resource that is not referenced directly but rather indirectly via
another intermediary resource. To account for these limitations
and to support more complex statistical analysis, a query engine
is needed, which should be accessible to researchers without
the knowledge of SQL or database query generation and
optimization.

Over the years, different FHIR databases have been developed
to address the limitations of the FHIR search specification. The
blaze FHIR store not only implements the FHIR interface but
also introduces the possibility of using clinical quality language
to further improve the standard FHIR search and filter
possibilities [17]. This platform focuses on feasibility queries
and data exports. Another alternative to enhance the availability
of FHIR data in an easily accessible manner is to use the
PostgreSQL (PSQL) database [18] owing to its innate capability
to store, index, and query JSON as binary JSON (jsonb). The
fhirbase [19] FHIR database uses PSQL and implements a SQL
query interface, which allows a user to query FHIR resources
using the SQL syntax. Neither of these solutions currently offer
a user-friendly method for a researcher to filter and select data
for further statistical analysis, which does not require a strong
technical background.

Aim
This study aimed to investigate how a data preprocessing service
can be built directly on top of FHIR data stored in a standard
PSQL database to enable large data filter queries to generate
data sets for statistical analysis. To investigate the requirements
for filtering and subset generation, we identified different sample
medical data science scenarios. Based on the scenarios’
requirements, we defined a data preprocessor, which generates
data subsets on the basis of the inclusion and exclusion criteria
of other FHIR resources. This data preprocessor was developed
to satisfy the demand for investigating subsets of particular
FHIR observations and combine them with basic patient data.
In this study, which was approved by the institutional review
board of the University Hospital Erlangen-Nürnberg (reference#
254_19 Bc), we integrated the developed preprocessing service
with a real-world FHIR data set from our hospital, which—at
the time of writing—contained approximately 35.5 million
FHIR resources. Using this data set, we implemented three
different sample medical questions to investigate the capabilities
of the implemented web-based preprocessing service.
Furthermore, we integrated the service into the locally deployed
web-based analysis platform KETOS [20], which enables data
retrieval and analysis using Jupyter Notebooks [21] within the
hospital, thus respecting a patients’ privacy and allowing the
data custodians to have ownership of the data.
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Methods

Requirements for a Preprocessing Service
Analysis of large data sets using various statistical methods
requires the data to be standardized and harmonized.
Additionally, the data set needs to be transformed into a format
suitable for further analysis (ie, a “flat structure”). A common
approach to this end is to select a subset of data and then convert
the selected subset into a simple tabular format. To determine
which type of filters are commonly required, we referred to our
ongoing multicenter medical research study, wherein we
analyzed laboratory findings that are filtered in accordance with
the patients’ clinical criteria, including patients’ diagnoses,
clinical procedures, and the results of other laboratory analyses.
Specific time criteria (eg, time intervals) are defined for each
criterion. This analysis allowed us to identify the following
requirements: the ability to select a subset of resources and
exclude data from these resources on the basis of their
relationship with other resources as inclusion and exclusion
criteria. Further, these resources would have to be preprocessed
on premises and integrated with the existing DIC infrastructure,
so that the analysis could be performed within the hospital on
pseudonymized data to adhere to patient privacy and data
security regulations in Germany.

Integration With the Existing Infrastructure: the
German DIC
We propose that the web-based nature and the reliance on a
standard PSQL database with only one table ensures the easy
integration of this system into existing infrastructure. Figure 1
shows some components of the DIC infrastructure and some of
the analysis tools currently being developed in Germany. The
DIC, as currently deployed across 10 German University
Hospitals, includes ETL jobs to convert existing data into the
FHIR format; moreover, it has a FHIR gateway component,
which accepts FHIR resources and loads them into a FHIR
PSQL database. This PSQL database, which is the focus of this
study, is a standard PSQL database that contains a single table
with the following columns: id, fhir_id, type, and data. The data
column contains the respective FHIR resource in jsonb format,
allowing one to query each element of the JSON stored data
directly, while providing complete functionality of a PSQL
relational database, like JOINS, timestamp conversion, and
LIKE pattern searches. Therefore, a preprocessing service built
on this data structure could be run within any hospital as long
as the FHIR gateway and the FHIR PSQL database are installed.
The entire infrastructure is available in the form of Docker
containers and can be easily distributed to other sites. The
preprocessing service in this study is web-based and hence
integrates well with other web-based platforms for further
analysis, such as the KETOS platform for statistical analysis.

Figure 1. Integration with the infrastructure of the data integration center: data storage, preprocessing, and analysis environment. DIC: data integration
center, ETL: extract transform and load, FHIR: Fast Healthcare Interoperability Resources, PSQL: PostgreSQL.

The Data Set
The FHIR PSQL database, which we connected our
preprocessing service to, contains data on 170,389 patients and
323,779 encounters over 3 years from 2016 to 2018. Among
these patients, 88,473 were female, 81,914 were male, and 2
were of an unknown or unspecified gender.

The data sources included the hospital’s standardized billing
data, which each German hospital is legally required to provide,
and laboratory data from a local data warehouse. These data
had been harmonized, and laboratory data were mapped to the
LOINC vocabulary; diagnoses to International Classification
of Diseases, Tenth Revision codes; and procedures to OPS
codes. Further, the local DIC pseudonymized the data and
harmonized the laboratory units of measurement. The final data
set derived from the process included 31,697,035 FHIR

Observations, of which 31,686,060 were laboratory findings,
1,740,632 were International Classification of Diseases, Tenth
Revision–coded FHIR Conditions, 1,637,573 were FHIR
Procedures, 132 were FHIR Medications, and 10,348 were FHIR
MedicationSatements. After preprocessing this data set, the
final subsets were obtained.

Specification of the Filter Criteria
Through the aforementioned analysis, we established that the
preprocessing service should be able to filter all resources from
the initial result set (which we referred to as the “base
resources”), either on the basis of inclusion or exclusion filter
criteria or a combination of both, where a filter criterion is based
on another FHIR resource. The filter would then be applied
either if a filter criterion ever matched for a patient or if a
criterion matched for a patient within a particular time interval
of the resources from the base resource to be filtered. Further,
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as the time of a laboratory result can often not be directly
determined, it was important to determine this period on the
basis of the encounter of the filter criterion. If no encounter is
available, the laboratory result is filtered on the basis of the
criterion along with a time interval. The resulting logic for
resource matching based on the time from the base resource is
depicted in Figure 2. The figure shows three base resources: 1,
2, and 3. Resource 1 would not be filtered from the result set
because it lies outside the specified time interval. Resource 2
would be filtered because it lies within the specified time
interval from the filter criterion. Resource 3 would be filtered

if the filter criterion has an encounter because it lies within the
time interval of the encounter of the filter criterion. However,
it would not be filtered if the filter criterion does not have an
encounter.

In addition to the possibility of defining the time interval within
which a resource must be filtered, filter criteria should be
selected on the basis of their respective code (eg, LOINC code
718-7 for hemoglobin). Further, it should be possible to specify
a simple value restriction in accordance with standard
comparators.

Figure 2. Timeline for filter matching.

Data Availability
The source code of the project is available on GitHub [22].

Results

Overview of the Findings
We implemented and deployed the preprocessing service that
we implemented in this study at the University Hospital
Erlangen-Nürnberg. The whole pipeline could be easily
deployed on an existing server, as the web-based preprocessing
service was packaged as a Docker container [23].

To ensure secure functioning of the preprocessing service, we
deployed it on the same server and within the same Docker
network as the KETOS analysis environment. The preprocessing
service was then only made available within the Docker network
on the server and was not accessible outside the KETOS
platform. Finally, we applied the preprocessing service to patient
data from 2016 to 2018 stored in the local DIC FHIR database
(see The Data Set). We used the preprocessing service to
generate 3 sample data sets and analyses to demonstrate its
applicability to clinically relevant research questions. We then
analyzed the resulting prepared data sets with the KETOS
platform and a Jupyter Notebook (interactive cell-based code
development in a web browser).

Specification of the Preprocessing Service and Data
Input
Based on the data analysis and the specification of filter criteria,
we described an interface that receives the input parameters in

JSON format (Multimedia Appendix 1) and uses the input to
generate a PSQL filter query (Multimedia Appendix 2), which
is sent to the FHIR PSQL database where the query is executed.
This query yields a subset of resources. The preprocessor then
generates a feature set using this subset and combines the subset
with basic patient data to generate the final feature data set for
further statistical analysis, as specified in the feature_set part
of the input parameter JSON. The initial filtered resource set
and the final feature set are then stored in the preprocessors’
own local database ready to be downloaded for analysis. The
preprocessor itself was implemented as a webservice, using the
Python Flask-Restful library [24].

Example 1: Data-Driven Establishment of Reference
Intervals
In modern medicine, laboratory tests are an essential tool for
health assessment and substantially influence diagnostic and
treatment decisions. To support decision making among
clinicians, laboratory findings are accompanied by reference
intervals, which reflect the range of test results in a population
of healthy individuals. Conventionally, reference intervals have
been established among specifically recruited healthy individuals
(“direct approach”); however, this approach is associated with
substantial financial and logistical challenges. Therefore,
data-driven approaches (“indirect approaches”) have been
developed, which use data from laboratory information systems
and statistical analyses to estimate the proportion of samples
from healthy individuals in mixed data sets (ie, hospital data
sets containing a large fraction of abnormal test results). While
indirect approaches can tolerate a high proportion of abnormal
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findings, their accuracy is limited by the proportion of abnormal
samples.

Here, we demonstrate how reference intervals for a very
common laboratory test (hemoglobin) can be established using
the tools developed in this study and the open source kosmic
[25] algorithm, despite a very high proportion of abnormal
findings in the analyzed data set (ie, in-patient laboratory
findings from a tertiary care center). To reduce the number of
abnormal findings, we excluded all patients with cancer
diagnoses (defined by ICD codes starting with C) and those
who received transfusions (defined using OPS codes starting
with 8-80) at any time. Additionally, we excluded all findings
from patients with clearly abnormal hemoglobin values (ie,
<8.0 g/dL) at any time and those having undergone surgery
within 90 days (defined by OPS codes starting with 5-). We
then restricted the data set to a sample of interest (men aged
18-65 years), selected one random finding per patient and used
the resulting data set (n=13,721) as input for the kosmic
algorithm. This yielded a clinically useful reference interval
(13.2-17.2 g/dL), which highlights the potential of the developed
framework to handle complex medical data science scenarios.

Example 2: Anemia in Patients With Cancer
Assessment of differences in laboratory findings among different
patient cohorts enhances physicians’ understanding of the
pathophysiology of diseases and treatment effects. To assess
the feasibility of such analyses using the tools developed in this
study, we generated a data set to investigate anemia occurrence
(ie, hemoglobin levels below cut-off values defined by the
World Health Organization) among adult patients with and those
without cancer. We queried the minimum hemoglobin level
(defined using LOINC code 718-7) of patients with and those
without cancer (included or excluded using ICD codes starting
with C) and determined the number of adult patients below
anemia-defining thresholds (13 g/dL for men and 12 g/dL for
women). In total, this resulted in a data set with 686,472
hemoglobin test results from 9075 men and 9035 women with
cancer and 45,766 men and 53,777 women without cancer. We
observed a substantially larger proportion of men and women
with anemia among patients with cancer (n=6316, 69.6% and
n=5674, 62.8%, respectively) than among those without cancer
(n=16,247, 35.5% and n=22,586, 42.0%, respectively) (P<.001,
Fisher exact test). These findings indicate a high prevalence of
anemia, a condition associated with substantial morbidity and
mortality, in cancer (ie, the second most common cause of death
worldwide) and the suitability of the tools developed in this
study for such analyses.

Example 3: Adverse Effects of Drugs
Adverse effects of drugs are a major contributor to patient
morbidity and mortality among in-hospital patients and
outpatients, and a substantial proportion of drugs’adverse effects
influence laboratory findings. Here, we used the framework
developed in this study to generate a data set to investigate
changes in patients’ potassium levels during treatment with an
important anti-infective drug (liposomal amphotericin B, a
potent and essential antifungal agent that decreases potassium
levels in some patients). We selected potassium levels (defined
using LOINC code 2823-3) in patients who received liposomal

amphotericin B (defined using OPS codes starting with 6-002.q)
within 7 days (study group: 107 patients and 4568 potassium
test results) and potassium levels in patients who received
liposomal amphotericin B at any time but not within 7 days
(control group: 145 patients and 5581 potassium test results).
This example shows that this framework can be used to generate
a data set to investigate the adverse effects of drugs. Although
potassium levels did not significantly differ between both groups
in this data set (P=.12), they were lower in the study group (3.4
mM) than in the control group (3.5 mM), demonstrating the
ability of this framework to investigate the adverse effects of
drugs.

Discussion

Principal Findings
Direct retrieval of data stored using FHIR resources for further
statistical analysis is an important step to bridge the gap between
the acquisition of medical data and clinically relevant research.
To comply with patient privacy and data security regulations,
it is important to establish tools that can be directly deployed
within the hospital infrastructure, so that the data remain within
the institutions’ network and control. The preprocessor we
developed satisfies these concerns and relies on open source
tools that can be easily distributed across hospitals to improve
future research. Further, since this preprocessor relies on FHIR
resources, extra ETL jobs converting the FHIR clinical data
format—which is currently supported directly by vendors of
electronic health records into other data storage formats such
as OMOP and i2b2—are unnecessary. The largest challenge
for the FHIR standard is the ability to use the data for further
analysis. Nonetheless, even research-driven formats such as
OMOP and i2b2 often need further processing for detailed
statistical analysis. For example, for further data analysis using
DataSHIELD, a distributed privacy preserving data analysis
platform, further processing of OMOP and i2b2 data is necessary
[26]. This indicates that direct processing of FHIR resources
can reduce the overall complexity and help avoid extra
transformation steps.

This study shows that the use of PSQL to store FHIR data and
further build web-based preprocessors on this infrastructure is
a viable way to handle large amounts of clinical data without
having to rely on cloud-based or proprietary data storage
solutions. This not only retains a hospital’s ownership of its
data but also allows the hospital to avoid vendor lock-in.
Development of the preprocessor as a webservice implies that
integration into web-based tools can be easily achieved, and the
generation of a web-based JavaScript user interface, for
example, can be inherently supported. The tool developed in
this study does not require the FHIR data to be harmonized
across hospitals; however, cross-hospital data analysis is only
viable if data are harmonized. Direct integration into the DIC
infrastructure developed across Germany and the DIC ensuring
data harmonization, including LOINC mapping for laboratory
values and LOINC harmonization and unit harmonization
through conversion, would facilitate future multicenter studies.
Using 3 clinically meaningful scenarios and a real-world data
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set, we demonstrated the usefulness of the developed framework
.

This study integrated the preprocessing service with the KETOS
environment and directly interacted with the preprocessor from
within a Jupyter Notebook. We made the preprocessor available
only within the KETOS platform, allowing it to be password
protected by default. Deployment of this platform within a
hospital—after pseudonymizing the data and confining it to the
hospital for further analysis—ensures patient privacy.
Specifically, this framework facilitates retrospective analyses
of large data sets, where consent for the data to leave the hospital
confines cannot be reasonably obtained. Duplication of this
framework across institutions allows data custodians and
researchers within each institute to perform analyses and then
collaborate with researchers from other institutions. The
prerequisite for this is that only aggregated data leave the
confines of each institution for the final analysis. In a potential
workflow, researchers can establish the preprocessing
specifications and analysis scripts with a Jupyter Notebook at
their institution and share them with collaborators. This allows
them to not only check and execute the scripts at their institution
but also modify the scripts per their data requirements, if
necessary. Aggregated results or generated models can then be
shared across the collaborating institutions. Throughout the
process, the FHIR format and identical preprocessing ensures
that the scripts and specifications are applicable across the
institutions.

It is important to note that the preprocessor only generates SQL
queries and does not have large hardware requirements because
search and filtering are carried out by the well-established open
source PSQL database. A more detailed performance test of the
implementation is beyond the scope of this study because
performance largely depends on database optimization and
indexing, and the number of resources identified for the base
filter criteria. However, even the longest requests to generate
our sample datasets took minutes rather than hours, despite only
creating basic indices for resource types and IDs.

Lessons Learned
The development of a preprocessor based on FHIR data stored
in PSQL jsonb databases for statistical analysis is a viable
alternative, facilitating more advanced data processing when
compared to the FHIR Search specified as part of the FHIR
standard. The FHIR format itself is suitable for querying because
JSON queries can be used to specify preprocessing input
parameters. The performance of the PSQL database is limited
insofar as handling of large data is strongly influenced by how
well the PSQL database is administered. For the database we
used in this study, we defined some simple indices on the basis
of the fhir_id and the resource type to improve the query
performance. Here, we first attempted to implement the
preprocessor directly on a FHIR server; however, we found that
the HAPI FHIR server did not perform well with large bulk
loads, which led to the DIC switching from the HAPI FHIR
server to the PSQL database. Therefore, large amounts of data
were never directly available in a FHIR server. More complex
queries, including pattern searches and combining of data for
filtering across resources, were not directly supported by the

HAPI server. The initial implementation of the preprocessor
based on the HAPI server first downloaded the necessary
resources to be processed within the preprocessor; however,
this was less efficient than direct processing of the data on the
database side. The current implementation focuses on feature
selection, wherein one particular feature is selected, and
inclusion and exclusion criteria are based on the sought-after
feature in relation to other data. A cohort selection process could
be implemented by selecting the distinct patient IDs in the result
set. A future version of this platform should investigate how
these concerns could be separated. A feature selection module
can then be built on top of a cohort selection module in a 2-step
process.

Generalizability and Use in Other Studies
Reliance on the FHIR format and, more specifically, on fields
within the FHIR resources, which are usually set, implies that
the proposed method is applicable in various scenarios without
requiring further ETL jobs. The preprocessor could process any
combination of Observations, Procedures, and Conditions
identified by their code within the respective vocabulary. The
implementation is currently restricted to the filtering of
individual base resources, implying that the generation of data
sets where multiple resources are associated with one another
based on groups is currently not supported. One could envision
an extension, which combines the results of multiple queries
into one data set in the future, allowing for more complex
analysis. The current version will support the extraction and
investigation of any single feature in relation to others. In this
study, we demonstrate the investigation of, for example,
hemoglobin levels. Any other laboratory value, condition, or
procedure would be supported by the current platform. In
particular, the method proposed here allows one to filter each
occurrence of a feature individually, implying that one query
can filter individual occurrences of a feature over time. This
facilitates queries, such as the search for hemoglobin value
observations around which no blood transfusions have occurred.

Limitations
The preprocessor specified and implemented in this study was
developed on the basis of one projects’ requirement on data
handling. Although this study demonstrates its applicability in
various scenarios, it does not satisfy more advanced query
mechanisms including those developed by , for example, the
OMOP OHDSI group. For instance, this framework lacks deeper
temporal logic [27], such as temporal filters (eg, the first
observation after a certain event). Furthermore, it is important
to note that the preprocessor cannot be directly used to define
patient cohorts and feasibility queries because it focuses on
extracting one feature in relation to others over time. While this
restricts the use of the tool, it allows for more specific
identification of individual feature occurrences in relation to
others. The preprocessor implemented here cannot provide the
extent of out-of-the-box analysis which the OMOP and i2b2
tool suites provide; however, it clearly demonstrates the
feasibility of building preprocessing tools for FHIR-formatted
data. Overall, the data selection and extraction processes
specified here have to be used in combination with analysis
tools such as DataSHIELD or Jupyter Notebooks, allowing
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researchers to apply use-case–specific analysis tools to the
extracted data or, in the case of DataSHIELD, use the data sets
for cross-hospital analysis.

Further, this preprocessing service is dependent on JSON input,
and it lacks a user interface. Finally, building on top of a PSQL
database restricts the preprocessor to the PSQL database, which
implies that some of the interoperability that the FHIR standard
aims at is lost in the process, and the current solution cannot
replace an FHIR server. However, as the data has to be
transformed for analysis regardless, it still provides a viable
alternative for FHIR data storage for further analysis.

Future Directions
This study shows that PSQL jsonb lends itself well to being
extended with preprocessing services for data modeling. Further
studies are required to investigate how to create a preprocessing
tool for the FHIR format, which has similar capabilities to those
of the OHDSI OMOP ATLAS or the i2b2 querying tools. In
this pursuit, studies should evaluate whether the existing tools
already implement all necessary logic for developing and
analyzing statistical models. The preprocessor developed here
currently lacks a user interface, which is an important
requirement for any preprocessor to make it more accessible to
a wider audience with different technical backgrounds. We
recommend the development of a user interface as an important
subsequent step while simultaneously improving this
preprocessor. Furthermore, studies should investigate how well
different FHIR databases lend themselves to advanced

processing of data needed to generate a data set for statistical
analysis. For practical reasons (ie, the data being available in
our consortium in a simple PSQL database containing one table),
we built the preprocessor on top of this PSQL schema.
Depending on the outcome of the analysis of the available FHIR
stores, a cohort and feature selection mechanism could be
developed on the fhirbase project or other solutions, including
the clinical quality language capable blaze FHIR store or an
extended FHIR search specification and implementation.
Criteria-based resource selection is only a small part of a larger
analysis framework, similar to OHDSI OMOP and i2b2, which
is currently missing for the FHIR standard and should be
developed in the future. However, even for larger data sets,
direct preprocessing on FHIR resources is a feasible alternative
and should be further investigated.

Conclusion
The preprocessor developed in this study demonstrates how
standard open source tools including PSQL can be used to store
FHIR data in a format that can be used to generate further
filtering, cohort, and feature selection mechanisms. We further
deployed the tool at the University Hospital Erlangen-Nürnberg
and applied the preprocessor to a large pool of data, generated
3 sample data sets, and executed analyses on top of the generated
data sets to demonstrate the applicability of this preprocessor
in research. These queries included multiple FHIR resources,
such as Observation, Condition, Procedure, Patient, and
Encounter, demonstrating the capability of our implementation.
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Abstract

Background: Accurate and rapid clinical decisions based on real-world evidence are essential for patients with cancer. However,
the complexity of chemotherapy regimens for cancer impedes retrospective research that uses observational health databases.

Objective: The aim of this study is to compare the anticancer treatment trajectories and patterns of clinical events according to
regimen type using the chemotherapy episodes determined by an algorithm.

Methods: We developed an algorithm to extract the regimen-level abstracted chemotherapy episodes from medication records
in a conventional Observational Medical Outcomes Partnership (OMOP) common data model (CDM) database. The algorithm
was validated on the Ajou University School Of Medicine (AUSOM) database by manual review of clinical notes. Using the
algorithm, we extracted episodes of chemotherapy from patients in the EHR database and the claims database. We also developed
an application software for visualizing the chemotherapy treatment patterns based on the treatment episodes in the OMOP-CDM
database. Using this software, we generated the trends in the types of regimen used in the institutions, the patterns of the iterative
chemotherapy use, and the trajectories of cancer treatment in two EHR-based OMOP-CDM databases. As a pilot study, the time
of onset of chemotherapy-induced neutropenia according to regimen was measured using the AUSOM database. The anticancer
treatment trajectories for patients with COVID-19 were also visualized based on the nationwide claims database.

Results: We generated 178,360 treatment episodes for patients with colorectal, breast, and lung cancer for 85 different regimens.
The algorithm precisely identified the type of chemotherapy regimen in 400 patients (average positive predictive value >98%).
The trends in the use of routine clinical chemotherapy regimens from 2008-2018 were identified for 8236 patients. For a total of
12 regimens (those administered to the largest proportion of patients), the number of repeated treatments was concordant with
the protocols for standard chemotherapy regimens for certain cases. In addition, the anticancer treatment trajectories for 8315
patients were shown, including 62 patients with COVID-19. A comparative analysis of neutropenia showed that its onset in
colorectal cancer regimens tended to cluster between days 9-15, whereas it tended to cluster between days 2-8 for certain regimens
for breast cancer or lung cancer.
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Conclusions: We propose a method for generating chemotherapy episodes for introduction into the oncology extension module
of the OMOP-CDM databases. These proof-of-concept studies demonstrated the usability, scalability, and interoperability of the
proposed framework through a distributed research network.

(JMIR Med Inform 2021;9(4):e25035)   doi:10.2196/25035

KEYWORDS

antineoplastic combined chemotherapy protocols; electronic health record; cancer; pattern; chemotherapy; database; retrospective;
algorithm; scalability; interoperability

Introduction

Background
In cancer research, real-world data, with the exception of cancer
registries, have been relatively underused despite recent
advances in information technology and the availability of data
from electronic health records (EHRs) or administrative claims
databases [1]. One of the major challenges to the active use of
EHRs or claims databases in cancer research is the limited
availability of clinically relevant structured data elements. The
essential data elements for cancer research include records of
anticancer treatment at the unit of the regimen, rather than the
individual drugs used in the regimen. In order for researchers
to obtain the data necessary for conducting a comparative study
of the treatment regimens of patients with cancer, a
labor-intensive preprocess is inevitable [2-4].

Prior Work
Previously, researchers developed algorithms to replace the
manual endeavor of capturing the details of chemotherapy from
medication histories [5-8]. Even though these studies carved
paths toward the use of real-world evidence in cancer research,
none of them focused on identifying and addressing
organizational barriers. Due to heterogeneity in the structure
and semantics of EHRs or claims databases across institutions
and countries, none of these studies provided a scalable
framework.

The Observational Health Data Sciences and Informatics
(OHDSI) collaboration, which is a multistakeholder group
organized for global collaboration studies, provides the
Observational Medical Outcomes Partnership (OMOP) Common
Data Model (CDM) to contribute to medical research on
harmonized observational databases [9]. The oncology work
group in the OHDSI community has proposed an oncology
module to facilitate the difficult task of collecting oncology
data [10]. The oncology module has a structure for populating
chemotherapy episodes and a vocabulary for
hematology/oncology [11]. However, a generalizable method
of populating chemotherapy episodes has not been proposed,
and cases involving the use of data schema are scarce.

Objectives
The main objective of this study was the seamless introduction
of the oncology extension into OMOP-CDM by developing an
algorithm to automatically identify regimen-level chemotherapy
episodes among patients with cancer. To conduct
proof-of-concept studies of the availability of the generated
chemotherapy episodes, the treatment patterns and trajectories

of patients with cancer are presented by additional software.
We also identified differences in the onset time and incidence
of neutropenia events in patients according to different routine
regimens.

Methods

Study Design
This study was composed of two main processes: (1) the
development of an algorithm to identify anticancer treatment
episodes from the OMOP-CDM database and (2) the analysis
of the trends and trajectories in cancer treatment or clinical
events based on the algorithm-derived episode records using
the visualization software. Furthermore, we performed a pilot
study to identify the time of neutropenia onset across various
chemotherapy regimens, to validate the scalability of the
algorithm. All methods were independently applied to each
database and data were collected exclusively as graphical
summaries.

Data Sources
We conducted this study using two EHRs of Korean tertiary
hospitals and a nationwide claims database from South Korea.
The Ajou University School of Medicine (AUSOM) database
includes the medical records of 3.14 million patients collected
from 1994-2018 [12]. The Kangdong Sacred Heart Hospital
(KDH) database includes the medical records of 1.68 million
patients collected from 1986-2018. The Health Insurance
Review and Assessment Service (HIRA) COVID-19 data set
is a nationwide administrative claims database that provides
information on reimbursed insurance claims from 2017-2020
for 7590 patients with COVID-19 in South Korea [13]. Each
data source was standardized into the OMOP-CDM database
(version 5.3). According to the medical history and diagnosis,
we identified patients with lung, breast, and colorectal cancer
from the EHR databases. From the HIRA COVID-19 data set,
we selected patients with COVID-19 and any malignant
neoplasm disease as the targets of the descriptive analysis.

Algorithm Development

Workflow of the Chemotherapy Regimen Extraction
Figure 1 shows the entire process used for generating
chemotherapy episodes from medication records in harmonized
databases. HemOnc is a standard vocabulary adopted by the
OMOP-CDM for anticancer agents and chemotherapy regimens
derived from the homonymous wiki page, including freely
available medical sources for regimens and general information
[14]. To convey the semantic regimen protocols in HemOnc to
the programmatic algorithm, the section of the protocols
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detailing the regimen was collected and converted to
parameterized values that list the component drugs as well as
appropriate time criteria that reflect the drug schedule. Hence,
we developed the Hierarchical Description for Administration
of Chemotherapy (HDAC), which is a machine-readable
JavaScript Object Notation (JSON) snippet containing the
parameterized information of HemOnc. The HDAC contains
the variables for the constituent drug of the regimen and the

time-range value parameters for the temporal window of the
medication schedule.

We developed a Tool for Regimen-level Abstraction of
Chemotherapy Episode Records (TRACER) to populate the
regimen-level abstracted chemotherapy episodes (Figure 2).
The TRACER generated the episodes by leveraging the
parameter values of drug conditions or temporal window in
HDAC. The chemotherapy episodes included the type of
regimen and the number of treatment cycles.

Figure 1. Schematic workflow of the chemotherapy episode extraction. A total of 1506 regimen protocols from HemOnc (a web-based open-source
database of cancer chemotherapy regimens) were parameterized as JSON structured data, which is termed HDAC. The JSON file and single drug
exposure records in the OMOP-CDM database were instantiated as input data for an algorithm. The TRACER identified chemotherapy episodes by
leveraging the parameters from HDAC. The chemotherapy episodes were curated in the episode table, which is an oncology module in the OMOP-CDM.
Bev: bevacizumab; CDM: Common Data Model; FOLFIRI: fluorouracil, leucovorin, and irinotecan; FOLFOX: fluorouracil, leucovorin, and oxaliplatin;
HDAC: Hierarchical Description for Administration of Chemotherapy; JSON: JavaScript Object Notation; OMOP: Observational Medical Outcomes
Partnership; TRACER: Tool for Regimen-level Abstraction of Chemotherapy Episode Record.
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Figure 2. Schematic depiction of algorithm rules in a tool for regimen-level abstraction of chemotherapy episode records. FOLFOX: fluorouracil,
leucovorin, and oxaliplatin.

Instantiation of Chemotherapy Regimen Descriptions
The HDAC includes standardized parameters to feed the
specifications of regimen protocols into the algorithm. The
variables in HDAC are categorized into two types: parameters
for drug composition (drug parameters) and meta parameters.

The drug parameter includes the identifiers of drugs (OMOP
concept IDs), which link a specific regimen with its respective
role. Each drug parameter is granted a role as an index drug,
combination drug, or exclusion drug. The index drug in the
HDAC is a constituent drug that can be used to identify the first
day (day 1) of treatment. A combination drug in the HDAC is
a constituent drug (other than the index drug) of the regimen.
An exclusion drug is one whose appearance would indicate
another regimen. For example, oxaliplatin is the index drug in
the fluorouracil, leucovorin, and oxaliplatin (FOLFOX) regimen.
Leucovorin and fluorouracil are combination drugs. In this
example, bevacizumab is considered as an exclusion drug to
distinguish the FOLFOX regimen from the
FOLFOX-bevacizumab regimen (Figure 2).

The meta parameter includes the metadata of the HDAC
document (eg, origin, valid date, or invalid reason for document)
to determine the modifications and define the window range to
be adjusted to the algorithm rule. The window identifies a unit
of drug records that determines whether the medication record
is a part of a particular regimen or distinguishes a boundary for
a distinct treatment cycle. The HDAC also stipulates the window
for episodes to distinguish the separated treatment line. The
concept ID (encoded in the HemOnc vocabulary) of the drug
regimen is a primary key for each HDAC snippet. Based on the
chemotherapy indications in the HemOnc web database, a total
of 1506 indications for chemotherapy protocols were reviewed
by an expert and instantiated into the HDAC.

Definitions of the Algorithm
The TRACER sequentially extracts the episodes of regimens
included in a list of user settings. The algorithm identifies each
treatment cycle episode record and treatment line episode of
regimens with the defined rules and parameters in a step-by-step
manner (Figure 3). The algorithm consists of the following four
steps:

1. Day 1 of the respective treatment cycle (index date) is
identified based on the dispense date of the index drug.
Each index date is flagged as a datum point for checking
the use of other drug ingredients to identify a specific
regimen.

2. The prescriptions of the combination drug or exclusion drug
are investigated within the period of the predefined window
for the cycle in HDAC. If the index drug and all
combination drugs were given and none of the exclusion
drugs were prescribed in this period, the records of the index
drug and combination drug are regarded as a constituent
component for a targeting regimen. These records are
abstracted as a regimen episode record.

3. The start date of each episode is derived from the start date
of the instance of index drug utilization, and the end date
of the episode record is derived from the end date of the
last index or combination drug utilization. The generated
episodes are curated in the episode table of the
OMOP-CDM oncology module.

4. The episodes are numbered sequentially in chronological
order, provided the interval between the start dates of each
episode does not exceed the predefined window in the
HDAC. The episode records are collapsed as an identical
episode when the interval exceeds the cycle window. The
window for distinguishing the treatment line is also defined
in the HDAC. The TRACER distinguishes the different
treatment lines by changes in regimen type or by episodes
beyond the window for the treatment line based on the start
date of the previous episode.
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Figure 3. Definition of chemotherapy regimen episode extraction algorithm. FOLFIRI: fluorouracil, leucovorin, and irinotecan; FOLFOX: fluorouracil,
leucovorin, and oxaliplatin; HDAC: Hierarchical Description for Administration of Chemotherapy.

Algorithm Validation
We reviewed the discharge and progress notes of patients to
validate the accuracy of the proposed algorithm. The following
regimens were validated: (1) fluorouracil and folinic acid
(FULV), (2) FOLFOX, (3) fluorouracil, leucovorin, and
irinotecan (FOLFIRI), and (4) capecitabine monotherapy.
Among patients with records of algorithm-derived episodes on

target regimens, 100 patients were randomly selected for each
type of regimen. For this population, we examined the episode
records and compared them to clinical notes.

Characterizing the Treatment Patterns and
Trajectories
We developed visualization applications for characterizing the
treatment patterns for patients with cancer treated with
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chemotherapy. Using the tool, we present the relative
proportions of the use of the regimens across all chemotherapy
treatments from 2008-2018. The distributions of the iterated
number of treatment cycles for each patient according to regimen
type were portrayed as a heat map with color saturation varying
according to the number of patients. The anticancer treatment
trajectories were also illustrated for patients who received
routine anticancer treatment according to the type of cancer.
The trajectories of patients with COVID-19 and cancer were
added, to validate the scalability of the tools. The descriptive
results of EHR databases included the eight most prevalent
regimen types. For the AUSOM database, we added hormone
therapies for breast cancer and targeted therapies or
immunotherapy for lung cancer in the descriptive analysis.

Timing of Neutropenia Onset Analysis
We also conducted a pilot study that investigated the timing of
chemotherapy-induced (febrile) neutropenia (CIN/FN) events
from the first chemotherapy episode. Neutropenia is a common
adverse event of myelosuppressive chemotherapy. In compliance
with National Cancer Institute Common Terminology Criteria
for Adverse Events (CTCAE; version 5.0) CIN grade 4 (absolute

neutrophil count [ANC] <0.5 × 109/L) was used to identify
severe CIN events. FN events were identified as ANC of <1.0

× 109/L with a diagnosis of fever or infection, or any use of
granulocyte colony-stimulating factor prophylaxis. A plot
showing each neutropenia event as a dot by date of onset was
displayed, and in the same plot, a violin plot showed the trends
in date of neutropenia onset. To identify the onset time of the
neutropenic event, the gap between the date of the first
chemotherapy treatment and the date of the first CIN/FN onset
was calculated for each patient. As the overall measurement
schedule was weekly, the onset dates of neutropenia were
categorized in 7-day segments to show the trends of onset dates
rather than definite dates. To clarify the effect of a single drug
regimen on neutropenia onset, the chemotherapies are limited
to the first-line treatment and only the CIN/FN events within
30 days of initiation of chemotherapy were considered. On the
day of chemotherapy, the ANC level might be temporarily
lowered; therefore, a CIN/FN event during chemotherapy
administration was ignored. We also depicted the incidence of
CIN/FN events in each cycle by regimen type. The four
regimens with the highest frequency of CIN/FN events by type
of cancer were included for the incidence plot.

Statistical Analysis
The descriptive analysis was conducted using chemotherapy
episodes that were derived from the algorithm. To validate the

algorithm, we calculated the proportion of patients who had
episodes with identical regimen types as described in clinical
notes. The mean absolute error (ie, the mean of the absolute
values for the differences between the estimated number of
cycles and the actual records in the clinical notes) and the root
mean square error (ie, the square root of the mean of the
differences between the estimated number of cycles and the
actual records in the clinical notes) were also calculated. The
overall system was built using R (version 3.5.2; R Foundation
for Statistical Computing). The source codes for the algorithm
and visualization software have been uploaded to GitHub [15].

Ethics Statement
This study was approved by the institutional review board of
Ajou University Hospital of the Republic of Korea (approval
number: AJIRB-MED-OBS-20-092) and Kangdong Sacred
Heart Hospital of the Republic of Korea (approval number:
2017-03-003). The institutional review board number for the
use of HIRA data was AJIRB-MED-EXP-20-087.

Results

Population Characteristics
The TRACER generated a total of 178,360 chemotherapy
episodes from the AUSOM database. The episodes consisted
of 12 regimen types for colorectal cancer, 24 types for breast
cancer (including 6 types of hormone therapy regimen), and 19
types for lung cancer (including 8 types of targeted therapy
regimen). The number of patients who were treated with the
respective regimens are listed in Multimedia Appendix 1. The
characteristics of patients in the AUSOM database are listed
(Table 1). Among the 10,353 colorectal, 9546 breast, and 12,671
lung cancer cases, 3151 (30.4%), 5568 (58.3%), and 1593
(12.5%) patients had records of a treatment episode,
respectively. The number of patients treated with chemotherapy
increased over the years. A total of 69,353 chemotherapy
episodes were extracted from the KDH database. The KDH
database included 2758 patients with colorectal cancer, 564
(20.4%) of whom had chemotherapy episodes. Among the
patients with breast cancer (n=6420) and lung cancer (n=2663)
in the KDH database, chemotherapy episodes were identified
for 1075 (16.7%) and 642 (24.1%) patients, respectively. The
HIRA COVID-19 data set mostly consisted of female patients
(60%) [13]. Among 7590 patients with COVID-19, we identified
382 (5%) patients with a primary malignant neoplastic disease.

JMIR Med Inform 2021 | vol. 9 | iss. 4 |e25035 | p.28https://medinform.jmir.org/2021/4/e25035
(page number not for citation purposes)

Jeon et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Characteristics of patients with colorectal, breast, and lung cancer in the Ajou University School of Medicine database.

Patients by type of cancerCharacteristics of the patients

Lung cancer (N=12,671)Breast cancer (N=9546)Colorectal cancer (N=10,353)

64 (12.7)50 (11.4)62 (13.2)Age at index (years), mean (SD)

Sex, n (%)

9166 (72.3)62 (0.7)6116 (59.1)Male

3505 (27.7)9484 (99.3)4237 (40.9)Female

Number of patients who received chemotherapy by year range, n (%)

524 (4.1)646 (6.8)265 (2.6)1999–2002

617 (4.9)829 (8.7)516 (5.0)2003–2006

738 (5.8)965 (10.1)672 (6.5)2007–2010

775 (6.1)1373 (14.4)852 (8.2)2011–2014

1127 (8.9)2111 (22.1)912 (8.8)2015–2018

1776 (14.0)5541 (58.0)3760 (36.3)Number of patients who underwent surgery, n (%)

6517 (5283)3750 (3199)5582 (4403)Baseline absolute neutrophil count/μL, mean (SD)

Number of patients who received chemotherapy, n (%)

1593 (12.5)5568 (58.3)3151 (30.4)First-line treatment

888 (7.0)4739 (49.6)1212 (11.7)Second-line treatment

521 (4.1)4005 (41.9)506 (4.8)Third-line treatment

336 (2.6)3573 (37.4)234 (2.2)Fourth-line treatment

Validation of the Accuracy of TRACER
Table 2 shows the values obtained for the accuracy of the
algorithm-derived episode records compared to the clinical
notes. The positive predictive value for the type of regimen was
over 95% for the FULV regimen, and the chemotherapy type

was estimated precisely for the entire episode for FOLFOX,
FOLFIRI, and capecitabine monotherapy. The number of
treatment cycles was correctly inferred in an average of 85.6%
of episode records for validated regimens. The mean difference
between the number of cycles in the episode records and the
description in the clinical notes was less than one cycle.

Table 2. Validation of chemotherapy episodes compared to chart review.

Root mean
square error

Mean absolute
error

Accuracyc of treatment cycle
number, %

Positive predictive valuea,b of
regimen type, n/N (%)

Without information, nTreatment regimen

0.40.19467/70 (95)30FULVd

0.60.38792/92 (100)8FOLFOXe

1.40.48979/79 (100)21FOLFIRIf

1.50.77335/35 (100)65Capecitabine
monotherapy

aFor each regimen, 100 cases were randomly sampled and reviewed. The information for chemotherapy was not available in the discharge summary in
30, 8, 21, and 65 cases with FULV, FOLFOX, FOLFIRI, and capecitabine monotherapy, respectively.
bPositive predictive value for the matched cases for the type of regimen in the manual comparison of generated episode records with the contents of the
clinical notes.
cThe percentage of matched cases for the number of treatment cycles in the manual comparison of generated episode records with the contents of the
clinical notes.
dFULV: fluorouracil and leucovorin.
eFOLFOX: fluorouracil, leucovorin, and oxaliplatin.
fFOLFIRI: fluorouracil, leucovorin, and irinotecan.

Patterns of Chemotherapy Treatment
The trends in chemotherapy regimen used in the AUSOM
database are shown in Multimedia Appendix 2. The number of

chemotherapy regimens—including targeted anticancer agents
(eg, osimertinib, ceritinib, and crizotinib) and immunotherapies
(eg, nivolumab and pembrolizumab)—for lung cancer increased
since 2016. On average, 31.2% of patients received the
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FOLFOX regimen throughout the years, followed by FULV,
which was administered to 20.3% of patients. As of 2012, the
proportion of patients receiving chemotherapy with targeted
anticancer drugs (eg, bevacizumab or cetuximab) had increased
gradually. Tamoxifen use also increased gradually among
patients with breast cancer. Multimedia Appendix 3 shows the
trends in chemotherapy regimen use in the KDH database. The
most frequently used regimen for colorectal cancer in the KDH
database was also FOLFOX (27.3% on average), followed by
FULV, with an average of 23%. The use of regimens including
targeted anticancer drugs for colorectal cancer in the KDH
database increased since 2013. From 2013-2016, gefitinib
monotherapy was the most frequently used regimen for lung
cancer, which was similar to the trends of the AUSOM database.
Among the patients with breast cancer in the KDH database,
the use of trastuzumab increased sharply since 2014.

The distribution of patients in both EHR databases over the
number of iterated chemotherapy cycles is depicted as a heat
map. In the heat map of the AUSOM database, the most
prevalent number of repeated cycles in the FULV, FOLFOX,

and capecitabine and oxaliplatin (CapeOx) regimens for
colorectal cancer was consistent with the recommendations of
the HemOnc regimen protocol for the adjuvant setting (6, 12,
and 8 cycles, respectively; Figure 4). In addition, the most
prevalent number of treatment iterations for paclitaxel
monotherapy, doxorubicin monotherapy, and cyclophosphamide
and doxorubicin (AC) targeting breast cancer was also consistent
with the general recommendations (4 cycles in certain cases).
“Cisplatin and vinorelbine” and “cisplatin and pemetrexed” for
lung cancer were also consistent with the recommendations (4
cycles in certain cases). In the KDH database, the number of
patients with colorectal cancer treated with 12 cycles made up
the largest proportion among the patients who received the
FOLFOX regimen (Multimedia Appendix 4). A total of four
regimens—fluorouracil, epirubicin, and cyclophosphamide
(FEC); fluorouracil, doxorubicin, and cyclophosphamide (FAC);
cyclophosphamide, methotrexate, and fluorouracil (CMF); and
Taxotere—for breast cancer were mostly repeated 6 times, and
each of the regimen protocols in HemOnc included 6 cycles in
certain cases.
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Figure 4. Heat map of patient distribution for cycle iteration by regimen type in the Ajou University School of Medicine database. The number of
patients with (A) colorectal cancer, (B) breast cancer, and (C) lung cancer is shown; treatment iteration count is represented by color saturation, with a
darker shade representing a higher number of patients. Cells with <10 patients are not reported. AC: doxorubicin and cyclophosphamide; CapeOx:
capecitabine and oxaliplatin; FAC: fluorouracil, doxorubicin, and cyclophosphamide; FOLFIRI: fluorouracil, leucovorin, and irinotecan; FOLFOX:
fluorouracil, leucovorin, and oxaliplatin.

Trajectory of Cancer Treatment
Figure 5 shows the treatment trajectories of patients with lung
cancer in the AUSOM database. Among a total of 1120 patients,
lung excision–radiation therapy–cisplatin and vinorelbine (n=63,
5.6%) was the most prevalent trajectory. The treatment

trajectories of patients with colorectal or breast cancer were
displayed, regardless of which first-line treatment was used
(Multimedia Appendix 5). Among the treatment trajectories of
patients with colorectal cancer or breast cancer that included at
least three treatments, colectomy–FOLFOX–FOLFIRI (n=78,
4%) and mastectomy–AC–paclitaxel monotherapy (n=236, 5%)
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were the trajectories with the highest proportions, respectively.
The 10 most frequent trajectories according to cancer type are

described in Multimedia Appendix 6.

Figure 5. Anticancer treatment trajectories of patients with lung cancer in the Ajou University School of Medicine database. The treatment trajectories
of patients with lung cancer were classified according to the type of first-line treatment: (A) surgery, (B) chemotherapy or chemotherapy with radiation,
and (C) radiation therapy. The height of each node represents the population of patients in the corresponding treatment line or therapy. The number of
patients who progressed to the next line of treatment is illustrated using gray lines. The chemotherapy regimen changes or the transition between types
of treatment were regarded as a treatment line transition. The percentage on the label covers the proportion of the number of patients to all patients in
the identical line of trajectory. As the large number of nodes hinders the purpose of the visualizations within a graphical summary, the nodes are truncated
at the third node. For the same reason, the nodes for patient count under 10 were removed. AUSOM: Ajou University School of Medicine; RT: radiation
therapy.
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The treatment trajectories of patients in the KDH database are
illustrated in Multimedia Appendix 7. Among the patients with
colorectal cancer, FOLFOX was the most frequently used
first-line (n=52, 17.9%) and second-line (n=84, 28.9%) regimen
in the trajectory. For breast cancer, Taxotere was the most
frequent first-line chemotherapy before mastectomy (n=58,
17.3%). Gefitinib was the most widely used first-line regimen
among patients with lung cancer (n=30, 10.5%). Figure 6 shows

the treatment trajectories of patients with malignant neoplasm
who also had COVID-19. Of the 7590 patients nationwide with
a diagnosis of COVID-19, we identified 382 patients with a
history of cancer. Among them, a total of 62 patients had an
episode of chemotherapy. Most of the patients received only
one line of treatment between 2017-2020, before COVID-19
infection (n=47). The trajectory included 6 patients with a node
of end of life.

Figure 6. Anticancer treatment trajectories of patients with COVID-19. Sankey plot of the treatment trajectories of patients with COVID-19, including
episodes of anticancer chemotherapy between 2017 and 2020. Each node represents the chemotherapy regimen used for cancer treatment. The percentage
on the label covers the proportion of the patient number in each node in the same trajectory phase. As the large number of nodes hinders the purpose
of the visualizations within a graphical summary, the nodes are truncated at the fourth node. For the same reason, the nodes for patient count <5 were
removed.

Timing of Chemotherapy-Induced Neutropenia
Figure 7 shows the time of onset of the CIN/FN event for each
patient in the AUSOM database. The episodes of neutropenia
among patients with colorectal cancer were clustered between
days 9 and 15. Compared with the regimens used for colorectal
cancer, the neutropenia events that were recorded after docetaxel
monotherapy and Taxotere treatment for breast cancer and after
carboplatin and gemcitabine for lung cancer generally began

one week earlier (days 2-8). We illustrated the incidence of
neutropenia events in each cycle of treatment in Multimedia
Appendix 8. Regardless of the cancer type, the incidence of
CIN/FN events was high during the first cycle, with the
exception of the FOLFOX regimen for colorectal cancer and
the carboplatin and paclitaxel regimen for lung cancer. Finally,
neutropenia occurred more frequently during the Taxotere
regimen for breast cancer (75.3%), which includes doxorubicin
and docetaxel as constituent drugs.
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Figure 7. Trends in neutropenia onset time according to regimen. Time of onset of chemotherapy-induced (febrile) neutropenia event after the first
exposure to chemotherapy among patients with (A) breast cancer, (B) colorectal cancer, and (C) lung cancer at the Ajou University School of Medicine.
Each dot represents the neutropenia event of a distinct patient. The events are categorized in a 7-day range. The violin plot represents the trends in the
frequency on each day from chemotherapy exposure. AC: doxorubicin and cyclophosphamide; FAC: fluorouracil, doxorubicin, and cyclophosphamide;
FOLFIRI: fluorouracil, leucovorin, and irinotecan; FOLFOX: fluorouracil, leucovorin, and oxaliplatin.

Discussion

Overview
This study described a system for analyzing the treatment
patterns and trajectories of patients with cancer based on the
oncology extension model in the OMOP-CDM. The proposed
algorithm (TRACER) for extracting chemotherapy episodes at
the regimen level effectively generated the treatment episodes
for patients with cancer. This approach illustrates how laborious
manual curation can be replaced with an automatic extraction
system. The obtained episodes were validated by reviewing
clinical notes, which revealed that the type of regimen or the
number of treatment cycles were estimated with high accuracy.
We also demonstrated the usefulness of the proposed system
by performing a pilot study investigating the onset time of
CIN/FN across various chemotherapy regimens.

Principal Findings
Comprehensive clinical information, including longitudinal
treatment sequences and the various clinical outcomes of
patients with cancer, is not available in nationwide cancer
registries, such as the Surveillance, Epidemiology, and End
Results Program [16-18] or the Korea Central Cancer Registry

[19,20]. Large-scale real-world data derived from EHRs [21]
and administrative claims data [17] of a standardized data
network can support the timely assessment of the
characterization and quality of routine clinical practice and
active pharmacovigilance across institutions or countries.

The unexpectedly rapid spread of COVID-19 revealed an urgent
unmet need for the timely retrieval of detailed data for patients
with cancer, to provide relevant evidence for the management
of patients with cancer during the pandemic period [22].
Although conventional cancer registries have failed to provide
these data to researchers, the secondary use of EHRs and claims
databases can promptly provide valuable insights into the impact
of a novel infection on patients with cancer [13]. The TRACER
was able to generate records to describe the trajectory of cancer
treatment and death of patients with COVID-19, which may be
helpful for identifying the relationship between cancer treatment
and a fatal case of COVID-19.

We demonstrated how electronically captured data elements
can support clinical research using longitudinal detailed clinical
data. FN is one of the most common oncologic emergencies
[23] and is associated with considerable morbidity and mortality
[24]. Although it is well known that the risk of CIN/FN is
highest during the first cycle of chemotherapy for solid tumors
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or lymphoma [25,26], the exact time of occurrence of CIN/FN
in various regimens is largely unknown. We found that CIN/FN
events were more frequent in the first cycle of chemotherapy,
and that regimens that included docetaxel or doxorubicin were
followed by a greater number of CIN/FN events, which is
compatible with reported findings [27]. CIN/FN events usually
occurred relatively early (days 2-8) in patients who received
regimens including docetaxel or carboplatin compared with
those treated with other regimens (days 7-13).

Limitations
This study had several limitations. First, only four of the
regimens were validated through manual review; thus, it was
not clear whether episodes for the other types of regimen can
also be precisely estimated. Nevertheless, the patterns of
treatment cycle repetition showed that the extracted records
were concordant with the standard protocols of the regimens,
suggesting that the algorithm could correctly interpret the
variable regimens. A second limitation was that the relatively
low rate of ascertained treatment episodes (maximum of 58%
among patients with breast cancer in the AUSOM database)
suggests that treatment episodes may have been missed, although

many patients with cancer are treated with surgery or radiation
alone and would have appropriately not been captured. This
may be due to the fact that the algorithm extracts only the
regimens included in the HemOnc vocabulary. The flexible
structure of HDAC, which allows the addition of user-defined
rules for specific regimens, has the potential to mitigate the
missing rate of treatment episodes for a particular study using
a fine-tuned algorithm.

Conclusions
We developed a technique to generate episodes for
chemotherapies included in the oncology module of the
OMOP-CDM and to analyze treatment patterns in patients with
cancer. We demonstrated that the proposed process is
reproducible and scalable across a distributed data network. Our
findings suggest that a generalizable strategy of characterizing
treatment trajectories from harmonized observational databases
can promptly determine the characteristics of clinical events,
thus enabling the generation of real-world evidence for abrupt
pandemic crises. Further research is required to generate
statistical evidence for clinical outcomes between regimen types.
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Multimedia Appendix 1
Chemotherapy episodes from the Ajou University School of Medicine database. The 10 most frequently used chemotherapy
regimens for colorectal cancer, breast cancer, and lung cancer are listed.
[DOCX File , 23 KB - medinform_v9i4e25035_app1.docx ]

Multimedia Appendix 2
Trends of chemotherapy regimen use within the Ajou University School of Medicine database. The proportions of chemotherapy
regimen uses for patients with (A) colorectal cancer, (B) breast cancer, and (C) lung cancer by year from 2008-2018 in the Ajou
University School of Medicine database are shown.
[DOCX File , 492 KB - medinform_v9i4e25035_app2.docx ]

Multimedia Appendix 3
Trends of chemotherapy regimen use within the Kangdong Sacred Heart Hospital database. The proportions of chemotherapy
regimen uses for patients with (A) colorectal cancer, (B) breast cancer, and (C) lung cancer by year from 2008-2018 in the
Kangdong Sacred Heart Hospital database are shown.
[DOCX File , 167 KB - medinform_v9i4e25035_app3.docx ]

Multimedia Appendix 4
Heat map of patient distribution for cycle iteration by regimen type in the Kangdong Sacred Heart Hospital database. The number
of patients with (A) colorectal cancer, (B) breast cancer, and (C) lung cancer is shown; treatment iteration counts are represented
by a color saturation difference.
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[DOCX File , 837 KB - medinform_v9i4e25035_app4.docx ]

Multimedia Appendix 5
Trends of chemotherapy regimen use from the Kangdong Sacred Heart Hospital database. The proportions of chemotherapy
regimen uses for patients with (A) colorectal cancer, (B) breast cancer, and (C) lung cancer by year from 2008-2018 in the
Kangdong Sacred Heart Hospital database are shown.
[DOCX File , 561 KB - medinform_v9i4e25035_app5.docx ]

Multimedia Appendix 6
The list of treatment trajectories of patients with cancer from the Ajou University School of Medicine database.
[DOCX File , 21 KB - medinform_v9i4e25035_app6.docx ]

Multimedia Appendix 7
Anticancer treatment trajectories for patients with cancer in the Kangdong Sacred Heart Hospital database. The treatment trajectories
of patients with (A) colorectal cancer, (B) breast cancer, and (C) lung cancer in the Kangdong Sacred Heart Hospital database
are shown.
[DOCX File , 605 KB - medinform_v9i4e25035_app7.docx ]

Multimedia Appendix 8
Incidence of neutropenia by treatment cycle. The histogram of incidence of the first neutropenia event by cycle and regimen for
(A) colorectal cancer, (B) lung cancer, and (C) breast cancer.
[DOCX File , 165 KB - medinform_v9i4e25035_app8.docx ]
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Abstract

Background: Electronic health records (EHRs) represent an important aspect of digital health care, and to promote their use
further, we need to better understand the drivers of their acceptance among health care professionals. EHRs are not simple
computer applications; they should be considered as a highly integrated set of systems. Technology acceptance theories can be
used to better understand users’ intentions to use EHRs. It is recommended to assess factors that determine the future acceptance
of a system before it is implemented.

Objective: This study uses a modified version of the Unified Theory of Acceptance and Use of Technology with the aim of
examining the factors associated with intentions to use an EHR application among general practitioners (GPs) in the Republic of
North Macedonia, a country that has been underrepresented in extant literature. More specifically, this study aims to assess the
role of technology acceptance predictors such as performance expectancy, effort expectancy, social influence, facilitating conditions,
job relevance, descriptive norms, and satisfaction with existing eHealth systems already implemented in the country.

Methods: A web-based invitation was sent to 1174 GPs, of whom 458 completed the questionnaire (response rate=40.2%). The
research instrument assessed performance expectancy, effort expectancy, facilitating conditions, and social influence in relation
to the GPs’ intentions to use future EHR systems. Job relevance, descriptive norms, satisfaction with currently used eHealth
systems in the country, and computer/internet use were also measured.

Results: Hierarchical linear regression analysis showed that effort expectancy, descriptive norms, social influence, facilitating
conditions, and job relevance were significantly associated with intentions to use the future EHR system, but performance
expectance was not. Multiple mediation modeling analyses further showed that social influence (z=2.64; P<.001), facilitating
conditions (z=4.54; P<.001), descriptive norms (z=4.91; P<.001), and effort expectancy (z=5.81; P=.008) mediated the association
between job relevance and intentions. Finally, moderated regression analysis showed that the association between social influence
and usage intention was significantly moderated (P=.02) by experience (Bexperience×social influence=.005; 95% CI 0.001 to 0.010;
β=.080). In addition, the association between social influence and intentions was significantly moderated (P=.02) by age (Bage×social

influence=.005; 95% CI 0.001 to 0.010; β=.077).

Conclusions: Expectations of less effort in using EHRs and perceptions on supportive infrastructures for enabling EHR use
were significantly associated with the greater acceptance of EHRs among GPs. Social norms were also associated with intentions,
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even more so among older GPs and those with less work experience. The theoretical and practical implications of these findings
are also discussed.

(JMIR Med Inform 2021;9(4):e21109)   doi:10.2196/21109

KEYWORDS

general practitioner; eHealth; technology acceptance; electronic health record

Introduction

Background
The development and implementation of eHealth and digital
technologies in health care have become widespread in recent
decades. However, there have been numerous failures in eHealth
systems because of the lack of adoption and use of these
technologies and systems by health care professionals and other
staff in health care systems [1,2]. The underutilization of digital
technology in health care settings is evident, although the
reasons for this are unclear. The low acceptance of new
technologies in health care settings remains to be a challenge
for health service management and researchers [1,3,4].
Therefore, it is important to gain a better understanding of the
processes underlying health care professionals’ acceptance of
novel health care technologies and systems [5-7].

Electronic health record (EHR) systems are an essential part of
information and communication technologies (ICTs) within
health care settings and organizations. In primary health care,
EHR systems have been developed to support the storage,
retrieval, and use of patient data over the life course of a patient
by general practitioners (GPs) and other health care
professionals in primary care.

Technology Acceptance
Different theories have been developed to assess the factors that
influence the adoption and use of ICTs in health care, including

the Unified Theory of Acceptance and Use of Technology
(UTAUT; Figure 1) [8], which seeks to understand the effect
of various factors on users’ intentions to use a new system, as
well as their actual use of the system. The 4 basic technology
acceptance constructs within the UTAUT are performance
expectancy, effort expectancy, social influence, and facilitating
conditions. Performance expectancy assesses an individual’s
anticipation of improved performance resulting from the use of
new technologies. Effort expectancy represents the end users’
perceptions of the ease of using new ICTs (ie, how much effort
will be required by them to use the new system). Social
influence measures the subjective social norms of end users and
represents referent others’ endorsement of using the technology
in question and the perceived prevalence of the utilization of
the technology in referent groups. Facilitating conditions
represent the degree to which end users perceive that there will
be organizational and technical support for the efficient and
easy use of the technology [8]. The original UTAUT model has
4 potential moderators: gender, age, experience, and
voluntariness. This means that the association between the
UTAUT constructs and usage intentions may be stronger or
weaker, depending on the values of the moderator constructs
(eg, the association between performance expectancy and
intentions to use the technology may be stronger among
individuals with more vs less experience in using the
technology) [8].

Figure 1. The Unified Theory of Acceptance and Use of Technology.

JMIR Med Inform 2021 | vol. 9 | iss. 4 |e21109 | p.40https://medinform.jmir.org/2021/4/e21109
(page number not for citation purposes)

Dimitrovski et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.2196/21109
http://www.w3.org/Style/XSL
http://www.renderx.com/


Although the application of early technology acceptance models
in health care settings started in the late 1990s [9,10], there is
still limited empirical research on technology acceptance in
EHR systems. Research on technology acceptance in health
care has suggested that performance expectancy is the strongest
and most important predictor of intentions to use EHR systems
[8,11-14]. Effort expectancy has been shown to be a significant
predictor of intentions to use EHR systems [13-17] in a smaller
number of studies, and social influence and facilitating
conditions have rarely been investigated [14]. A number of
additional technology acceptance constructs have been applied
in several studies in health care settings, including health
information technology experience [7,18], computer knowledge
[19], job relevance [20], and the self-assessment of computer
use at home [19]. For this research, these constructs can be
considered in their original or modified forms. The UTAUT
model was applied in mandatory health care settings (where
EHR use is compulsory) in the relevant literature [13,14,20].

This Study
This study is a part of a PhD thesis and is published for the first
time in a journal. A national EHR system has been proposed
for the Republic of North Macedonia, and the aim of this study
is to examine the factors that influence the adoption of such a
system among GPs within the country. All GPs in the country
worked in private settings, but they had active contracts with
the National Health Insurance Fund and were obliged to follow
the work instructions proposed by the fund. The proposed EHR
system was not implemented in the country when this research
was conducted. The technology acceptance assessment was
conducted before the implementation of the EHR system in the
country with the aim of identifying the factors that determine
intentions for future use. However, the “Health Smart Card”
system (a smart card access to basic patient personal data and
health insurance) and the “My term system” (a web-based
scheduling system) were implemented in the country at the time
when this research was conducted.

The main objective of this research is to assess the readiness of
GPs in the country for the future acceptance of EHR systems.
Other objectives are to address the role of the basic predictors
of the original UTAUT model on EHR use; to assess the effect
of other technology acceptance predictors such as job relevance,
descriptive norm, and satisfaction (with existing health ICT
systems already implemented in the country); and to identify
the moderating effect of basic moderation variables such as age,
gender, and previous work experience.

Adding new technology acceptance constructs to the basic
UTAUT model was an opportunity to develop a better
understanding of the factors influencing the use of ICTs in a
large sample of GPs within a country. However, some
technology acceptance constructs, such as descriptive norm
[21], computer use, internet use, and use of other technology
[22-26] were derived and modified from the referent literature
studies on technology acceptance and were identified as useful
for this research. Descriptive norms can be regarded as a
measure of the potential use of EHRs by colleagues.

The following hypotheses were developed:

• H1: the original UTAUT constructs (ie, performance
expectancy, effort expectancy, social influence, and
facilitating conditions) will be associated with intentions
to use the EHR system in the future.

• H2: other technology acceptance constructs—job relevance,
satisfaction, and the use of other technology—will be
indirectly associated with intentions to use the EHR system
in the future through the effects of performance expectancy.

• H3: the association between the basic UTAUT constructs
and intentions to use the future EHR system will be
moderated by age, gender, and previous work experience
(moderation effect according to the UTAUT model).

• H4: descriptive norms will be significantly associated with
intentions to use the EHR system in the future, over and
above the effects of other predictor constructs.

The assessment of the hypotheses identifies the effects of
technology acceptance variables on user intentions. Therefore,
this research aims to establish the most important technology
acceptance predictors for future EHR systems among GPs in
the country.

Methods

Recruitment
The target population was the GPs in the country; all GPs who
had contracts with the National Health Insurance Fund were
included in the study. Participants’ email addresses were
provided by the National Health Insurance Fund List. According
to the list, there were 1631 active GPs in the country at the time
of the study, with 1174 active email addresses of GPs registered
in the list. A web-based survey was created on the SharePoint
(TM) platform, and an invitation email was sent to all email
addresses. General information on the future EHR system is
included in a short introduction to the survey. The email was
sent on July 1, 2014, followed by 2 reminder emails on July 15,
2014, and August 1, 2014. However, 35 emails were returned,
as they did not reach valid email addresses.

Research Instrument
The original UTAUT model was modified with other technology
acceptance extensions for this study. The following technology
acceptance items were added to the questionnaire: job relevance
[11], descriptive norm (ie, estimated prevalence of EHR use by
colleagues in the future) [21,22], current use of other technology
for professional or leisure purposes [23], and satisfaction with
existing eHealth systems that are currently used in the country.
A (user) satisfaction item was developed to assess the GPs’
satisfaction with the currently used ICT systems in health care
in the country (the “Health Smart Card” system and the “My
term system”). The purpose of including this item was to assess
the association of user satisfaction with existing health care ICT
systems with the intention of using the future EHR. Job
relevance was added to the current research model, as its
effectiveness was established in a previous study conducted by
researchers [22].

Performance expectancy [8,15] was measured by using 5
questions for assessing aspects of participants’beliefs about the
usefulness of future EHR systems. Effort expectancy
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[8,11,12,15] was measured by using 8 items for assessing
aspects of the ease of use of the future EHR system. Facilitating
conditions [8] were measured with 4 items for assessing the
degree to which participants believed that organizational
infrastructure would support their use of the future EHR system.
Social influence [8,12,15] was measured with the mean scores
of 3 items for assessing how a participant perceived other
colleagues’ beliefs about whether they should use the future
EHR system. The descriptive norm [21] variable was measured
with a single item that asked participants to estimate how many
of their colleagues would use the proposed EHR system if it
was implemented. Usage intentions [11,12] were measured by
using 4 items for assessing participants’ willingness to use the
future EHR system. The job relevance [11,20] of the future
EHR system to the GP’s job was measured with 2 items that
reflected greater perceived job relevance of the future EHR
system to their work tasks. A 5-item measure was adapted from
previous research [23-25] to assess the relationship between
current computer and internet use for GPs’ professional and
personal needs and the current use of other technology with the
intention to use the EHR system. Satisfaction with the current
system was measured as a possible technology acceptance
construct by using 5 questions for measuring participants’
satisfaction with the currently used eHealth systems in the
country (“My Term” and “Health Smart Card”).

Questions relating to the 3 UTAUT moderators (ie, gender, age,
previous work experience [8]) were also included in the
questionnaire. Participants were asked to state their gender, age,
and years of work experience in the current service. The
voluntariness of use [8] was excluded from the questionnaire
because the use of the future EHR in the country will be
mandatory, so this question was redundant. The questionnaire
was first developed in English and then translated into the
Macedonian language using the translation back-translation
method [27]. The original questionnaire and technology

acceptance constructs used in the research are available from
the authors on request [28].

Various approaches such as descriptive statistics, two-tailed
independent sample t tests, Spearman rank correlations, internal
consistency reliability (Cronbach α), hierarchical linear
regression, moderated regression analyses, and mediation
analyses were applied to analyze the collected data.

Research Ethics
Research ethics approval was obtained in accordance with the
Research Ethics Policy of the University of Sheffield before
commencement of the study [29]. The questionnaire was
designed to avoid collecting any of the GPs’ personal
information. Participants were informed that they could
voluntarily participate in the study.

Results

Response Rate
A total of 458 completed questionnaires were eligible for
analysis, yielding a response rate of 40.2%. The age of the
respondents who took part in the study ranged from 24 to 65
years (mean 44.15, SD 11.41). Two-thirds of the participants
in the study (303/458, 66.2%) were females and one-third
(155/458, 33.8%) were males. The work experience of the
participants ranged from <1 year to 38 years of experience
(mean 15.45, SD 10.40).

Reliability
The internal consistency reliability of the technology acceptance
constructs used in the questionnaire was assessed using
Cronbach α [19,30]. The internal consistency reliability of the
measures used in the study ranged from 0.69 to 0.94, suggesting
that the measures we used were reliable (Table 1).
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Table 1. Spearman rank correlations.

IntentionDescriptive
norm

SatisfactionSocial influ-
ence

Job rele-
vance

Facilitating con-
ditions

Effort ex-
pectancy

Performance ex-
pectancy

Variable

Performance expectancy

0.590.610.580.650.660.560.71N/AaR

<.001<.001<.001<.001<.001<.001<.001N/AP value

Effort expectancy

0.680.570.610.660.690.68N/AN/AR

<.005<.001<.001<.001.04<.001N/AN/AP value

Facilitating conditions

0.620.630.580.590.61N/AN/AN/AR

<.001<.001<.001<.001<.001N/AN/AN/AP value

Job relevance

0.620.590.550.65N/AN/AN/AN/AR

<.005<.001<.001<.001N/AN/AN/AN/AP value

Social influence

0.630.680.58N/AN/AN/AN/AN/AR

<.001<.001<.04N/AN/AN/AN/AN/AP value

Satisfaction

0.520.56N/AN/AN/AN/AN/AN/AR

<.001<.001N/AN/AN/AN/AN/AN/AP value

Descriptive norm

0.58N/AN/AN/AN/AN/AN/AN/AR

<.001N/AN/AN/AN/AN/AN/AN/AP value

Intention

N/AN/AN/AN/AN/AN/AN/AN/AR

N/AN/AN/AN/AN/AN/AN/AN/AP value

4.41 (0.91)3.96 (1.11)3.40 (1.09)3.73 (1.10)3.87 (1.04)4.04 (0.86)3.82 (0.87)3.95 (1.14)Mean (SD)

.94.85.88.93.69.74.88.91Cronbach α

aN/A: not applicable.

Bivariate Correlations
Bivariate correlations were estimated using Spearman rank-order
correlation coefficients before the regression analyses. Table 1
presents the Spearman rank correlations.

The Spearman correlation showed that usage intention (the main
outcome, ie, the dependent variable of this research) correlated
significantly and positively with all the technology acceptance
constructs (R coefficients=0.52-0.71) included in the study.

Descriptive Statistics
The participants in this research reported a high performance
expectancy from the EHR system. They expressed a positive
performance expectancy of over 50% for the system. A small
minority (between 10% and 15%) was not favored. Around
18%-24% of the participants were neutral. Respondents also
reported high effort expectancy from the system. They reported
a positive effort expectancy of over 50% from future EHRs. A

small minority (between 7% and 15%) appeared to have a
negative attitude, and the neutral responses were higher (between
22% and 31%). Participants reported more than 50% positive
agreement with statements on social influence constructs. A
smaller minority (between 11% and 13%) reported that they
did not agree with the statement, and a consistent proportion
(between 30% and 33%) of participants were neutral.
Participants reported that facilitating conditions are important
for future use of the system. They reported over 50% positive
agreement with the statements. A smaller minority of
participants (between 6% and 18%) appeared not to be in favor,
and 14% to 25% of respondents were neutral. Participants
reported over 50% positive agreement with intention statements.
A smaller minority (between 4% and 5%) appeared to have low
intentions, and between 11% and 14% gave neutral scores on
intentions for future use.

JMIR Med Inform 2021 | vol. 9 | iss. 4 |e21109 | p.43https://medinform.jmir.org/2021/4/e21109
(page number not for citation purposes)

Dimitrovski et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Gender Differences in Technology Acceptance
Constructs
Independent sample t tests were used to assess gender
differences with respect to the technology acceptance constructs.
The results indicated that only significant differences were
identified in performance expectancy (t456=2.01; P=.04), wherein
male GPs reported significantly higher scores (mean 4.10, SD
0.08) than their female colleagues (mean 3.87, SD 1.17).

Predicting Intentions to Use the EHR System in the
Future
Hierarchical linear regression was used to assess the multivariate
association between intentions to use the EHR system and
UTAUT constructs. The analysis was completed in 2 steps to
differentially assess the effects of demographic and information

technology use/work-related constructs (entered in the first stage
of the analysis) and the effects of technology acceptance
constructs (the second step of the analysis). The overall model

predicted (R2) 65.4% of the variance in intention to use the
future EHR system F445=106.77; P<.001. In the first step of the
analysis, only the use of other technology variables (β=−.146;
P<.001) predicted intention to use the future EHR system. In
the second step of the analysis, the addition of the UTAUT
constructs significantly increased the predicted variance in
intention to use the future EHR system by 63.2%. The
significant predictors of intention to use the EHR system at the
final step of the analysis included facilitating conditions (β=.232;
P<.001), effort expectancy (β=.217; P<.001), descriptive norms
(β=.198, P<.001), job relevance (β=.172; P<.001), and social
influence (β=.108; P=.04). The results of the hierarchical
regression analysis are presented in Table 2.

Table 2. Predictors of intentions to use the electronic health record system.

P valueAdjusted R2Standard β95% CI for unstandardized β weights (B)Steps: independent constructs

1.8Step 1

.31.0910.007 to 0.021Age (years)

.76.0140.212 to 0.157Gender

.29.0920.022 to 0.007Work experience

.38.0100.016 to 0.019Computer use (years)

.004−.1460.593 to 0.110Use of other technology

.33.0500.055 to 0.160Use of internet for personal

.65.0210.089 to 0.142Use of internet for work

65.4Step 2

.25.0620.014 to 0.004Age (years)

.09.0490.016 to 0.206Gender

.34.0490.015 to 0.003Work experience

.90.0010.011 to 0.011Computer use (years)

.96.0010.144 to 0.151Use of other technology

.89.0040.060 to 0.069Use of internet for personal

<.001.0960.188 to 0.048Use of internet for work

.10.0760.012 to 0.135Performance expectancy

<.001.2170.119 to 0.335Effort expectancy

<.001.2320.157 to 0.336Facilitating conditions

<.001.1720.070 to 0.232Job relevance

.01.1080.016 to 0.162Social influence

.98.001−0.063 to 0.064Satisfaction

<.001.1980.135 to 0.282Descriptive norm

Indirect Effects of Job Relevance on Usage Intentions
We used a multiple mediation methodology [31] to assess the
indirect effect of job relevance on usage intentions, after
controlling for the potential mediation effects of the UTAUT
constructs. Bootstrapping and bias-corrected confidence
intervals were used to assess the total and indirect effects of the
independent variable X (job relevance) on the dependent

variable Y (usage intentions), through the effects of multiple
mediators, Ms (effort expectancy; social influence, descriptive
norm; and facilitating conditions). For the analysis, we used the
SPSS Macro Indirect 30 with 1000 resamples and 95% CIs, and
the Sobel test (z) was used to enable effect size comparisons
between the mediators [31].
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The mediation analysis showed that the association between
job relevance and intentions was mediated by effort expectancy
(z=5.81; P<.001), social influence (z=2.64; P=.008), descriptive
norms (z=4.91; P<.001), and facilitating conditions (z=4.54;
P<.001). The mediation effect of effort expectancy was
significantly higher (P=.02) than the effects of social influence
and descriptive norms.

Moderation Effects Between UTAUT Constructs
In total, 8 moderated regression analyses were used to assess
the interactive effects of gender, age, and working experience
on the relationships between the UTAUT constructs (effort
expectancy, social influence, and facilitating conditions) on
intentions to use the EHR system. Technology acceptance
predictors were mean-centered to avoid multicollinearity [32].
As the direct effect of performance expectancy was
nonsignificant, we did not assess the interaction between this
variable and gender, age, and experience. An interaction term
was computed (independent variable×moderator) for each pair
of associations, and each moderated regression analysis was
completed in 2 steps. The first step included the main effects
of the independent variable and moderator, and the second step
included the interaction term. Unstandardized β weights (B)
and 95% CIs were estimated [32].

The analyses identified only 2 significant moderation effects.
Age significantly interacted (P=.02) with social influence
(Bage×social influence=.005; 95% CI .001 to .010; β=.077), showing
that when age was higher, the association between social
influence and intentions was stronger (Figure 1). In addition,
the relationship between social influence and intention to use
the system was significantly moderated (P=.02) by experience
(Bexperience×social influence=.005; 95% CI 0.001 to 0.010; β=.080),
showing that among GPs in the early stages of work experience,
there was a stronger relationship between the social influence
and intentions to use the EHR system.

Discussion

Initial Findings
This research identified the significant correlates of technology
acceptance predictors for future EHR systems among GPs in
the Republic of North Macedonia. On the basis of previous
research using the UTAUT in health care settings (8), it was
hypothesized that UTAUT constructs (ie, performance
expectancy, effort expectancy, facilitating conditions, and social
influence) would be associated with intentions to use the EHR
system in the future and mediate the relationship of intentions
with job relevance, satisfaction with using the eHealth systems
in the country, and use of other (non–health care) technology.
On the basis of the UTAUT premises [8], it was further
hypothesized that the associations between UTAUT constructs
and usage intentions would be moderated by age, gender, and
previous work experience. Finally, we anticipated that
descriptive norms would provide an alternative and useful
measure of social norms in the context of UTAUT and health
care technologies; therefore, descriptive norms would be
significantly associated with usage intentions over and above

the effects of other predictors and social norms more
specifically.

H1 was accepted, as effort expectancy, social influence, and
facilitating conditions constructs were significantly associated
with GPs’ intention to use the future EHR system in the
multivariate model, which accounted for 65.4% of the variance
in intentions. However, although performance expectancy was
significantly associated with intentions in the bivariate
correlation analysis (Table 1), this association was not
significant in the multivariate model. H2 was also supported,
as job relevance was significantly and directly associated with
usage intentions. H3 was also accepted because age and
experience were reported as moderators of the social influence
construct. Finally, H4 was accepted as a descriptive norm
significantly associated with EHR use intentions.

These findings are in line with previous research [13,14,20],
indicating a positive and significant association between effort
expectancy and intentions to use health care technology among
health care professionals. Although the original UTAUT model
[8] posits that performance expectancy is among the strongest
predictors of intention to use a system, our study did not support
this contention. This is in line with previous research in the
Republic of North Macedonia [22]. Facilitating conditions and
job relevance were also associated with intentions in this study,
and their effect as predictors on EHR intentions had only
previously been reported in a limited number of studies [14].

The significant multivariate association between effort
expectancy and EHR use intentions corroborates previous
research on health care professionals in the Republic of North
Macedonia [22]. Taken together, these findings may indicate
that GPs in a specific country are not fully aware of the potential
benefits of the proposed EHR system and consider perceived
effort and supportive infrastructure as more relevant in their
decision to use (or not use) such technology. This may explain
the nonsignificant multivariate association between performance
expectancy and intentions to use the future EHR system. In
practical terms, this means that efforts to promote EHR use
among GPs in a specific country should address the issue of the
ease of using the system (ie, less effort) and the existence of
supportive infrastructure, especially among GPs of older age
with more years of medical practice experience.

The moderated regression analyses indicated that age and
experience moderated the effects of social influence construct
on intentions to use the future EHR system. However, no
previous studies in these areas have used moderated regression
analyses. The mediation analyses showed that the effect of job
relevance was mediated by effort expectancy, social influence,
descriptive norms, and facilitating conditions. This means that
perceiving the use of the EHR system as relevant to GP work
can only partially explain the GPs’ decision to use the system.
Other, more relevant considerations, such as the perceived effort
in using it and the existence of relevant technical support and
infrastructure, as well as the perceived use by other GPs, appear
to be more prominent considerations in the decision-making
process and further explain the association between job
relevance and usage intentions. In other words, GPs would be
willing to use health care technology that appears relevant to
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their job, to the extent that this technology is seen as less
effortful to use, supported by relevant infrastructure, and
endorsed by more colleagues.

Principal Findings
GPs’ decision to use job-relevant health care technology, such
as an EHR system, is multifaceted and based on several
considerations. Primarily, the perceived effortless use and the
existence of supportive infrastructure appear to be highly
relevant to the decision to use the EHR system in question,
followed by perceptions of endorsed (and actual) use by
colleagues. Taken together, these considerations appear to be
more important than the perceived benefits of the EHR system
in daily practice.

Implications for Design and Implementation of EHR
Systems
The findings of this study may be useful for policy makers and
managers when developing and implementing new ICTs in
health care. The contextualized technology acceptance model
developed for this study contributes to understanding the drivers
of the acceptance of new technology in this country in Southeast
Europe. The emphasis on the design and development of future
EHRs should be easy to use. The effect of social influence on
intentions to use the EHR system may be moderated by the age
and experience (moderators) of the GPs.

Managers and policy makers should use workshops and tools
that will persuade end users about the ease of use of EHR
systems. Future EHR systems should provide effective technical
support (facilitating conditions). The influence of key colleagues
may facilitate the implementation of EHR systems (social
influence).

Limitations
A quantitative approach was applied in this study, and it is
possible that a qualitative approach may have provided a more
in-depth explanation of participants’ attitudes. GPs who use
ICT less in their professional roles may have been
underrepresented in this study, which may have created a
response bias in this sample. It is also possible that the views
in the research, in relation to readiness to adopt the EHR system,
reflect those GPs who were more familiar with using ICT. The
response rate of 40.2% is not ideal for generalizing the findings
of this research to the whole GP population in the country.
Although the research instrument was applied to a large sample
of GPs, there was a self-selection bias among respondents. The
EHR system in 2020, although planned, was not implemented
in the Republic of North Macedonia. However, it is possible
that the views of health care professionals, such as performance
expectancy and various forms of computer and internet use,
have changed over time.

Gender split and other demographic data in the GP population
in the country were not available through the National Fund of
Health Insurance. The gender distribution in the respondents

(2/3 female vs 1/3 male) of this research cannot be compared
with the GPs’gender split. Data for this research were collected
in 2014, and there is a time gap with its presentation in this
study.

The application of a newer technology acceptance model, such
as UTAUT2, was considered a possible limitation. However,
the newly added variables to the UTAUT2, such as hedonic
motivation (enjoyment derived from using the technology) and
price value (trade-off between perceived benefits and monetary
costs) were less relevant to the planned EHR (proposed
mandatory use of the EHR system reimbursed by the
government).

Comparison With Prior Work
The UTAUT model has been applied in a few studies in health
care settings to assess the intentions to use the EHR system.
Performance expectancy and effort expectancy were found to
be strong predictors, which is different from the findings of this
study. The main finding of this study that only effort expectancy
(not performance expectancy) was established as a predictor of
intention to use the EHR system is different from those in the
relevant literature [13,14]. Job relevance was assessed and
proved to be a predictor of intention in this study. However,
this technology acceptance construct was assessed and
established as a predictor of intention among health care
professionals in the relevant literature [20]. Social influence, a
technology acceptance construct similar to subjective norms,
has been more widely used and has been shown to be a
behavioral predictor in health care settings in the relevant
literature. The findings of this study, where social influence
was established as a behavioral predictor, correspond with those
described in the literature [14,18,20,33]. However, as
performance expectancy was not established as a technology
acceptance predictor of intentions in this study, there may be a
gap in the awareness of its expected benefits. Therefore, the
possible awareness gap may be explored in future research.

Conclusions
The modified version of the UTAUT applied in this study is a
useful tool for researchers to assess attitudes and intentions to
use new eHealth systems. The main findings from this study
indicated that effort expectancy (not performance expectancy)
and facilitating conditions (ie, perceived tech support and
supportive infrastructure) were the strongest predictors of
intentions for the future use of the EHR system among GPs.
Taken together, the main findings of our study suggest that
health care technology acceptance can be explained by models,
such as the UTAUT model. However, different variables appear
to predict intentions to use health care technology in different
countries, suggesting that future research may address cultural
and contextual influences in health care technology acceptance
and that modified versions of the UTAUT may be relevant in
different countries.
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Abstract

Background: The COVID-19 pandemic has caused a global health crisis that affects many aspects of human lives. In the absence
of vaccines and antivirals, several behavioral change and policy initiatives such as physical distancing have been implemented
to control the spread of COVID-19. Social media data can reveal public perceptions toward how governments and health agencies
worldwide are handling the pandemic, and the impact of the disease on people regardless of their geographic locations in line
with various factors that hinder or facilitate the efforts to control the spread of the pandemic globally.

Objective: This paper aims to investigate the impact of the COVID-19 pandemic on people worldwide using social media data.

Methods: We applied natural language processing (NLP) and thematic analysis to understand public opinions, experiences,
and issues with respect to the COVID-19 pandemic using social media data. First, we collected over 47 million COVID-19–related
comments from Twitter, Facebook, YouTube, and three online discussion forums. Second, we performed data preprocessing,
which involved applying NLP techniques to clean and prepare the data for automated key phrase extraction. Third, we applied
the NLP approach to extract meaningful key phrases from over 1 million randomly selected comments and computed sentiment
score for each key phrase and assigned sentiment polarity (ie, positive, negative, or neutral) based on the score using a lexicon-based
technique. Fourth, we grouped related negative and positive key phrases into categories or broad themes.

Results: A total of 34 negative themes emerged, out of which 15 were health-related issues, psychosocial issues, and social
issues related to the COVID-19 pandemic from the public perspective. Some of the health-related issues were increased mortality,
health concerns, struggling health systems, and fitness issues; while some of the psychosocial issues were frustrations due to life
disruptions, panic shopping, and expression of fear. Social issues were harassment, domestic violence, and wrong societal attitude.
In addition, 20 positive themes emerged from our results. Some of the positive themes were public awareness, encouragement,
gratitude, cleaner environment, online learning, charity, spiritual support, and innovative research.

Conclusions: We uncovered various negative and positive themes representing public perceptions toward the COVID-19
pandemic and recommended interventions that can help address the health, psychosocial, and social issues based on the positive
themes and other research evidence. These interventions will help governments, health professionals and agencies, institutions,
and individuals in their efforts to curb the spread of COVID-19 and minimize its impact, and in reacting to any future pandemics.

JMIR Med Inform 2021 | vol. 9 | iss. 4 |e22734 | p.49https://medinform.jmir.org/2021/4/e22734
(page number not for citation purposes)

Oyebode et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:oladapo.oyebode@dal.ca
http://www.w3.org/Style/XSL
http://www.renderx.com/


(JMIR Med Inform 2021;9(4):e22734)   doi:10.2196/22734

KEYWORDS

social media; COVID-19; coronavirus; infodemiology; infoveillance; natural language processing; text mining; thematic analysis;
interventions; health issues; psychosocial issues; social issues

Introduction

Background
Infectious diseases have occurred in the past and continue to
emerge. Infectious diseases are termed “emerging” if they newly
appear in a population or have existed but are increasing rapidly
in incidence or geographic range [1]. Examples of emerging
infectious diseases include acquired immunodeficiency
syndrome, Ebola, dengue hemorrhagic fever, Lassa fever, severe
acute respiratory syndrome (SARS), H1N1 flu, Zika, etc [2].
Evidence shows that emerging infectious diseases are among
the leading causes of death and disability globally [3]. For
instance, a 1-year estimate of the 2009 H1N1 flu pandemic
shows that 43-89 million people were infected [4], and 201,200
respiratory deaths and 83,300 cardiovascular deaths were linked
to the disease [5] worldwide. In addition, 770,000 HIV deaths
were recorded in 2018 alone, with approximately 37.9 million
people already infected with the virus globally [6]. Ebola is
another deadly infectious disease that has an average
case-fatality rate of about 50%, with a range of 25%-90%
case-fatality rates in past outbreaks [2,7].

In December 2019, COVID-19, caused by the novel coronavirus,
emerged and soon became the latest deadly infectious disease
[8,9] worldwide, with more than 9.4 million confirmed cases
and over 482,800 deaths in 188 countries and regions as of June
25, 2020 [10]. Hence, it was declared a pandemic by the World
Health Organization. The COVID-19 pandemic has strained
the global health systems and caused socioeconomic challenges
due to job losses and lockdowns (and other restrictive measures)
imposed by governments and public health agencies to curtail
the spread of the virus. Evidence has already shown that
emerging infectious diseases impose significant burden on global
economies and public health [3,11-13]. To understand public
concern, personal experiences, and factors that hinder or
facilitate the efforts to control the spread of the COVID-19
pandemic, social media data can produce rich and useful insights
that were previously impossible in both scale and extent [14].

Over the years, social media has witnessed a surge in active
users to more than 3.8 billion worldwide [15], making it a rich
source of data for research in diverse domains. In the health
domain, social media data (ie, user comments or posts on
Twitter, Facebook, YouTube, Instagram, online forums, blogs,
etc) have been used to investigate mental health issues [16,17],
maternal health issues [18,19], diseases [20-24], substance use
[25,26], and other health-related issues [27,28]. Other domains
(eg, politics, commerce, marketing, or banking) have also
witnessed widespread use of social media data to uncover new
insights related to election results [29-32], election campaigns
[33], customer behavior and engagement [34,35], etc. Regarding
the COVID-19 crisis, social media data can reveal public
perceptions toward how governments and health agencies
worldwide are handling the pandemic and the social, economic,

psychological, and health impacts of the disease on people
regardless of their geographic locations in line with various
factors that hinder or facilitate the efforts to control the spread
of the COVID-19 pandemic globally.

In this paper, we apply natural language processing (NLP) to
understand public opinions, experiences, and issues with respect
to the COVID-19 pandemic using data from Twitter, Facebook,
YouTube, and three online discussion forums (ie, Archinect
[36,37], LiveScience [38], and PushSquare [39]). NLP is a
well-established method that has been applied in many JMIR
papers and other health informatics papers to understand various
health-related issues. For example, Abdalla et al [40] studied
the privacy implications of word embeddings trained on clinical
data containing personal health information, while Bekhuis et
al [41] applied NLP to extract clinical phrases and keywords
from a corpus of messages posted to an internet mailing list.
Specifically, we aim to answer the following research questions
(RQs):

• RQ1: What are the negative issues (health, psychosocial,
and social issues) shared by people on social media with
respect to the COVID-19 pandemic?

• RQ2: What are the positive opinions or perceptions of
people with respect to COVID-19 and how it is being
handled?

• RQ3: How can the negative issues be addressed using
insights from the positive opinions and other research
evidence?

The methodological approach used in answering our RQs are
as follows:

• We apply an NLP approach for extracting opinionated key
phrases from COVID-19–related social media comments.

• We uncover various negative and positive themes,
representing public perceptions toward the COVID-19
pandemic after categorizing the key phrases. Our results
revealed 34 negative themes, out of which 15 were
health-related issues, psychosocial issues, and social issues
related to the pandemic from the public perspective. In
addition, 20 positive themes emerged from our results.

• We recommend interventions that can help address the
health, psychosocial, and social issues based on the positive
themes and other research evidence. These interventions
will help governments, health professionals and agencies,
institutions, and individuals in their efforts to curb the
spread of COVID-19 and minimize its impact, as well as
in reacting to any future pandemics.

Relevant Literature
Social media has been a rich source of data for research in many
domains, including health [42]. Research that uses social media
in conjunction with NLP within the health domain continues to
grow and cover broad application areas such as health
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surveillance (eg, mental health, substance use, diseases, and
pharmacovigilance), health communication, sentiment analysis,
and so on [43]. For example, Park and Conway [44] used the
lexicon-based approach to track prevalence of keywords
indicating public interest in four health issues— Ebola,
e-cigarettes, marijuana, and influenza—based on social media
data. Afterward, they generated topics that explain changes in
discussion volume over time using the latent Dirichlet allocation
(LDA) algorithm. Similarly, Jelodar et al [45] applied LDA to
extract latent topics in COVID-19–related comments and used
the long short-term memory recurrent neural network technique
for sentiment classification. Furthermore, Nobles et al [46] used
social media data to examine the needs (including seeking health
information) of the reportable sexually transmitted diseases
community. Their NLP approach involves extracting the top
50 unigrams from the posts based on frequency and then
generating topics using the nonnegative matrix factorization
technique instead of LDA. Paul et al [47] applied the Ailment
Topic Aspect Model to generate latent topics from Twitter data
with the aim of detecting mentions of specific ailments including
allergies, obesity, and insomnia. They used a list of key phrases
to automatically identify possible systems and treatments.
McNeill et al [48] investigated how the dissemination of
H1N1-related advice in the United Kingdom encourages or
discourages vaccine and antiviral uptake using Twitter data.
They conducted an automated content analysis using the KH
Coder tool (Koichi Higuchi) to explore potential topics based
on frequency of occurrence and then performed a more detailed
or conversational analysis to understand skepticism over
economic beneficiaries of vaccination and the risks and benefits
of medication based on public opinion. On the other hand,
Oyebode et al [49] performed sentiment analysis on user reviews
of mental health apps using the machine learning approach.
They compared five classifiers (based on five different machine
learning algorithms) and used the best performing classifier to
predict the sentiment polarity of reviews. However, none of the
aforementioned approaches considers the context in which words
appear in unstructured texts, which instinctively plays a
substantial role in conveying meaning.

To investigate the significance of contextual text analysis, Dave
and Varma [50] compared the noncontextual n-gram chunking

approach and the contextual part-of-speech (POS) chunking
approach in their experimental research in the field of
advertising. Although the n-gram chunking method simply
extracts words of varying lengths within a sentence boundary
as candidate key phrases, the POS chunking method infers the
context of words using POS patterns such as one or more noun
tags (NN, NNP, NNS, and NNPS) along with adjective tags
(JJ) and optional cardinal tags (CD) and determiners (DT). They
focused on key phrases up to a length of 6 for their experiments.
Their initial assessment showed that the majority of the key
phrases generated using the n-gram chunking method are not
meaningful within the advertising context, hence not useful.
Furthermore, they observed the impact of key phrases from both
methods on the performance of classification systems based on
naive Bayes, logistic regression, and bagging machine learning
algorithms. Their findings revealed that systems using the POS
chunking method outperformed those using the n-gram chunking
method for feature extraction. We leveraged Dave and Varma’s
[50] contextual method in this study and extended it to capture
additional POS patterns, NLP preprocessing techniques, and
sentiment scoring using a lexicon-based technique.

Finally, to uncover insights about the type of information shared
on Twitter during the peak of the H1N1 (swine flu) pandemic
in 2009, Ahmed et al [51] generated 8 broad themes using a
coding method involving expert reviewers. Similarly, Bekhuis
et al [41] involved two dentists to manually and iteratively
classify clinical phrases into categories and subcategories. We
also used this method in the key phrase categorization stage of
our study to group related key phrases into categories or broad
themes.

Methods

Overview
The main goal of this paper is to understand and reflect on
people’s personal experiences and opinions with respect to the
COVID-19 pandemic using social media data. To achieve this,
we applied various standard and well-known computational
techniques that are highlighted in the following section and
summarized in Figure 1.

Figure 1. Methodological stages.

• We collected COVID-19–related comments or posts from
Twitter, Facebook, YouTube, and three online discussion
forums using programming languages (Python and C#) and
relevant application programming interfaces (APIs).

• We performed preprocessing tasks that involve applying
NLP techniques to clean the data and prepare them for the
key phrase extraction phase.

• We applied the NLP approach to extract meaningful key
phrases, which are words or phrases that convey the topical
content of the comments. This approach is in seven stages:
grammar definition, sentence breaking and tokenization,

POS tagging, lemmatization, syntactic parsing,
transformation and filtering, and sentiment scoring.

• Based on the sentiment scores associated with the candidate
key phrases, we automatically assigned sentiment polarity
to the key phrases and then grouped negative and positive
key phrases into categories or broad themes using the
thematic analysis method. This helps to answer our RQs.

Data Collection
We used various automated techniques to collect 47,410,795
COVID-19-related or coronavirus-related comments from six
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social media platforms: Twitter, YouTube, Facebook, Archinect,
LiveScience, and PushSquare. The following describes the
techniques and the breakdown of the data collected from each
platform:

1. Twitter: We developed a tool using C# programming
language to automatically extract tweets containing relevant
hashtags in real time through the Twitter Streaming API
[52]. To determine trending Twitter hashtags, we searched
for “Trending Twitter hashtags on COVID-19” using the
Google search engine and retrieved various popular hashtags
from several websites including RiteTag [53] and Insider
[54]. In addition, we checked a sample of top tweets on
Twitter to see other common COVID-19–related hashtags
they contained. The selected hashtags were #CoronaVirus,
#COVID-19, #Covid_19, #COVID19, #COVID,
#QuarantineAndChill, #CoronaCrisis,
#MyPandemicSurvivalPlan, #caronavirusoutbreak,
#CoronavirusOutbreak, #Quarantined, #pandemic,
#coronapocalypse, #QuarantineLife, #StopTheSpread,
#CoronaVirusUpdates, #StayAtHome, #selfquarantine,
#COVIDー19, #panicbuying, #ncov2019, #Coronavid19,
#SocialDistancing, #cronovirus, #CoronaVirusUpdate, and
#CoronavirusPandemic. A total of 47,249,973 tweets were
collected between March 20 and April 3, 2020.

2. YouTube: We developed a Python script to retrieve
comments associated with relevant videos through the
YouTube Data API [55] using search keywords such as
covid19, covid-19, and coronavirus. Due to YouTube’s
quota limits, we were only able to extract 111,722
comments across 2939 videos posted between January 1
and April 3, 2020.

3. Facebook: Due to Facebook’s automated search restrictions,
we applied a semiautomated approach to extract comments.
First, we manually retrieved relevant groups (n=91) and
pages (n=68), using the following search keywords:
COVID-19, Coronavirus, and COVID. Afterward, we
developed a Python script to extract 777 and 8382
comments posted on the groups and pages, respectively,
between January 1 and April 3, 2020.

4. Online discussion forums: We developed a Python script
to extract 20,747; 793; and 18,401 comments (from
coronavirus-related threads) posted on Archinect,
LiveScience, and PushSquare, respectively, between January
1 and April 3, 2020.

Data Preprocessing
Next, we applied the following NLP techniques to clean and
prepare data for analysis using Python:

• Remove hashtags, mentions, and URLs
• Expand contractions (eg, wouldn’t is replaced with would

not)
• Unescape HTML characters (eg, “&amp;” is replaced with

the “&” equivalent)
• Remove HTML tags (eg, <p>, <span>, and <br />)
• Remove special characters, except those with semantic

implications such as periods and exclamation marks (which
are useful for identifying sentence boundaries) or commas

• Reduce repeated characters (eg, toooooool becomes tool)
• Convert slangs to their equivalent English words using

online slang dictionaries [56,57], which contain 5434 entries
in total

• Remove numeric words

After the preprocessing tasks were completed, non-English and
duplicated comments were removed, thereby reducing the total
number of comments to 8,021,341.

Key Phrase Extraction
Next, we randomly selected 1,051,616 comments (representing
approximately 13% of the entire data set) and then extracted
meaningful key phrases that conveyed the topical content of
the comments. We refer to the data set containing the comments
as corpus and each comment as document in the remaining parts
of this paper. We focused on key phrases that are opinionated
(ie, express or imply positive or negative sentiment [58]) since
our goal was to determine public opinions and impact with
respect to the COVID-19 pandemic. We extracted candidate
key phrases from our corpus using a seven-stage NLP approach,
shown in Figure 2. We implemented our approach using the
Python programming language.

Figure 2. Natural language processing approach.

To derive meaningful key phrases, we defined the following
regular grammar: <DT>? <JJ.*>* <NN.*>* <VB.*>? (<IN>?
<DT>? <JJ.*>* <NN.*>*)? which specifies a meaningful

POS pattern that the syntactic parser uses to deconstruct each
sentence in the documents into their constituents [59]. Table 1
shows the various parts of speech (or syntactic categories)
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captured in the grammar. These syntactic categories are based
on well-established POS tagging guidelines for English [60].
In the aforementioned regular grammar, the “?” and “*”
characters represent “optional” and “zero or more occurrences,”
respectively. Our regular grammar is aimed at generating key
phrases that capture both context and sentiment of a conversation
using nouns, adjectives, and verbs. Research has shown that

nouns are most useful in knowing the context of a conversation
(ie, what is being discussed) [61], while verbs and adjectives
are important for sentiment detection [62]. Determiners and
prepositions are also captured by the grammar since they usually
co-occur with noun or adjective phrases (eg, a meal for six
people or a hospital on the hilltop).

Table 1. Part-of-speech tags, description, and the corresponding matching part-of-speech pattern.

Matching patternDescriptionTag

<DT>DeterminerDT

<JJ.*>AdjectiveJJ

<JJ.*>Adjective (comparative)JJR

<JJ.*>Adjective (superlative)JJS

<NN.*>Noun (singular)NN

<NN.*>Noun (plural)NNS

<NN.*>Proper noun (singular)NNP

<NN.*>Proper noun (plural)NNPS

<VB.*>Verb (base form)VB

<VB.*>Verb (past tense)VBD

<VB.*>Verb (gerund or present participle)VBG

<VB.*>Verb (past participle)VBN

<VB.*>Verb (non–third person singular present)VBP

<VB.*>Verb (third person singular present)VBZ

<IN>Preposition or subordinating conjunctionIN

Next, each document is split into sentences, and then each
sentence is split into tokens or words. The sentence breaking
task is achieved using an unsupervised algorithm that considers
abbreviations, collocations, capitalizations, and punctuations
to detect sentence boundaries [63]. The tagging module
associates each token with its POS. The POS tags are based on
the Penn Treebank tagset [60,64], some of which are shown in
Table 1. Each token is reduced to its root form, depending on
its POS. This activity is called lemmatization. For example,
worse and better, which are both adjectives, will become bad
and good, respectively. Prior to lemmatization, each token is
converted to lowercase. Although Witten et al [65] applied
stemming for its tokens, we chose lemmatization over stemming
since lemmatization returns root words that are always
meaningful and exist in the English dictionary. Stemming, on
the other hand, may return root words that have no meaning at
all since it merely removes prefixes or suffixes based on a
rule-based method [66].

Furthermore, the syntactic parsing module deconstructs each
sentence into a parse tree and then creates chunks or phrases
based on the regular grammar or POS pattern defined in the
first step. In other words, the parser’s chunking process involves
matching phrases composed of an optional determiner, zero or
more of any time of adjective, zero or more of any type of noun,
any type of verb (but optional), and an optional component.
This component consists of an optional preposition, an optional
determiner, zero or more of any type of adjective, and zero or

more of any type of noun. The output of this stage is the
candidate key phrases.

In the transformation and filtering stage, key phrases that are
stop words (ie, words that are commonly used, such as the, a,
an, with, in, and that) are removed from candidate key phrases
using a predefined list Lstopwords compiled from multiple sources
(eg, [67]). We excluded negation words, which are necessary
for sentiment detection, such as not, from the list of stop words.
In addition, a subset of Lstopwords were removed from the start
and end of (and from within) the remaining key phrases in the
candidate key phrases such that the meaning of the key phrases
is preserved. Afterward, duplicates were removed from the
candidate key phrases. Although previous research excluded
key phrases above length 6 [50], we included key phrases up
to length 10 in our analysis to avoid losing important key phrases
that would have enriched insights from this paper. Hence, key
phrases containing more than 10 words were removed from the
candidate key phrases. Since our focus is on opinionated key
phrases (ie, positive and negative key phrases), we applied a
filtering technique that involves computing sentiment score for
each key phrase and discarding nonopinionated key phrases.

Finally, to identify negative and positive key phrases in the
candidate key phrases, the scoring module computes a sentiment
score, Sscore, ranging from –1 to 1 for each key phrase using the
Valence Aware Dictionary for Sentiment Reasoning
lexicon-based algorithm [68]. Afterward, each key phrase is
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assigned a polarity (negative or positive) based on the Sscore

using the criteria recommended by Hutto and Gilbert [68].
Specifically, a key phrase is negative if Sscore<–0.05, while a
key phrase is positive if Sscore>0.05. A neutral key phrase (with
Sscore between –0.05 and 0.05) was removed from the candidate
key phrases since it is not opinionated.

Key Phrase Categorization
To answer our RQs, we categorized the final candidate key
phrases into categories or broad themes using a thematic analysis
approach used by Bekhuis et al [41] to classify clinical phrases
into categories. In this approach, expert reviewers manually
examine the key phrases and then assign them to appropriate
categories. We recruited four reviewers to perform our key
phrase categorization task. Specifically, we assigned the negative
key phrases to a group of two reviewers (G1) and the positive
key phrases to a second group of two reviewers (G2). Each
reviewer independently examined the key phrases iteratively
and continued to categorize related key phrases until a saturation
level was reached (ie, no new categories were emerging from
the key phrases). Reviewers used coding sheets in which they
indicated the category each key phrase belonged to after
examining it. Category names were decided by each reviewer
such that a new category was created if none of the existing
categories matched the key phrase being reviewed. Since key
phrases are more specific than comments, the reviewers assigned
each key phrase to only one category. In other words, reviewers
assign a key phrase to the most appropriate category or to a new
category if none of the existing categories was suitable. After
categorizing the key phrases, the reviewers in each team
validated each other’s work and agreed or disagreed with the
category assigned to each key phrase, and offered suggestions
to address every disagreement. The reviewers came together
after completing their validations to apply the suggestions and
ensure all category names were distinct while harmonizing
names that are similar. We measured interrater reliability using
the percentage agreement metric [69]. The percentage
agreement score for G1 was 98.0%, while the score for G2 was
99.3%. We refer to the categories as themes and the various key
phrases under each category as subthemes in the remaining part
of this paper.

Results

Key Phrase Extraction
In this section, we discuss the results of our experiments and
key phrase categorization. From the large corpus used for the
experiment, 427,875 negative and 520,685 positive key phrases
were automatically generated. However, the majority of these
key phrases were similar; hence, the reviewers reached a
saturation point (during key phrase categorization) where no
new categories were emerging. In total, 18,694 negative and
19,841 positive key phrases were categorized.

Negative Key Phrases
Multimedia Appendix 1 shows the top 130 negative key phrases
and their dominance in terms of frequency of occurrence. Our

results revealed that death (n=10,187) was the dominant negative
key phrase, followed by die (n=7240), fight (n=5891), bad
(n=3808), kill (n=3668), lose (n=3631), pay (n=3486), leave
(n=3234), crisis (n=2783), hard (n=2720), worry (n=2476), sick
(n=2314), sad (n=2129), and so on. More negative key phrases
can be found in Multimedia Appendix 2, such as national health
emergency, scary time, life suck, everyone struggle, dangerous
lie, child die, trouble breathe, no medicine, sick people, pay
bill, horrible virus, fear coronavirus, extra cautious, steal mask,
family die, people in crisis, bad leadership, in house bore, feel
horrible, total incompetence, call virus hoax, conspiracy theory
ridiculous, take no precaution, serious lockdown, increase in
suicide rate, people starve, lack of preparedness, fight menace,
and restriction on travel.

Positive Key Phrases
Multimedia Appendix 3 illustrates the top 130 positive key
phrases and their dominance in terms of frequency of occurrence
(larger size of the gray oval represents more dominance in the
figure in Multimedia Appendix 3). Our results revealed that
help (n=18,498) was the dominant key phrase, followed by hope
(n=7708), protect (n=7130), love (n=6895), support (n=6198),
good (n=5740), share (n=5187), care (n=4917), stay safe
(n=4917), and so on. Multimedia Appendix 4 shows more
positive key phrases, such as keep everyone safe, clean
environment, trust scientific data, create cure, economic relief,
encourage business, remain strong, good mask, social distancing
best way, generous, respect human right, help prevent further
spread, pray for health, social solidarity, support relief effort,
protect health worker, good immune system, practice good hand
hygiene, speak truth, expand testing, protect vulnerable people,
free treatment, and ease anxiety.

Key Phrase Categorization
Overall, 34 negative and 20 positive themes emerged after the
key phrase categorization phase discussed in the Methods
section. Out of the 34 negative themes, 15 were health-related,
psychosocial, and social issues (which were the main focus of
this paper and are shown in Tables 2-4). Table 5 shows the 15
negative themes and the corresponding number of key phrases
under each theme, while Table 6 shows the negative themes
and the total number of comments for each theme. Frustration
due to life disruptions emerged as the top negative theme with
the highest number of comments, followed by increased
mortality, comparison with other diseases or incidents, nature
of the disease, and harassment. On the other hand, Table 7 shows
the 20 positive themes, description, and sample comments.
Table 8 shows the corresponding number of key phrases under
each positive theme, while Table 9 shows the total number of
comments for each theme. Public awareness emerged as the top
positive theme based on the number of comments, followed by
spiritual support, encouragement, and charity. By identifying
negative and positive themes from COVID-19–related
comments, we have answered RQ1 and RQ2, respectively.
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Table 2. Health-related issues: negative themes, descriptions, and corresponding sample comments.

Sample commentsDescriptionTheme

Increasing number of deaths due to COVID-19Increased mortality • “Grieving for the world and my country, every night
the death count rises up. I cry for everybody that has
died, for those people fighting it, & family who have
lost someone. I do not know each person by name BUT

I want you to know you are not alone in this pain.”a

(C58)
• “...The number of deaths from the Corona-Virus in

London are doubling every two days. London could
end up with a worse than Italy.” (C90)

Health concerns expressed by people, such as mental
health issues (eg, anxiety, depression, stress, or obses-
sive-compulsive disorder), excessive drinking, mi-
graines, fatigue, and others

Health concerns • “It is been either ten or fourteen days since the nursing
home I work at went on lockdown due to Covid_19 and
the stress/anxiety is really starting to get to me. I am
struggling to sleep at night.” (C3327)

• “On my fifth day of sickness, the symptoms disap-
peared, leaving only an odd metallic taste in my mouth,
nasal mucosal ulcers and intense fatigue. This is what
a former chair of the UK RCGP went through after
catching COVID19.” (C945)

Inability of health systems to cope with pandemic and
give people adequate health care

Struggling health systems • “What clearly shows is the correlation between coun-
tries with clean hospitals and countries with bad hospi-
tals and corona deaths. People die with corona not of
corona. In particular New York and California displays
its poor health system.” (C81)

• “Pakistani doctors openly saying their numbers are be-
ing underreported. They claim 100s of patients in La-
hore alone, and say that because of poor facilities, hos-
pitals themselves might be spreading the virus.” (C44)

Inability to perform usual physical activity or attend
fitness sessions and dislike for indoor workout

Fitness issues • “Woke up at 8:20 am and still in bed from the past 2
hours. No mood of workout” (C271)

• “I just need it to be known that I hate quarantine work-
outs and I miss the damn gym. Also I never thought I
would ever say this in life!” (C209)

Concerns over rising COVID-19 casesRising number of cases • “The United States is currently on the path of the most
widespread viral attack in the world.” (C908)

• “This has done a heinous crime on humanity by
spreading to more and more areas of the country. The
head of the Jamat must be booked for murder crime, as
many have died due to Corona infection after attending
their function.” (C24)

Explaining the nature of COVID-19, including its
symptoms (eg, cough, loss of taste, and fever), its “no
symptom” (or asymptotic) behavior, how it spreads,
and vulnerable populations

Nature of disease • “Recent reports suggest that Covid-19 does not only
affect the respiratory system, but also affects the Central
Nervous System. Loss of smell and loss of taste happen
to be some of the early symptoms of covid-19.” (C660)

• “...they are all grabbing and touching the desk. This
virus is much more contagious than the flu and there is
0 immunity exposure illness. Keep doing it like this and
it is only a matter of time before everyone who spoke
will have the virus...” (C900)

• “If 3 elders died within 72 hours and had no symptoms,
should we not be testing everyone?” (C2447)

Comparing COVID-19 with other diseases or incidents
such as flu, pneumonia, natural disasters, and war

Comparison with other diseases
or incidents

• “A war fought with no guns or bombs, where people
flee from what they do not see or is it World War 3?”
(C515)

• “I believe Covid19 is this mutated H5N1 avian flu virus.
It is airborne, which might explain the rapid spread
around the world.” (C671)

aAll comments are included verbatim, including spelling and grammatical mistakes.
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Table 3. Psychosocial issues: negative themes, descriptions, and corresponding sample comments.

Sample commentsDescriptionTheme

Expression and spread of fear among people, including
fear of infection, sickness, and death

Expression of fear • “...Indigenous tribes are closing off their re-
serves to visitors as they fear the disease that
is fast spreading across South America could

wipe them out...”a (C3884)
• “...This virus has caused a lot of fear in the

lives of many, it has also brought about differ-
ent mindset in the heart of men. Truly the
world is coming to an end.” (C7227)

People recalling past life prior to pandemic and wished
they got it back

Retrospection • “I miss football. I miss my family. I miss my
friends. But more than all of that, I miss hu-
man touch!” (C300)

• “If you consider yourself and how is social
distancing going for you? I miss walking
around and reading/writing at local coffee
shops.” (C3001)

Expression of frustrations over disruption to everyday
life, such as consistent homework (for schoolers), more
household chores (for moms), difficulty accessing
family members or loved ones, sporting event suspen-
sion, postponement of planned trips and tours, higher
food prices, and restaurants closure

Frustration due to life disruptions • “Everyday, I wake up from a very normal
dream, and realize I have to do another day in
this insane world. All I want to do is go see
my mom and give her a hug, but I cannot! I
feel so alone. I cry every day. I cannot do this
much longer.” (C2905)

• “Day 15 of I only leave my house for food and
exercise. Living in such extremes is confusing
and disorienting for my body. Every time I
step outside, I become hungry and start
sweating, preemptively.” (C4484)

• “Not getting a hair cut in February was a terri-
ble idea. I am two hair shades away from
looking like an overweight member of BTS”
(C89)

Complaints about working from home during pandem-
ic, such as distractions/disturbance, psychological
stress, pain, and sleep issues

Work from home complaints • “Is anyone else experiencing leg and knee pain
from working from home too much or is it just
me? If so, how have you all dealt with it?...”
(C824)

• “Working from home is an epic fail! I am
losing it between my child, pets, monkey calls,
and renovations. Wake me when this is over.”
(C853)

People stockpiling groceries and other essential goods
due to pandemic

Panic shopping • “This panic buying is ridiculous! Heart rend-
ing! Guess it takes a situation like to show how
selfish callously indifferent we really are to-
wards other humans / animals. Have a heart
people!” (C779)

• “And yet there is still no logical reason for
clearing the shelves of toilet roll, depriving
those who are old infirm or in poverty from
accessing such necessities because the self-
serving privileged have greedily taken it all
away.” (C4)

aAll comments are included verbatim, including spelling and grammatical mistakes.
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Table 4. Social issues: negative themes, descriptions, and corresponding sample comments.

Sample commentsDescriptionTheme

Blaming people’s wrong attitude as causing or fanning
the spread (eg, disobeying instructions from govern-
ments and health care professionals and eating bats
and wild animals)

Wrong societal attitude • “Cannot believe how irresponsible people are
being in regard public health. We all have a
duty of care to each other, please abide by the

social distance rules”a (C4924)
• “...We are only going to die from our own ar-

rogance if people keep going outside gather-
ing, believing they will never get it or infect
others...” (C2557)

Rise in domestic violence cases in homesDomestic violence • “Of all women murdered with a gun in the US,
half are killed by their intimate partners.
COVID19 pandemic is causing a rise in domes-
tic violence. Close the gun stores.” (C56)

• “...a police station in China received 162 re-
ports of domestic violence in February com-
pared to 47 for the same month in 2019. Advo-
cates attribute this rise in cases to the lock-
down.” (C100)

Harassing and blaming people from certain countries,
race, or religion as responsible for the COVID-19

Harassment • “...stop being so racist against Northeastern
state of India. We are not Corona. Get your
damn information right. The most affected
places with is not Northeast. Instead of being
a racist and criticising others, why do not you
be more careful?” (C1413)

• “An Asian American couple in Minnesota
found a racist note taped to their front door
blaming them for the coronavirus” (C921)

aAll comments are included verbatim, including spelling and grammatical mistakes.

Table 5. Negative themes and the corresponding number of subthemes.

Subthemes, nThemes

7106Frustration due to life disruptions

4938Increased mortality

2673Comparison with other diseases/incidents

870Harassment

799Panic shopping

798Health concerns

481Nature of disease

338Expression of fear

200Rising number of cases

109Work from home complaints

105Wrong societal attitude

104Fitness issues

101Domestic violence

48Struggling health systems

24Retrospection
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Table 6. Negative themes and the corresponding number of comments.

Comments, nThemes

17,535Frustration due to life disruptions

9437Increased mortality

6040Comparison with other diseases/incidents

1909Nature of disease

1335Harassment

1191Health concerns

1047Panic shopping

578Expression of fear

264Rising number of cases

151Fitness issues

123Domestic violence

113Work from home complaints

111Wrong societal attitude

53Struggling health systems

25Retrospection
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Table 7. Positive themes, descriptions, and corresponding sample comments.

Sample commentsDescriptionTheme

Appreciating health workers, delivery work-
ers, farmers, pilots, security agents, other

Gratitude • “Let us show our appreciation for hard work the health care

professionals are doing to save lives at these thought times.”a

frontline workers, and the government for
their active roles during the pandemic

(C37)
• “Thank you to all on the Frontline and the Key Workers, keep

up the amazing work, you are doing an amazing job, keep our
country going. Keep Smiling in challenging times” (C156)

Raising awareness of the public about general
safety and control measures to limit the

Public awareness • “Practicing good hygiene, like washing your hands often, with
soap and water, for at least 20 seconds, is the best way to prevent
the spread of Coronavirus...” (C707)spread of the disease (eg, good hygiene, so-

cial distancing, staying at home, face masks, • “We can help ourselves by keep practicing proper hygiene, as-
sume anyone around us could be positive and we must keepand healthy eating), addressing misinforma-

tion, providing travel guidelines, etc personal distancing, wear protective gear, mask, gloves, etc.
Boost our immune system by eating healthy food. Search what
kind of vegetable and fruits is best to increase our body's ability
to fight the virus. Sanitize groceries before bringing them inside
the house...” (C16)

• “If extremely necessary, stay healthy while travelling by main-
taining personal hygiene, cough etiquette and keeping a distance
of at least one metre from others. Here are some travel tips from
World Health Organization” (C537)

Evidence of cleaner environment, including
less pollution and good air quality, due to
pandemic-related lockdowns

Cleaner environment • “Coronavirus, making Earth healthy again” (C588)
• “Coronavirus pandemic leading to huge drop in air pollution”

(C664)
• “Remember the time when we used to share the post that said,

‘We have only 6 months to take action and save the environment,
mend your ways or there is no way to save the earth’. Guess
what? A virus saved the environment better than the most evolved
beings did.” (C992)

Evidence of people recovering from COVID-
19 with or without treatment

Evidence of recovery from dis-
ease

• “A 95-year-old, become the oldest woman in to recover from
the novel coronavirus without the need for antiviral treatment
after her body showed a great reaction to the disease, doctors
say.” (C214)

• “He was referring to the number of patients treated in the Baptist
Healthcare system here. He said the numbers show 90% of their
Coronavirus positive patients recover at home.” (C321)

People’s ingenuity in creating essential pro-
tective equipment (eg, face masks and face

Homemade protective equip-
ment

• “When your missus tells you she put Vodka in her fairy. How
was I supposed to know she is trying to make homemade hand
sanitizer with the washing up liquid?” (C9335)shields) themselves in their homes or commu-

nity • “82 and counting. Eager volunteers all over the city are stitching
face masks to ensure that our community remains protected de-
spite the imminent shortage of PPEs in this pandemic.” (C129)

Public engagement in online learning such
as schools teaching students/pupils online

Online learning • “We will all be spending more time at home in the next few
months due to coronavirus. I have already registered myself with
number of short courses with online learning for the subjectsand self-development by enrolling in online

courses covering different domains that interest me. This could be a good time to learn something
new or sharpen up your skills.” (C1648)

• “Despite all the news, today is the first day back to school for
Florida's students virtually. Distance learning might be the new
normal for a while...” (C710)

Spending time with family, friends, and loved
ones due to pandemic and lockdown

Connection with family and
friends

• “Yesterday my mom had a video call with her group of friends
instead of going out for their regular meetup. I am proud of my
mom. Who said boomers are outdated?” (C7151)

• “This is not the time to be selfish. This is the time to be more
present. I did a roll call this morning, calling all my friends video
call, family and those I care about just to check on them...”
(C2560)
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Sample commentsDescriptionTheme

• “Stay at Home and Stay Safe. Please share me good Amazon
Prime or Netflix movies and television shows.” (C93)

• “Downloading the play station 1 and nintendo 64 emulators on
my pc. Can get any game.” (C399)

• “9th grade Colin has returned and will be playing grand theft
auto for 8 hours straight” (C3192)

People accessing entertaining content online
or offline, such as watching movies on
streaming websites and playing games

Entertainment

• “Kicking off NeighborsHelpingNeighbors here in RI with the
RhodeIsland Hospitality Relief Fund - a fund aiming to help in-
dustry members directly affected by COVID19.” (C3623)

• “The 2 trillion emergency relief package now before the House
provides the following: 1,200 checks for those earning less than
75k, plus 500 per child, unemployment benefits for 39 weeks
up from 26, unemployment benefits rise by 600/week for 4
months” (C10913)

• “Zlatan Ibrahimovic has created a fundraiser to gather 1m to
help hospitals in Italy working to tackle the coronavirus. The
striker has donated €100,000 to get the fund started.” (C24)

Provision of relief packages (including dona-
tions, gifts, and fundraising) for individuals,
businesses, and hospitals to ease financial
burden caused by the pandemic

Charity

• “Studies in Iceland show that half of carriers show no symptoms.
Having widespread test allows them to isolate those with the
virus, and thus, the virus itself. Test, test, test.” (C1333)

• “US surpassing all countries in number of patients. Is it simply
because they are now testing at a faster rate even on slightest
suspicion? Yes, one of the ways to stop this pandemic is Testing,
Testing and Testing as recommended by WHO” (C6363)

Advocacy of increased testing as a means of
curbing the spread by detecting infected
people and isolating them quickly

Advocacy of increased testing

• “The amazing QueerCare are offering support to local mutual
aid groups. They have trained volunteers and are already in
contact with people who will need support over the weeks and
months to come...” (C2839)

• “My self, and some other good citizens residing in Lagos bought
150 pieces of pocket hand Sanitizers to distribute to people who
cannot afford it or have knowledge of what is all about and in
same process to tell them how to stay safe. That is our own
giveaway.” (C773)

Extending support to people at the local or
community level during the pandemic

Grassroots support

• “This is the most stunning visualization of how spread around
the world. A mesmerizing and terrifying display of globalization
and virus spread.” (C6625)

• “I would like to personally thank for the private chat function
during Zoom video meetings.” (C2244)

• “This tool is useful in identifying those who are medically more
at risk of suffering complications from COVID19...” (C9233)

Access to tracking or communication
tools/features for information dissemination
or remote communication during pandemic
and lockdown

Access to necessary tools

• “I pray for everyone diagnose of COVID19 swift and complete
recovery in Jesus name. Dear Lord, heal the world. Take away
and give everyone good health.” (C9230)

• “Let’s pray for all African communities who live in hostels, huts,
rural areas with no connectivity. No information. Innocents but
will also be affected by the CoronaVirus” (C2104)

• “...those who have relationship with God are less likely to become
depressed than those who do not. It is because their confidence
and hope is in Him so, let us trust God amid the pandemic.”
(C1349)

Offering prayer of recovery for those with
pandemic-related health conditions and those
at risk, as well as a show of hope in challeng-
ing times

Spiritual support

• “What is New York City doing to protect the workers at Amazon
fulfillment center? The virus is spreading quickly among the
employees...” (C3332)

• “While the news of is getting more urgent by the hour, it is great
to know that during a turbulent time some corporations showed
their support by increasing the minute wage for frontline workers,
hiring 100s of people to assist with increased demand, helping
unite.” (C4439)

Public call for support and protection of
frontline workers such as health workers and
delivery workers

Solidarity for frontline workers
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Sample commentsDescriptionTheme

Development of curative solu-
tions or treatments

• “There is a bunch of solutions being researched from I guess
infusions to drugs to slow virus reproduction, to vaccines. None
will be ready until a year or two. Clinical studies take time and
that is how we do medical science safely.” (C5759)

• “Coronavirus vaccine clinical trial starts Monday, U.S. official
says…But officials still say it will take a year to 18 months to
fully validate any potential vaccine.” (C2034)

Ongoing efforts by health researchers to de-
velop vaccines or drugs to cure or treat
COVID-19

• “I know it is a bad situation but damn I am improving my fitness
during this lockdown” (C6335)

• “Just finished our fitness session via skype with friends. I live
in Barcelona, lost track of how many days since I went outside,
we have to keep the body moving though” (C9430)

• “Get active every day with the kids or by yourself! GoNoodle
is here to help!...” (C9364)

Efforts made by people to stay active and fit,
as well as physical activity suggestions, dur-
ing lockdown or isolation

Physical activity

• “Let us all stay calm. Give the authorities time to attend to and
address public concerns...” (C3)

• “Yes, we can. If we stay calm and respect the rules, together we
will defeat the enemy.” (C38)

• “Stay calm and help each other. Be careful. Do not panic buy,
and never give up!” (C164)

• “We have done it before and can do it now. See the positive
possibilities. Redirect the substantial energy of our frustration
and turn it into positive, effective, unstoppable determination
for our safe and healthy future” (C2273)

Encouraging people to stay calm as they cope
with the pandemic situation, encouraging
people to view the pandemic from a positive
standpoint and stay productive amid the
challenges, encouraging people to help others
in need and not panic buy, and encouraging
people to obey lockdown rules and guidelines
released by governments and health profes-
sionals

Encouragement

• “Working from home with the children of school can be challeng-
ing. We have taken a look at some of the ways you can help
structure your day and stay on top of working from home with
our schools closed.” (C148)

• “Working from home amid Coronavirus pandemic was amazing
at least today. Came up with some amazing designs...We are
coming up with our first property in June. Already sold out”
(C53)

People’s support for the work from home
measure, including adapting/coping with the
challenges it brings

Support for remote working

• “Doctors and scientists...have designed an application to help
the public monitor their symptoms and the spread of the virus
in real-time with the contributing to their own vital research”
(C96)

• “...Well, it is a huge scientific discovery! Scientists want to use
artificial intelligence technology for a quicker and cheaper
COVID-19 screening...” (C197)

• “The COVID19 Global Hackathon is an opportunity for devel-
opers to build software solutions that drive social impact, with
the aim of tackling some of the challenges related to the current
coronavirus pandemic...” (C619)

Global research efforts to create innovative
products to address the pandemic, including
developing interventions (eg, digital or tech-
nological interventions) that help people so-
cially, physically, emotionally, or psycholog-
ically and to improve their overall health and
wellness

Innovative research

• “Gargling vitamin c, vinegar, warm water, and a little bit of
baking soda every 20 minutes. After 5 days, she tested negative.
If you or anyone you know starts getting symptoms, this can
help! Catch it early before it gets to your lungs!” (C803)

• “...I am sure I have Covid_19. I believe the natural healing helped
my daughter but suppressed my symptoms...” (C2777)

Some suggestions regarding the natural or
traditional means of protecting the body from
contracting the disease

Traditional remedy

aAll comments are included verbatim, including spelling and grammatical mistakes.
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Table 8. Positive themes and the corresponding number of subthemes.

Subthemes, nThemes

8129Public awareness

4139Spiritual support

4033Encouragement

688Entertainment

670Gratitude

657Charity

587Development of curative solutions or treatments

296Advocacy of increased testing

214Cleaner environment

141Evidence of recovery from disease

71Physical activity

61Connection with family and friends

46Online learning

36Access to technology tools

19Innovative research

17Grassroots support

14Homemade protective equipment

10Support for remote working

7Solidarity for frontline workers

6Traditional remedy
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Table 9. Positive themes and the corresponding number of comments.

Comments, nThemes

22,749Public awareness

12,130Spiritual support

5244Encouragement

942Charity

798Entertainment

758Gratitude

653Development of curative solutions or treatments

341Advocacy of increased testing

285Physical activity

278Cleaner environment

156Evidence of recovery from disease

70Connection with family and friends

52Online learning

52Access to technology tools

21Innovative research

17Grassroots support

14Homemade protective equipment

10Support for remote working

9Traditional remedy

7Solidarity for frontline workers

Discussion

Principal Results
In this paper, we analyzed social media comments to uncover
insights regarding people’s opinions and perceptions toward
the COVID-19 pandemic using an NLP approach. Our empirical
findings revealed negative and positive themes (see Tables 2-4
and Table 7) representing negative and positive impacts of the
COVID-19 pandemic and coping mechanisms on the world
population. To answer RQ3, we first discussed each of the
negative issues (supported by research evidence) in this section
and then suggest interventions to address the issues in a later
section.

Negative Issues Surrounding the COVID-19 Pandemic
Tables 2-4 show the negative themes grouped under
health-related issues, psychosocial issues, and social issues from
our results. The health-related issues included health concerns,
increased mortality, struggling health systems, fitness issues,
nature of disease, rising number of cases, and comparison with
other diseases or incidents. The psychosocial issues were
expression of fear, panic shopping, retrospection,
work-from-home issues, and frustration due to life disruptions.
The social issues were wrong societal attitude, domestic
violence, and harassment.

Health-Related Issues

Evidence shows a rapid increase in the number of COVID-19
cases and a high case-fatality rate of 7.2% [70]. In addition, a
substantial number of patients who are infected had severe
pneumonia or were critically ill [70]. Another study revealed
the mental health issues experienced by people and health
professionals directly impacted by the COVID-19 pandemic
[71], and the global health care systems’ inability to deal with
the outbreak [72]. The themes under this category are discussed
in the following subsections. They align with existing research
and uncovered additional insights with respect to the
health-related issues caused by COVID-19 and witnessed by
people worldwide.

Health Concerns

Based on our findings, people experienced various mental health
issues (eg, anxiety, depression, stress, or obsessive compulsive
disorder) during the pandemic. This is possibly due to the length
of time spent staying at home (which may be traumatic for some
people while causing loneliness for others), worrying about
being infected with the disease and difficult living conditions,
as well as guilt on the part of health care workers who feel
responsible for being unable to save their patients from death.
Research confirms that worry is associated with anxiety and
depression [73]. Cases of mental health disorders linked to
COVID-19 have also been reported [74]. Furthermore, people
expressed other concerns like excessive drinking, migraines,
chest pains, mild to severe fatigue, nasal mucosal ulcers, sleep
disorders, and others. The following are sample comments:
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Cannot sleep. Mind is racing. Feeling anxious.
[C6648]

I am so stressed and my anxiety has hit the roof. I am
anxious about money and how we will cope? [C238]

This coronavirus outbreak is more stressful for the
family. Doing my best to keep sanitized and safe. But,
fear of the invisible killer lingers on, taking a mental
toll on my mother, wife, son, who are petrified every
time I walk out of the main door. [C116]

The chest pains today is beyond. It kinda have crawled
up a bit and I feel like I put my hand on my heart from
time to time. Very tired today. But weirdly still no
fever. But I am cold and I feel sick. [C12293]

We have only been in for 3 weeks we are already
feeling anxiety, depression severe, so we decided to
think of some ways we can keep ourselves each other
in good spirits. [C8263]

Increased Mortality

People attested to an increase in death rates in many countries
across different continents including North America, Europe,
Asia, the Middle East, and Australia, as shown in the following
sample comments. Many countries, especially those in Africa,
started reporting deaths from COVID-19 (see C1264). Our
findings also revealed people of varying demographics died
from the disease, including teenagers, adults, and older adults,
as well as those with or without underlying health conditions
(see C8837 and C940).

This is why America leads the world in the death toll
already, and the pace still is not showing any signs
of slackening. [C3399]

UK coronavirus death rate DOUBLES as 381 die in
24 hours and boy, 13, with no health problems
becomes youngest victim [C8837]

Turkish health minister shares latest coronavirus
data: 16 more people have died, bringing death toll
to 108 [C9000]

Kenya has recorded the first death. According to
Health Cabinet Secretary,...the 66 years old man died
on 26th in the afternoon at the AghaKhan hospital
intensive care unit. [C1264]

100 more UK deaths in last 24h alone. These are not
all elderly co-morbid people. Among these are the
young, and the fit... [C940]

Struggling Health Systems

Health systems worldwide are struggling to cope with the surge
in the number of patients with COVID-19 and in most cases
are unable to admit patients due to limited resources [75].
Research has shown that health care burden due to COVID-19
is associated with the increase in mortality rate [76]. As revealed
in the following sample comments, our findings corroborated
evidence of overstretched global health systems during this
pandemic.

Hospitals turning away coronavirus patients in
California. EMTALA being used to set up tents outside
of hospital ER, then dumping patients without

treatment or testing. I obtained recordings of standard
hospital practice of rejecting Covid19 patients.
[C4949]

These are not just numbers. These are people and
families. These lives can be saved if the chunk of $2.2
Trillion are not used for bailing out corporations and
used to fix the broken US Health System. [C3000]

Fitness Issues

Evidence argues that the prevalence of physical inactivity
worldwide due to nationwide quarantines or lockdowns [77].
This was confirmed in our findings, which showed that people
have trouble staying fit due to an inability to control eating
habits or urges while at home and have a personal dislike for
indoor-only workouts, as shown in the following comments.
Physical inactivity has been linked to coronary heart disease,
diabetes, stroke, and mental health issues [78-80], which, in
turn, are risk factors for mortality in COVID-19 adult inpatients
[81].

...severely missing my gym, missing routine, and
cannot control my eating while at home. Things are
getting bad. [C9002]

During this shelter in place, I was gonna eat healthy
and kill some workouts. But instead I've been Guy
Fieri'ing around the kitchen sampling all my
quarantine food every 2 hours. At this point, which
will get me first - coronavirus or a coronary? [C7182]

Nature of Disease

People expressed their opinion about the nature of COVID-19
based on their experiences and information available to them.
As shown in the following sample comments, people with
underlying health conditions (eg, diabetes or heart disease) are
at higher risk of developing severe complications from the
disease. In addition, the asymptotic attribute of COVID-19 is
also discussed, and the possibility of the virus infecting some
critical immune cells that may lead to the failure of sensitive
organs like the lungs. People also perceived the disease as racial-
or nationality–independent but seems to pose more risk to men
than women. The disease is also seen as highly contagious and
shows symptoms such as cough, fever, fatigue, loss of smell,
muscle aches, and respiratory-related symptoms (eg, shortness
of breath). These findings align with clinical evidence regarding
COVID-19 [82-87].

Some WTC Health Program members with certain
health conditions...may be at a higher risk of serious
illness from COVID19 [C3620]

...Majority do not show symptoms while spreading
Covid_19 [C10033]

...If the coronavirus infects some of the immune cells
then there is a cellular catastrophe and organs like
lungs are gone within hours. [C9200]

Coronavirus is a disease that pays no attention to
borders, race or nationality. However, it appears
COVID-19 does pose a noticeably bigger threat to
men than it does to women. [C1902]
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This is absolutely true. If you have a combination of
cough, fever, problems smelling, weakness, muscle
aches or shortness of breath, assume you have
covid19. Don't bother getting tested. I know of many
docs who don't test anymore if patient has obvious
symptoms. [C2729]

Rising Number of Cases

Our findings show that more people are getting infected with
COVID-19 in many parts of the world, as shown in the
following sample comments. Evidence confirms increasing
numbers of COVID-19 cases in North America [88,89] and
Europe [90], as well as a growing concern for vulnerable
continents such as Africa [91].

There is rapid increase in cases of COVID19 in
India...I request PM to extend the lockdown to avoid
community spread. [C1325]

Despite infection cases increasing at exponential rate
doubling every 3 days, Trump pushes workers to risk
their lives for economy... [C6522]

Comparison With Other Diseases or Incidents

Our findings revealed that people compare COVID-19 with
other diseases such as the flu (eg, Spanish flu and H1N1 swine
flu) and SARS, and with more extreme incidents such as war.
However, although some people tend to downplay the severity
of COVID-19 (see C647), others think it is dangerous or
frightening (see C922 and C45). Research has shown that
COVID-19 has a higher transmissibility rate than SARS [92]
and has killed more people than SARS and Middle East
respiratory syndrome combined [93], thereby making it a highly
contagious and lethal disease.

It is just another strain of flu. People with weak and
have health problem it will affect different than people
with stronger and not so much health problems.
Media is making it sound worse... [C647]

I was not at all concerned about swine flu, I was not
at all concerned about Ebola, I was not at all
concerned about Zika virus, but this virus I was
concerned about going all the way back to January.
If I had enough information to be concerned about
this virus, then so did they. We are a month behind
on dealing with this virus and there are no excuses,
even a lay person like myself knew all the way back
in January that this was bigger than anything that
has come before it in my lifetime... [C922]

This is a war. We need to protect ourselves and
minimize unnecessary contact to avoid another
Spanish flu that killed 50 million people... [C45]

Psychosocial Issues

Expression of Fear and Panic Shopping

Based on our findings, people are fearful or scared about
COVID-19, and although many expressed genuine fear
(including those who had lost loved ones to the disease,
contracted the disease, or had an infected family member), others
attributed it to fear mongering that is further amplified by the
media. As a result of this fear, many people engaged in panic

buying to stockpile essential items so they can stay indoors and
limit movements for some days or weeks to keep themselves
and their families safe. The following are sample comments:

Very frightening when people who have travelled
think that covid cannot affect them. Such foolish
behaviour and thoughts putting all of us at risk. Those
who travelled please STOP moving around and be at
home. [C8887]

Fear mongering through projecting number of
possible deaths. The media is disgusting. [C5559]

Everyone who is panic shopping is driving my family
and me nuts...Everyone in our area is panic-buying
groceries. We can't get noodles, rice, or really any
real staple foods. We hardly have any food already.
I'm kinda scared. [C2937]

Work From Home Complaints

Furthermore, the pandemic triggered work from home (or remote
work) measures to promote continuity of businesses during
lockdown [94], but this may have negative implications on
people’s lifestyle and well-being. For example, people found
consistently working from home exhausting, boring, and
distracting with kids at home. In addition, people living in
countries without stable electricity and strong internet found it
difficult and more costly to work from home, as they have to
fuel their generators and pay more for considerably good internet
connectivity. Evidence has shown that people work longer hours
at home than on site due to difficulty in maintaining clear
delineation between work and nonwork domains [95], thereby
leading to work–family conflict and strain [96]. The following
are sample comments:

Do you find working from home exhausting? You are
not alone. Why is that and how can you combat it?
[C11224]

This thing of working from home annoys. Waking up
at 4 am to have things done before the Boy wakes up.
Otherwise you will spend better part of the day
watching cartoons with no work done. [C9902]

It is very clear from today's program how the
government is not organized or coordinated with this
issue. How should one work from home with constant
power cuts and bad internet? [C8855]

Frustration Due to Life Disruptions and Retrospection

Finally, people are generally frustrated about life disruptions
caused by COVID-19 (which is the top issue based on our
empirical findings as shown in Table 6). Based on our findings,
this frustration is mostly due to decreased leisure and interaction
with friends and family, authorities’ actions and inactions, and
uncertainty of upcoming situations, which leads to cognitive
dissonance [97], insecurity, and mental discomfort [98]. People
expressed their frustrations using words reflecting anger and
unhappiness or sadness, as shown in the following sample
comments. Research has shown that positive emotions (eg,
happiness) and life satisfaction decreased during the COVID-19
pandemic [99]. Therefore, it is unsurprising that people missed
(and crave for) their prepandemic lives, in retrospection (see
C377).
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I am getting more and more angry with this current
situation we are in. My favourite show has had to
postpone its final episode, after already postponing
series 11... [C7776]

We are literally living in a time when arbitrary shit
is more important than health, wellness and
preservation of life. Entitlement. Ignorance.
Selfishness. An untouchable mentality. Humanity at
its absolute worst. April's going to be a painful month
to live through. [C1228]

I cannot wait until this whole thing is OVER. I miss
doing nails. I miss being in my element and doing the
creative things I enjoy. I have no practice hand; I
have no work; I feel lost. I was just licensed in Jan!
[C377]

Social Issues

Wrong Societal Attitude

Our findings revealed disapproval and concerns about people’s
defiance of precautionary measures or guidelines (eg, social
distancing and travel guidelines) to curb the spread of
COVID-19 (see C7218 and C1444) and some people’s habit of
eating animals assumed to be carriers of viruses (see C4013).
Research has highlighted certain factors responsible for reduced
compliance with public health guidelines, such as poverty,
economic dislocation, lack of compensation, and mistrust of
science [100-102].

The only good thing about Coronavirus is that it will
cull the stupid people from amongst us - those that
do not take it seriously and continue to gather in
public, those that go overseas to attend weddings and
other events when they know the risk... [C7218]

The public response to this crisis in the UK has been
absolutely pathetic. Showing we are an entitled
society who cannot handle being told what to do.
Embarrassing that people cannot follow simple
instruction. [C1444]

Why is that someone who knows how dangerous
eating these animals are and still go right ahead and
eat. Is it that they do not have any sense or is it just
irresponsible stupid people to do this then what are
they crazy or just insane? [C4013]

Domestic Violence

Furthermore, an increase in domestic violence incidents was
reported as a result of the COVID-19–related lockdown, as
shown in the following comments. Evidence already confirms
the link between COVID-19 and the rising cases of domestic
violence worldwide [103-107].

Cases of domestic violence in the USA has
skyrocketed since the CoronaVirus forced couples to
stay home together for 14 days or more. [C9900]

While domestic violence across France increased by
32% in one week, in Paris it rose by as much as 36%.
[C13720]

What worries me more than the coronavirus, is the
safety and welfare of those stuck at home with their

abusers, the children witnessing domestic violence
and the lonely relying on company. Staying home is
not always safer. [C7910]

Harassment

Our findings also uncovered undue harassment of people from
certain cultures, races, or religious background, accusing them
of spreading COVID-19. The following sample comments reveal
public intimidation and racist attacks toward Chinese and Asians
as well as certain Indian tribes. This aligns with evidence of
widespread anti-Chinese and anti-Asian xenophobic or racist
attacks, especially in the United States, both physically and on
social media [108-113].

...This supermarket refuses to sell the food to the
CHINESE! We should stop going to this supermarket!
We strongly against RACISM towards Chinese people
abroad! THIS MUST STOP! [C2008]

Coronavirus has only taught me one thing; some
people are so racist, especially on this platform. The
amount of hate, racist comments and abuse I am
seeing Chinese/Asian people get is painful. [C5000]

Indians got racism in their blood, breath, and beyond.
A Mizo girl faced racism in Pune as a woman kept
covering a face whenever the Mizo girl passed by. A
friend Naga from maternal side in Mumbai, got called
corona virus in the middle of an empty road. [C6660]

Recommended Interventions for Addressing the
Negative Issues
In this section, we suggest interventions that can help address
the negative issues while drawing insights from the positive
themes and relevant research evidence. This answers our RQ3.

As lockdown and physical distancing persists, people with health
concerns should be able to receive medical attention without
visiting a hospital. Considering the proliferation of smartphones
and the current wave of global digitization, digital interventions
using mobile, artificial intelligence (AI), internet of things (IoT),
and virtual reality technologies have been shown to be effective
for delivering remote health care (or telehealth) to patients
[114-119]. This is based on our findings under the innovative
research positive theme (see Table 7), which revealed global
research efforts to create digital interventions using emerging
technologies to address the health crisis caused by COVID-19.
For example, mobile apps that detect mental health issues (eg,
depression and anxiety) based on phone sensors (or wearable
sensors) data and self-reports using machine learning and deep
learning models, and then guide users through therapeutic
procedures or treatments will be useful tools during and after
the pandemic. In addition, these apps should allow users to book
appointments with doctors, clinicians, or therapists and access
remote medical advice, diagnosis, and treatments when
necessary.

In addition, data-driven surveillance systems based on AI that
predict the location of the next COVID-19 outbreak can enhance
the effectiveness of containment efforts, thereby slowing the
spread of the disease and reducing the case-fatality rate.
Furthermore, the development of curative solutions or treatments
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(see Table 7) can be accelerated by leveraging machine learning
and deep learning algorithms. For example, deep learning
models can be used to predict chemical compounds that can
halt viral replication and to suggest drugs that can be effective
against the virus.

To address fitness issues during lockdown, physical activity
(which is one of the positive themes in our results) programs
or sessions with personalized feedback delivered through mobile
apps would be helpful. Research has shown that
smartphone-based health programs yield significant weight loss
and increase physical activity [120]. There is also an urgent
need to strengthen the global health care systems to cope with
current and future pandemics through public and private
investments in the health sector on an ongoing basis, such as
provision of public health infrastructure that is robust and
adequate for the target population and easily accessible and the
provision of health insurance for everyone irrespective of
financial status.

Public awareness (which emerged as the top positive theme in
our findings) is also crucial for addressing negative issues arising
from COVID-19 by providing timely and accurate information
to people, which can be lifesaving. To reach a wider audience
in an efficient manner and with less cost, public awareness can
be delivered through mobile technologies, such as mobile-driven
and voice-enabled conversational AI agents (or chatbots) with
access to evidence-based and clinically validated resources (eg,
precautionary or safety measures approved by public health
agencies and organizations as well as government-approved
policies or guidelines), can deliver accurate information
regarding COVID-19 to people in their own native language
(and in an interactive fashion) through their smartphones. These
chatbots can also be made to route difficult questions to health
experts for real-time feedback within the same chat session.
This will help to improve people’s understanding of the disease,
including how it differs from other infectious diseases, and how
to protect themselves and their families from getting infected
with COVID-19. In addition, people will be empowered with
information required to effectively respond to fear mongering,
domestic violence, and harassment. Evidence already shows
the deployment of multilingual chatbots for public health
awareness on COVID-19 symptoms, diagnosis, and
precautionary measures [121]. Furthermore, chatbots can also
respond to emergencies by contacting appropriate security
agencies and emergency response teams on behalf of the users.
Moreover, chatbots can deliver evidence-based therapeutic
interventions to people while coordinating with specialists
behind the scenes where necessary.

For people with nonsmartphone devices, public health agencies
can partner with telecommunication companies to deliver
COVID-19–related information directly to their phones as text
messages at regular intervals. Social media is another platform
through which evidence-based information can be shared with
the public but may be overshadowed by fake news or false
information, which is mostly shared on social media [122].
Nevertheless, official COVID-19–related channels managed by
(or in conjunction with) reputable international health
organizations (eg, World Health Organization) or local health
authorities within the social media platforms, many of which

have already been deployed, provide accurate information or
updates about COVID-19 cases, fatality rates, and safety
measures and guidelines [123,124]. In addition, people receive
location-based updates on these channels, including emergency
alerts, in a timely and effective manner.

Finally, based on our findings (see Table 7), connection with
family and friends, encouragement, spiritual support, and
charity can help to ease people’s frustrations, anxiety, and
trauma (due to life disruptions caused by the pandemic) by
addressing their emotional, physical, and spiritual needs.
Evidence shows that psychological first aid and spiritual care
can promote a sense of safety, calmness, self- and
collective–efficacy, connectedness, and hope, as well as help
people confront and overcome fear [125]. Therefore, people
should endeavor to frequently communicate and follow up with
loved ones (through direct voice or video calls or by using social
media), encourage others in distress to stay calm and remain
positive, identify people’s immediate needs and offer necessary
assistance, help people find hope and meaning, and ensure the
safety and comfort of vulnerable populations.

Mobile technology can play a key role in facilitating easy access
to relief packages. For instance, mobile apps can be deployed
with geolocation and multilingual features to help people locate
the nearest food bank and charity organizations offering
assistance in their geographical area. In addition, charity
organizations can effectively mobilize and deliver relief items
to more people, including individuals that are indisposed, based
on data collected through these apps. In addition, older adults,
the sick, and those in self-isolation can indicate their condition
while requesting for relief so that their items can be delivered
to their doorstep instead of picking it up. These apps can further
integrate with other local and international charity organizations
to widen the coverage of relief efforts. Recruitment of volunteers
can also take place through these apps. The use data collected
can be further analyzed in real time and used to predict the
communities that are in dire need of assistance using machine
learning or deep learning techniques.

Limitations
In this study, we analyzed data from Twitter, Facebook,
YouTube, and three discussion forums. However, people may
have used other social media platforms such as Instagram and
other discussion forums not covered in this study to disseminate
information related to the COVID-19 pandemic. Therefore, our
findings may not fully reflect the entire public’s opinion on
social media with respect to the pandemic. Nevertheless, to
have a reasonably broad understanding of public opinions, we
analyzed over 1 million social media comments compared to
only a few thousand commonly analyzed in many related
studies. In addition, the thematic analysis used for theme
categorization may be more robust; however, the large number
of key phrases rendered this process time-consuming despite
filtering out many irrelevant key phrases during experimentation.
Accordingly, the saturation level and subsequent review and
confirmation of the theme categories from a second reviewer
and coder were introduced as an acceptable compromise.
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Conclusions
In this paper, we explored the impact of the COVID-19
pandemic on people worldwide using social media data. We
analyzed over 1 million comments obtained from six social
media platforms using a seven-stage NLP approach to extract
candidate key phrases, which we further categorized into broad
themes using thematic analysis. Our results revealed 34 negative
themes, out of which 15 were health-related issues, psychosocial
issues, and social issues related to the COVID-19 pandemic
from the public perspective. The top health-related issues were
increased mortality, comparison with other diseases or
incidents, nature of disease, and health concerns, while the top
psychosocial issues were frustrations due to life disruptions,
panic shopping, and expression of fear. The top social issues
were harassment and domestic violence. Besides the negative
themes, 20 positive themes emerged from our results. Some of
the positive themes were public awareness, encouragement,
gratitude, cleaner environment, online learning, charity,
spiritual support, and innovative research. We reflected on our
findings and recommend interventions that can help address the
health, psychosocial, and social issues based on the positive
themes and other research evidence.

Digital interventions using emerging technologies such as
mobile apps, AI, IoT, and virtual reality will play a major role
in delivering remote health care (ie, telemedicine or telehealth)
to people in the comfort of their homes, including empowering
them to self-manage their health and wellness. This will help
to curb the spread of COVID-19 and future infectious diseases
since many people will stay away from hospitals (or clinics) to
book appointments or see doctors (or other health care
professionals) unless it is absolutely necessary to visit, thereby
keeping health workers and patients safe. These technologies
are also useful in providing timely and accurate information
about COVID-19 symptoms, diagnosis, treatment, precautionary
and safety measures and guidelines, and other relevant
information to target audience worldwide. Finally, digital
interventions and other interventions discussed in this paper
can help address the emotional, physical, and spiritual needs of
people who are traumatized or frustrated by the disruptions
caused by the pandemic. They also inform governments, health
professionals and agencies, and institutions on how to react to
the current COVID-19 pandemic and future pandemics.
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Abstract

Background: Shortage of human resources, increasing educational costs, and the need to keep social distances in response to
the COVID-19 worldwide outbreak have prompted the necessity of clinical training methods designed for distance learning.
Virtual patient simulators (VPSs) may partially meet these needs. Natural language processing (NLP) and intelligent tutoring
systems (ITSs) may further enhance the educational impact of these simulators.

Objective: The goal of this study was to develop a VPS for clinical diagnostic reasoning that integrates interaction in natural
language and an ITS. We also aimed to provide preliminary results of a short-term learning test administered on undergraduate
students after use of the simulator.

Methods: We trained a Siamese long short-term memory network for anamnesis and NLP algorithms combined with Systematized
Nomenclature of Medicine (SNOMED) ontology for diagnostic hypothesis generation. The ITS was structured on the concepts
of knowledge, assessment, and learner models. To assess short-term learning changes, 15 undergraduate medical students underwent
two identical tests, composed of multiple-choice questions, before and after performing a simulation by the virtual simulator.
The test was made up of 22 questions; 11 of these were core questions that were specifically designed to evaluate clinical knowledge
related to the simulated case.

Results: We developed a VPS called Hepius that allows students to gather clinical information from the patient’s medical
history, physical exam, and investigations and allows them to formulate a differential diagnosis by using natural language. Hepius
is also an ITS that provides real-time step-by-step feedback to the student and suggests specific topics the student has to review
to fill in potential knowledge gaps. Results from the short-term learning test showed an increase in both mean test score (P<.001)
and mean score for core questions (P<.001) when comparing presimulation and postsimulation performance.

Conclusions: By combining ITS and NLP technologies, Hepius may provide medical undergraduate students with a learning
tool for training them in diagnostic reasoning. This may be particularly useful in a setting where students have restricted access
to clinical wards, as is happening during the COVID-19 pandemic in many countries worldwide.

(JMIR Med Inform 2021;9(4):e24073)   doi:10.2196/24073
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Introduction

Learning clinical diagnostic reasoning is a critical challenge for
medical students, as fallacies in diagnostic reasoning may lead
to patient mistreatment with negative consequences on patient
health and health care costs [1]. Adequate training and coaching
are pivotal aspects for the proper development of diagnostic
skills. In medical schools, clinical coaching is currently
performed under the direct supervision of senior doctors, mostly
in the wards [2].

Constraints in human resources and increases in educational
costs prompted the development of sustainable systems for
optimizing medical student tutoring [3]. In addition, the strict
need to keep social distances due to the recent COVID-19
worldwide outbreak has resulted in the temporary closure of
universities in many countries and denied medical students from
accessing clinical wards [4,5]. From an educational standpoint,
this promotes the need for clinical training methods that do not
require bedside didactic activities and that do not necessarily
entail continuous direct supervision by experienced doctors
[6,7]. Examples of these methods are simulators, which were
developed not only to support learning of specific medical
procedures, such as laparoscopy [8], but also to train students
in clinical diagnostic reasoning as with virtual patient simulators
(VPSs) [9]. A VPS is a computer program that simulates real-life
clinical scenarios, enabling students to emulate the role of a
doctor by obtaining a medical history, performing a physical
exam, and making diagnostic and therapeutic decisions [10].
These computer-based simulators may complement traditional
training techniques without requiring direct ward attendance
[11].

Previous studies based on intelligent tutoring systems (ITSs)
[12] have shown the effectiveness of programs [13] specifically
developed to teach and practice knowledge in several areas,
including mathematics and physics [14]. ITS technologies can
be adapted to students’ specific learning needs, thus potentially
increasing the simulator’s teaching effectiveness [15-17].
Natural language processing (NLP) may complement and
support medical education techniques [18], particularly where
the diagnostic reasoning aspect is concerned [15,19-22].
Notably, the combined use of NLP and ITS technologies in the
simulation of virtual patients might promote students’ learning
by making the student-software interaction more similar to a
real-life scenario, while simultaneously giving the student
appropriate feedback after every simulated medical activity.

The primary aim of this study was to develop a VPS that
combines interactions in natural language and ITS components,
in order to set up a tool that would enable students to improve
their clinical diagnostic reasoning skills. A secondary aim was
to preliminarily assess the short-term potential changes in
medical knowledge of a group of undergraduate students after
the use of the VPS.

This article is structured with the Methods section describing
the architecture and main development features of the program
and with the Results section describing both the program’s flow
of use and the preliminary findings of a test performed on a
population of undergraduate medical students.

Methods

The program we developed is named Hepius, after the Greek
god of medicine, and it is structured to perform as both a VPS
and an ITS.

Program Architecture
The Hepius program architecture is outlined in Figure 1. Hepius
has been designed and developed for four main categories of
users: students, teachers, administrators, and medical content
managers. The program is accessible through two main user
interfaces: (1) a mobile app, developed using the Ionic Angular
framework [23], that can be used to execute simulations and
(2) a web application, developed using the PrimeFaces
framework [24], that can be used to create and modify
simulations or administer the system. Both user interface
programs consume back-end services using representational
state transfer application programming interfaces [25].

The Hepius back end has been developed according to the
principles of microservices architecture [26] and it runs on the
Cloud Foundry platform as a service (IBM Corp) [27]. The
back-end components have been developed using three different
programming languages: Java 8 (Oracle Corporation) as the
main programming language, Python 3.7 (Python Software
Foundation) for NLP services, and R 4.0 (The R Foundation)
for the learner model.

The back end consumes an UpToDate service that is used to
provide students with feedback. The Cloud Object Storage (IBM
Corp) service is used as storage for multimedia files, whereas
the PostgreSQL (Structured Query Language) (Compose)
service is used as the main database. Both are provided in
software-as-a-service mode by IBM Cloud.
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Figure 1. Overview of the Hepius program architecture. NLP: natural language processing; SNOMED: Systematized Nomenclature of Medicine; SQL:
Structured Query Language.

Natural Language Processing Algorithms
Interaction in natural language between the student and the
program was developed for anamnesis, physical exams, medical
test requests, and diagnostic hypothesis generation. Here we
present, in detail, the diagnostic hypothesis generation and
anamnesis modules.

Diagnostic Hypothesis Generation
When creating the simulation, the author decides which
diagnostic hypotheses may be reasonable for the clinical case
(ie, reference hypotheses). When the student formulates a
diagnostic hypothesis in free text, Hepius assesses its correctness
by calculating the Systematized Nomenclature of Medicine
(SNOMED) graph path distance (ie, the minimum number of
edges in any path connecting the two nodes) between the
student’s diagnostic hypothesis and all the reference hypotheses.
If any of the reference hypotheses have zero distance from the
student’s hypothesis, then the student’s hypothesis is marked
as correct and is inserted into the differential diagnosis. Should
the distance be greater than 5, the hypothesis is considered
incorrect. Whenever the distance is between 1 and 4, the
hypothesis is considered to be close to the correct one and the
student is provided with feedback that points toward the closest
reference hypothesis.

To find the best match between the input text string and the
concepts in SNOMED ontology, we used Jaccard similarity

[28] between token lists obtained from texts associated with
concepts, including synonyms, after removal of stop words.

The entire diagnostic hypothesis module is implemented using
only open-source code. The programming language is Python
3.7; the main libraries are Medical Terminologies for Python
(PyMedTermino) [29], for interaction with the SNOMED CT
(Clinical Terms) database, and Natural Language Toolkit
(NLTK) 3.5 [30], for basic NLP operations (eg, tokenization).

Anamnesis
When the student formulates an anamnestic question, it is
matched to the most semantically similar one present in the list
of reference questions created by the teacher. The estimation
of the semantic similarity of two sentences cannot simply be
reduced to the semantic similarity of tokens inside the sentence
(eg, using an ontology) because the meaning of a sentence
depends on its extremely variable syntactic structure.

This question matching problem [31] has been addressed by
developing an ad hoc pipeline of NLP algorithms (see Figure
2). The pipeline is based on a Siamese long short-term memory
(SLSTM) network [32], trained on 7000 pairs of semantically
equivalent and inequivalent anamnestic questions, that provides
a probabilistic estimate of the semantic equivalence. This
estimate is then used to rank all the reference anamnestic
questions, thereby enabling the identification of the most similar
one.
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Figure 2. Pipeline of the history-taking natural language processing algorithms. Light grey cylinders identify data sources and dark grey boxes identify
algorithms. LSTM: long short-term memory; SNOMED: Systematized Nomenclature of Medicine.

The SLSTM network requires a word embedding function [33]
that converts words into tuples of real numbers (ie, vector
representation) in such a way that semantically close words are
transformed into vectors that are close according to a vector
space metric [34]. Among the available unsupervised algorithms
that learn word embedding, we decided to test Word2vec
[35,36], Doc2vec [37], and fastText [38]. For all models, we
generated our own embedding in an unsupervised way by means
of the gensim library [39] using a corpus of medical textbooks
and compared the overall pipeline performance with pretrained
word embedding.

Using the medical textbooks corpus, the fastText word
embedding that was generated proved to be superior in our
setting compared to the other models, but it was still unable to
correctly embed relevant pairs of medical synonyms. This
problem has been addressed by the use of Dict2vec [40],
introducing a form of weak supervision.

Long short-term memory (LSTM) networks [41] are neural
networks that, like recurrent neural networks [41], can handle
input sequences of arbitrary length by reusing at each
computation step the same set of parameters, thereby reducing
model complexity. LSTM networks are commonly used to tame
the intrinsic instability of recurrent neural networks due to
exploding and vanishing gradients [41]. Unlike more recent
models, such as the Transformer [42], they are not designed for
parallel computation being based on sequential inputs. In our
context, we have two different inputs (ie, questions) that need
to be compared; as a consequence, we need two LSTM networks
that elaborate the inputs in parallel. For this purpose, we used
SLSTM networks, whose key characteristic is that the two
LSTM networks have exactly the same weights. The outputs
of the networks are then compared using Manhattan distance
[32].

The question ranker uses the trained SLSTM network model
to compare the student input question with all the reference
questions present in the simulation and ranks them according
to the model output probability. A fixed probability threshold
is used to decide whether the program should return a single
question, multiple questions, or no questions. Returning multiple
reference questions is undesirable because the program would
be helping students in identifying reference questions that the
student has not yet conceived, in contradiction with the
didactical objective of having the student figure out the correct
questions. On the other hand, returning matched questions only
when the probability is very high could frustrate the students
who would not receive correct semantic matches due to the fact
that the algorithm has assigned low scores to these matches.
The didactical decision we took was to fix a threshold and return
all questions whose probability exceeds that threshold up to a
maximum of three questions.

The anamnestic questions module is entirely written using
open-source libraries to foster reproducibility. The programming
language used to develop the module is Python 3.7. To generate
the word embeddings, we used Dict2vec, for the reasons
previously explained, by using the C code made available by
the Dict2vect creators [43]. SLSTM networks were implemented
using TensorFlow [44] and Keras [45]. The rationale
underpinning the use of the SLSTM network is provided above;
in addition, see Mueller and Thyagarajan [32] and Chen et al
[46] for further details. An example of implementation strategy
was found in Park [47]. The scikit-learn library [48] was used
for basic data manipulations (eg, stratified train-test split). For
basic NLP tasks (eg, tokenization and stemming), we used
NLTK [29].

To test the above algorithms, we have developed six test sets,
built out of six different simulations, with a total number of 547
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questions, and measured the overall question matching accuracy.
We obtained an accuracy greater than 70% for rank 1 matches
and greater than 80% for rank 3 matches, as summarized in
Table S1 of Multimedia Appendix 1.

Intelligent Tutoring System Development
ITSs are based on the concepts of an inner loop (ie, step-by-step
feedback and hints during the execution of the learning unit)
and an outer loop (ie, indications of what is the optimal next
learning step) [49]. Out of the five key models of an ITS, in
Hepius we implemented the following three: (1) the domain
model, a decomposition of the knowledge corpus into concepts
to be taught; (2) the assessment model, the definition of tests
aimed at assessing the level of the student’s understanding; and
(3) the learner model, a mathematical model to predict learners’
results when compared with assessments.

In Hepius, the domain model knowledge units are the diagnostic
hypotheses (ie, diseases) and the diagnostic factors (ie, signs,
symptoms, physical findings, and medical tests).

The Hepius assessment model works by comparing every
student’s action with the reference list containing all the possible
correct actions written by the creator of the clinical case.

The Hepius learner model is a Bayesian Knowledge Tracing
algorithm [50,51] that takes as an input the student performance
in the execution of the binary analysis, for any diagnostic
hypothesis, across multiple simulations. Bayesian Knowledge
Tracing is based on a hidden Markov model (HMM) that
provides an estimate of the probability that a student has a
skill—in our context, the clinical understanding of a disease or
diagnostic hypothesis—given his or her learning history—in
our context, the results obtained during the analysis of the
disease in previous simulations. To implement the algorithm,
we used R packages HMM [52] and seqHMM [53].

Short-term Learning Test Protocol
A total of 15 medical students attending their fifth year at the
Humanitas University Medical School in Italy participated in
the test. Students were already acquainted with Hepius, as they
had received specific introductory lectures and used them to
perform simulated clinical cases in the preceding weeks.

The 2-hour-long test was conducted in the Humanitas University
computer room, where students used individual desktop
computers. On the day of the test, all students began by taking
a uniform presimulation written test, made up of 22
multiple-choice questions (see Multimedia Appendix 2), to
assess their baseline knowledge on chest pain and shortness of
breath. The test topics had been previously covered during the
semester. Each question was worth 1 point. Among the 22
questions, there were 11 core questions, presented in random
order, which had been specifically designed to evaluate the
knowledge that could be acquired directly by performing the
simulation with Hepius. Thereafter, the students had 60 minutes
to perform the simulation using the program. Notably, the chief
complaints presented in the simulated clinical case were chest
pain and dyspnea, with pulmonary embolism (PE) being the
correct final diagnosis. Postsimulation, the students retook a
multiple-choice question test, identical to the presimulation test,

which was used to measure the changes in the number of right
answers. Results were used as a proxy for the students’
short-term knowledge acquisition. During the entire test period,
students were not permitted to talk amongst themselves, consult
written material, or use cell phones or similar devices. As shown
in Multimedia Appendix 2, examples of core questions are
questions 3 and 4. Given that the Hepius clinical case dealt with
PE, question 3 was asking about the most common physical
sign associated with PE (ie, tachycardia), whereas question 4
addressed the diagnostic relevance of low D-dimer plasma levels
in excluding PE diagnosis, being that such a blood test was
characterized by high negative predictive values. Both are
crucial aspects of PE diagnosis and were addressed during the
Hepius clinical case by expecting the student to look for these
diagnostic factors when performing physical examinations and
requesting medical tests, and to identify the correct relationship
between these and the PE diagnostic hypothesis during the
binary analysis. The remaining noncore questions dealt with
issues presented and discussed during the semester’s classes,
as it was for PE, but not explicitly dealt with in the simulated
clinical case. The aim of the noncore questions was to assess
students’ overall knowledge about the topics learned during
half of the academic year; the aim was also to discriminate
whether possible variations between pre- and postsimulation
test scores were only related to knowledge that could be acquired
through the simulated clinical case or, on the contrary, whether
they were the result of a more generalized effect (eg,
repeated-testing effect) [54,55].

Data are expressed as mean (SD). The Student t test for paired
observations was used to evaluate, in each individual, the
changes in the achieved scores before and after the simulation.
Differences were considered significant at values of P<.05.
Prism, version 8 (GraphPad Software), was used for statistical
analyses.

Results

Overview
Hepius permits the creation of simulated clinical cases by human
tutors and their execution by students. The creator of a simulated
clinical case (ie, the tutor in charge) is responsible for creating
a reference list containing all the clinically relevant information
in the form of diagnostic factors (eg, body temperature = 39
°C), reasonable diagnostic hypotheses (eg, pneumonia and PE),
the conceptual relationship between diagnostic factors and
diagnostic hypotheses, and the correct final diagnosis. Further
details on the creation of a simulation are provided in
Multimedia Appendix 3.

Simulation of Clinical Cases With Interaction in
Natural Language
The simulation of a clinical case with Hepius requires students
to perform multiple actions that can be classified as either data
gathering activities or data analysis activities (see Figure 3).
Data gathering activities consist of obtaining diagnostic factors
from the virtual patient through (1) examination of the patient’s
health records (ie, the input scenario), (2) anamnesis, (3) a
physical exam, and (4) medical test requests. Data analysis
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activities include (1) generating diagnostic hypotheses, (2)
establishing causal links between diagnostic factors and
diagnostic hypotheses (ie, binary analysis), and (3) estimating
the magnitude of these links (ie, pattern analysis). Importantly,

Hepius lets the student freely move back and forth within all
sections of the simulation, allowing for clinical case
reassessment.

Figure 3. Hepius' flow of use. The flowchart summarizes Hepius' structure and the diagnostic pathway that the student must follow to achieve the final
diagnosis. Data gathering deals with the collection of anamnestic, physical, and instrumental data suitable for formulating likely diagnostic hypotheses.
Data analysis refers to the differential diagnosis process. During data analysis, the student is asked to generate a diagnostic hypothesis by reasoning on
the relationship between the gathered information and the single hypothesized diagnosis. This process is obtained by the binary analysis and the pattern
analysis. This should train the learner to avoid ordering unnecessary tests. Selection of the final diagnosis ends the simulation.

In data gathering activities, the student has to collect all
diagnostic factors that are potentially relevant for the final
diagnosis. This is obtained by student-software interaction in
natural language rather than by selecting a question or action
from a predetermined list. The NLP algorithm then matches the
student’s anamnestic question with the most semantically similar
reference question and provides its related answer. Natural
language interaction is also available when a student performs
the physical exam and asks for medical tests.

In the data analysis phase, the student works with the collected
diagnostic factors to reach a final diagnosis. First, the student
creates a differential diagnosis by writing her or his diagnostic

hypotheses in natural language. Then, the NLP algorithm
matches the student’s diagnostic hypothesis to the semantically
closest disease present in the SNOMED ontology. If the matched
disease is present in the reference list, then the diagnostic
hypothesis is considered correct and is included as part of the
student’s differential diagnosis. Once the student deems the
differential diagnosis to be complete, the binary analysis can
be performed (see Table 1). A table is automatically generated,
listing the diagnostic factors (rows) and the diagnostic
hypotheses (columns) identified thus far, in which the student
is expected to outline whether each diagnostic factor increases,
decreases, or does not affect the probability that the considered
diagnostic hypothesis is the correct one.

Table 1. Example of the binary analysis process.

Diagnostic hypothesisaDiagnostic factor valueDiagnostic factora name

PneumoniaPharyngitis

II38.5 °CBody temperature

NDNo pharyngeal erythemaPharynx inspection

INLobar consolidationChest x-ray

aThe diagnostic factors and the diagnostic hypotheses are automatically added to rows and columns, respectively, for binary analysis. By selecting the
boxes, the student actively chooses whether each diagnostic factor increases (I), decreases (D), or does not affect (N) the probability that the considered
hypothesis will be the final diagnosis.
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In the pattern analysis, the student can visualize and weigh the
relationships among diagnostic factors and diagnostic
hypotheses previously established during the binary analysis;
see Figure 4 for further details. Once the student is satisfied

with the analysis of the information previously gathered, the
simulation can be ended by selecting the diagnostic hypothesis
that is deemed to be correct.

Figure 4. Schematic overview of the pattern analysis process. Should the diagnostic factor increase the probability of the chosen diagnostic hypothesis,
then the positive likelihood of such a relationship is represented by a connecting blue line. If a diagnostic factor is thought to decrease the likelihood of
the diagnostic hypothesis, then the connecting line is depicted in red. When the diagnostic factor does not affect the diagnostic hypothesis, no connecting
line is drawn. In addition, the student is asked to weigh the relevance of the diagnostic factors in relation to the hypothesized diagnoses. This is
automatically translated into a graphic representation with an increase (positive) or decrease (negative) of the thickness of the connecting lines. In the
example in the image, the presence of lobar consolidations on the chest x-ray was highly suggestive of pneumonia (positive high). Therefore, the
thickness of the connecting line becomes wider. The circumference of the diagnostic hypothesis node was related to the probability that the chosen
diagnosis was correct. As the probability of diagnosis increased, the portion of the highlighted circumference increased as well.

Intelligent Tutoring System
The ITS tracks all the student actions and provides real-time
step-by-step feedback over the simulation’s entire execution.
For instance, if the student asks for a medical test that is absent
in that clinical case reference list, he or she receives feedback
stating that an inappropriate exam was asked for. As another
example, should the diagnostic hypothesis made by the student
(eg, pneumonia) be too general compared to the one in the
reference list (eg, interstitial pneumonia), then feedback is given
stating that the student should be more specific in generating
the hypothesis. An exhaustive list of possible feedback is
provided in Multimedia Appendix 4.

Furthermore, at the end of the simulation, the ITS provides
feedback summarizing the diagnostic hypotheses in which the

student has made more mistakes when addressing the binary
analysis. In addition, links to the UpToDate topics related to
these diagnostic hypotheses are given [56].

Moreover, the ITS logs all student actions, enabling post hoc
learner analytics. In a related article currently under peer review
[57], the possible applications of learner analytics are described
in detail.

Short-term Learning Test Results
A significant improvement was found in the mean
postsimulation overall test score compared to the presimulation
overall test score (mean 17.8, SD 1.48, vs mean 14.6, SD 3.15,
respectively; P<.001) (see Figure 5). Students’ individual
performances are shown in the right-hand graph of Figure 5.
Only one subject’s performance worsened after the simulation.
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Figure 5. Overall pre- and postsimulation performance. Notice the significant improvement of the overall test score average after the use of Hepius
(left-hand graph). Students’ individual performances are shown in the right-hand graph.

There was a significant improvement in mean score for core
questions from pre- to postsimulation (mean 7.46, SD 1.84, vs
mean 9.53, SD 0.74, respectively; P<.001) (see Figure 6).
Notably, out of the 15 students, 13 (87%) improved their core

question scores from pre- to postsimulation. One student had
no change and one obtained a lower score (see Figure 6,
right-hand graph).

Figure 6. Pre- and postsimulation performance of core questions. The dashed horizontal line indicates the maximal reachable score. Scores are based
on 15 students. A significant improvement in the mean score of core questions was observed from pre- to postsimulation tests (left-hand graph). Individual
performances are displayed in the right-hand graph.

Discussion

In this paper, Hepius’ most important features and the
preliminary results obtained by its use in a medical
undergraduate class are presented. Interaction in natural
language and intelligent tutoring are the most important features
of the program and are hereafter discussed.

Virtual Patient Simulators and Natural Language
Processing
VPS may play an important role in medical education,
particularly in training users in clinical diagnostic reasoning
[58]. In the vast majority of VPSs, the interaction between the
user and the simulated patient occurs by means of menus and
the selection of predefined items [19,59]. The simulator recently
developed by the New England Journal of Medicine Group [60]
is such an example. It is aimed at training experienced doctors
in facing COVID-19 cases that evolve over time according to

the user’s diagnostic and therapeutic interventions, which are
selected from a predefined list of possibilities. Conversely,
Hepius, which is specifically designed for undergraduate
medical students, allows interaction through free text in the
English language. We assumed that this type of automated
interaction might better mirror real-life doctor-patient
communication, thus increasing clinical simulation accuracy as
previously suggested [22]. Furthermore, the absence of
drop-down menus to select the most appropriate action
highlights an important educational issue: students have to
actively think about questions without getting hints by choosing
prepackaged options. The same reasoning could be applied to
diagnostic hypothesis generation.

Notably, a potential limitation of NLP techniques may be related
to the low accuracy in interpreting questions. This can distract
students from the focus of the task, as suggested in 2009 by
Cook et al [10]. Nowadays, performance of the newest NLP
algorithms has reached an accuracy as high as 95%, thus limiting
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the risk of users’ frustration for not having their questions
understood by the simulator [22].

Intelligent Tutoring System
ITSs are programs aimed at providing immediate and
customized instruction or feedback to learners, without
interference from a human teacher [61]. These programs have
been proven to be effective as teaching tools within different
educational fields [12,13]. However, there are few studies about
their use in the medical context. One of these is ReportTutor
[62], which is an ITS aimed at helping pathology trainees to
write correct biopsy reports in English natural language. Its
tutoring activity stems from its capability to identify inaccuracies
or missing features within the report and to give appropriate
feedback to the trainees. Interestingly, ReportTutor shares NLP
techniques with Hepius; however, those of ReportTutor are not
devoted to mimicking the doctor-patient interaction.

Hepius integrates the key ITS concepts of inner loop (ie,
step-by-step feedback and hints during the execution of the
learning unit) and outer loop (ie, indications of what is the
optimal next learning step) [49]. Inner loop feedback is given
whenever a student performs an action. For example, if during
the binary analysis the student wrongly states that the diagnostic
factor fever decreases the likelihood of the patient having the
diagnostic hypothesis pneumonia, then Hepius provides
feedback indicating the correct relationship between these two
factors. This type of feedback is important not only because it
directly fosters learning but also because it allows students to
complete their simulation, guiding them throughout the case.
Outer loop feedback is instead given at the end of a simulation,
according to the overall performance of the student. For
example, if a user consistently makes mistakes in matching
diagnostic factors to the diagnostic hypothesis pneumonia, the
ITS recommends that the student review that specific topic by
providing her or him with a link to the related UpToDate section.
This type of automated feedback directly addresses weaknesses
in the student’s knowledge and provides him or her with
suggestions on how to correct their mistakes.

Hepius as a Possible Didactical Tool for Clinical
Diagnostic Reasoning
Hepius has been developed as a VPS with the aim of providing
an automated training tool for clinical diagnostic reasoning.
Clinical reasoning combines intuitive thinking (ie, heuristic
thinking) and analytical thinking. Experienced doctors tend to
apply heuristic thinking to an ordinary clinical case and revert
to analytical thinking when the case is rare or complex. On the
other hand, less experienced physicians mainly rely on analytical
thinking [63].

Hepius has been developed to target undergraduate medical
students in order to train them in analytical thinking. This mental
process is applied, for instance, during the binary analysis, where
the student is asked to disclose the causal relationship between
each single diagnostic factor and diagnostic hypothesis. In
addition, through the pattern analysis, Hepius provides the
student with the possibility of visually addressing the
relationships between diseases and clinical findings, in a process
similar to conceptual maps [64]. Overall, these analytical

exercises are expected to help students enhance their diagnostic
skills and medical knowledge, although no robust evidence is
presently available, except for our preliminary findings. These
shall be briefly discussed below.

The capability of Hepius to enhance medical knowledge in the
short term was preliminarily evaluated among 15 students
attending their fifth year at the Humanitas University Medical
School. They completed an identical test, composed of
multiple-choice questions, before and after the clinical case
simulation by Hepius. We hypothesized that, in such a way, the
test would provide proper insight into the potential changes in
students’ knowledge on the specific issue dealt with during the
simulation (ie, PE). In keeping with previous reports
highlighting the educational capabilities of VPSs [10,14], in
this study, Hepius use resulted in an increase in the performance
scores of almost all the students. This was the case for the
students who had good baseline performance as well as for those
whose initial performance was poor. Taken together, these
findings suggest that, in the short term, Hepius might act as a
didactical tool.

However, in spite of its promising features, it is important to
stress that Hepius cannot fully replace a skilled human tutor
working one on one with a learner [65]. Instead, in keeping with
a blended approach, it is intended to be used as a classroom
assistant as well as a tool for distance learning. Indeed, as with
any VPS, Hepius allows for proper social distancing; therefore,
it is potentially useful in overcoming the didactical problem
regarding the temporary inability to attend clinical facilities in
the setting of the COVID-19 outbreak.

Limitations
As with any automated didactical tool, students’ performance
using Hepius is characterized by a learning curve, and its
optimized use requires initial tutoring. This is presently provided
via a video tutorial and should be refined by teachers through
ad hoc online lectures, in accordance with the concept of
orchestration of intelligent learning environments [15,66].

Accuracy of the diagnostic hypothesis generation module has
not been estimated due to the lack of a comprehensive test set.
Also, we have not attempted to use language modeling or
semantic similarity algorithms based on a deep learning
algorithm approach. Both activities are objectives for future
work. Finally, the short-term learning test has been carried out
among a small number of students and using a limited pool of
questions. Thus, our findings should be regarded as preliminary
results that must be confirmed in future studies and further
validated on larger cohorts.

Conclusions
Shortage of human resources, increasing educational costs, and
the need to keep social distances in response to the COVID-19
worldwide outbreak have prompted the necessity of automated
clinical training methods designed for distance learning. We
have developed a VPS named Hepius that, by natural language
interaction and an ITS component, might help students to
improve their clinical diagnostic reasoning skills without
necessarily requiring the presence of human tutors or the need
for the student to be at the bedside of a real patient.
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Implementation of additional features, such as therapy and
patient management modules, can be pursued to make Hepius
suitable for application in postgraduate residency programs and
continuing medical education.

As a preliminary assessment of its educational impact, we found
that the use of Hepius may enhance students’ short-term
knowledge. Ad hoc studies using larger populations are needed
to confirm this result and to investigate Hepius’actual long-term
didactical capability.
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Abstract

Background: In the United States, about 3 million people have autism spectrum disorder (ASD), and around 1 out of 59 children
are diagnosed with ASD. People with ASD have characteristic social communication deficits and repetitive behaviors. The causes
of this disorder remain unknown; however, in up to 25% of cases, a genetic cause can be identified. Detecting ASD as early as
possible is desirable because early detection of ASD enables timely interventions in children with ASD. Identification of ASD
based on objective pathogenic mutation screening is the major first step toward early intervention and effective treatment of
affected children.

Objective: Recent investigation interrogated genomics data for detecting and treating autism disorders, in addition to the
conventional clinical interview as a diagnostic test. Since deep neural networks perform better than shallow machine learning
models on complex and high-dimensional data, in this study, we sought to apply deep learning to genetic data obtained across
thousands of simplex families at risk for ASD to identify contributory mutations and to create an advanced diagnostic classifier
for autism screening.

Methods: After preprocessing the genomics data from the Simons Simplex Collection, we extracted top ranking common
variants that may be protective or pathogenic for autism based on a chi-square test. A convolutional neural network–based
diagnostic classifier was then designed using the identified significant common variants to predict autism. The performance was
then compared with shallow machine learning–based classifiers and randomly selected common variants.

Results: The selected contributory common variants were significantly enriched in chromosome X while chromosome Y was
also discriminatory in determining the identification of autistic individuals from nonautistic individuals. The ARSD, MAGEB16,
and MXRA5 genes had the largest effect in the contributory variants. Thus, screening algorithms were adapted to include these
common variants. The deep learning model yielded an area under the receiver operating characteristic curve of 0.955 and an
accuracy of 88% for identifying autistic individuals from nonautistic individuals. Our classifier demonstrated a considerable
improvement of ~13% in terms of classification accuracy compared to standard autism screening tools.

Conclusions: Common variants are informative for autism identification. Our findings also suggest that the deep learning
process is a reliable method for distinguishing the diseased group from the control group based on the common variants of autism.

(JMIR Med Inform 2021;9(4):e24754)   doi:10.2196/24754
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Introduction

Autism spectrum disorder (ASD) is a common
neurodevelopmental disorder that begins early in childhood and
lasts throughout a person's life. In the United States, around 1
out of 59 children have been diagnosed with ASD. People with
ASD have characteristic social communication deficits and
repetitive behaviors. Early detection of ASD enables timely
interventions for children with ASD. Such interventions could
provide the best opportunity to improve outcomes as opposed
to treatments started after diagnosis. The epigenetic landscape
has revealed that ASD may result from a complex regulatory
network, including epigenetic, genetic, and environmental
factors [1]. Although the causes of ASD remain unknown, recent
studies have found that ASDs are 80% reliant on the inherited
genes [1-3]. Twin studies of ASD show heritability as a highly
responsible factor causing the disorder [4,5]. Therefore,
identifying genomic mutations for autism based upon genotype
information for early diagnosis of autism is significantly
important. The genetic landscape of ASD is heterogeneous and
consists of various types of genetic abnormalities involving
almost all genes (eg, SHANK3, SHANK2, CHD8, SEMA5A,
DOCK4) with different levels of penetrance [6-8]. Thus, autism
studies have been conducted with different types of genetic
variants [9-14], including de novo or inherited copy number
variants, multiple hits, rare variants, common variants, and
genetic pathways associated with ASD.

Rare variants, both inherited and de novo, are causal in
10%-30% of people with ASDs [15-17]. Although
risk-associated genes of autism have been identified from rare
variations, recent studies have shown that most genetic risks
for ASD reside with common variations [18]. A
Population-Based Autism Genetics and Environment Study on
a Swedish epidemiological sample shows synthesis of results
regarding the genetic architecture of ASD and concludes that
inherited rare variations constitute a smaller fraction of the total
heritability than common variations [18]. Several genome-wide
association studies have also examined that 15%-40% of the
genetic risk associated with ASD diagnosis is tagged by common
variants [19-21]. Therefore, common variants may be
informative with respect to the identification of ASD. Numerous
studies have since used genetic information to predict the
diagnosis of ASD. A single nucleotide polymorphism–based
test has been demonstrated to allow for early identification of
ASD [22]. In this study, they applied machine learning to
identify single nucleotide polymorphisms to generate a
predictive classifier for ASD diagnosis and have proved and
concluded that the predictive classifier can be a tool to estimate
the probability of at-risk status for ASD. To enable earlier and
more accurate diagnoses of ASD, a statistical model has been
developed for autism to analyze measurements of metabolite
concentrations and it indicated that the metabolites under
consideration are highly associated with an autism diagnosis
[23]. A gene expression–based study has demonstrated that the
accuracy of distinguishing ASD subgroups from nonautistic

controls by using a support vector machine can be up to 94%
[24]. Combining a brain-specific gene network with a
complementary machine learning approach has also been
conducted to present a genome-wide prediction of autism risk
genes [25]. However, none of the existing works provide
adequate accuracy or specificity that can be used for autism
diagnosis with common variations. Recently, deep neural
networks have achieved record-breaking performance in a
variety of real-world applications [26-29]. In this study, we
adapt deep learning to the task of predicting ASD and propose
a deep learning–based framework, named DeepAutism, to
predict autism disorder phenotypes by using common variants.

This study first identified significant common variants that may
be protective or pathogenic for ASD as well as their additive
contribution to ASD; therefore, deep learning models are
applicable using common variants. Then, this study applied
deep learning prediction algorithms to verify the identified
common variants and generate a predictive classifier for ASD
diagnosis. The results were tested on a hold-out test data set
from the Simons Simplex Collection (SSC), and the proposed
strategic approach achieved the best performance in
distinguishing the diseased group from the control group based
on selected significant common variants of ASD.

The objectives of this study were to (1) discover significant
common variants that may be protective or pathogenic for ASD,
(2) create an advanced diagnostic classifier for autism screening
based on the identified common variants, and (3) verify the
developed classifier and significant common variants across
thousands of simplex families.

Methods

Data Set
We used an autism data set from the SSC [30]. The SSC data
consist of 2600 simplex families, each of which has 1 child
affected with ASD (a proband), unaffected parents, and at least
one unaffected sibling. The data consist of 3931 individuals
whose exome sequences are available (Figure 1A), and 2249
samples of these individuals are labeled as diseased group
(ASD). From the SSC data set, we can query the specific
variables for exome variants (Figure 1A), and the variants are
in the variant call format (VCF). There are more than 1.5 million
variants in the data set, which has the genotype information
along with read depth, allele depth, and genotype quality. In
the VCF data, VCF_GT represents the genotype quality,
encoded as allele values separated by “/,” such as “0/1” and
“2/3”, where 0 represents the reference allele, 1 for the first
allele listed in the alternate allele, 2 for the second allele listed
in the alternate allele, and so on. Thus, VCF_GT can be “0/0”,
“0/1”, “2/0”, “1/2”, and so on. The read depth is denoted as
VCF_DP, and the conditional genotype quality is denoted as
VCF_CQ. We mainly used the information of VCF_GT,
VCF_DP, and VCF_CQ in the SSC data for this study. The
Harvard Medical School Research Ethics Committee approved
this study.
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Figure 1. Overall framework for deciphering contributory common variants and predicting autism spectrum disorder diagnosis. A. Data preprocessing.
VCF_GT recoding is to encode VCF_GT values as dummy variables. If both alleles are reference alleles, it is encoded as 0; if both alleles are alternate
alleles, it is encoded as 2; otherwise, it is 1. B. Data split and significant variant selection. The data set was split into training set and test set. Variants
were ranked based on their chi-score and P value, and only top ranked (high chi-score value and low P value) variants were selected as contributory
common variants for autism spectrum disorder. C. Convolutional neural network classifier. The selected significant common variants in the training
data were fed into a convolutional neural network to train a classifier. Thereafter, the trained model was applied on the test data for autism spectrum
disorder diagnosis prediction. ASD: autism spectrum disorder; CNN: convolutional neural network; SSC: Simons Simplex Collection; VCF: variant
call format; VCF_CQ: variant call format-conditional genotype quality; VCF_DP: variant call format-read depth; VCF_GT: variant call format-genotype
quality.

Data Preprocessing and Genotype Quality Filters
For all the variants, we have their unphased genotype
information using the format of VCF_GT. To make the data
processable for deep learning models, we encoded the VCF_GT
data by creating categorical values to represent different types
of genotype [27]. Specifically, 0 denotes that both allele values
are reference alleles, 1 represents one allele value is a reference
allele and the other one is the alternate allele, and 2 represents
both are alternate alleles. For example, 0/0 is made as 0, 1/0 is
made as 1, 1/1 is made as 2, and so on. Therefore, the variants
consist of 3 categories: 0, 1, and 2. We used VCF_DP (read
depth at a position for a sample) and VCF_CQ (conditional
genotype quality) as a filter to control the genotype information
quality (Figure 1A). We extracted the genotype information for
each variant that has a read depth no less than 10 and genotype
quality no less than 90 [31]. Therefore, the genotypes of read
depth less than 10 (VCF_DP < 10) or genotype quality less than
90 (VCF_CQ < 90) were excluded. Since we only explored
common variants in our study, we removed all the variants with
occurrence frequency less than 1% over the whole data set,
resulting in 153,347 variants selected as common variants after
the genotype quality filters (Figure 1A). We used these common

variants for our study. After selecting the common variants, the
SSC samples were partitioned into 2 sets based on random
sampling of individuals into a training set (80%) and a hold-out
test set (20%). There was no overlap of individuals across the
2 partitions. The test set was only used after model fitting to
assess performance.

Identifying Contributory Common Genetic Variants
As the number of variants was too large to apply deep learning
models directly, to construct the features for the deep learning
models, we used feature selection to reduce variant dimension
(Figure 1B). Feature selection is one of the core concepts in
machine learning that hugely impacts the performance of a
model [32-35]. The data features that are used to train machine
learning models have a huge influence on the performance that
we can achieve. Therefore, our hypothesis is that not all
variables contribute to the predictive performance of the models
we built. Variant selection is the process wherein we
automatically select those features that contribute most to our
prediction accuracy and are considered as contributory variants
to ASD diagnosis. Therefore, significant common variation
selection was applied because variant selection is the process
of removing redundant or irrelevant features from the original
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data set to reduce overfitting. To this end, we analyzed the
importance scores of the common variants that are related with
ASD development mechanisms in the training data set. For each
individual, a 153,347-dimensional vector was constructed,
corresponding to 153,347 common variants identified from the
data preprocessing. Chi-square test was applied to evaluate the
importance of each variant to distinguish the class in order to
select the most significant common variants. Given the training
data D, we estimated the following quantity for each variant
and ranked them by their scores:

where N is the observed frequency in D and E is the expected
frequency, et takes the value 1 if the training data contains term
t and 0; otherwise, ec takes the value 1 if the training data is in
class c and 0 otherwise. For each variant, a corresponding high
score indicates that the null hypothesis H0 of independence
(meaning the individual’s category has no influence over the
term’s frequency) should be rejected and the occurrence of the
variant and class are dependent. In this case, we select the
variant for the ASD diagnosis prediction. We used the
implementation from scikit-learn [36] for “Chi-Square Feature
Selection” with default settings.

By calculating the chi-square scores for all the variants, we can
rank the variants by the chi-square scores and then choose the
top ranked variants as significant variants for model training.
Figure 2A lists the variant importance of the high scoring 20
features (variants) that are selected via the chi-square test. In
Figure 2A, while the Y-axis corresponds to variant IDs of the
variants, the X-axis corresponds to relative importance, which
is calculated using the chi-square score. We selected the top
100 most significant variants as inputs to train a deep learning
classifier. Therefore, the number of input contributory variants
to our classifier after selection was 100 for ASD prediction. In
order to analyze whether the variation data can be divided into
2 clusters representing control and ASD cases, the first 2 groups
of data were obtained using t-distributed stochastic neighbor
embedding (t-SNE) as an unsupervised learning approach. The
visualization of clusters for the top 100 variants using t-SNE in
both case group and control group is shown in Figure 2B. From
the visualization, accurate genetic classification of control group
versus ASD is possible using 100 common variants determined
to be highly significant. Therefore, for each individual in the
training set, a 100-dimensional input vector was constructed
corresponding to 100 selected significant common variants for
training a deep learning model.

Figure 2. A. Variants with high relative importance scores in chi-square test. The Y-axis corresponds to variant IDs of these variants, and the X-axis
corresponds to the relative importance values of the corresponding variants. B. Visualization of the top 100 selected significantly common variants
using t-distributed stochastic neighbor embedding. Different colors represent different classes (ie, case and control). This visualization indicates that
the 2 groups are differentiable using the selected top common variants. t-SNE: t-distributed stochastic neighbor embedding.

DeepAutism Architecture
The overall framework of the proposed DeepAutism (Figure 1)
consists of 3 components, namely, data preprocessing, variant
selection, and neural network classifier. Figure 1C illustrates
the convolutional neural network (CNN) architecture. We used
Keras and TensorFlow version 2.0 for constructing and training
the CNN model. We used a block of two 1D convolutional
layers, followed by a max-pooling layer to generate feature
maps that contain only the most important features. The
max-pooling layer is followed by a dropout layer to avoid
overfitting the data. Then, the learned feature maps are combined

using a fully connected layer. The final layer contains a sigmoid
function to produce probabilities of output from 0 to 1, with the
diseased group belonging to class 1 and the control set belonging
to class 0. All the parameters, including the weights and biases
of hidden layers, are learned through backpropagation [37]. The
detailed network topology used in our CNN architecture is
shown in Multimedia Appendix 1.

DeepAutism Training and Evaluation
For training, DeepAutism uses a set of selected common variants
(top 100 significant common variants) to estimate the
probabilities of an individual belonging to control case or
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autism. For a set of variants v from a testing individual,
DeepAutism computes a probability p(v) using 4 states:

p(v) = Sigmoid(netW(pool(ReLUb(convf(v))))

The sigmoid function is used for computing probabilities of a
set of variants v belonging to either control group or autism
group, and the produced probabilities are from 0 to 1, with the
control set belonging to class 0 and the ASD group belonging
to class 1. The convolution stage (convf) scans a set of filters
as feature maps across the variants. Each neuron consists of a
rectified linear unit (ReLU) activation function to introduce
nonlinearity between 2 neural networks. The pooling layer only
picks the maximum values from the convolved feature maps.
Since the variant data are categorical values, one-hot encoding
is employed to ensure that the DeepAutism model is unbiased
and does not favor one genotype over the others. The
DeepAutism is then trained using mini-batch gradient descent
by backpropagation algorithm [37]. The performance was
evaluated using the area under the receiver operating
characteristic curve (AUC). We also used the most common
procedure for evaluating classifiers for ASD prediction,
including accuracy, sensitivity (recall), specificity (precision),
F1-score, and false discovery rate, in which the lower value
indicates better performance to evaluate the classifiers for ASD
diagnosis.

Baseline Methods to Compare the Effectiveness of
DeepAutism
Apart from CNNs, we also employed conventional machine
learning techniques to evaluate the effectiveness of DeepAutism
for classifying autism diagnosis. The conventional machine
learning models that we compared were random forests, logistic
regression, and Naive Bayes. We used the same training and
test data (with the selected 100 common variants) for the
conventional machine learning models as used for the
DeepAutism model, aiming to evaluate whether the CNN model
outperforms other machine learning classifiers. To evaluate
whether the selected top 100 common variants are significant
for ASD diagnosis, we also compared the chi-square–based
variant selection method with random variant selection by using
the same training and test data sets. We randomly selected 100
common variants as inputs that were fed into both DeepAutism

and conventional machine learning models to compare the
changes in their performance.

Results

Identification of Contributory Variants and Genes
Statistical analyses focused on the selected top 100 common
variants, which most significantly contributed to the classifiers
of ASD. Of the 100 common variants within our classifier, 66%
are exonic mutations and 23% are intronic mutations, while
small proportions are splicing mutations or from an untranslated
region. Within the 66% exonic mutations, about half are
synonymous single nucleotide variants and about half are
nonsynonymous single nucleotide variants. It is important to
point out that the selected contributory common variants were
significantly enriched on chromosome X while chromosome Y
is also discriminatory in identifying individuals with ASD from
individuals without ASD.

A number of variants were populated by the same genes. Related
to the contributory common variants, the statistically significant
genes were ARSD, MAGEB16, and MXRA5. There are 18
common variants in the ARSD gene. ARSD is a protein-coding
gene and is located within a cluster of similar arylsulfatase genes
on chromosome X, while a related pseudogene has been
identified in the pseudoautosomal region of chromosome Y.
Variants rs209372, rs2109135, and rs1047248 in 3 genes,
namely, NRK, TLR8, and MAGEA4, respectively, have the
highest scores in determining an individual’s classification as
with ASD or with no ASD.

Deep Learning Performance Based Upon Contributory
Common Variants
After the training phase was over, we picked the same common
variations from the test data for each individual. We used the
rest of the 787 samples for testing. Based on the trained
DeepAutism model, each test individual was predicted the
probabilities of belonging to the control group or the diseased
group. The deep learning model was extremely accurate in
classification of the holdout test set with an AUC of 0.955
(Figure 3A). Figure 3B describes the performance of the
DeepAutism classifier on the test data. DeepAutism predicted
ASD in 423 samples out of 456 samples with ASD.
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Figure 3. A. The area under the receiver operating characteristic curve of DeepAutism, random forest, logistic regression, and Naive Bayes for predicting
autism spectrum disorder diagnosis based on the selected top 100 significantly common variants on the test data. B. The visualization table that describes
the performance of the DeepAutism classifier on the test data. DeepAutism correctly predicted 697 out of 787 total samples and correctly predicted
autism spectrum disorder in 423 samples out of 456 samples with autism spectrum disorders. AUC: area under the receiver operating characteristic
curve; ASD: autism spectrum disorder; NB: Naive Bayes; LR: logistic regression; RF: random forest.

Apart from deep learning, we also employed Naive Bayes,
logistic regression, support vector machine, random forest, and
deep neural network classifiers to compare the prediction of
ASD diagnosis. We applied five-fold cross-validation to evaluate
the selected significant common variants. Our classifier
performed better than the conventional machine learning
techniques in terms of AUC, accuracy, specificity, sensitivity,
and F1-score. As shown in Table 1, accuracy was 0.886 in the

case of DeepAutism, followed by 0.808 for random forest in
the same test data set for ASD diagnosis prediction. DeepAutism
also yielded the best sensitivity of 0.881 for prediction of ASD
and best specificity of 0.893 for non-ASD prediction. The false
positive (discriminatory) rate is minimum for DeepAutism with
7% compared with other machine learning techniques. These
results are shown in Table 1.

Table 1. Performance of the classifiers with respect to accuracy, sensitivity, specificity, F1-score, and false discovery rate on test sets.a

False discovery rateF1-scoreSpecificitySensitivityAccuracyModel

0.0720.9050.8930.8810.886DeepAutism

0.2370.7330.6330.7060.679Naive Bayes

0.0790.8480.8570.7850.808Random forest

0.1860.7610.6830.7150.704Logistic regression

0.1010.8310.8210.7730.789Support vector machine

0.0730.8420.8850.7660.804Deep neural network

aItalicized data demonstrate the best performance; DeepAutism outperformed other models on all the metrics.

Performance Using Randomly Selected Common
Variants for ASD Diagnosis
We assessed the classification performance by using randomly
picked 100 common variants as inputs to train classifiers. We
used the same training and test data as in the above experiment.
As shown in Table 2, when the classifiers classify ASD using
randomly selected common variants, all the classifiers achieved
reduced performance compared to using selected significant
common variants. For instance, the AUC and accuracy of

DeepAutism dramatically dropped from 0.955 to 0.670 and
from 0.885 to 0.689, respectively. The random 100 common
variants yielded accuracy of 0.454 and 0.583 using Naive Bayes
and logistic regression classifiers, respectively, which is like
random guessing. This revealed that the random 100 common
variants are not discriminative in distinguishing ASD diagnosis.
These results suggest that variant selection is important for
identifying significant common variants that are more correlated
and significant in improving the classification accuracy.
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Table 2. Performance of the classifiers with respect to area under receiver operating characteristic curve, accuracy, sensitivity, specificity, F1-score,

and false discovery rate on test sets with randomly picked 100 common variants.a

False discovery
rate

F1-scoreSpecificitySensitivityAccuracyArea under receiver operat-
ing characteristic curve

Model

0.1450.7550.6970.6850.6890.670DeepAutism

0.9060.1660.4320.7170.4540.556Naive Bayes

0.0180.7540.8550.6120.6290.701Random forest

0.1430.7040.4890.5980.5830.571Logistic regression

0.1390.6960.5710.6330.6790.672Support vector machine

0.1430.7330.7020.6810.6770.656Deep neural network

aItalicized data show the best performance; the performance of all models became worse on all the metrics with randomly selected common variants.

Discussion

Predicting ASD based on genetic data is challenging. Using
common variant analysis, we generated a genetic diagnostic
classifier (DeepAutism) based on a deep learning architecture
using 100 significant common variants, and we accurately
distinguished ASD from controls within the SSC data set. The
diagnostic classifier was able to correctly classify individuals
with ASD with an accuracy of 88.6% and an AUC of 0.955.
Our findings showed that the sensitivity and specificity of the
classifier when applied to identify ASD were 88% and 89%,
respectively. It is notable that the sensitivity for identifying
cases is highly desirable for screening purposes. We also
investigated the classification performance of different
approaches and the corresponding proportion of subjects who
did not have ASD who could be reliably classified as controls.
DeepAutism can be suggested as an alternative to conventional
shallow machine learning approaches. In the comparisons among
the classifiers, DeepAutism performed the best, followed by
random forest. Both these classifiers are nonlinear models.
Therefore, the causes of ASD are not a simple linear
combination of common variants.

Interestingly, when we altered the classifier by using randomly
selected 100 common variants, the AUC and accuracy of
DeepAutism reduced to 0.670 and 0.689, respectively. The
performance became worse because irrelevant variants can
include noisy data, thereby affecting the classification accuracy
negatively. This verifies the significance of selecting common
variants and greatly adds strength to our original findings. Our
results suggest that common variants may contribute to ASD
diagnosis. A study [18] has shown that the genetic architecture
of ASD is contributed by inherited common variants, which
supports our findings. The common variants contributing most
to the diagnosis in our classifier corresponded to genes on
chromosome X. This suggests that ASD is associated with
gender. As ASD is strongly biased toward males with ratios of
4:1 (male:female) [38] and statistics have also shown that ASD
has a higher prevalence in males than in females [39], mutations
in the genes on the X chromosome may explain the increased
prevalence of autism in boys compared to that in girls. Thus,
this supports our finding that gender bias affects individuals
with autism.

In our findings, ARSD, MAGEB16, and MXRA5 genes were
found to have a high contributory effect on ASD. ARSD is
located within a cluster of similar arylsulfatase genes on
chromosome X. ARSD is clinically heterogeneous and is likely
to result from mutations in developmental genes or from
regulating transcription factors [40]. ARSD has already been
reported to be related to ASD or Asperger’s syndrome [41]. The
cytogenetic location of ARSD is Xp22.33, and this location
significantly contributes to ASD, as shown in the SFARI Gene
Database [42]. These regions play a role in neurodevelopment
disorders [31,43-48]. Although we used common variants as
features in our classifier, we also found that prevalence of
X-chromosome copy number variations contribute to ASD.
MAGEB16 is also a protein-coding gene, which is located on
Xp21.1. MAGEB16 has been implicated in syndromic X-linked
intellectual disability and neurodevelopmental disorders. It has
also been reported to be associated with autistic disorders [49].
MXRA5 is a protein-coding gene and encodes a protein that
forms the extracellular matrix structural constituent. It is
involved in the response to transforming growth factor beta and
has a pseudogene on chromosome Y. An association has been
curated linking MXRA5 and an autistic disorder in Pan paniscus.
Although mutations in SHANK3 have been identified in multiple
individuals with ASD, most of the mutations are rare variants
and not common variants, where the ratio between rare variants
and common variants is 230:9 according to the SFARI Gene
Database [50].

ASD is a complex behavioral disorder with a strong genetic
influence [51]. Diagnosing ASD can be difficult because there
is no medical test (such as a blood test) to diagnose this disorder.
Although the majority of studies toward biomarker identification
for autism have focused on rare genetic variants, we have proven
that common genetic variants are also informative with respect
to the identification of ASD. In our study, our genetic classifier
obtained a high level of diagnostic accuracy, thereby
demonstrating that genetic biomarkers can correctly identify
individuals with ASD from individuals without ASD. Common
variants can play a very important role in screening ASD at an
early stage. We identified a few genes with various common
variants that could determine whether an individual fell within
the case or control group. Our results demonstrate the value of
a data-driven approach for the identification of significant
common variants and a deep learning method for ASD
diagnosis. Overall, these findings indicate that a common
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variant–based test may allow for early identification of ASD.
A genetic predictive classifier as described here may be a tool
for ASD screening at birth to provide probability estimates of
ASD.

Although our approach for identifying autism based on the
selected common variants achieves high accuracy, some
limitations exist that need improvement in the future work: (1)
the experiments were conducted on the SSC dataset; however,
more datasets could be used to evaluate the proposed method
and the selected common variants and (2) the proposed
algorithm, based on CNN, is a straightforward solution for
identifying autism from nonautism; however, more
state-of-the-art classifiers could be applied to this ASD
classification problem.

While the proposed DeepAutism approach has achieved great
success in ASD identification with promising empirical results,

we would still like to explore several important directions on
DeepAutism in the future. First, we plan to further design an
advanced deep learning algorithm that can handle
high-dimensional features and output the feature importance
for variant selection. By using the designed model, we can select
significant variants and classify autistic individuals
simultaneously as an end-to-end framework. Second, we will
evaluate the proposed method on 2 more distinct ASD cohorts:
(1) Simons Foundation Powering Autism Research for
Knowledge data and (2) Autism Speaks MMSSNG cohort. We
will also validate our algorithms with the UK Biobank clinical
and genomic data. Third, we will investigate the full sequences
of coding and noncoding regions of the genome between
probands and unaffected siblings to explore all of the
components in the genetic architecture of ASD.

 

Conflicts of Interest
None declared.

Multimedia Appendix 1
Architecture of DeepAutism.
[DOCX File , 106 KB - medinform_v9i4e24754_app1.docx ]

References
1. Rylaarsdam L, Guemez-Gamboa A. Genetic Causes and Modifiers of Autism Spectrum Disorder. Front Cell Neurosci

2019;13:385 [FREE Full text] [doi: 10.3389/fncel.2019.00385] [Medline: 31481879]
2. Frazier TW, Thompson L, Youngstrom EA, Law P, Hardan AY, Eng C, et al. A twin study of heritable and shared

environmental contributions to autism. J Autism Dev Disord 2014 Aug;44(8):2013-2025 [FREE Full text] [doi:
10.1007/s10803-014-2081-2] [Medline: 24604525]

3. Sutton H. Autism caused mostly by genetics, according to study. Disability Compliance for Higher Education 2019 Aug
22;25(2):9-9 [FREE Full text] [doi: 10.1002/dhe.30707]

4. McDonald NM, Senturk D, Scheffler A, Brian JA, Carver LJ, Charman T, et al. Developmental Trajectories of Infants
With Multiplex Family Risk for Autism: A Baby Siblings Research Consortium Study. JAMA Neurol 2020 Jan 01;77(1):73-81
[FREE Full text] [doi: 10.1001/jamaneurol.2019.3341] [Medline: 31589284]

5. de la Torre-Ubieta L, Won H, Stein JL, Geschwind DH. Advancing the understanding of autism disease mechanisms through
genetics. Nat Med 2016 Apr;22(4):345-361 [FREE Full text] [doi: 10.1038/nm.4071] [Medline: 27050589]

6. Derecki NC, Cronk JC, Lu Z, Xu E, Abbott SBG, Guyenet PG, et al. Wild-type microglia arrest pathology in a mouse
model of Rett syndrome. Nature 2012 Mar 18;484(7392):105-109 [FREE Full text] [doi: 10.1038/nature10907] [Medline:
22425995]

7. Trost B, Engchuan W, Nguyen CM, Thiruvahindrapuram B, Dolzhenko E, Backstrom I, et al. Genome-wide detection of
tandem DNA repeats that are expanded in autism. Nature 2020 Oct;586(7827):80-86. [doi: 10.1038/s41586-020-2579-z]
[Medline: 32717741]

8. Maestrini E, Pagnamenta AT, Lamb JA, Bacchelli E, Sykes NH, Sousa I, IMGSAC. High-density SNP association study
and copy number variation analysis of the AUTS1 and AUTS5 loci implicate the IMMP2L-DOCK4 gene region in autism
susceptibility. Mol Psychiatry 2010 Sep;15(9):954-968 [FREE Full text] [doi: 10.1038/mp.2009.34] [Medline: 19401682]

9. Bai D, Yip BHK, Windham GC, Sourander A, Francis R, Yoffe R, et al. Association of Genetic and Environmental Factors
With Autism in a 5-Country Cohort. JAMA Psychiatry 2019 Oct 01;76(10):1035-1043 [FREE Full text] [doi:
10.1001/jamapsychiatry.2019.1411] [Medline: 31314057]

10. Lintas C, Picinelli C, Piras IS, Sacco R, Brogna C, Persico AM. Copy number variation in 19 Italian multiplex families
with autism spectrum disorder: Importance of synaptic and neurite elongation genes. Am J Med Genet B Neuropsychiatr
Genet 2017 Jul;174(5):547-556. [doi: 10.1002/ajmg.b.32537] [Medline: 28304131]

11. Sahin NT, Keshav NU, Salisbury JP, Vahabzadeh A. Second Version of Google Glass as a Wearable Socio-Affective Aid:
Positive School Desirability, High Usability, and Theoretical Framework in a Sample of Children with Autism. JMIR Hum
Factors 2018 Jan 04;5(1):e1 [FREE Full text] [doi: 10.2196/humanfactors.8785] [Medline: 29301738]

JMIR Med Inform 2021 | vol. 9 | iss. 4 |e24754 | p.95https://medinform.jmir.org/2021/4/e24754
(page number not for citation purposes)

Wang & AvillachJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=medinform_v9i4e24754_app1.docx&filename=f334c1bac44ec2ebb4125bf49b5bf877.docx
https://jmir.org/api/download?alt_name=medinform_v9i4e24754_app1.docx&filename=f334c1bac44ec2ebb4125bf49b5bf877.docx
https://doi.org/10.3389/fncel.2019.00385
http://dx.doi.org/10.3389/fncel.2019.00385
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31481879&dopt=Abstract
http://europepmc.org/abstract/MED/24604525
http://dx.doi.org/10.1007/s10803-014-2081-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24604525&dopt=Abstract
http://paperpile.com/b/cCsC73/7Rzn
http://dx.doi.org/10.1002/dhe.30707
http://europepmc.org/abstract/MED/31589284
http://dx.doi.org/10.1001/jamaneurol.2019.3341
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31589284&dopt=Abstract
http://europepmc.org/abstract/MED/27050589
http://dx.doi.org/10.1038/nm.4071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27050589&dopt=Abstract
http://europepmc.org/abstract/MED/22425995
http://dx.doi.org/10.1038/nature10907
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22425995&dopt=Abstract
http://dx.doi.org/10.1038/s41586-020-2579-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32717741&dopt=Abstract
http://europepmc.org/abstract/MED/19401682
http://dx.doi.org/10.1038/mp.2009.34
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19401682&dopt=Abstract
http://europepmc.org/abstract/MED/31314057
http://dx.doi.org/10.1001/jamapsychiatry.2019.1411
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31314057&dopt=Abstract
http://dx.doi.org/10.1002/ajmg.b.32537
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28304131&dopt=Abstract
https://humanfactors.jmir.org/2018/1/e1/
http://dx.doi.org/10.2196/humanfactors.8785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29301738&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


12. Ahmed KL, Simon AR, Dempsey JR, Samaco RC, Goin-Kochel RP. Evaluating Two Common Strategies for Research
Participant Recruitment Into Autism Studies: Observational Study. J Med Internet Res 2020 Sep 24;22(9):e16752 [FREE
Full text] [doi: 10.2196/16752] [Medline: 32969826]

13. Siu M, Butcher DT, Turinsky AL, Cytrynbaum C, Stavropoulos DJ, Walker S, et al. Functional DNA methylation signatures
for autism spectrum disorder genomic risk loci: 16p11.2 deletions and CHD8 variants. Clin Epigenetics 2019 Jul 16;11(1):103
[FREE Full text] [doi: 10.1186/s13148-019-0684-3] [Medline: 31311581]

14. Turner TN, Coe BP, Dickel DE, Hoekzema K, Nelson BJ, Zody MC, et al. Genomic Patterns of De Novo Mutation in
Simplex Autism. Cell 2017 Oct 19;171(3):710-722.e12 [FREE Full text] [doi: 10.1016/j.cell.2017.08.047] [Medline:
28965761]

15. Vorstman JAS, Parr JR, Moreno-De-Luca D, Anney RJL, Nurnberger JI, Hallmayer JF. Autism genetics: opportunities
and challenges for clinical translation. Nat Rev Genet 2017 Jun;18(6):362-376. [doi: 10.1038/nrg.2017.4] [Medline:
28260791]

16. Ronemus M, Iossifov I, Levy D, Wigler M. The role of de novo mutations in the genetics of autism spectrum disorders.
Nat Rev Genet 2014 Feb;15(2):133-141. [doi: 10.1038/nrg3585] [Medline: 24430941]

17. Sanders S, He X, Willsey A, Ercan-Sencicek A, Samocha K, Cicek A, Autism Sequencing Consortium, et al. Insights into
Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci. Neuron 2015 Sep 23;87(6):1215-1233
[FREE Full text] [doi: 10.1016/j.neuron.2015.09.016] [Medline: 26402605]

18. Gaugler T, Klei L, Sanders SJ, Bodea CA, Goldberg AP, Lee AB, et al. Most genetic risk for autism resides with common
variation. Nat Genet 2014 Aug;46(8):881-885 [FREE Full text] [doi: 10.1038/ng.3039] [Medline: 25038753]

19. Grove, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, Autism Spectrum Disorder Working Group of the Psychiatric
Genomics Consortium, BUPGEN, Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium,
23andMe Research Team, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet
2019 Mar;51(3):431-444 [FREE Full text] [doi: 10.1038/s41588-019-0344-8] [Medline: 30804558]

20. Thapar A, Rutter M. Genetic Advances in Autism. J Autism Dev Disord 2020 Sep 17. [doi: 10.1007/s10803-020-04685-z]
[Medline: 32940822]

21. Chen JA, Peñagarikano O, Belgard TG, Swarup V, Geschwind DH. The emerging picture of autism spectrum disorder:
genetics and pathology. Annu Rev Pathol 2015;10:111-144. [doi: 10.1146/annurev-pathol-012414-040405] [Medline:
25621659]

22. Skafidas E, Testa R, Zantomio D, Chana G, Everall IP, Pantelis C. Predicting the diagnosis of autism spectrum disorder
using gene pathway analysis. Mol Psychiatry 2014 Apr;19(4):504-510 [FREE Full text] [doi: 10.1038/mp.2012.126]
[Medline: 22965006]

23. Howsmon DP, Kruger U, Melnyk S, James SJ, Hahn J. Classification and adaptive behavior prediction of children with
autism spectrum disorder based upon multivariate data analysis of markers of oxidative stress and DNA methylation. PLoS
Comput Biol 2017 Mar;13(3):e1005385 [FREE Full text] [doi: 10.1371/journal.pcbi.1005385] [Medline: 28301476]

24. Amoedo A, Martnez-Costa MDP, Moreno E. An analysis of the communication strategies of Spanish commercial music
networks on the web: http://los40.com, http://los40principales.com, http://cadena100.es, http://europafm.es and
http://kissfm.es. Radio Journal: International Studies in Broadcast & Audio Media 2009 Feb 01;6(1):5-20 [FREE Full text]
[doi: 10.1386/rajo.6.1.5_4]

25. Krishnan A, Zhang R, Yao V, Theesfeld CL, Wong AK, Tadych A, et al. Genome-wide prediction and functional
characterization of the genetic basis of autism spectrum disorder. Nat Neurosci 2016 Nov;19(11):1454-1462 [FREE Full
text] [doi: 10.1038/nn.4353] [Medline: 27479844]

26. Chen T, Chen Y, Yuan M, Gerstein M, Li T, Liang H, et al. The Development of a Practical Artificial Intelligence Tool
for Diagnosing and Evaluating Autism Spectrum Disorder: Multicenter Study. JMIR Med Inform 2020 May 08;8(5):e15767
[FREE Full text] [doi: 10.2196/15767] [Medline: 32041690]

27. Sundaram L, Bhat RR, Viswanath V, Li X. DeepBipolar: Identifying genomic mutations for bipolar disorder via deep
learning. Hum Mutat 2017 Sep;38(9):1217-1224 [FREE Full text] [doi: 10.1002/humu.23272] [Medline: 28600868]

28. Moon SJ, Hwang J, Kana R, Torous J, Kim JW. Accuracy of Machine Learning Algorithms for the Diagnosis of Autism
Spectrum Disorder: Systematic Review and Meta-Analysis of Brain Magnetic Resonance Imaging Studies. JMIR Ment
Health 2019 Dec 20;6(12):e14108 [FREE Full text] [doi: 10.2196/14108] [Medline: 31562756]

29. Ben-Sasson A, Robins DL, Yom-Tov E. Risk Assessment for Parents Who Suspect Their Child Has Autism Spectrum
Disorder: Machine Learning Approach. J Med Internet Res 2018 Apr 24;20(4):e134 [FREE Full text] [doi: 10.2196/jmir.9496]
[Medline: 29691210]

30. Sullivan MO, Gallagher L, Heron EA. Gaining Insights into Aggressive Behaviour in Autism Spectrum Disorder Using
Latent Profile Analysis. J Autism Dev Disord 2019 Oct;49(10):4209-4218 [FREE Full text] [doi:
10.1007/s10803-019-04129-3] [Medline: 31292900]

31. Doan RN, Lim ET, De Rubeis S, Betancur C, Cutler DJ, Chiocchetti AG, Autism Sequencing Consortium, et al. Recessive
gene disruptions in autism spectrum disorder. Nat Genet 2019 Jul;51(7):1092-1098 [FREE Full text] [doi:
10.1038/s41588-019-0433-8] [Medline: 31209396]

JMIR Med Inform 2021 | vol. 9 | iss. 4 |e24754 | p.96https://medinform.jmir.org/2021/4/e24754
(page number not for citation purposes)

Wang & AvillachJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://www.jmir.org/2020/9/e16752/
https://www.jmir.org/2020/9/e16752/
http://dx.doi.org/10.2196/16752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32969826&dopt=Abstract
https://clinicalepigeneticsjournal.biomedcentral.com/articles/10.1186/s13148-019-0684-3
http://dx.doi.org/10.1186/s13148-019-0684-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31311581&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0092-8674(17)31006-1
http://dx.doi.org/10.1016/j.cell.2017.08.047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28965761&dopt=Abstract
http://dx.doi.org/10.1038/nrg.2017.4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28260791&dopt=Abstract
http://dx.doi.org/10.1038/nrg3585
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24430941&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0896-6273(15)00773-4
http://dx.doi.org/10.1016/j.neuron.2015.09.016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26402605&dopt=Abstract
http://europepmc.org/abstract/MED/25038753
http://dx.doi.org/10.1038/ng.3039
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25038753&dopt=Abstract
http://europepmc.org/abstract/MED/30804558
http://dx.doi.org/10.1038/s41588-019-0344-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30804558&dopt=Abstract
http://dx.doi.org/10.1007/s10803-020-04685-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32940822&dopt=Abstract
http://dx.doi.org/10.1146/annurev-pathol-012414-040405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25621659&dopt=Abstract
http://europepmc.org/abstract/MED/22965006
http://dx.doi.org/10.1038/mp.2012.126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22965006&dopt=Abstract
https://dx.plos.org/10.1371/journal.pcbi.1005385
http://dx.doi.org/10.1371/journal.pcbi.1005385
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28301476&dopt=Abstract
http://paperpile.com/b/cCsC73/V2Ykv
http://dx.doi.org/10.1386/rajo.6.1.5_4
http://europepmc.org/abstract/MED/27479844
http://europepmc.org/abstract/MED/27479844
http://dx.doi.org/10.1038/nn.4353
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27479844&dopt=Abstract
https://medinform.jmir.org/2020/5/e15767/
http://dx.doi.org/10.2196/15767
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32041690&dopt=Abstract
http://europepmc.org/abstract/MED/28600868
http://dx.doi.org/10.1002/humu.23272
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28600868&dopt=Abstract
https://mental.jmir.org/2019/12/e14108/
http://dx.doi.org/10.2196/14108
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31562756&dopt=Abstract
https://www.jmir.org/2018/4/e134/
http://dx.doi.org/10.2196/jmir.9496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29691210&dopt=Abstract
http://europepmc.org/abstract/MED/31292900
http://dx.doi.org/10.1007/s10803-019-04129-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31292900&dopt=Abstract
http://europepmc.org/abstract/MED/31209396
http://dx.doi.org/10.1038/s41588-019-0433-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31209396&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


32. Velusamy D, Ramasamy K. Ensemble of heterogeneous classifiers for diagnosis and prediction of coronary artery disease
with reduced feature subset. Comput Methods Programs Biomed 2021 Jan;198:105770. [doi: 10.1016/j.cmpb.2020.105770]
[Medline: 33027698]

33. Jiang J, Cameron A, Yang M. Analysis of Massive Online Medical Consultation Service Data to Understand Physicians'
Economic Return: Observational Data Mining Study. JMIR Med Inform 2020 Feb 18;8(2):e16765 [FREE Full text] [doi:
10.2196/16765] [Medline: 32069213]

34. Chikersal P, Doryab A, Tumminia M, Villalba DK, Dutcher JM, Liu X, et al. Detecting Depression and Predicting its Onset
Using Longitudinal Symptoms Captured by Passive Sensing. ACM Trans Comput Hum Interact 2021 Feb;28(1):1-41. [doi:
10.1145/3422821]

35. Zhang Y, Zhou Y, Zhang D, Song W. A Stroke Risk Detection: Improving Hybrid Feature Selection Method. J Med Internet
Res 2019 Apr 02;21(4):e12437 [FREE Full text] [doi: 10.2196/12437] [Medline: 30938684]

36. Scikit-learn: Machine learning in Python. URL: http://scikit-learn.org [accessed 2021-03-22]
37. Obeid, Dahne J, Christensen S, Howard S, Crawford T, Frey LJ, et al. Identifying and Predicting Intentional Self-Harm in

Electronic Health Record Clinical Notes: Deep Learning Approach. JMIR Med Inform 2020 Jul 30;8(7):e17784 [FREE
Full text] [doi: 10.2196/17784] [Medline: 32729840]

38. Cahill L. A New Link Between Autism and Masculinity. JAMA Psychiatry 2017 Apr 01;74(4):318. [doi:
10.1001/jamapsychiatry.2016.4066] [Medline: 28196210]

39. Hull L, Petrides KV, Mandy W. The Female Autism Phenotype and Camouflaging: a Narrative Review. Rev J Autism Dev
Disord 2020 Jan 29;7(4):306-317. [doi: 10.1007/s40489-020-00197-9]

40. Turnpenny PD, Bulman MP, Frayling TM, Abu-Nasra TK, Garrett C, Hattersley AT, et al. A gene for autosomal recessive
spondylocostal dysostosis maps to 19q13.1-q13.3. Am J Hum Genet 1999 Jul;65(1):175-182 [FREE Full text] [doi:
10.1086/302464] [Medline: 10364530]

41. ARSD: arylsulfatase D. URL: https://www.wikigenes.org/e/gene/e/414.html [accessed 2021-03-22]
42. Copy number variants/Xp22.33. SFARI Gene. URL: https://gene-archive.sfari.org/database/cnv/Xp22.33 [accessed

2021-03-22]
43. Willemsen MH, de Leeuw N, de Brouwer AP, Pfundt R, Hehir-Kwa JY, Yntema HG, et al. Interpretation of clinical

relevance of X-chromosome copy number variations identified in a large cohort of individuals with cognitive disorders
and/or congenital anomalies. Eur J Med Genet 2012 Nov;55(11):586-598. [doi: 10.1016/j.ejmg.2012.05.001] [Medline:
22796527]

44. Asadollahi R, Oneda B, Joset P, Azzarello-Burri S, Bartholdi D, Steindl K, et al. The clinical significance of small copy
number variants in neurodevelopmental disorders. J Med Genet 2014 Oct;51(10):677-688 [FREE Full text] [doi:
10.1136/jmedgenet-2014-102588] [Medline: 25106414]

45. Kushima, Aleksic B, Nakatochi M, Shimamura T, Okada T, Uno Y, et al. Comparative Analyses of Copy-Number Variation
in Autism Spectrum Disorder and Schizophrenia Reveal Etiological Overlap and Biological Insights. Cell Rep 2018 Sep
11;24(11):2838-2856 [FREE Full text] [doi: 10.1016/j.celrep.2018.08.022] [Medline: 30208311]

46. Rosenfeld JA, Ballif BC, Torchia BS, Sahoo T, Ravnan JB, Schultz R, et al. Copy number variations associated with autism
spectrum disorders contribute to a spectrum of neurodevelopmental disorders. Genet Med 2010 Aug 30;12(11):694-702.
[doi: 10.1097/gim.0b013e3181f0c5f3]

47. Edens A, Lyons M, Duron R, Dupont BR, Holden KR. Autism in two females with duplications involving Xp11.22-p11.23.
Dev Med Child Neurol 2011 May;53(5):463-466 [FREE Full text] [doi: 10.1111/j.1469-8749.2010.03909.x] [Medline:
21418194]

48. Ben-David E, Granot-Hershkovitz E, Monderer-Rothkoff G, Lerer E, Levi S, Yaari M, et al. Identification of a functional
rare variant in autism using genome-wide screen for monoallelic expression. Hum Mol Genet 2011 Sep 15;20(18):3632-3641.
[doi: 10.1093/hmg/ddr283] [Medline: 21680558]

49. MAGEB16. Alliance of genome resources. URL: https://www.alliancegenome.org/gene/HGNC:21188 [accessed 2021-03-22]
50. SHANK3: SH3 and multiple ankyrin repeat domains 3. SFARI Gene. URL: https://gene.sfari.org/database/human-gene/

SHANK3 [accessed 2021-03-22]
51. Yoo H. Genetics of Autism Spectrum Disorder: Current Status and Possible Clinical Applications. Exp Neurobiol 2015

Dec;24(4):257-272 [FREE Full text] [doi: 10.5607/en.2015.24.4.257] [Medline: 26713075]

Abbreviations
ASD: autism spectrum disorder
AUC: area under the receiver operating characteristic curve
CNN: convolutional neural network
SSC: Simons Simplex Collection
t-SNE: t-distributed stochastic neighbor embedding
VCF: variant call format
VCF_CQ: variant call format-conditional genotype quality

JMIR Med Inform 2021 | vol. 9 | iss. 4 |e24754 | p.97https://medinform.jmir.org/2021/4/e24754
(page number not for citation purposes)

Wang & AvillachJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.1016/j.cmpb.2020.105770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33027698&dopt=Abstract
https://medinform.jmir.org/2020/2/e16765/
http://dx.doi.org/10.2196/16765
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32069213&dopt=Abstract
http://dx.doi.org/10.1145/3422821
https://www.jmir.org/2019/4/e12437/
http://dx.doi.org/10.2196/12437
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30938684&dopt=Abstract
http://scikit-learn.org
https://medinform.jmir.org/2020/7/e17784/
https://medinform.jmir.org/2020/7/e17784/
http://dx.doi.org/10.2196/17784
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32729840&dopt=Abstract
http://dx.doi.org/10.1001/jamapsychiatry.2016.4066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28196210&dopt=Abstract
http://dx.doi.org/10.1007/s40489-020-00197-9
https://linkinghub.elsevier.com/retrieve/pii/S0002-9297(07)63741-0
http://dx.doi.org/10.1086/302464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10364530&dopt=Abstract
https://www.wikigenes.org/e/gene/e/414.html
https://gene-archive.sfari.org/database/cnv/Xp22.33
http://dx.doi.org/10.1016/j.ejmg.2012.05.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22796527&dopt=Abstract
http://jmg.bmj.com/lookup/pmidlookup?view=long&pmid=25106414
http://dx.doi.org/10.1136/jmedgenet-2014-102588
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25106414&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2211-1247(18)31293-2
http://dx.doi.org/10.1016/j.celrep.2018.08.022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30208311&dopt=Abstract
http://dx.doi.org/10.1097/gim.0b013e3181f0c5f3
https://doi.org/10.1111/j.1469-8749.2010.03909.x
http://dx.doi.org/10.1111/j.1469-8749.2010.03909.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21418194&dopt=Abstract
http://dx.doi.org/10.1093/hmg/ddr283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21680558&dopt=Abstract
https://www.alliancegenome.org/gene/HGNC:21188
https://gene.sfari.org/database/human-gene/SHANK3
https://gene.sfari.org/database/human-gene/SHANK3
https://doi.org/10.5607/en.2015.24.4.257
http://dx.doi.org/10.5607/en.2015.24.4.257
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26713075&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


VCF_DP: variant call format-read depth
VCF_GT: variant call format-genotype quality

Edited by G Eysenbach; submitted 03.10.20; peer-reviewed by S Pang, F Li, M Manzanares; comments to author 23.11.20; revised
version received 18.02.21; accepted 14.03.21; published 07.04.21.

Please cite as:
Wang H, Avillach P
Diagnostic Classification and Prognostic Prediction Using Common Genetic Variants in Autism Spectrum Disorder: Genotype-Based
Deep Learning
JMIR Med Inform 2021;9(4):e24754
URL: https://medinform.jmir.org/2021/4/e24754 
doi:10.2196/24754
PMID:33714937

©Haishuai Wang, Paul Avillach. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 07.04.2021.
This is an open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information,
a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included.

JMIR Med Inform 2021 | vol. 9 | iss. 4 |e24754 | p.98https://medinform.jmir.org/2021/4/e24754
(page number not for citation purposes)

Wang & AvillachJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://medinform.jmir.org/2021/4/e24754
http://dx.doi.org/10.2196/24754
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33714937&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Original Paper

Using General-purpose Sentiment Lexicons for Suicide Risk
Assessment in Electronic Health Records: Corpus-Based Analysis

André Bittar1, PhD; Sumithra Velupillai1, PhD; Angus Roberts1, PhD; Rina Dutta1,2, PhD
1Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
2South London and Maudsley NHS Foundation Trust, London, United Kingdom

Corresponding Author:
André Bittar, PhD
Institute of Psychiatry, Psychology and Neuroscience
King’s College London
16 De Crespigny Park
London, SE5 8AF
United Kingdom
Phone: 44 (0)20 3228 8553
Email: andre.bittar@kcl.ac.uk

Abstract

Background: Suicide is a serious public health issue, accounting for 1.4% of all deaths worldwide. Current risk assessment
tools are reported as performing little better than chance in predicting suicide. New methods for studying dynamic features in
electronic health records (EHRs) are being increasingly explored. One avenue of research involves using sentiment analysis to
examine clinicians’ subjective judgments when reporting on patients. Several recent studies have used general-purpose sentiment
analysis tools to automatically identify negative and positive words within EHRs to test correlations between sentiment extracted
from the texts and specific medical outcomes (eg, risk of suicide or in-hospital mortality). However, little attention has been paid
to analyzing the specific words identified by general-purpose sentiment lexicons when applied to EHR corpora.

Objective: This study aims to quantitatively and qualitatively evaluate the coverage of six general-purpose sentiment lexicons
against a corpus of EHR texts to ascertain the extent to which such lexical resources are fit for use in suicide risk assessment.

Methods: The data for this study were a corpus of 198,451 EHR texts made up of two subcorpora drawn from a 1:4 case-control
study comparing clinical notes written over the period leading up to a suicide attempt (cases, n=2913) with those not preceding
such an attempt (controls, n=14,727). We calculated word frequency distributions within each subcorpus to identify representative
keywords for both the case and control subcorpora. We quantified the relative coverage of the 6 lexicons with respect to this list
of representative keywords in terms of weighted precision, recall, and F score.

Results: The six lexicons achieved reasonable precision (0.53-0.68) but very low recall (0.04-0.36). Many of the most
representative keywords in the suicide-related (case) subcorpus were not identified by any of the lexicons. The sentiment-bearing
status of these keywords for this use case is thus doubtful.

Conclusions: Our findings indicate that these 6 sentiment lexicons are not optimal for use in suicide risk assessment. We propose
a set of guidelines for the creation of more suitable lexical resources for distinguishing suicide-related from non–suicide-related
EHR texts.

(JMIR Med Inform 2021;9(4):e22397)   doi:10.2196/22397
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Introduction

Background
The World Health Organization reports that suicide accounts
for 1.4% of all deaths globally and is the 18th leading cause of

death worldwide [1]. Prior history of suicide attempts is the
most robust risk factor for completed suicide, and those
requiring hospitalization are at the most serious end of the
spectrum [2]. However, current methods for assessing a patient’s
risk of attempting suicide are reported to perform little better
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than chance [3]. Therefore, new methods to understand dynamic
features from electronic health records (EHRs) before a
hospitalized suicide attempt, distinguishing such periods from
clinical narratives at other times, would be of potential clinical
utility [4].

EHRs contain structured patient data (eg, age, sex, and ethnicity)
and unstructured text that make up the clinical narrative (eg,
out-patient letters, event notes from meetings and phone calls
with patients or carers, and discharge summaries). Unstructured
text is of particular importance in mental health, as much of
what is recorded about patients follows face-to-face assessments
by clinicians, whose observations and judgments about a
patient’s experiences and presentation are inevitably influenced
by their own training, experience, and implicit biases, and these
judgments have a degree of subjectivity when they record this
in the clinical narrative [5].

The automatic identification and analysis of subjective
judgments in text is known as sentiment analysis [6,7]. This
process typically involves the classification of words as
expressing either positive or negative polarity, and numerous
resources have been developed for this task in nonclinical
domains, such as customer reviews [8-11] and social media
[12-14]. Research efforts have also focused on the analysis of
sentiment within health care–related texts, such as patient
feedback forms [15,16], online forums [17], and social networks
[18,19].

Recent work has sought to assess the utility of sentiment
lexicons for the analysis of subjective judgments in clinical
narratives. McCoy et al [20] used a general-domain sentiment
analysis tool to extract word polarity features to model the risk
of readmission and mortality. The same tool was later used to
examine the correlation between word polarity and the risk of
suicide attempts [21]. Most recently, Weissman et al [22] carried
out a thorough evaluation of six general-domain sentiment
analysis tools in predicting the risk of in-hospital mortality of
patients in intensive care, tracking the progression of sentiment
in clinical notes over time. They concluded that general-domain
sentiment tools are not suited to the processing of clinical texts
and that domain-specific resources need to be developed. Work
in this direction is beginning to emerge [23-25].

These studies have mostly focused on testing the correlation
between automatically extracted sentiment values and specific
clinical outcomes. However, to our knowledge, there has been
no close examination of the terms mapped by general-domain
sentiment analysis tools when applied to clinical texts.

Objectives
Focusing on words with negative and positive polarity, we aimed
to determine the coverage of 6 general-purpose sentiment
lexicons when applied to a corpus of EHR texts of 2 groups of
patients seen by mental health services: (1) patients who had
attempted suicide and were hospitalized (cases) and (2) patients
with no history of attempted suicide (controls). Adopting
methods used in corpus linguistics, we first sought to identify

the words that are most representative of the clinical narratives
of cases and controls. We then aimed to test the coverage of
each sentiment lexicon by comparing these 2 sets of
representative words. We sought to ascertain the extent to which
these 2 sets of representative words contained general-purpose
sentiment words and to what extent these 2 sets contained
additional sentiment words not included in the general-purpose
lexicons.

Methods

Corpus Analysis

Clinical Cohort
We studied deidentified EHRs of over 250,000 patients from
the South London and Maudsley National Health Service
Foundation Trust using the Clinical Record Interactive Search
(CRIS) database, comprising over 3.5 million text documents
[26]. CRIS has been linked with national hospital admission
data within a secure safe haven, allowing hospital admission
information to be extracted. The deidentified CRIS database
has received ethical approval for secondary analysis: Oxford
REC C, reference 18/SC/0372. Access is granted upon request
to authorized researchers working on projects that have received
prior approval from the CRIS Oversight Committee. The data
presented in this study can be viewed within the secure system
firewall.

Our data set was derived from the EHRs of 17,640 patients. It
consisted of 4235 suicide attempt–related (case) admissions
and 16,940 nonsuicide attempt–related (control) admissions,
sampled according to a 1:4 case-control ratio. Cases were
defined as any admission (acute physical or specialist mental
health) where there was a suicide attempt (indicated by any of
the following codes from the International Classification of
Diseases (ICD-10): X6*, X7*, X80-4*, Y1*, Y2*, Y30-4*, and
Y87*) with the admission lasting at least 24 hours. Admissions
starting on or after April 1, 2006, and ending before or including
March 31, 2017, were considered. Case admissions that had at
least one document in the 30 days up to and including the date
of the suicide attempt were retained. We also removed
admissions with empty documents (text from scanned documents
is not always available in CRIS), resulting in a total of 4235
suicide-related admissions. Controls did not have any of the
specified ICD-10 codes in the given period, were matched by
sex, had to be alive at the admission start date of the
corresponding case, and were matched to the same age group
(5-year age bands: <16, 16-19, 20-24 to 80-84, and >85 years).
Each control also had at least one document in the 30 days up
to and including the date of the suicide attempt of the matched
case. The controls were chosen to be representative (in terms
of age and sex) of the population from which the cases were
drawn, and the ratio was based on the epidemiological principle
that little statistical power is gained by further increasing the
number of controls beyond approximately 4 per case [27]. The
key descriptive characteristics of the cohort are presented in
Table 1.
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Table 1. Cohort patient- and admission-level statistics.

ControlsCasesUnit of observation

14,727 (83.49)2913 (16.51)Patients, n (%)

8971 (60.92)1730 (59.39)Female

5756 (39.08)1183 (40.61)Male

16,940 (80.00)4235 (20.00)Admissions, n (%)

10,392 (61.35)2598 (61.35)Female

6548 (38.65)1637 (38.65)Male

34.4 (15.4)34.4 (15.3)Age (years), mean (SD)

EHR Corpus
Our corpus comprised all EHR texts for each of the 2 subgroups
in our clinical cohort: (1) suicidal case admissions and (2)
nonsuicidal controls.

Our use of a 1:4 case-control study design for admissions means
we expect a disparity in document number and word count
between subcorpora. However, there are only 77.92%
(55,643/71,404) more control documents (n=127,047) than case
documents (n=71,404), rather than the 300% difference that

might be expected for 1:4 sampling of random patients.
Following data preprocessing (refer to the Data Preparation
subsection), the mean lexical word count for case documents
(n=117.4) is higher than that for control documents (n=103.9),
so that the overall word (token) count ratio is not 1:4 but
approximately 1:1.6, whereas the mean unique word (type)
count ratio is approximately 1.5. The basic descriptive statistics
for the corpus are shown in Table 2. The distribution of
documents per patient followed a non-normal distribution, as
shown in Multimedia Appendix 1.

Table 2. Electronic health record corpus descriptive statistics.

TotalControlsCasesUnit of observation

21,583,89313,198,2508,385,643Word tokens, n

206,866162,696109,024Word types, n

0.961.231.30Type-token ratioa, %

198,451127,04771,404Documents, n

108.8 (241.3)103.9 (252.7)117.4 (219.1)Number of words per document, mean (SD)

aType-token ratio = number of word types / number of word tokens × 100.

Data Preparation
All texts were preprocessed using the Natural Language
Processing (NLP) library spaCy (v2.0.12) [28], applying the
following steps: word tokenization, part-of-speech tagging, and
lemmatization (to use the base form of words). We removed
stop words using the Natural Language ToolKit [29] stop words
list for English and lowercased all words for our analyses. All
codes were made available on GitHub [30].

Identifying Representative Keywords
To answer our questions concerning the coverage of each
lexicon, we adopted methods based on word frequency
distributions, commonly used in corpus linguistics, as described
further in Multimedia Appendix 1 (C) [31-34]. We first
determined which keywords were most representative of each
subcorpus (suicidal case admission texts and nonsuicidal control
texts) by calculating the relative word frequency ratios between
subcorpora. Following recommendations from previous research
in corpus linguistics [31-33] and given the non-normal
distribution of documents between patients, we then applied
the nonparametric Mann-Whitney U test to determine the
statistical significance of word frequency differences (FreqDiff
(w) for a given word w) between subcorpora. We only retained

words that occurred in both the case and control subcorpora,
leaving a total of 64,854 unique token types. Words appearing
in only one or other subcorpora were relatively infrequent
compared with those that were common to both subcorpora.
For example, the most frequent case-only keywords were
identifying initials, with a maximum frequency of 20.2 words
per million (wpm), whereas the most frequent control-only
keywords were persons’ names, with a maximum frequency of
34.4 wpm.

Sentiment Lexicon Analysis

Sentiment Lexicons
We examined six different sentiment lexicons that were
developed for nonclinical domains. Various dimensions of
sentiment and affect have been studied, including emotion,
valence-arousal-dominance, and polarity. We focused solely
on lexicons that represent this last aspect, that is, negative and
positive sentiment polarity. Along with assigning negative and
positive polarity, some sentiment analysis tools also assign a
value for words that do not convey semantic polarity (ie, neutral
words). However, we only considered words that express
positive and negative sentiments, as not all the lexicons in this
study contain neutral terms. Therefore, we filtered out any
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neutral words. Furthermore, for the sake of comparison, we
only examined binary sentiment values rather than degree scores,
which only some lexicons provide. We selected the following
lexicons for this study: AFINN [35], the NRC Emotion Lexicon
(commonly known as EmoLex) [36], Linguistic Inquiry and
Word Count (LIWC) [37], the Opinion lexicon [9], the Pattern
lexicon [38], and SentiWordNet [39]. The lexicons differ in
terms of the forms they contain (words, lemmas, and regular

expressions). We applied each one as-is to the appropriately
preprocessed corpus (eg, words or lemmas) to compare them,
as they have been used in other studies. We provide details of
the lexicons, including preprocessing and filtering, in
Multimedia Appendix 1 (B) [9,35-44]. Table 3 summarizes
some of the main characteristics of each of these lexicons,
including size before (original size) and after (filtered size)
filtering out neutral entries.

Table 3. Characteristics of the 6 sentiment lexicons.

Filtered size (number
of entries), n (%)

Original size
(entries), n

Term typeIntended domainAutomatic
term selection

SourceLexicon

3478 (100.00)3478Word formsMicroblogsNoVarious web-based word listsAFINN

5555 (39.17)14,182Word formsGeneralNoMacquarie Thesaurus, General
Inquirer, WordNet

EmoLex

1371 (100.00)1371Word forms and
regular expres-
sions

Personal narrativesNoVarious dictionaries and the-
sauruses

LIWCa

6789 (100.00)6789Word formsProduct reviewsYesWeb crawl of product reviewsOpinion

2293 (79.18)2896Lemmas+POSbProduct reviewsNoSubset of WordNetPattern

39,746 (33.78)117,659 Synset Lem-
mas+POS

GeneralYesWordNetSentiWordNet

aLIWC: Linguistic Inquiry and Word Count.
bPOS: part of speech.

Lexicon Coverage
We assessed the coverage of each lexicon in three different
ways:

1. Global coverage: The percentage of sentiment-bearing
lexical entries that appeared in the list of (unique) words
for each subcorpus. Further details are provided in
Multimedia Appendix 1 (D).

2. Keyword coverage: The proportion of case and control
keywords covered by the sentiment-bearing terms of a
lexicon. First, we calculated the percentage of keywords
identified by each lexicon for each subcorpus. Second, we
used metrics common to information retrieval, namely,
weighted precision (Pw), recall (Rw), and F score (Fw),
which we calculated for each lexicon across the unordered
set of all keywords, using word ranking as the weighting.
Details of our calculations, including formulae, are provided
in Multimedia Appendix 1 (D). A lexicon’s precision shows
how many case keywords it correctly identifies as a
proportion of all the keywords it contains. The inclusion of
control keywords in a lexicon, therefore, penalizes
precision. In contrast, recall indicates the number of case
keywords that the lexicon correctly identifies from the entire

list of case keywords. The absence of case keywords from
a lexicon results in a penalty on recall. Fscore provides a
combination of the preceding 2 metrics and an overall
quantified evaluation of a lexicon’s keyword coverage.

3. Sentiment coverage: The sentiment polarity (positive or
negative) that lexicons assigned to matched keywords for
each subcorpus.

Results

Corpus Analysis
The step of generating representative keywords for each
subcorpus (refer to the Corpus analysis subsection) resulted in
a list of 3382 keywords. Sorted by decreasing the frequency
difference, the top words (with FreqDiff>0) are representative
of the suicidal case subcorpus (2360 keywords). Similarly,
sorting in ascending order, top words (with FreqDiff<0) are
representative of the nonsuicidal control subcorpus (1022
keywords). Table 4 shows the 10 top-ranking keywords for each
subcorpus. In this table, we show each word’s rank as well as
its frequency in the whole corpus, the frequency difference
between case and control subcorpora, and the frequency ratio
for the word across the subcorpora. We provide a similar list of
the top 100 keywords in Multimedia Appendix 2.
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Table 4. Ranked keyword list for suicidal case and nonsuicidal control subcorpora.

Nonsuicidal control keywordsSuicidal case keywords

Freq ratioFreq diffFreq (words per
million)

WordRankFreq ratiocFreq diffbFreqa (words per
million)

WordRank

1.1−3801.435657.1ZZZZZd11.63545.79779.1QQQQQd1

1.4−1242.53092.5mental21.92060.94278.5self2

2.0−1138.11197.9mr32.41673.42916.2harm3

1.7−1124.51583.5appointment41.41597.15554.7ward4

1.3−1017.43756.5medication55.31392.81717.0overdose5

1.3−771.12282.2health61.31389.45670.0staff6

1.5−703.61305.9please72.51256.22072.5suicidal7

1.4−694.41640.3state81.31137.75725.4said8

1.6−678.11190.6service91.91102.42276.2alcohol9

1.8−596.2729.3road103.51089.51534.1a&e10

aFreq: word frequency.
bFreq diff: frequency difference.
cFreq ratio: frequency ratio between subcorpora.
dMasking strings created by the electronic health record deidentification process: QQQQQ for relative or close contact identifiers and ZZZZZ for patient
identifiers.

For the suicidal case subcorpus, the top keyword “QQQQQ” is
a placeholder for anonymized names of relatives or close
contacts of the patient created by a bespoke deidentification
algorithm used in CRIS [45]. This could indicate concerns of
relatives or carers being reported to staff over the patient’s
status. Other top keywords directly relate to the theme of suicide
attempts (overdose, suicidal, and a&e [accident and
emergency]). The frequency ratio indicates that overdose is over
5 times and a&e is over 3.5 times more frequent in the case
subcorpus than in the control subcorpus. Other words relate to
hospitalization (ward and staff) and self-harm (self and harm).

Visual inspection shows that self and harm frequently co-occur
in noun phrases such as harm to self and self-harm (which was
incorrectly segmented into 2 tokens by the tokenizer).
Furthermore, harm also occurs with reflexive pronouns, for
example, harm himself/herself, also referencing self-harm
events. Alcohol is also clinically relevant because both chronic
alcohol use disorders and acute use of alcohol confer risk for
attempted suicide.

In contrast, for the control subcorpus, the top keyword “ZZZZZ”
is a placeholder for anonymized patient identifiers. These top

keywords are more generic terms that may be found in most
types of clinical notes (eg, mental, health, and state) and some
are likely to be derived from correspondence (eg, mr,
appointment, and please). Although the top control keywords
are significantly more frequent than those in the case subcorpus,
the frequency difference and ratio are globally less marked than
for case keywords. The median absolute frequency difference
(FreqDiff) for the top 10 control keywords is 894.2, compared
with 1391.1 for cases. The corresponding median frequency
ratios (FreqRatio) are 1.90 for cases and 1.45 for controls. This
indicates that keywords for suicide-related texts are more
strongly representative of the case subcorpus than the keywords
for the control subcorpus. This may reflect the fact that cases
have a distinct unifying feature of being included for their
hospitalized suicide attempt, whereas control admissions were
from any period as long as they did not precede a suicide
attempt. It should be noted that no suppositions about the
sentiment associated with these keywords were made.

Sentiment Lexicon Analysis
We first assessed the global coverage of sentiment lexicons
(refer to Multimedia Appendix 1 (E) for details). The figures
for global coverage are summarized in Table 5.
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Table 5. Term type and token counts for each lexicon in case and control subcorpora and whole corpus. Percentages for control words are shown as
(raw/adjusted). Figures are in descending order of lexicon (filtered) size.

Word tokensWord typesFiltered
size

Lexicon

Whole corpus, n (%)Control, n (%)Case, n (%)Whole corpus,
n (%)

Control, n (%)Case, n (%)

12,837,990 (59.48)8,603,932
(65.19/41.42)

4,234,058 (50.49)13,373 (6.46)12,429
(7.64/5.12)

9843 (9.02)39,746SentiWord-
Net

2,938,811 (13.62)1,959,007
(14.84/9.43)

979,804 (11.68)3821 (1.85)3662 (2.25/1.51)3111 (2.85)6789Opinion

4,325,569 (20.04)2,869,472
(21.74/13.81)

1,456,097 (17.36)4426 (2.14)4260 (2.62/1.75)3733 (3.42)5555EmoLex

3,806,544 (17.64)2,532,261
(19.19/12.19)

1,274,283 (15.20)2845 (1.37)2781 (1.71/1.15)2529 (2.32)3478AFINN

2,867,755 (13.29)1,957,386
(14.83/9.42)

910,369 (10.86)1296 (0.63)1243 (0.76/0.51)1101 (1.01)2293Pattern

2,450,762 (11.35)1,830,216
(13.87/8.81)

620,546 (7.40)6269 (3.03)5824 (3.58/2.40)3708 (3.40)1371LIWCa

aLIWC: Linguistic Inquiry and Word Count.

SentiWordNet, by far the largest lexicon, has the widest
coverage of approximately 60% of all tokens (6.46% types) in
the entire corpus. The pattern has the lowest word-type coverage
for both subcorpora and the whole corpus (0.63%). Although
LIWC has the fewest lexical entries (1371), its use of regular
expressions that capture multiple word forms means it maps
more individual word types (but has the lowest coverage of
tokens, 11.35% on the whole corpus). Despite having
approximately 1200 and 3300 fewer entries than Opinion,
respectively, EmoLex and AFINN both have a substantially
higher coverage of word tokens over the larger lexicon. EmoLex
also has a slightly higher coverage of token types. This may be
a consequence of the manner in which these lexicons were
constructed and the sources from which they were derived. We
review this issue in the Discussion section.

With the exception of LIWC, all lexicons show higher coverage
of word types in the case subcorpus than in the control

subcorpus. The same trend was observed when considering the
adjusted percentages for word tokens. This suggests that there
is generally more sentiment (as defined in these lexicons)
expressed in the case subcorpus than in the control subcorpus,
assuming an artificial scenario in which there are an equal
number of words of each. However, if no adjustment for word
frequency disparities across subcorpora is made, the opposite
tendency is observed for all lexicons.

This notion of coverage does not take into account the
representativeness of the words in question. To capture this
crucial characteristic, we examined the proportion of keywords
(word types) from each subcorpus containing each lexicon
(keyword coverage; refer to the Corpus Analysis subsection and
Multimedia Appendix 1 [D]). The overall proportional coverage
of keywords is shown in Table 6.

Table 6. Case and control keywords that appear in each sentiment lexicon, in descending order of lexicon (filtered) size. The total number of keywords
for the case subcorpus is 2360 and for the control subcorpus is 1022.

Control, n (%)Case, n (%)Filtered sizeLexicon

231 (22.6)604 (25.6)39,746SentiWordNet

60 (5)192 (8.1)6789Opinion

117 (11.4)277 (11.7)5555EmoLex

74 (7)238 (10.1)3478AFINN

39 (3)115 (4.9)2293Pattern

48 (4)181 (7.7)1371LIWCa

aLIWC: Linguistic Inquiry and Word Count.

As with global coverage, keyword coverage is correlated with
lexicon size, with LIWC being the exception. Again, when
examining only the most representative words for each
subcorpus, Opinion, the second largest resource, has
substantially lower coverage than both EmoLex and AFINN,

which are smaller in size, the latter resource numbering only
half as many keywords among its entries.

Evaluating the lexicons from an information retrieval perspective
revealed the extent to which each lexicon strikes a balance
between the inclusion of case keywords and the exclusion of
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control keywords, accounting for the representativeness of the
words identified. As shown in Table 7, all lexicons provided
reasonable weighted precision (0.53-0.72). However, weighted

recall and weighted F-score, which varied substantially across
lexicons, were very low (0.04-0.36).

Table 7. Weighted metrics for each lexicon in descending order of weighted F score.

Weighted F scoreWeighted recallWeighted precisionLexicon

0.470.360.68SentiWordNet

0.290.180.68EmoLex

0.250.150.72AFINN

0.180.110.68Opinion

0.170.100.69LIWCa

0.070.040.53Pattern

aLIWC: Linguistic Inquiry and Word Count.

These results show that, of all the lexicons we tested,
SentiWordNet provides the best balance between precision and
recall over keywords from the 2 subcorpora. Owing to its size,
it obtained the highest recall. This indicates that it contains more
of the most highly ranked case keywords than the other lexical
resources. It also achieved precision on par with the other
lexicons, indicating that the words it identifies are often
high-ranking keywords from the suicide-related case subcorpus.
The pattern lexicon achieved significantly lower results in terms
of weighted precision and recall than all other lexicons, despite
being larger than some of these. This suggests that its included
sentiment terms are of a somewhat different nature and do not
contribute a clear signal for distinguishing representative case
keywords from control keywords.

Overall, as tools for distinguishing suicide-related from
nonsuicide-related clinical notes, this evaluation, in particular
the recall figures, shows that the most representative keywords
in both subcorpora are not sentiment bearing, as defined in all
these lexicons, thus indicating that there is a need for further
analysis of the representative subcorpus keywords to better
understand their characteristics.

Finally, we examined the distribution of sentiment among the
top-ranking representative keywords for each subcorpus
(sentiment coverage). Figure 1 shows the ranks of the top 100
keywords each lexicon contains for the case and control
subcorpora. In addition to plotting the ranks of words featured
in each lexicon, we also indicate, through color and shape
coding, the polarity associated with each term.

JMIR Med Inform 2021 | vol. 9 | iss. 4 |e22397 | p.105https://medinform.jmir.org/2021/4/e22397
(page number not for citation purposes)

Bittar et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Comparative sentiment lexicon coverage of top 100 ranked words for the suicidal case and nonsuicidal control subcorpora.

In terms of sentiment coverage, AFINN, EmoLex, LIWC, and
Opinion mark a clear distinction between the top case and
control keywords. These lexicons assign negative sentiment to
high-ranking case keywords (eg, harm [ranked third], risk [11th],
kill [52nd], and pain [78th]) and positive sentiment to top control
keywords (eg, please [seventh], calm [40th], and pleasant
[49th]), and negative also to certain high-ranking control
keywords (eg, aggressive [61st], illness [63rd], and anxiety
[83rd]).

Only 2 high-ranking keywords for cases appeared in the Pattern
lexicon: these were safe [51st], which was the only one of the
top 100 ranked words consistently found for cases across all 7
lexicons, and past [68th], which only appeared in Pattern and
was ascribed a negative polarity (further discussed in the
Discussion section). Calm [40th] and pleasant [49th] were the
only top 100 keywords found consistently for controls across
all 6 lexicons, and these were ascribed a positive polarity by all
except SentiWordNet. This unexpected assignment of sentiment
(the adjective calm is given a heavily negative score in
SentiWordNet, whereas anxious, borderline, cutting, and
concern are positive) highlights the importance of studying the
underlying assumptions in off-the-shelf tools and their potential
implications when applying them for a new use case.

For SentiWordNet, sentiment of top keywords is mixed, with
a higher proportion of positive sentiment keywords in both
subcorpora, although it assigned more negative sentiment for
controls and for a greater proportion of the high-ranked
keywords. This shows that despite having a larger lexical
coverage, the sentiment coverage of this lexicon may not be
sufficiently consistent to reliably distinguish the 2 populations.

It is important to note that 51 of the top 100 keywords for the
case subcorpus were not identified by any of the lexicons. These
included self, staff, said, alcohol, and a&e, all in the top 10
(Table 4), as well as further highly clinically relevant (although
not necessarily sentiment bearing) words such as paracetamol
(ranked 25th, FreqDiff=524.6, FreqRatio=4.5), the abbreviation
od (used variably in psychiatry to mean either overdose or omne
in die [once a day] with respect to medication; ranked 29th,
FreqDiff=498.2, FreqRatio=2.2), ambulance (ranked 57th,
FreqDiff=340.9, FreqRatio=3.3), the plural form overdoses
(ranked 68th, FreqDiff=314.0, FreqRatio=7.6), and the acronym
dsh (deliberate self-harm; ranked 83rd, FreqDiff=275.1,
FreqRatio=3.4). The frequency ratio of these words shows that
they were many times more frequent in suicide-related case
notes than in the control corpus. Over the entire list of case
keywords, only 33.35% (787/2360) were assigned a sentiment
value by at least one of the lexicons. Furthermore, 51 of the top
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100 control keywords were also absent from all lexicons, many
of which pertain to correspondence (eg, mr, appointment, and
fax). We refer the reader to Multimedia Appendix 2 for further
details.

Discussion

Implications for Suicide Risk Assessment Lexicon
Development
The list of representative keywords extracted from our corpus
shows that the notion of sentiment generally adopted in the field
of NLP is not the most appropriate semantic category for
identifying terms that typify case notes of suicidal patients.
Many of these terms do not carry an obvious negative or positive
polarity, as defined in the tested sentiment lexicons.

Our analysis also showed that there is a need for further analysis
of the assignment of sentiment polarity by these tools when
applied on new use cases.

Furthermore, many of the keywords we identified as
representative of suicide-related case notes were neutral with
respect to sentiment, which is expected, and representative case
keywords extracted in our study indicate that they are distinct
from control keywords, but not all such terms would necessarily
be sentiment bearing.

Our results show that these sentiment lexicons built using
validated lexical resources, such as dictionaries or thesauri (eg,
EmoLex), had higher combined precision and recall results than
those derived from semiautomatic processes over large
open-domain text corpora (eg, Opinion, built by web crawling).

Guidelines for Building Sentiment Lexicons for Suicide
Risk Assessment
Following the work of Deng et al [24], one solution to the
unsuitability of general-domain lexical resources for the clinical
domain consists of defining the notion of sentiment for the
analysis of clinical texts, and in the present case, of mental
health (Guideline 1). This could allow the assignment of polarity
to terms that do not feature in general-purpose lexical resources.
In the case of suicide risk assessment, this might include the
assignment of negative polarity to terms such as a&e, overdose,
alcohol, dsh, and plan, which were not assigned a polarity value
by the lexicons we tested.

In light of our results, a suggested strategy for building a suicide
risk assessment lexicon may be to use corpus word frequencies
as a guide to inclusion of words in a lexical resource that would
remain agnostic with respect to sentiment (Guideline 2) and
instead labeling terms as trigger or risk factor words (Guideline
3). Such a strategy would avoid the problem of assigning
sentiment to words which, although highly representative of
suicide-related texts, do not have an obvious sentiment value.
This would also obviate the need to assign a polarity to terms
that may be ambiguous in the sentiment they express, being
either positive or negative depending on context (eg, low
[emotion] vs low [risk]), although the more general problem of
polysemy remains.

For clinically relevant terms, specialized psychiatric dictionaries
or health care terminologies could be beneficial in creating a
targeted lexical resource for suicide risk assessment (Guideline
4). For example, certain risk factors for suicide (eg, previous
suicide attempts, depression, and substance misuse) and
protective factors (eg, effective clinical care, family, and
community support) are already well-known clinical features.
Therefore, these concepts and associated terms should be
reflected in any lexicon aiming to identify periods of increased
suicide risk in clinical notes. One caveat that must be kept in
mind is that many terms contained in specialized clinical
terminologies are not written in EHRs by clinicians [46],
meaning that term selection should be carried out by domain
experts with a general awareness of typical target corpora.

Automated approaches to extracting terms from large corpora
have become common in the field of NLP, including the creation
of sentiment lexicons [47-49]. These techniques provide a means
to increase the coverage of relevant terms, although it is
preferable to implement some mechanism to ensure that the
criterion of relevance is respected. Incorporating a
domain-specific corpus-based notion of term representativeness
into automatic lexicon induction procedures [50] is one way of
refining term selection, filtering out terms that are deemed to
be nonrepresentative (Guideline 5). Furthermore, a manual
validation by domain experts (Guideline 6), where feasible,
would further serve to ensure the precision of the extracted
terms and could also be used to assign additional semantic
categories such as sentiment.

Summary of guidelines is as follows:

1. Define the notion of sentiment for the clinical domain
2. Use corpus word frequencies as a guide to inclusion of

words in a lexicon
3. Label terms as risk factor or trigger rather than

sentiment-bearing
4. Use specialized dictionaries and/or health care terminologies

as a source
5. Incorporate domain-specific corpus-based notion of

representativeness into automatic lexicon induction
techniques

6. Manual validation by domain experts

Summary and Limitations
Examining our data using the methods of corpus linguistics
revealed statistically significant differences between the
keywords used in EHR notes preceding an admission for
attempted suicide and those from control periods not associated
with such an attempt. Themes included hospitalized suicide
attempts, self-harm, and alcohol. Coverage of these keywords
by the general-purpose sentiment lexicons we reviewed was
varied. Although lexicon size was a determining factor in overall
coverage, the largest resource, SentiWordNet, did not distinguish
the 2 subcorpora as well as some of the smaller resources,
namely, AFINN, EmoLex, and Opinion, once both keyword
rankings and sentiment were taken into consideration. Similarly,
EmoLex and AFINN had wider coverage of relevant keywords
than Opinion, which is the largest of the 3 resources. This may
be partly a consequence of the original sampling strategy used
to select words to construct sentiment lexicons. Both EmoLex
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and AFINN were built on top of existing general-purpose
dictionaries, whereas Opinion was created semiautomatically
by crawling product reviews on the internet. As a result, the
vocabulary of the latter may be more specific to that domain,
whereas the 2 former lexicons are likely to be more generic in
their terminology, meaning they may adapt slightly better to
different domains. The same 3 lexicons also showed the most
discriminating assignment of sentiment polarity between the
case and control keywords. Although many of the terms
contained in these resources can be said to convey appropriate
sentiment values (eg, anxiety is negative and pleasant is
positive), there are also certain terms for which this is less
obvious, at least in the context of EHR text related to suicide
risk. For example, ward is assigned negative sentiment by
SentiWordNet, whereas thoughts are assigned positive
sentiment. The word plan is assigned positive sentiment by
EmoLex, whereas call is negative. Annotating word polarity in
a noncontextual manner, especially without appropriate
part-of-speech disambiguation (only 2 of the resources we tested
contained entries with part-of-speech information), could lead
to biased analyses in downstream modeling of new use cases.
Clinical texts are intended to be written in an objective style,
rather lacking what one might generally term sentiment, although
in reality this may not always be the case. Many of the most
highly relevant terms identified by our approach (eg, a&e,
overdoses, and alcohol) do not fall into what might typically
be termed a sentiment category but rather belong to categories
of risk factors, whereas other identified terms are more sentiment
bearing.

These observations lead us to concur with the conclusions of
previous research [21-24] that domain-specific resources need
to be developed for the analysis of clinical texts. We have
attempted to provide insight into why this might be and what
information such resources might need to include to address
the task of suicide risk assessment through the analysis of
clinical notes.

Our study has some limitations. First, the corpus was not
constructed according to a deliberate sampling strategy but is
the result of a 1:4 case-control selection ratio, which is typical
in epidemiology. Completed and attempted suicide is much
rarer than our sample suggests. Furthermore, the documents
were not sampled according to type. This may have led to a
preponderance of letters in the control corpus, as suggested by
the most frequent keywords. The distribution of documents
between patients also differs between the case and control
subcorpora. Cases have, on average, almost 3 times the number
of documents as controls, which is reflective of more frequent
contact with mental health services. Consequently, the resulting
corpus does not necessarily fulfill the criteria of
representativeness and balance generally recommended in
corpus linguistics.

We also acknowledge that our normalization of sentiment values
for the sake of comparison does not necessarily reflect the actual
quantity of sentiment assigned by all lexicons and invite the
reader to refer to previous studies where raw sentiment scores
are compared [20-22]. It is also worth noting that previous
studies have shown that emotions, such as happiness expressed
in social media posts, may vary with population demographics,
geographical location [51,52], movement, and residency status
in an area [53]. Although our work has focused on clinical texts
instead of social media, such factors may have influenced our
results; however, we have not controlled for this. This represents
a caveat concerning the generalizability of our results to clinical
populations in other geographical areas with potentially different
sociodemographic configurations.

Finally, we only examined keywords that were common to both
subcorpora. As a consequence, certain keywords typical of
suicidal case notes only appearing in the case subcorpus may
have been missed out, although we did find keywords appearing
in only 1 subcorpus to be relatively infrequent compared with
those we did examine.

Conclusions
This work makes several contributions to the study of sentiment
in suicide risk assessment.

First, our corpus of clinical notes drawn from a case-control
study of suicidal and nonsuicidal hospital admissions is, to our
knowledge, a novel use of EHRs in this area.

Second, by applying methods of corpus linguistics, we identified
2 lists of keywords: the first representative of the clinical notes
of patients leading up to a hospitalized suicide attempt and a
second for those who made no such attempt. We used these lists
of keywords to gauge the coverage of 6 sentiment lexicons over
our corpus, using a number of measures, including information
retrieval metrics, which we adapted for the purposes of our
evaluation. Our study provided a novel examination of the
content of these lexicons and their implications in relation to
sentiment analysis as well as deeper insights into the
characteristics of terms that distinguish suicide risk cases from
controls in EHR text. Furthermore, we found that these
general-domain resources assign polarity values that are
sometimes not clinically meaningful or consistent with clinical
judgments.

Finally, based on the outcomes of our study, we have suggested
a set of simple and clear guidelines to facilitate the creation of
more useful lexical resources for those seeking to assess risk of
suicide through the analysis of clinical notes. Such targeted
lexicons have the potential to advance research into the use of
EHRs for the study of suicide risk in clinical populations by
providing discriminative features for use in both rule-based and
machine learning classification systems.
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Abstract

Background: Increased work through electronic health record (EHR) messaging is frequently cited as a factor of physician
burnout. However, studies to date have relied on anecdotal or self-reported measures, which limit the ability to match EHR use
patterns with continuous stress patterns throughout the day.

Objective: The aim of this study is to collect EHR use and physiologic stress data through unobtrusive means that provide
objective and continuous measures, cluster distinct patterns of EHR inbox work, identify physicians’ daily physiologic stress
patterns, and evaluate the association between EHR inbox work patterns and physician physiologic stress.

Methods: Physicians were recruited from 5 medical centers. Participants (N=47) were given wrist-worn devices (Garmin
Vivosmart 3) with heart rate sensors to wear for 7 days. The devices measured physiological stress throughout the day based on
heart rate variability (HRV). Perceived stress was also measured with self-reports through experience sampling and a one-time
survey. From the EHR system logs, the time attributed to different activities was quantified. By using a clustering algorithm,
distinct inbox work patterns were identified and their associated stress measures were compared. The effects of EHR use on
physician stress were examined using a generalized linear mixed effects model.

Results: Physicians spent an average of 1.08 hours doing EHR inbox work out of an average total EHR time of 3.5 hours. Patient
messages accounted for most of the inbox work time (mean 37%, SD 11%). A total of 3 patterns of inbox work emerged: inbox
work mostly outside work hours, inbox work mostly during work hours, and inbox work extending after hours that were mostly
contiguous to work hours. Across these 3 groups, physiologic stress patterns showed 3 periods in which stress increased: in the
first hour of work, early in the afternoon, and in the evening. Physicians in group 1 had the longest average stress duration during
work hours (80 out of 243 min of valid HRV data; P=.02), as measured by physiological sensors. Inbox work duration, the rate
of EHR window switching (moving from one screen to another), the proportion of inbox work done outside of work hours, inbox

work batching, and the day of the week were each independently associated with daily stress duration (marginal R2=15%).

Individual-level random effects were significant and explained most of the variation in stress (conditional R2=98%).

Conclusions: This study is among the first to demonstrate associations between electronic inbox work and physiological stress.
We identified 3 potentially modifiable factors associated with stress: EHR window switching, inbox work duration, and inbox
work outside work hours. Organizations seeking to reduce physician stress may consider system-based changes to reduce EHR
window switching or inbox work duration or the incorporation of inbox management time into work hours.
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Introduction

Background
Inbox management is an important component of electronic
health record (EHR) work for physicians and a key potential
stressor [1]. Through their EHR inbox, physicians receive
messages from other physicians, staff, and patients. Studies of
inbox management in other professions repeatedly report inbox
management as a source of stress due to the time it takes to go
through an ever-increasing volume of emails, the task demands
associated with emails, and the interruptions they create [2-4].
Similarly, EHR inbox management has been identified as a
possible contributor to physician stress and burnout [5,6]. To
understand the relationship between EHR adoption and use and
stress, it is critical to examine how physicians spend time on
the EHR inbox.

Although several studies have addressed the stress or burden
related to EHR use, there are two main limitations in previous
work. First, scant research focusing on the inbox component of
the EHR exists [1,5,7,8]. Second, previous studies relied on
self-reported stress measured at a single time point (or a few
time points) [5], which fails to capture the detailed and continual
stress and EHR work patterns throughout the day and is prone
to bias [9,10].

Our study investigates physicians’ EHR inbox use patterns and
associated stress, as measured unobtrusively and continuously
by EHR system logs and wearable sensors. The objectives of
this study are as follows:

1. Collect EHR use and stress data through unobtrusive means
that provide objective and continuous measures.

2. Cluster and visualize distinct EHR inbox work patterns and
identify their characteristics.

3. Identify physicians’ daily stress patterns.
4. Evaluate the association between EHR inbox work

characteristics and physician stress.

Previous Work on Physician Workload Related to the
EHR and EHR Inbox
Studies have noted the burden of EHR digital work for
physicians [11-13]. EHR-related factors that could lead to
physician stress and burnout include the extra time needed,
often beyond work hours, to complete EHR-related work
[14-17], usability issues [18-20], risks associated with errors
[21], and taking time out from face-to-face interactions with
patients [22].

For EHR inbox management, a 2017 study [14] using EHR logs
found that time spent in the inbox accounted for 24% of total
EHR time, and of the time spent in the inbox, a larger proportion
was spent after work hours compared with the time spent on
other EHR activities. A study reported that 86% of surveyed
physicians worked outside of work hours to respond to inbox

messages [23], whereas another study reported that 37% of
inbox work was done outside of work hours [24]. In addition
to the time it takes within and outside of work hours,
inbox-related burden has been attributed to the volume and
source of EHR messages [5,7] and information overload from
notifications (ie, asynchronous alerts) [25]. A 2012 study based
on EHR logs [26] found that primary care physicians (PCPs)
received a mean of 56.4 alerts per day and spent an estimated
average of 49 minutes per day processing their alerts. A more
recent study [1] found that PCPs received a mean of 77 (SD 38)
inbox message notifications per day compared with the 30
notifications for specialists. Message quantity has been
associated with increased attention switching and inbox work
duration [27]. However, although these studies quantified EHR
inbox–related factors and measured self-reported workload,
well-being, or burnout at a single time point, they did not
measure daily stress associated with EHR inbox use.

Unobtrusive Sensing of Stress
One of the main limitations of previous studies on EHR and
stress is the reliance on self-reported measures of well-being
and burnout collected at a single time point [7,18]. In addition
to not directly measuring stress per se, self-report approaches
have several limitations for stress monitoring in the workplace.
When people subjectively report how they feel, their evaluation
could be affected by memory bias and emotion recognition,
regulation, and expression biases [9,10,28,29]. Administering
surveys for self-reports can also be disruptive, as they require
the full cognitive attention of the user and do not allow
continuous or frequent measurement that could be correlated
with inbox use.

Advances in wearable sensors and algorithms that filter and
analyze their data enable objective, continuous unobtrusive
sensing of physiological measures directly associated with stress,
such as heart rate variability (HRV). HRV is the variation in
time between one heartbeat and the next. When relaxing and
recovering, HRV increases, and it decreases during stress
[30-32]. Thus, measuring HRV throughout the day can provide
an objective and continuous measure of stress and relaxation,
which can be used to identify events associated with stress in
more granularity than is possible with self-reports.

Compared with other physiological stress measures that can be
obtained from wearable sensors in daily life, HRV is more
reliable in real-world settings (outside the laboratory). For
example, skin conductance (ie, electrodermal activity [EDA])
can be difficult to measure in dry, indoor air-conditioned settings
as the electrodes rely on sweat to measure conductance. In
addition, some people do not naturally produce adequate EDA
signals [33]. HRV sensors in wrist-wearable devices are light
based (photoplethysmography sensors) and are more commonly
used in consumer-grade wearables.
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HRV is affected by a number of factors other than stress, such
as physical activity and overall health. Thus, HRV as a measure
of stress is most reliable for healthy participants in sedentary
settings. Previous studies used HRV from wearable devices as
a measure of stress in office settings where participants were
working on a computer [34-37], making this method applicable
to computer-based work by physicians.

Methods

Study Setting
Data collection was conducted at one of the largest medical
groups in the United States. The medical group has 9200
physicians and serves 4.4 million members in 21 hospital-based
medical centers.

Since 2008, the participating medical group has been using a
comprehensive EHR (Epic Systems) that integrates inpatient,
emergency, and outpatient care, including primary care,
specialty, laboratory, pharmacy, and imaging data. The EHR
inbox, named the Inbasket, receives messages sent by patients
via a portal website (also available through patient-facing mobile
apps) and messages from other physicians, clinical staff, the
pharmacy, laboratory, and other departments. Physicians can
access the Inbasket on computers or mobile devices. Physicians
are expected to respond to each patient message within 2
business days. Patients are encouraged to use the messaging
functionality of the EHR to enhance access to their physicians
and the care experience.

Typical work hours when clinical settings are open and patient
appointments are booked are from 8:30 AM to 12:30 PM and
1:30 PM to 5:30 PM. Clinic time is dedicated to patient
appointments, which are conducted in person in the clinic or
via telephone or video telemedicine. Some physicians also do
clinical work during weekends, with work hours that might
differ from weekdays.

Recruitment and Protocol
Adult PCPs from 5 medical facilities within the medical group
were recruited. Between 7 and 12 physicians were enrolled at
each facility, with a total of 47 eligible physicians enrolled.

Physicians were eligible if they performed outpatient clinical
work for at least 3.5 days a week. Physicians who were taking
cardiac medications, had pacemakers or defibrillators, or had
been diagnosed with cardiac arrhythmias were not eligible
because of the interference of these factors with the HRV-based
stress measure. Eligibility was confirmed via a recruitment
email.

After obtaining written informed consent, the staff assigned a
wearable device with heart rate sensors (Garmin Vivosmart 3)
and configured the associated mobile apps (Garmin Connect
and Tesserae Phone Agent [38]) on the physician’s work-issued
mobile phone. The apps streamed data from the wearable device
via Bluetooth and uploaded the data to a server. The research
team also installed an experience sampling app [39] on the
physician’s mobile phone to send short questions at specified
times (see the Experience Sampling section). At enrollment,

physicians completed a brief 5-question written survey about
their EHR inbox management and stress.

Physicians were asked to wear the device and respond to the
daily short survey prompts for 7 consecutive days and keep
their phones and the wearable device charged. Physicians were
free to keep their wearable devices after data collection. The
study protocol was approved by the institutional review board
of Kaiser Permanente Northern California.

Data

EHR System Logs
We used system access logs, which contained granular
timestamped data on the Epic system EHR use. We created
hourly time bins and variables from the log data to quantify
how time was attributed to different activities and different
types of inbox messages per hour. These variables, which were
collected for every hour, included the number of minutes spent
in the EHR, the number of minutes spent in the inbox, the
number of minutes spent working on each inbox message type,
the number of tasks performed, and the number of window
switches (ie, clicking a new computer window).

We categorized the system-generated labels for message type
description into high-level categories by analyzing the frequency
of the labels along with input from our clinical collaborators
who are familiar with the meanings and patterns of different
types of messages. This approach resulted in 4 message types:
(1) messages from patients; (2) results, such as laboratory test
results; (3) requests, which ask the physician to perform an
action such as approving a medication refill or signing clinical
orders; and (4) informational and administrative messages. No
message content or metadata (ie, sender, receiver, and message
ID) were collected.

HRV-Based Measure of Stress
The device used to measure HRV (Garmin Vivosmart 3) was
a wrist-worn device with an optical heart rate sensor. It produces
a stress score based on HRV in still moments (ie, excluding
times with physical activity that interfere with HRV readings)
and accounts for the physiological norm of each user. The stress
score ranges from 0 to 100 and is provided via the Garmin
application programming interface as 3-minute averages of the
real-time stress scores generated on the device. The stress
analysis method used by the device has been empirically tested
and validated [40]. Garmin heart rate sensors were also
compared with other devices and were found to be among the
most accurate devices [41-44].

In our analyses, the HRV-based stress measure was the duration
(number of minutes) of medium and high stress (stress score of
>50). We excluded low stress periods (scores from 25 to 50)
because a certain amount of physiological stress indicates
arousal which is expected (and needed) for performing daily
tasks [45].

There were some gaps in the continuous HRV stress data (see
the Analysis section). Missing HRV stress data could be
attributed to loose fitting of the sensors on the wrist, removing
the device for charging, or forgetting to wear the device or
physical activity. We set a minimum of 20 minutes of HRV
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data per hour for hourly stress measures and 2 hours of data for
daily measures to be included in the analyses. We further report
the number of valid minutes of data on which each reported
stress measure is based.

Experience Sampling
During the data collection period, physicians received 3 short
daily surveys via the experience sampling app. The survey
consisted of 3 questions asking physicians to rate their stress in
the last 5 minutes (from no stress to high stress), their arousal
level (from low energy to high energy), and their mood (from
unpleasant to pleasant). The experience sampling app triggered
a phone notification asking physicians to take the survey 3 times
a day: morning (between 9:30 AM and 10:30 AM), lunchtime
(between 1 PM and 1:30 PM), and afternoon (between 3 PM
and 4 PM). The survey expired 45 minutes after the notification
if not opened.

Self-Reported Inbox Management Strategies and Related
Stress
At enrollment, physicians were asked to complete a 5-question
survey on their strategies for and feelings about Inbasket (their
EHR inbox) management. Physicians were asked to indicate
how distressful they found inbox management and whether they
had responsibilities that restricted their ability to work before
or after formal work hours.

Physician Characteristics
We also obtained physicians’ age, sex, years of experience, and
full-time equivalent (FTE) status, which is a measure of clinical
workload where 40 hours per week of scheduled work is 1.0
FTE. According to internal analyses by the medical group, FTE
is strongly correlated with the patient panel size for physicians.

Analysis
We used the Gaussian Mixture Models clustering algorithm
[46] to find distinct patterns of inbox work. Features in the
model included the distribution of inbox time in work hours
and outside of work hours contiguous and noncontiguous to
work hours. Multiple feature and cluster counts were tested,
and the clustering that yielded more balanced clusters and had
a reasonable silhouette score (a score that indicates how distinct
or overlapping the clusters are) [47] was selected.

To capture whether physicians dedicated certain blocks of time
for inbox work or consistently checked their inbox throughout
the day, we defined days with inbox work batching as days
where 70% or more of the total inbox work duration occurred
in 3 separate blocks of time or less. With consistent inbox
checking, a uniform distribution of inbox duration over the day
would typically be observed, whereas batching would show 2-3
daily peaks of high inbox duration [35]. We compared this
measure across clusters and used it as an independent variable
in the mixed effects model along with the other EHR inbox use
characteristics.

To compare clusters (ie, groups of different inbox work
patterns), each comparison variable was tested for normality
and homogeneity of variances before conducting an analysis of
variance for normal distributions with equal variances or the
Kruskal-Wallis test otherwise. For pairwise comparisons, a

posthoc analysis was conducted using the Tukey honestly
significant difference test for normally distributed variables and
Dunn test for nonparametric posthoc comparisons. Categorical
variables were tested using the Chi-square test.

To plot hourly stress patterns, we removed hours with less than
20 minutes of valid HRV data to avoid overestimating the stress
duration as a ratio of the measurement period (the measurement
period being valid HRV measurement duration). From a total
of 4245 hours, this filter removed 1177 hours (27.73%) of the
workdays’ HRV data. For daily stress measures, workdays with
less than 2 hours of valid HRV data were removed from the
analysis, as well as workdays that are Saturdays or Sundays,
and those with no inbox activity. This filter removed 21 days
in total, keeping 178 workdays for the daily stress analyses
(cluster comparison and a regression model).

We investigated the relationship between daily EHR inbox use
and stress through a generalized mixed effects model with
physicians as random effects. A Poisson distribution was used
to represent stress minutes as events within the observation
period (ie, valid HRV minutes as an offset in the model). The
distribution of the dependent variable (ie, stress duration) was
right skewed, as expected in a Poisson distribution. The
independent variables were centered (ie, mean subtracted). The
variance inflation factor was under 5 for all independent
variables, indicating that multicollinearity was not a problem.
Several models were compared, starting with a base model and
incrementally adding variables, to ensure that the improvement
in the model justified the added complexity of adding variables.
The model with the lowest Akaike information criterion and

highest marginal (fixed effects) R2 is presented.

Results

Participants
The 47 physicians (32/47, 68% female) were aged an average
of 43.83 years (SD 9.51; range 31-68), had an average of 15.17
(SD 9.93; range 4-42) years of experience in medicine, and had
an average FTE of 81% (SD 14%). On average, physicians in
the data set had 5.26 workdays (SD 0.94) and 2.74 nonworkdays
(SD 0.94) over the 8 days of data collection (the day of
enrollment plus 7 days in the study).

The HRV-based stress analyses included 42 physicians, because
5 physicians (1 male and 4 female) had technical issues, thereby
causing loss of the wearable device data.

The inbox strategies and stress survey was completed by 44
physicians.

Three Distinct Patterns of EHR Inbox Work
On workdays, physicians spent an average of 3.5 hours (SD
0.69) in the EHR, of which 1.08 hours (SD 0.38) were spent
doing inbox work. On nonworkdays, physicians spent an average
of 23.88 minutes (SD 36.3) in the EHR, including an average
of 13.78 minutes in inbox (SD 23.78). The majority of time in
the inbox was spent on patient messages (mean 37%, SD 11%),
followed by laboratory results (mean 31%, SD 8%), requests
(mean 20%, SD 6%), and administrative messages (mean 13%,
SD 5%).
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Using the Gaussian Mixture Models clustering algorithm, we
found 3 temporal patterns of work, with a silhouette score of
0.41, indicating moderate separation between these clusters (ie,
distinct groupings). Figure 1 shows the average hourly time
spent in the inbox and other EHR work (such as charting and
order entry) for physicians in each cluster. Group 1 (n=10)

represented physicians who spent time in the inbox outside work
hours, in the evenings and early mornings; group 2 (n=17)
represented physicians who worked mostly within work hours;
and group 3 (n=20) represented physicians who spent some
time on inbox work after hours that were mostly contiguous to
work hours.

Figure 1. Temporal patterns of inbox and other EHR work. The green background indicates work hours. EHR: electronic health record.

Free-text responses from the survey on inbox management
strategies supported these computationally generated inbox
work patterns. Responses from physicians in group 1 indicated
working beyond work hours, either by staying late in the office
or taking work home. Some representative comments were as
follows. A physician in group 1 reported, “I find when I sacrifice
sleep to do more at home, I’m too tired during the day and I’m
very inefficient at night,” indicating that they were working late
at night. Physicians in group 2 indicated working mostly within
work hours. For example, one physician in this group asserted,
“I arrive around 8:30 and prefer to leave around 5:30.” Another

stated: "I just like to work and finish work during my allotted
work time. I do not like to work at other times or at home."

Physicians in group 3 also indicated not taking work home but
at the cost of staying late in the office to clear their inbox. For
example, a physician in group 3 said, “I generally try not to take
work home [...] so often stay very late to clean out inbasket.”

Physician characteristics (age, sex, years of experience, and
FTE) did not show statistically significant differences across
the 3 work patterns. In terms of EHR use, total daily time spent
on inbox work and other EHR work on workdays (24-hour
period) did not differ across groups (P=.38 and P=.15,
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respectively). However, as shown in Table 1, physicians in
group 1 spent more time in the inbox after work hours compared
with other groups, both in minutes and as a percentage of daily

inbox time (P<.001). Posthoc comparisons showed that all the
groups differed from each other. Group 1 also spent more time
in the inbox work on nonworkdays (P=.03).

Table 1. Comparing inbox use characteristics across 3 work patterns.

P valueGroup 3, mean (SD)Group 2, mean (SD)Group 1, mean (SD)Inbox use characteristics

Clustering factors (percentage of all-day inbox duration)

<.00162 (9)82 (8)37 (12)Work hours inbox duration

<.00112 (5)1 (2)42 (11)Outside and noncontiguous to work hours

.0326 (13)17 (7)21 (11)Contiguous to work hours

Duration of inbox work on workdays and nonworkdays (min)

.00242.13 (16.56)47.97 (13.35)25.36 (13.03)Work hours inbox duration

<.00126.97 (13.26)10.91 (5.63)41.37 (13.81)Outside work hours inbox duration

.036.54 (11.3)11.13 (19.69)32.74 (37.46)Inbox duration on nonworkdays

Message types (percentage of all inbox time)

.0242 (10)35 (10)32 (10)Patients

.1026 (10)32 (11)30 (9)Results

.3121 (6)20 (6)24 (7)Requests

.1411 (4)13 (4)14 (5)Admin

Physicians in group 1 were more likely to batch their inbox
work (ie, do most of their inbox work in a few chunks of time
rather than consistently throughout the day) than group 2, as
50% (5/10) of physicians in group 1 batched their inbox work

compared with 6% (1/17) in group 2 (X2
1=4.03; P=.045). The

rate of switching windows within the EHR was not statistically
different among the 3 groups (P=.24), with all groups switching
windows 4-4.5 times per minute of EHR use, on average. The
groups spent different amounts of time per message (P=.004).
The time per message was higher for group 1 (mean 0.46 min,
SD 0.11 min) than for group 2 (mean 0.35 min, SD 0.06 min)
and group 3 (mean 0.38 min, SD 0.07 min). Groups 2 and 3 did
not differ significantly (P=.21). In terms of inbox message types,
there were statistically significant differences among groups in
patient-initiated messages (P=.02), with group 3 spending a
higher average percentage of their inbox time on patient-initiated
messages than group 1, and no differences for other group pairs
(Table 1).

Stress Patterns
Visualizing stress patterns throughout the day showed that stress
was high at the beginning of the workday. The first hour of
work (8:30 AM to 9:30 AM) had an average stress duration of
35% of the hour (SD 26%; SE 4%). Stress then started to
decrease until the lunch hour and increased again at the start of
the afternoon clinic shift. Toward the end of the workday, the
stress duration decreased. There was another increase in stress
in the evening, followed by a decrease in stress at night and
during typical sleep hours (Figure 2). This 3-wave pattern of
daily stress was consistent across the 3 work patterns, although

group 2 had their highest stress an hour earlier (ie, 7:30 AM to
8:30 AM) than the other groups (Figure 2).

There was a difference in the average duration of stress during
work hours among the groups (Kruskal-Wallis; P=.02). A
posthoc comparison showed that group 1, the group with the
highest after-hours inbox work duration, had a longer duration
of stress during work hours than group 2 and group 3, with 33%
(SD 27%) of work hours for group 1 being stressful (80 out of
243 min of valid HRV data indicated medium to high stress)
compared with the 18% (SD 18%) for group 2 (47 out of 265
min of valid HRV data) and 22% (SD 24%) for group 3 (58 out
of 265 min of valid HRV data). There was no significant
difference between group 2 and 3 (P=.73). The number of valid
minutes of HRV measurements was not significantly different
across groups.

On average, physicians missed 45% (SD 20%; 9.4 out of 21)
of the experience sampling prompts over the study period. Of
the 485 submitted responses, 188 (38.8%) reported a stress level
of over 50% (the midpoint of the slider). There was no
significant difference in the average daily self-reported stress
across the 3 inbox work patterns (P=.99).

Finally, in the survey on inbox management strategies and stress,
physicians reported that 60% (SD 19%) of their work-related
distress came from inbox management. Regarding the question
of how distressful they find inbox management overall, of the
44 physicians, 19 (43%) said it was moderately stressful, 15
(34%) said it was very stressful, 6 (14%) said it was extremely
stressful, and 4 (9%) said it was not very stressful. There were
no statistically significant differences in survey responses across
the 3 inbox work patterns.
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Figure 2. Workday stress patterns of each group. Error bars represent the SE of the mean. HRV: heart rate variability.

EHR Use Characteristics Associated With Stress
We investigated detailed EHR use characteristics associated
with stress using a mixed effects model, with workdays as the
unit of analysis. The model showed that fixed effects accounted
for 15% of the variation in duration of stress during work hours
(Table 2). The physician’s age, sex, and FTE worked were not
associated with stress. The rate of switching windows when
using the EHR was positively associated with stress (P=.001).
Time spent on inbox work during work hours was positively
associated with stress (P<.001), whereas time spent on other

EHR activities during work hours was negatively (but very
weakly) associated with stress (P<.001). Inbox work outside of
work hours was positively associated with stress during work
hours (P<.001). Interestingly, the proportion of inbox time spent
on patient messages was not associated with stress. Surprisingly,
batching inbox work for the day was also positively associated
with stress (P<.001). Finally, days of the week were predictive
of stress, with Mondays and Thursdays negatively associated
with stress, whereas Tuesdays and Wednesdays positively
associated with stress (P<.001 for each).
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Table 2. Generalized linear mixed effects regression model.

P valueStandard βbβ (SE)Fixed effectsa

.16.271.94 (1.39)Full-time equivalent

.79−.05−.01 (.02)Age

.24.21.45 (.38)Female

.001.08.1 (.03)Window switching rate

<.001.08.003 (.001)Work hours inbox duration

<.001−.06−.002 (0)Work hours noninbox EHRc duration

<.001.09.35 (.07)Nonwork hours inbox duration proportion

.28−.01−.09 (.08)Patient messages proportion

<.001.06.13 (.03)Batching

<.001−.10−.22 (.04)Monday

<.001.06.16 (.03)Tuesday

<.001.20.53 (.03)Wednesday

<.001−.05−.13 (.04)Thursday

aThe dependent variable is duration of stress during work hours. Friday is the reference category for the variable day of week.
bStandard β is the standardized coefficient.
cEHR: electronic health record.

Discussion

Principal Findings
To our knowledge, this study is the first to measure physician
stress using wearable sensors over several days of outpatient
practice and the first to identify distinct EHR inbox work
patterns and their associations with stress. Although the topic
of EHR use and stress (specifically, self-reported burden,
burnout, workload, and well-being) has been addressed in
previous studies, this study is novel in that we measured stress
unobtrusively and continuously through physiologic measures
and used system logs to gain detailed insight about EHR use
factors associated with stress. Higher rates of EHR window
switching, longer inbox work duration, and a higher proportion
of inbox work done outside of work hours were associated with
higher stress. Daily stress patterns showed 3 waves of stress:
in the first hour of work, at or after lunch hours, and in the
evening.

In addition, we found that physicians fell into 3 groups with
different patterns of inbox work. Some physicians tended to do
most of their inbox work within work hours, whereas others did
inbox work before or after but contiguous to work hours. The
third group did inbox work in late evenings. These groups
differed in characteristics such as inbox work batching, time
per message, and the proportion of inbox time spent on patient
messages. Physicians who did most of their inbox work outside
of work hours were more likely to batch email and spend more
time per message, whereas physicians who mostly do their inbox
work within work hours were more likely to continually check
their inbox throughout the workday, potentially in the short
periods of time between patient appointments, and spent less
time per message. The group that did most of their inbox work

outside of work hours had the longest stress duration during
work hours.

A strength of this study is that we measured stress using 3
different methods. The HRV-based stress provided a continuous
timestamped stress measure that could be correlated with inbox
use patterns throughout the day, the experience sampling
measure provided momentary self-assessment of stress 3 times
a day, and the survey provided a reflective measure on perceived
overall stress related to inbox work. HRV-based stress differed
across groups but self-report measures did not. It is well
established in the literature that short-term self-reported (ie,
perceived) stress and acute physiological stress do not always
align linearly in daily life settings [48-50]; however, both are
important to monitor as they both have health and well-being
implications [51-54].

Comparison With Previous Work
Previous studies on EHR use patterns have quantified the time
spent on different EHR activities within and outside of work
hours [14,24]. However, variation among physicians is not well
studied, and no previous study has attempted to characterize
physicians based on their patterns of daily inbox use. One study
[16] found that physician-to-physician variation explains most
of the variability in EHR use time. We extend the findings on
the variation in EHR use, focusing on inbox use and comparing
physician characteristics across work patterns based on work
hours and after-hours EHR inbox use. Aligned with previous
findings [16], we did not find differences in physicians’ sex
distributions between the group with the longest after-hours
inbox time and the group with the shortest after-hours inbox
time. We also did not find differences based on FTE, contrary
to previous findings [16] that more work relative value units
generated by physicians (another measure of workload) were
associated with more EHR time after work hours.
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Most studies use basic measures to characterize EHR usage,
such as the duration of time [14,15,55]. In one study, researchers
used more complex measures to characterize mobile EHR usage,
such as the number of log-ins and features used and usage paths
(ie, the frequency and complexity of consecutive actions) [56].
They compared doctors across medical specialties and found
that physicians other than surgeons had more diverse mobile
EHR usage patterns with higher complexity and repetitive loops
compared to surgeons [56]. In this study, we also used detailed
EHR and inbox usage characteristics such as window switching,
inbox work batching, the time per message, message types, and
the time distribution between work and nonwork hours. Our
finding that the window switching rate was positively associated
with stress could reflect the complexity and repetitiveness of
physicians’ EHR interactions, as indicated in prior work [56],
and the efficiency issues often associated with physicians’
satisfaction with EHRs [57]. Another study on EHR inbox
burden [8] also reported that excessive steps were needed to
process messages and that physicians recommended reducing
the number of mouse clicks necessary to process messages.

A recent study suggested a relationship between patient call
messages and clinician burnout [58]. Their category of patient
messages included all messages related to patient care tasks,
such as phone calls, refill requests, and patient care forms. In
our study, the category of patient messages included only
patient-initiated messages and was not found to be associated
with stress, although it comprised most of the inbox time for
physicians.

It is not surprising that the differences among groups in
HRV-based stress did not align with self-reported perceived
stress. Previous studies have noted several issues in the
interrelationship between perceived and physiological stress
[59]. For example, the timing of the perceived stress prompt
(before, during, or after a stressor event) could determine
whether and how perceived stress correlates with physiological
stress measured during the stressor event [60-62]. This has
important implications for real-time stress monitoring for
physicians, as it suggests that daily prompts to measure
perceived stress in situ could fail to capture physiological stress.
Increased and prolonged physiological stress reactions are
associated with several health and well-being risks [63].

The results also suggest practical implications for organizational
changes and system design. Previous studies have recommended
a fundamental redesign of the EHR to improve data entry and
retrieval [11]. On the basis of our finding that window switching
is associated with stress, a redesign that minimizes the need to
navigate to different windows to record or obtain information
may be beneficial. For example, contextual information for
inbox messages can be made visible from the inbox [8]. Our
findings lend support to recommendations from a previous study
to automate frequently performed actions such as message
routing and leverage team support for inbox management [8].
Allocating time for inbox management within work hours, also
recommended in a previous study, may also help reduce stress
[8].

Limitations
In this study, the regression model with EHR use characteristics
explained 15% of the variation in duration of stress during work
hours, which is a considerable proportion given the myriad
factors that can potentially influence stress. However, stress
was likely to have also been influenced by other variables that
were beyond the scope of this study. In addition, the associations
we observed between stress and window switching, inbox work
duration, and inbox work outside work hours do not necessarily
prove that the latter factors cause stress. It is possible that
physicians who are busier during work hours have more stress
and also make more window switches, have more inbox work,
and have to do more inbox work outside work hours.

HRV-based measures are affected by several factors, such as
health and physical activities. Although we tried to control these
effects with our participant inclusion criteria and by removing
periods that had physical activity registered by the wearable
device, it is possible that carry-over effects of physical activity
are still present in the HRV data of sedentary moments.
Moreover, removing periods with physical activities could have
removed periods when psychological stress was experienced.
For example, walking to an important meeting could be mentally
stressful but it will not be captured in our data because of the
elimination of periods when walking is detected.

HRV data were excluded during periods of physical activities
and were occasionally missing because of sensors losing contact
with the skin. We set a minimum threshold (measurement
period) of 20 minutes of valid data per hour for hourly stress
measures and 2 hours for daily stress measures. Although not
complete, we do feel that this is a reasonable proxy for the stress
experience of that hour and day and a reasonable mitigation
method for missing data.

Inbox use patterns might differ from one setting to another based
on the organization’s policies and norms. For example, the
medical group where this study was conducted encouraged
patients to use EHR portal messages to communicate with
physicians. Simultaneously, system-generated messages and
administrative reminders are kept to a minimum whenever
possible. Thus, the distribution of different message types may
differ from that in other settings. These factors must be
considered when generalizing our findings.

Finally, some physicians might have had panel management
time (ie, time designated by departments specifically for tasks
such as inbox management) incorporated within their work
hours. In this study, we did not have access to data on panel
management time. Thus, we cannot make assumptions about
why inbox work patterns differed among physicians. We can
only report the relationship of these different work patterns with
stress.

Conclusions
This study is the first to use continuous and unobtrusive
measures of stress to evaluate associations between EHR inbox
use and stress among physicians. A total of 3 potentially
modifiable factors were associated with stress: window
switching, inbox work duration, and inbox work outside work
hours. These findings have implications for research and
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organizational policies on stress measurement and EHR inbox management time and EHR system design.
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Abstract

Background: Securing the representativeness of study populations is crucial in biomedical research to ensure high generalizability.
In this regard, using multi-institutional data have advantages in medicine. However, combining data physically is difficult as the
confidential nature of biomedical data causes privacy issues. Therefore, a methodological approach is necessary when using
multi-institution medical data for research to develop a model without sharing data between institutions.

Objective: This study aims to develop a weight-based integrated predictive model of multi-institutional data, which does not
require iterative communication between institutions, to improve average predictive performance by increasing the generalizability
of the model under privacy-preserving conditions without sharing patient-level data.

Methods: The weight-based integrated model generates a weight for each institutional model and builds an integrated model
for multi-institutional data based on these weights. We performed 3 simulations to show the weight characteristics and to determine
the number of repetitions of the weight required to obtain stable values. We also conducted an experiment using real
multi-institutional data to verify the developed weight-based integrated model. We selected 10 hospitals (2845 intensive care unit
[ICU] stays in total) from the electronic intensive care unit Collaborative Research Database to predict ICU mortality with 11
features. To evaluate the validity of our model, compared with a centralized model, which was developed by combining all the
data of 10 hospitals, we used proportional overlap (ie, 0.5 or less indicates a significant difference at a level of .05; and 2 indicates
2 CIs overlapping completely). Standard and firth logistic regression models were applied for the 2 simulations and the experiment.

Results: The results of these simulations indicate that the weight of each institution is determined by 2 factors (ie, the data size
of each institution and how well each institutional model fits into the overall institutional data) and that repeatedly generating
200 weights is necessary per institution. In the experiment, the estimated area under the receiver operating characteristic curve
(AUC) and 95% CIs were 81.36% (79.37%-83.36%) and 81.95% (80.03%-83.87%) in the centralized model and weight-based
integrated model, respectively. The proportional overlap of the CIs for AUC in both the weight-based integrated model and the
centralized model was approximately 1.70, and that of overlap of the 11 estimated odds ratios was over 1, except for 1 case.

Conclusions: In the experiment where real multi-institutional data were used, our model showed similar results to the centralized
model without iterative communication between institutions. In addition, our weight-based integrated model provided a weighted
average model by integrating 10 models overfitted or underfitted, compared with the centralized model. The proposed weight-based
integrated model is expected to provide an efficient distributed research approach as it increases the generalizability of the model
and does not require iterative communication.

(JMIR Med Inform 2021;9(4):e21043)   doi:10.2196/21043
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Introduction

Multi-institutional studies have many advantages in that they
can increase the generalizability and reproducibility of clinical
results. Studies based on geographically and demographically
diverse populations using multi-institutional data are
increasingly common and necessary to improve generalizability
[1]. This increases the applicability of study results to other
settings or with other samples, as sampling bias is reduced.
Sampling bias occurs when patient and disease characteristics
differ from the represented patient population, and it commonly
occurs in electronic health record–derived databases from single
institutions, as patient populations reflect the local
socioeconomic environment or specialty interests of hospitals
[2].

Data accumulated in multiple institutions should be shared to
realize the potential of big data in medicine. Big biomedical
data networks, such as the patient-centered Scalable National
Network for Effectiveness Research clinical data research
network [3], Scalable Architecture for Federated Translational
Inquiries Network [4], and Electronic Medical Records and
Genomics (eMERGE) network [5], have been established to
enable cross-institutional biomedical studies [6]. As big data
are relative to volume, variety, and velocity, their serviceability
depends on combining and analyzing rapidly growing data
sources stored in different places via these data networks.

However, the availability of such large volumes of data is
associated with privacy issues. Privacy must be protected when
sensitive biomedical data are being used for research purposes,
and this requires implementing several safeguards [7]. To
overcome the 2 conflicting problems of privacy and data usage,
a methodological solution that can analyze all partitioned data
without data sharing should be considered. The current
approaches toward constructing models based on
multi-institution data by solving the privacy concern on
patient-level data distributed across institutions can be primarily
categorized into distributed computing approaches, which
require iterative communication between institutions, and
approaches that do not require an iterative process in terms of
communication efficiency.

Among the methods that use distributed computing, federated
learning has recently been proposed as a promising solution. It
is a distributed computing method wherein several clients
collaboratively train a shared global model with the coordination
of a central server [8]. A client can be a mobile or edge device,
not an institution; however, if the client is a reliable institution,
it is classified as cross-silo federated learning [9]. Cross-silo
federated learning aims to solve an optimization problem by
setting the objective function [10] for the centralized model. In
general, this optimization problem can be managed by stochastic
gradient descent. Each client computes the local gradient and
returns it to the server for aggregation and, accordingly, the
global parameter is updated [8]. This process is repeated until
the parameter converges. Various studies have also developed

algorithms to establish statistical models, such as GLORE (Grid
Binary LOgistic Regression) [11] for logistic regression, grid
multicategory response logistic models [12] for ordinal and
multinomial logistic regressions, and WebDISCO (a web service
for distributed Cox model learning) [13] for the Cox model. In
these studies, the global likelihood function of the centralized
model was divided into local likelihood functions for each
institution; to estimate the parameter maximizing the global
likelihood function, the nonsensitive intermediary results were
iteratively exchanged between the central server and the
institutions using the Newton–Raphson method [14]. These
methods can guarantee the precision of the models; however,
the solutions may leak patient information owing to the
disclosure of the information matrix and score vectors during
iterative model learning [6].

The noniterative approach aggregates the intermediate results
required for building a global model without requiring an
iterative process. A typical method is meta-analysis [15], which
is a conventional statistical analysis. Meta-analysis is used to
estimate the effect size (eg, correlation coefficient, odds ratio
[OR], and hazard ratio) of the overall institution, rather than
building a predictive model. The overall effect size is estimated
by averaging the effect sizes that are estimated from each
institution; this method has been widely used in various studies
[16-19] based on the common data model adopted by the
Observational Health Data Sciences and Informatics Consortium
[20]. Further, by constructing a surrogate likelihood, ODAL
(one-shot distributed algorithm to perform logistic regression)
[21] and ODAC (one-shot distributed algorithm for Cox model)
[22] have been proposed for the logistic and Cox models,
respectively; these models can estimate the global parameters
in a noniterative manner without using the Newton–Raphson
method. By contrast, MCCG (the multicenter collaboration
gateway) [23,24], which focuses on developing a prediction
model, was proposed to improve the predictive performance of
a specific target institution. Rather than constructing the
centralized model, this algorithm proposed a method of
aggregating the models of each institution such that they are
trained in a single target institution to improve the predictive
performance in that target institution.

In this study, we focus on developing a noniterative algorithm
that can construct predictive models from different sources
without sharing horizontally partitioned data, where patient-level
data are divided for the same medical information. The proposed
model, referred to as the weight-based integrated model, is a
predictive model reflecting the characteristics of various
populations in multiple institutions without compromising
privacy. We evaluated the proposed weight-based integrated
model based on 2 aspects: (1) To confirm whether it provides
a weighted average model with all characteristics of
multi-institutional data, we evaluated its similarity with the
centralized model that was developed by combining all
institutional data, compared with models from different
institutions, in terms of the predictive power and parameter
estimation. (2) To confirm whether the proposed weight-based
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integrated model improves the average predictive performance
by building a predictive model with generalizability, we
compared the predictive power of the weight-based integrated
model with that of the central model, as well as the models of
each institution that were used to build weight-based integrated
model, through external validation.

Methods

Weight-Based Integrated Model
The proposed weight-based integrated model involves a 4-step
process (Figure 1). In step 1, 2 data sets are generated by each

party to estimate a predictive model and to evaluate the
performance. In step 2, the parameters estimated by each party
are shared between the parties. In step 3, a loss value for the
model of each party is calculated by fitting the model to the
data set of the entire party. The larger the loss value from the
model of each party, the smaller the weight of the model. In
step 4, the weight-based integrated model is constructed based
on the weight of each party. To describe the 4 steps in detail,
assume K partitioned data, each of size nk, and let Pk, 1 ≤ k ≤
K, denote the kth partitioned data.

Figure 1. (A) Overall process of the weight-based integrated model. (B) Step 3 of the weight-based integrated model showing the process for calculating
the weight using the log loss as a criterion to measure the model performance in the logistic regression model.
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Step 1
Randomly split the kth party of size nk into 2 parts—the first

part is Z(1) with size (nkx)/(x+1), and the second part is Z(2) with

size (nk)/(x+1). Here, Z(1) is used to estimate any predictive

model f, whereas Z(2) is used to measure the predictive

performance of the estimated model f̂ obtained from Z(1). The

data set (Z(1), Z(2)) is generated m times for each Pk. Let i, 1 ≤ i

≤ m, denote the number of data sets. represents the ithdata

set (Z(1), Z(2)) of Pk.

Step 2

is the ith model of Pk,estimated using , and is a vector

of parameters estimated from . The K parties share m vectors

of parameters, , with each other.

Step 3

In the kth party, fit the K models, , including their model,

, which is estimated from and sent from step 2 to the ith

. Subsequently, calculate the loss value for each of the K
models.

represents loss fitting to . Loss for total of is

calculated as and represents . The loss function can vary
depending on the model. For binary classification models (eg,
the logistic regression model), the following log loss function
[25], which is calculated as the negative log likelihood for
probability predictions, can be used. The log loss function (or
negative log likelihood function) of the logistic regression model
for N patients is expressed as

where pi = 1/(1 + exp [–βTxi]) is the probability of outcome of

interest, βT is a vector of parameters, xi is a vector of features
of the ith patient, and yiis a binary outcome of the ith patient.
Figure 1B presents the process of calculating the loss for the

ith model of party 1 (ie, ) using the log loss function.

To make the weight larger as the loss becomes smaller, we

define as the inverse of , and represents the goodness
of fit for all K parties of the model of the corresponding weight.

Step 4

The , represented by ith weight of the partition model of Pk

for the integrated model, is calculated as follows:

where represents the final weight of the partition model

based on Pk, and can be obtained by averaging the . The

weight-based integrated model, , is estimated as follows,

using , which represents a predicted value from the partition

model of Pk based on the total nkdata. Note that .

The weight calculated by the weight-based integrated model is
determined by 2 factors: the data size of the party (ie, the ratio
of data size to central data) and how well the model of the party
fits into the data of the other parties (ie, the goodness of fit to
all parties of the model from each party). In case of a party k
with relatively large data, as the proportion of data of party k

in the total increases, of the model of party k becomes

small, and becomes larger than the other parties. In other
words, a party with a large data set has a large weight, and that
with a small data set has a small weight. Further, the better the
model of party k is fitted to the data of other parties, the smaller
the loss values and the greater the weights. These characteristics
of weights are demonstrated in the experiments based on
simulations and real data.

The parameters of the model can be also estimated based on
weights from the weight-based integrated model process. In
step 3, the models and weights of K parties are generated for
every i repetitions. Further, the weight-based parameter can be

estimated based on the ith weights, , and ith vectors of

parameters, , estimated from each K party (I = 1, 2, ..., m).

Let be the ith vector of weight-based parameters. Then, 

is calculated using ; that is, parameter estimation in the
weight-based integrated model is performed by calculating the
weighted average of the parameters that is estimated by the
models of each institution based on the weights on models of
each institution. A point estimation and 95% CI estimation of
a weight-based parameter can be performed using the average
and (lower 2.5%, upper 97.5%) of m weight-based parameters,
respectively.

Simulation Study
We performed 3 simulations. The first simulation aimed to
validate the optimal number of repetitions of the weight. The
second and third simulations were performed to show the
features of the weight calculated using the weight-based
integrated model and to compare with other weighting methods.
For all simulations, the standard logistic regression model was
used, and 5 features were set. Three features were sampled from
binomial (1, 0.5), and 2 features were sampled from normal (0,
1). The outcome was generated from the binomial (1, p), where

, given 5 features (X) and 6 parameters (β). We set the 6
parameters to values from –2 to 2. The values of the parameters
were set to adjust the homogeneous or heterogeneous
characteristics between the parties.

In the first simulation, to set an optimal m associated with the
number of repetitions of a weight per party, we examined the
change in weight by adjusting the repetition m under each
partitioned data size n for the following sizes: 200, 400, 600,
800, and 1000. A total of 23 scenarios were considered, with
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the number of repetitions being 5 units from 5 to 50 and 50 units
from 100 to 700. Three parties (A, B, and C) were considered.
In this simulation, the adjustment of the homogeneous or
heterogeneous characteristics of each party is not an important
factor. Therefore, we generated 6 parameters for each party
uniformly from [–2, 2].

The second simulation was performed to confirm the change
pattern of the weights by adjusting 2 factors: the data size and
the goodness of fit of the model from each party. In this
simulation, we considered 2 scenarios. In the first scenario, we
generated 3 parties (A, B, and C) with data sizes of 1000. One
of the 3 parties was generated with a biased feature by adjusting
the parameters for sampling. All 6 parameters of parties A and
B were set the same. By setting 5 conditions of parameters,
from parameter 1 to parameter 5, the biased degree of party C
was increased as it was adjusted from parameter 1 to parameter
5. All 6 parameters of parties A and B were set equal to 1 at 5
conditions, and the parameters of party C were set to 1 at the
condition of parameter 1, 0.5 at the condition of parameter 2,
–0.5 at the condition of parameter 3, –1 at the condition of
parameter 4, and –2 at the condition of parameter 5. That is,
under the same data size, the change degree of the weights was
confirmed by gradually deteriorating the goodness of fit for the
entire data of the biased party C. In the second scenario, after
setting one of the 3 parties to be biased, we changed the
condition of data size to check the change degree of the weights
according to the data size. The 6 parameters of parties A and B
were set to 1, and all of party C were set to –2.

In the third simulation, we compared the weight of the
weight-based integrated model with other comparable weighting
methods to show the unique characteristics of the weight-based
integrated model. This simulation aims to confirm to what extent
the predictive performance of the integrated model using each
weighting method is similar to that of the centralized model.
We referred to an approach [26] of weighting strategies that
investigated replicability of the performance of predictors across
studies through ensembles of prediction models trained on
different studies as the weights used in comparison. We chose
3 comparable weights in the approach [26] of weighting
strategies: simple average (Avg), average weighted by study
sample size (n-Avg), and average weighted by cross-study
performance (CS-Avg). For K parties, with total data size N
and kth party of size nk, Avg assigns a weight of 1/K to each
party, and n-Avg assigns a weight of nk/N to each party. In
addition, similar to the weight of the weight-based integrated
model, CS-Avg constructs a predictive model for each party
and then calculates the weight based on predictive performance
for other parties. In calculating the performance of models for
each party, the party used in the model is excluded. Further, the
smaller the performance, the smaller the weight assigned, and
the model with the lowest performance is assigned a weight of
0. An averaged value, such as the mean squared error, is used
for performance measurement. For application to the logistic
model of CS-Avg, we measured the performance by dividing
the log loss function by the data size.

We performed 200 simulations under the same conditions. Four
parties (A, B, C, and D) were constructed to build a predictive

model, and another 4 validation parties were constructed to
measure predictive performance. In addition, we assumed 2
scenarios, similar to the second simulation, to show the
characteristics of each weight. While adjusting the data
characteristics of parties under the same data sizes, and data
sizes of parties under the same data characteristics, we observed
the change patterns of weights and predictive performance of
each weighting method. In the first scenario, the data sizes of
the 4 parties were all set to 500. The 6 parameters, [β0, β1, β2,
β3, β4, β5], of parties A and B were set to [0, 2, 2, 2, 2, 2], and
the data characteristics of parties C and D were adjusted under
the following 3 conditions: (1) 6 parameters—[0, 2, 2, 2, 2, 2],
outcome generation: binomial (1, p); (2) 6 parameters—[0, –2,
–2, 2, 2, –2], outcome generation: binomial (1, p); and (3) 6
parameters—[0, –2, –2, 2, 2, –2], outcome generation: binomial
[1, min(0.5, p)]. The first condition, that is, (1), represents the
same characteristics as parties A and B. By adjusting the
parameter in (2) and the parameters and probability of generating
an event in (3), the characteristics of parties C and D were
gradually generated to be heterogeneous with parties A and B.
In the second scenario, under the third condition of the first
scenario, the data sizes of parties A and B were set to 500, and
only the data sizes of parties C and D were changed to 500, 750,
and 1000.

The data sizes of the 4 validation parties were all fixed at 500,
and the data characteristics were the same as each condition of
the first and the second scenarios. For example, the parameters
of the 4 validation parties for condition (1) of the first scenario
were set to [0, 2, 2, 2, 2, 2] in the same manner as parties A, B,
C, and D. The average area under the receiver operating
characteristic (ROC) curve (AUC) was measured for 4 validation
parties to compare the similarity of the performance of each
weighting method with that of the centralized model.

Experiment Using Real Horizontally Partitioned Data
We used the electronic intensive care unit (eICU) Collaborative
Research Database [28] to evaluate the validity of the weight
model. The eICU Collaborative Research Database is a
multi-institution ICU database of eICU programs across the
United States, and contains approximately 200,000 admissions
to ICUs monitored by 208 hospitals (data collected between
2014 and 2015).

The model to be applied to the weight-based integrated model
used a logistic regression model to predict mortality after ICU
admission. As features, 27 variables included in the Acute
Physiology, Age, and Chronic Health Evaluation (APACHE)
classification system were considered. The APACHE score is
a severity-of-disease classification system [29], one of several
ICU scoring systems. Therefore, we considered 27 variables
from the APACHE system as mortality predictors for patients
in the ICU. In the eICU database, the APACHE III score was
calculated, and the 27 variables used to calculate the score were
listed.

We selected 10 hospitals with a total of 2845 ICU stays, out of
208 hospitals with a total of 200,859 ICU stays, as our
horizontally partitioned data set (Figure 2). To select the
horizontally partitioned data of 10 hospitals, 6269 ICU stays
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(123 hospitals) with both mortality and 27 feature values were
selected. We selected the top 10 hospitals with higher death
frequencies among those having less than 90% ICU stay rate
with all 27 features missing. Moreover, 11 features were selected
by forward selection (significant level: .01) of 27 features at

2592 ICU stays for 10 hospitals. The selected 11 features were
Glasgow Coma Scale score, pH, blood urea nitrogen, fraction
of inspired oxygen, temperature, bilirubin, albumin, age, partial
pressure of carbon dioxide, partial pressure of oxygen, and pulse
rate.

Figure 2. Selection process for hospitals and intensive care unit (ICU) stays.

When developing a predictive model, the number of events
compared with the number of predictors is a key factor to
determine the performance of the logistic regression model [30].
The models applied to data with low events per variable produce
inaccurate and biased results [31]. A total of 10 events per
variable are widely used as a criterion for logistic regression
models [32,33]. Most hospitals do not satisfy the 10 events per
variable criterion based on the 11 features mentioned. Therefore,
the firth logistic regression model [34], which can estimate
unbiased parameters in data with low event frequencies, was
used for accurate parameter sharing between hospitals when
applying the weight-based integrated model.

Validation and Evaluation of the Weight-Based
Integrated Model
The logistic regression model was used for the simulation data,
whereas the firth logistic regression model was used for the real
data. To calculate the loss of 2 logistic models, we proceeded
according to the process detailed in Figure 1B using the log loss
function, –ln L(p). The reciprocal of the log loss risk for all data
in each partition model was used as the criterion for calculating
the weight. We also used the results of the first simulation as
the number of repetitions required to calculate the weight. The

ratio of Z(1) to Z(2) was 3:1 for all simulations. In addition, in

real data with low event frequency, Z(1) and Z(2) were generated
at a 1:1 ratio for both dead and alive cases to build a more stable

model in Z(1).

To evaluate the weight-based integrated model, we compared
the results of the weight-based integrated model and the
centralized model using 10 hospitals from the eICU database,
in terms of the ROC curve, AUC, and estimated OR, on the 11
features. In addition, we used the Hosmer–Lemeshow test [35],
where P<.05 indicates poor calibration, to assess the calibration
of the proposed weight-based integrated model and centralized
model for central data, along with the 10 models of each
hospital.

The comparison of AUCs and ORs between the 2 models was
evaluated based on the proportion of overlap of the 95% CIs.
The proportion of overlap was defined as the ratio of overlap
of two 95% CIs in the margin of error, which is the half-width
of the 95% CI of the longer length. If a CI is remarkably short
and is included in the other CI to be compared, then the
proportion of overlap calculated based on the shorter CI is 2,
which is a perfect match between the 2 CIs, regardless of the
value of the longer CI. Therefore, the proportion of overlap was
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calculated based on the longer CI for a more conservative
evaluation criterion. For the independent group t test that
compares the 2 means, when the proportion of overlap is
approximately 0.5 or less, it indicates that the 2-tailed P value
is less than .05 [36]. We determined that the 2 CIs did not differ
significantly at a significance level of .05 when the proportion
of overlap was more than 0.5 and confirmed how close the
proportion of overlap was to 2.

Based on the results of OR estimation for 11 features, we
compared the results of our weight-based integrated model and
conventional meta-analysis (for a fixed effect model using the
inverse of the variance of the effect estimate as a weight). The
meta-analysis is similar to the weight-based integrated model
as the OR of a multi-institution is estimated by setting
institution-specific weights and averaging the OR of each
institution based on the weights, although the method of weight
calculation of the meta-analysis varies from the proposed
weight-based integrated model. We compared the proportional
overlap of 95% CI and the relative bias of point estimates for
the centralized model between the weight-based integrated
model and the meta-analysis.

To perform external validation, we selected the top 5 hospitals
as the external validation hospitals (ie, those with a high
mortality rate and less than 90% ICU stay rate with all 27
features missing) after selecting 10 hospitals for the central data.
By summarizing the AUC as a result of external validation, we
confirmed whether the predictive performance on each external

validation hospital in the weight-based integrated model is
similar to that of the centralized model. We also evaluated
whether the weight-based integrated model ultimately improves
the average predictive performance when compared with a
model of a single hospital through an average AUC on 5 external
validations. In addition, the 3 weighting methods (ie, CS-Avg,
n-Avg, and Avg) were applied to external validation and
compared with the weight-based integrated model.

The simulation studies and experiments with real horizontally
partitioned data were performed using R 3.6.0 (R Foundation
for Statistical Computing).

Results

Simulation 1: Optimal Repetitions m
In simulation 1, to propose optimal repetitions m of the
weight-based integrated model, the size of each party was
simulated as 200, 400, 600, 800, and 1000, and the weight values
tended to stabilize as the number of repetitions increased (Figure
3). Moreover, as the data size n of each party decreased, the
change in the weight pattern according to the number of
repetitions became relatively large. For all data size n, graphs
in Figure 3 showed a relatively flat pattern of weights after 200
repetitions. Therefore, we set m to 200. That is, in the second
and third simulations, and the experiment using real data, we
calculated the weights of each partition model and estimated
the parameters of the weight-based integrated model based on
200 repetitions.

Figure 3. Weights of 3 parties according to the number of repetitions for sizes of 200, 400, 600, 800, and 1000. Vertical lines represent 200 repetitions.

Simulation 2: Features of the Weight Calculated From
Weight-Based Integrated Model
To confirm the characteristics of the weights calculated using
the weight-based integrated model, party C, among the 3 parties,
was considered as a biased party. Figure 4 shows the results of
the first scenario to confirm the change of weight according to

the goodness of fit. The same weights, 0.3333, are derived for
parameter 1 for all parties, where A, B, and C all have the same
data. Thereafter, as the degree of bias of party C gradually
increases (ie, from parameter 2 to parameter 5), the weight of
party C decreases. In other words, under the same data size, the
smaller the goodness of fit for the total party of a partition model
with different characteristics, the smaller the weight.
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Figure 4. Change pattern of weights according to goodness of fit for central data (scenario 1 of simulation 2), and adjusted parameters for the 5 features
of parties A, B, and C with size 1000.

As shown in the results of Figure 5 (scenario 2), the data size
of the biased party C was gradually increased to examine the
weight change according to the data size under the setting of
parameter 5. When the data size of all 3 parties was equal to
1000, the weight of party C was 0.1181, which was relatively
small compared with parties A and B. However, the weight of

party C also increased as its data size gradually increased. In
particular, after the data size of party C became 4000/6000
(66.67% of the centralized data), the weight of the biased party
C became larger than that of the other 2 parties. That is, even
in a biased party, the weight can be increased if the ratio of data
size to the centralized data increases.
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Figure 5. Change pattern of weights according to the ratio of data size to central data (scenario 2 of simulation 2), adjusted data sizes of party C, and
ratios of data size to centralized data for parties A, B, and C.

These two results of simulation 2 show that the weights of the
weight-based integrated model consider not only the goodness
of fit for the central data but also the ratio of data size to the
central data.

Simulation 3: Comparative Analysis With Alternative
Weighting Methods
Multimedia Appendices 6 and 7 show the comparison results
of 200 simulations on the weight of the weight-based integrated
model and the other 3 weighting methods (CS-Avg, n-Avg, and
Avg). In each simulation setting, we summarized the distribution
of 200 average AUC for 4 validation parties, the difference in
average AUC between each weighting method and the
centralized model, and the average weights of 4 parties (A, B,
C, and D), according to 200 simulations.

The results for the first scenario are shown in Multimedia
Appendix 6. The data characteristics of parties C and D are
gradually heterogeneous with those of party A and B as they
go to the left, middle, and right. When the data sizes and
characteristics of the 4 parties were all the same (the left in
Multimedia Appendix 6), the distributions of the 200 average
AUC of each weighting method and the centralized model were
almost the same, and the average weights of parties A, B, C,
and D were approximately 0.25, which is almost equal.
However, as the data characteristics of parties C and D were
more different from those of parties A and B (from the left to
the right), the predictive performances of the 4 weighting
methods were distinctly different. The distribution of the average
AUC of CS-Avg showed the largest difference from that of the
centralized model, and the weight-based integrated model

showed the distribution of average AUC most similar to that of
the centralized model. In the first scenario, as the data sizes of
the 4 parties were the same, the weights of the 4 parties in both
n-Avg and Avg were set equal to 0.25, and the distributions of
the average AUC of both weighting methods were the same.
As the data characteristics change, the weight-based integrated
model and CS-Avg gradually assigned a greater weight to parties
C and D. However, as CS-Avg assigned a weight of 0 to one
of either A or B, the differences in weight between the 4 parties
were greater than that of the weight-based integrated model.

The results for the second scenario are summarized in
Multimedia Appendix 7. The data characteristics of the 4 parties
were set identically with the condition corresponding to (3) of
the first scenario, and the data sizes of parties C and D increased
toward the left, middle, and right. Similar to the results of the
first scenario, the distribution of the average AUC of the
weight-based integrated model was the most similar to that of
the centralized model, and the distribution of CS-Avg was the
most different. As n-Avg reflects the change in data size, the
distribution of average AUC differed from Avg as it goes to the
right, and it was closer to the distribution of the centralized
model than in the first scenario. As CS-Avg does not reflect the
data size, even if the data size of parties C and D increased, the
weights of the 4 parties remained almost unchanged. However,
the weight-based integrated model gradually provided large
weights to parties C and D with large data sizes. Furthermore,
as n-Avg reflects the data size, but does not reflect the data
characteristics, there was a difference from the weight of the
weight-based integrated model reflecting both. Avg assigned 4
parties a fixed weight of 0.25 under any conditions.
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Validation Results on Horizontally Partitioned eICU
Data
A total of 2845 ICU stays (dead: 525, alive: 2320) were arranged

from 10 hospitals. Among the 2845 ICU stays, the total of Z(1)

of the entire hospital was 1430 ICU stays, and the total of Z(2)

was 1415 ICU stays (refer to Multimedia Appendix 1). Table
1 presents the results of AUC from the firth logistic regression
model in each of the 10 hospitals. The predictive power of the
models from each hospital differs from the smallest predictive
power of 80.93% (hospital 6) to the largest predictive power of
92.00% (hospital 10).

The 200 log loss values for the total Z(2) (n=1415) of each
hospital model and the final weights of each hospital model
were calculated from 200 repetitions (Table 1). A large
distribution of loss in a hospital indicates that the goodness of
fit of the hospital model is not good for all data from 10

hospitals. Therefore, the weight of a hospital with a relatively
small loss distribution was calculated to be small. Further, a
hospital with a small ratio of data size to central data (2845 ICU
stays) tends to have a small weight. For example, in hospital 1,
the distribution of the loss is the smallest, and the ratio of data
size to the central data is the largest (510/2845, 17.93%).
Therefore, the largest weight of 0.1188 was assigned to hospital
1. Conversely, hospital 10 has the largest distribution of loss,
and the ratio of data size to the central data is the smallest
(125/2845, 4.39%). Therefore, the smallest weight of 0.0583
was assigned to hospital 10. Hospitals 3 and 4 were given the
same weight of 0.1109. However, the ratio of data size to central
data in hospital 3 (268/2845, 9.42%) was smaller than that of
hospital 4 (338/2845, 11.88%), and the loss distribution tended
to be slightly smaller for hospital 3. As observed in the results
of simulation 2, the weight of the weight-based integrated model
is affected by both the ratio of the central data and the goodness
of fit to the central data.

Table 1. AUC, log loss, and weights for 10 models of each institution (N=2845).

WeightLog loss from 200 repetitionsAUCa (95% CI)n/N (%)Hospital number

(Min, Max)Median

0.1188(535.45, 668.13)575.1883.81% (79.99%-87.63%)510/2845 (17.93)1

0.1181(536.59, 754.68)577.4082.14% (76.82%-87.47%)387/2845 (13.60)2

0.1109(547.65, 755.15)616.6386.67% (81.57%-91.78%)268/2845 (9.42)3

0.1109(552.61, 787.62)617.1486.48% (81.43%-91.53%)338/2845 (11.88)4

0.0929(572.31, 1814)723.9086.29% (80.19%-92.4%)231/2845 (8.12)5

0.1076(539.71, 978.16)626.6580.93% (74.02%-87.83%)316/2845 (11.11)6

0.1024(561.92, 1071.16)665.8985.95% (78.23%-93.67%)308/2845 (10.83)7

0.0912(569.31, 7280.35)712.2983.81% (75.88%-91.73%)197/2845 (6.92)8

0.0890(566.39, 1774.99)758.6686.63% (79.2%-94.05%)165/2845 (5.79)9

0.0583(634.35, 13,722.49)1008.6492% (86.66%-97.34%)125/2845 (4.39)10

aAUC: area under the receiver operating characteristic curve.

The Hosmer–Lemeshow goodness-of-fit test demonstrated that
the weight-based integrated model and the centralized model
fit the central data well, and the 10 models of each hospital fit
the data of each hospital well (all P>.05; Multimedia Appendix
3).

Figure 6 shows the ROC and AUC of the 2 models, the
weight-based integrated model and the centralized model based
on the central data (2845 stays), and of the 2 hospitals, hospital
6 with the lowest AUC and hospital 10 with the highest AUC
(based on the data of each hospital). It was confirmed that the
patterns of ROC curves for both the weight-based integrated
model and the centralized model are almost the same. The
estimated AUC values and 95% CIs were 81.36%

(79.37%-83.36%) and 81.95% (80.03%-83.87%) in the
centralized model and the weight-based integrated model,
respectively (Figure 6). The proportion of overlap of CIs for
AUC in both the weight-based integrated model and the
centralized model was approximately 1.70. This value is much
larger than 0.5, which is the level that we consider to indicate
a significant difference at a significance level of .05, and is close
to 2, which is the criterion for completely matching 2 CIs.
Therefore, the calculated CIs for the AUC in both models were
almost equal. The model of hospital 10 with the largest AUC
was an overfitted model with an AUC 10% greater than for the
2 models (the weight-based integrated model and the centralized
model) and the model of hospital 6 did not show much
difference in the AUC value compared with the 2 models.
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Figure 6. Area under the receiver operating characteristic curve (AUC), log loss from 200 repetitions, and weights. WIM: weight-based integrated
model.

A total of 535 ICU stays were selected as the 5 external
validation hospitals. The frequency and rate of mortality of
external validation hospitals 1, 2, 3, 4, and 5 were 20/155
(12.9%), 19/67 (28.36%), 24/226 (10.62%), 11/47 (23.4%), and
8/40 (20%), respectively. Figure 7 shows the AUC of each
external validation hospital and the average AUC on 5 external
validations. Multimedia Appendix 4 presents the values of the
AUC (95% CI) shown in Figure 7, as well as the proportional
overlap for the 95% CI of the weight-based integrated model
and the centralized model. The weight-based integrated model
had similar predictive performances to the centralized model
in 5 external validations. In each external validation, the

proportional overlap of the 95% CI for the centralized model
and the weight-based integrated model was 1.59, 1.82, 1.92,
1.74, and 1.93 for external validation hospitals 1, 2, 3, 4, and
5, respectively. In addition, the average AUC was 84.74% and
85.09% for the centralized model and the weight-based
integrated model, respectively. In each of the 5 external
validation hospitals, a model of a single hospital out of 10
models showed higher AUC than the weight-based integrated
model. However, the weight-based integrated model
demonstrated the highest average predictive performance on
the 5 external validation hospitals (Figure 7).
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Figure 7. Results of AUC of external validation for the centralized model, the WIM, and 10 models of each hospital (error bar: 95% CI). Black, dark
gray, and light gray indicate WIM, centralized model, and 10 models of each hospital, respectively. AUC: area under the receiver operating characteristic
curve; WIM: weight-based integrated model.

Multimedia Appendix 8 shows the comparison results of the
external validation of the weight-based integrated model and 3
other weighting methods, namely, CS-Avg, n-Avg, and Avg.
The proportional overlaps of the 95% CI on the AUC of the 3
weighting methods were also high, similar to those of the
weight-based integrated model. In addition, the average AUCs
on the 5 external validation hospitals for each weighting method
were similar to each other (weight-based integrated model,
0.8509; CS-Avg, 0.8519; n-Avg, 0.8502; Avg, 0.8507).

Figure 8 shows the OR and 95% CI of 11 features estimated
using the weight-based integrated model and the centralized
model, based on the central data (2845 stays), and 2 hospitals
(hospital 6 with the lowest AUC and hospital 10 with the highest
AUC). The 11 features were significant in both the centralized
model and the weight-based integrated model, and the direction

of OR significance was consistent in both models. Figure 8A
presents the result of significant features with OR < 1, whereas
Figure 8B presents the result of significant features with OR >
1. For the proportional overlap of 95% CI of OR between the
weight-based integrated model and the centralized model, all
10 features, except bilirubin, showed a result exceeding 1
(significant difference is 0.5 at a significance level of .05), and
the ORs estimated in the 2 models did not differ significantly.
In bilirubin, 95% CI of the 2 models did not overlap. For each
of the 11 features, ORs were estimated differently in the 10
hospitals, including hospitals 6 and 10 indicated in the graph
(refer to Multimedia Appendix 2). The ORs estimated using the
weight-based integrated model showed most similar estimation
results to the centralized model, compared with the ORs
estimated from each hospital model.
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Figure 8. Comparison of estimated OR and 95% CI on 11 features in the firth logistic regression model: (A) features with OR < 1 and (B) features
with OR > 1. The numbers on the right sides of the figures are the proportional overlap of 95% CI of OR between the WIM and the centralized model.
AUC: area under the receiver operating characteristic curve; BUN: blood urea nitrogen; FiO2: fraction of inspired oxygen; GCS: Glasgow Coma Scale;
OR: odds ratio; PaO2: partial pressure of oxygen; pCO2: partial pressure of carbon dioxide; PR: pulse rate; WIM: weight-based integrated model.

As a result of the comparison with the meta-analysis, depending
on the feature, the degree of similarity to the centralized model
was slightly different between the weight-based integrated model
and the meta-analysis in terms of the proportional overlap of
95% CI and relative bias (Multimedia Appendix 5). Based on
the criteria of the proportional overlap of 95% CI, the overlap
of the weight-based integrated model and the meta-analysis for
pH was 1.64 and 1.33, respectively. For Glasgow Coma Scale,
pH, temperature, and partial pressure of carbon dioxide, the
relative bias of the weight-based integrated model was smaller
than that of the meta-analysis. These results indicate that the
weight-based integrated model was closer to the centralized
model than the meta-analysis. However, bilirubin, whose
proportional overlap was 0 in the weight-based integrated model,
showed a proportional overlap of 1.69 in the meta-analysis. In
addition, the relative bias of bilirubin was 10.94% and 0.66%
in the weight-based integrated model and the meta-analysis,
respectively.

Discussion

Principal Findings
The proposed model (the weight-based integrated model) was
developed to build an integrated predictive model from
horizontally partitioned data without requiring physical data
sharing. The weight-based integrated model is an algorithm that
does not require an iterative process and can extend the model
to be applied by introducing the concept of a flexible weight of
a partition model. Unlike previous methodologies of building
a model of central data under privacy-preserving conditions,
the proposed model has the following novelties.

First, the weight-based integrated model does not require
iterative communication to construct a model that approximates
the centralized model. The methods that use distributed
computing require an iterative exchange of information between
the institutions and the central server, which is time consuming
and labor intensive in practice [20]. This practical limitation
can be a barrier to the application of distributed algorithms in
a research consortium [20]. In cross-silo federated learning [8]
with an iterative process, all clients are always available and
should participate in each iteration. In other words, if a party is
not available in the middle of the iteration process, the entire
process is stopped. Conversely, the weight-based integrated
model can build an integrated model by adjusting the weights
even if a party becomes unavailable during the process. In terms
of communication efficiency, naïve application of previous
methodologies can yield procedures that incur exorbitant
communication costs [37].

Second, the weight of the weight-based integrated model is a
flexible weight derived from 2 factors, data size and the
goodness of fit of each party’s model to the entire data (Figures
4 and 5). As the ratio of the data sizes of each party in the central
data increases, the partition model would be closer to the
centralized model. Therefore, the data size should be considered
in the weighting of the partition model. If the partition model
fits well to the central data, then it would be a model that
describes the central data well. Therefore, the goodness of fit
should also be considered with the data size. A key characteristic
of the weight-based integrated model is that the weight of each
partition model is derived by considering these 2 factors
simultaneously. In addition, when constructing the weight-based
integrated predictive model in the weight-based integrated
model, the weights of the model of each party are generated m
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times (Figure 1), and the average of m weights is set as the final
weight of the model of the party. Therefore, depending on how
m is set, the final weights of the models of each party vary. In
simulation 1, we found the optimal m, where the final weight
remained almost unchanged while increasing the size of m under
various data sizes of the 3 parties. The results showed that there
was little change in the final weight when m exceeded 200 for
all data sizes of the parties (Figure 3).

Third, the weight-based integrated model is a flexible algorithm
in terms of scalability of the model to be applied. As the
proposed model builds each partition model independently and
then integrates them based on the weight, it only needs to change
the form of parameters in step 2 and the loss function in step 3,
depending on the model.

Validation and Evaluation of the Weight-Based
Integrated Model
We evaluated the validity of the weight-based integrated model
in terms of predictive power and parameter estimation, compared
with the centralized model. Experimental results using real
horizontally partitioned data demonstrated that the weight-based
integrated model provides a close approximation to the
centralized model and improves the average predictive
performance.

In terms of predictive power, the weight-based integrated model
was substantially similar to the centralized model based on the
results of the ROC curve and AUC. The weight-based integrated
model provided a weighted average model by integrating each
partition model overfitted or underfitted, compared with the
centralized model (Figure 6). The multi-institutional predictive
model aims to develop a generalized model that can improve
the predictive performance for the data that were not used in
the model. To confirm whether the proposed model satisfies
this objective, we selected 5 hospitals that were not used in the
weight-based integrated model and performed an external
validation. Consequently, for the estimation of the AUC for
each external validation hospital, the weight-based integrated
model exhibited almost similar results as the centralized model.
In addition, its average AUC for the 5 external validation
hospitals was higher than that of the 10 models of each hospital
(Figure 7, Multimedia Appendix 4).

In terms of parameter estimation, based on the results of the
proportional overlap (0.5 or less indicates a significant difference
at a significance level of .05; 2 indicates two CIs overlapping
completely) for 95% CI of OR (Figure 8), 10 features were over
1 or 1.5. The results of parameter estimation between the
weight-based integrated model and the centralized model were
quite similar. However, the 95% CI of bilirubin did not overlap
between the 2 models; the estimation of bilirubin was different
at the significance level of 5%. As observed in the 95% CI of
10 models on each hospital for bilirubin (refer to Multimedia
Appendix 2), hospital 5 with a weight of 0.0929 and hospital
10 with a weight of 0.0583 had no overlap with the centralized
model. The reason that the OR for bilirubin of the weight-based
integrated model differed from the centralized model is that the
proportional overlap of hospital 5 with large weight was 0.
Further, the estimated OR from hospital 10 was unstable and
biased compared with other hospitals. The OR and 95% CI for

bilirubin of the centralized model and the weight-based
integrated model were 1.07 (1.04-1.10) and 1.18 (1.11-1.27),
respectively (Multimedia Appendix 2). Although the 95% CI
of the weight-based integrated model did not overlap with the
centralized model, in the 2 models, the statistical significance
of OR and the direction of interpretation are consistent, and the
overall CI of the weight-based integrated model is not far off
from that of the centralized model, compared with CIs of 10
hospital models.

The results of comparison with the meta-analysis in experiments
using real data indicate that, for the OR estimates of 4 out of
11 features, the relative biases of the weight-based integrated
model were slightly less than those of the meta-analysis. The
weight-based integrated model generally showed similar results
to the meta-analysis in terms of estimation of ORs. However,
depending on the features, owing to the difference in weight
calculation between the meta-analysis and the weight-based
integrated model, there were differences in proportional overlap
of 95% CI and relative bias. The weight of the meta-analysis
has institution-specific characteristics. However, as it is adjusted
based on the variance of an estimator of OR, the different
weights are generated even for the same institution depending
on which feature’s OR is estimated. By contrast, as the weights
in our proposed weight-based integrated model are assigned to
the model of each institution, even if the features to be estimated
are different, the same weight is given to the same institution.
Although the weight of the meta-analysis has feature-specific
characteristics more than the weight of the weight-based
integrated model, it does not represent the weight for a model
of an institution unlike the weight-based integrated model.
Therefore, it cannot be regarded as a weight that encompasses
the purpose of building a predictive model.

When applying the weight-based integrated model, it is
necessary to consider the following: To calculate the weight of
each institution in the weight-based integrated model, the data

of each institution is divided into Z(1), for building the model

of each institution, and Z(2),for measuring the predictive
performances of the models of all institutions. If the data size
(especially the frequency of outcome of interest) of an institution

is insufficient, the model of the institution generated by Z(1) will
be unstable, and it will be difficult to accurately calculate the

predictive performance from Z(2). Therefore, the data size of

each institution should be sufficient to divide them into Z(1) and

Z(2). In addition, based on the results of the external validation,
the predictive performances of each of the 5 external validation
hospitals were better in the model of single hospitals, compared
with those of the weight-based integrated model. In other words,
the weight-based integrated model may not be a good option
for the purpose of improving the predictive performance of a
specific hospital (of the 5 hospitals). By contrast, as the purpose
for improving the average predictive performance of the 5
hospitals, the weight-based integrated model can provide a
robust unified model. In our experiment using real data, the
weight-based integrated model showed the best average
predictive performance on 5 external validation hospitals.
However, there may be cases where the weight-based integrated
model does not show the best average predictive performance.
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For example, when a relatively heterogeneous model among
the hospitals included in the weight-based integrated model
exists, and the hospital exhibits heterogeneous characteristics
toward all external hospitals, if the predictive performance of
the model of the heterogeneous hospital in all external validation
hospitals is low, the average predictive performance of the
weight-based integrated model may be poor. As the
weight-based integrated model averages the models of each
hospital based on the weight, the overall prediction performance
may be low owing to the inclusion of a heterogeneous hospital
with poor predictive performance for external validation
hospitals, although it is given a small weight in the weight-based
integrated model. To avoid this case, it is necessary to form
hospitals of the weight-based integrated model to ensure that
the overall characteristics of the hospitals in which the
weight-based integrated model will be applied are evenly
reflected.

The weight-based integrated model is a similar algorithm to the
MCCG [23,24], as it does not require an iterative communication
process between institutions and constructs a generalized
predictive model by integrating the models of each institution
based on the weights per institution. However, the generalization
process of both models varies. The weight of the weight-based
integrated model is calculated by measuring the heterogeneity
of the predictive performance for the central data of the models
per institution in order to estimate the centralized model.
Conversely, the weight of the MCCG is calculated by measuring
the heterogeneity of the predictive performance for a specific
target institution of the models of the source institutions used
to develop the multi-institutional predictive model in order to
improve the predictive performance of the target institution.
Owing to this difference in the weight calculation method, the
weight-based integrated model provides a generalized model
by building a unified model that reflects all the characteristics
of multiple institutions, whereas the MCCG provides a
generalized model by changing the model through weight
adjustments according to the target hospital. In the weight-based
integrated model, communication occurs between institutions
only once during the process of the algorithm. Conversely, the
MCCG requires communication whenever the target institution
changes as communication occurs between the source and target
institutions. In particular, if the goal is to build a single unified
predictive model to be applied to multiple institutions, the
weight-based integrated model can provide a robust model.
However, if the goal is to build a predictive model for a specific
target institution, the MCCG can provide a better model.
Therefore, an algorithm should be strategically selected
according to the goal.

Comparison With Other Weighting Methods
We demonstrated the characteristics of the weight of the
weight-based integrated model through comparative analysis
with other comparable weighting methods (CS-Avg, n-Avg,
and Avg) [26]. The weight of the weight-based integrated model
has characteristics that are calculated by considering the data
size of each party and the predictive performance of central data
consisting of all parties, and these characteristics were clearly
distinguished from other weights, as shown in the third
simulation study (Multimedia Appendix 6).

In the weight-based integrated model, the weights were adjusted
as the data characteristics of the parties changed under the same
data size, and the weights were adjusted as the data sizes of the
parties changed under the same data characteristics. By contrast,
Avg always assigned a fixed weight that does not reflect the
different characteristics and data sizes of each party, and n-Avg
assigned a weight that reflects only the change in the data size
of each party. In addition, CS-Avg did not reflect the change
in data size, but rather reflected the change in data characteristics
between parties. Because CS-Avg assigns a weight of 0 to a
party with the lowest performance to other parties, the party
with a weight of 0 was not considered in the model. Therefore,
compared with other weights, the predictive performance of
CS-Avg was the most different from that of the centralized
model. The weight of the weight-based integrated model
distinguished from other weights reflects the characteristics of
each party in the central data in terms of data size and data
characteristics of each party. The weight-based integrated model
with these characteristics can build a model that shows similar
predictive performance as the centralized model, compared with
other weighting methods.

In our experiment using real data, there were few differences
in the results of external validation between the weight-based
integrated model and other weighting methods as the weights
assigned to the 10 hospitals differed only slightly for each
weighting method (Multimedia Appendix 8). The characteristics
of each weighting method were not revealed in the application
of real data. However, it can be confirmed that, through a third
simulation study, a difference exists in the concept from which
the weight of each weighting method is derived, and the weight
of the weight-based integrated model has a characteristic for
estimating the centralized model.

Limitations
It was mentioned that the weight-based integrated model is a
model without an iterative process as the novelty. However, we
did not evaluate its efficiency due to the absence of iterative
processes in the real distributed environment. In addition, this
study verified the proposed method using 2 logistic regression
models, and we did not confirm the validity of the weight-based
integrated model by applying other models. As shown in the
results of the estimated OR for bilirubin in Figure 7, when
estimating the parameters in the weight-based integrated model,
inaccurate information can be provided, compared with the
centralized model. As the parameters of the proposed method
were estimated by assigning weights to each party’s coefficient,
the parameter estimation can be influenced by the characteristics
of a specific party. This limitation indicates that when a feature
is estimated to be highly biased in one party, and the weight of
the party is not small relative to another, it needs to interpret
the estimated value carefully from the weight-based integrated
model. In the future, we will explore the application and
efficiency of the weight-based integrated model in a real
distributed environment based on a model that has not been
applied in this study.

Conclusions
In this study, we developed a weight-based integrated model,
which can build an integrated predictive model with noniterative
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communication between institutions. The weight-based
integrated model, which uses the concept of weights for each
institution, is a privacy-protecting analytic method that can
reduce the burden of distributed computing and improve the

average predictive performance of external validation
institutions. The proposed weight-based integrated model can
provide an efficient distributed research algorithm to improve
the usage of multi-institutional data.
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Abstract

Background: The spread of SARS-CoV-2, originating in Wuhan, China, was classified as a pandemic by the World Health
Organization on March 11, 2020. The governments of affected countries have implemented various measures to limit the spread
of the virus. The starting point of this paper is the different government approaches, in terms of promulgating new legislative
regulations to limit the virus diffusion and to contain negative effects on the populations.

Objective: This paper aims to study how the spread of SARS-CoV-2 is linked to government policies and to analyze how
different policies have produced different results on public health.

Methods: Considering the official data provided by 4 countries (Italy, Germany, Sweden, and Brazil) and from the measures
implemented by each government, we built an agent-based model to study the effects that these measures will have over time on
different variables such as the total number of COVID-19 cases, intensive care unit (ICU) bed occupancy rates, and recovery and
case-fatality rates. The model we implemented provides the possibility of modifying some starting variables, and it was thus
possible to study the effects that some policies (eg, keeping the national borders closed or increasing the ICU beds) would have
had on the spread of the infection.

Results: The 4 considered countries have adopted different containment measures for COVID-19, and the forecasts provided
by the model for the considered variables have given different results. Italy and Germany seem to be able to limit the spread of
the infection and any eventual second wave, while Sweden and Brazil do not seem to have the situation under control. This
situation is also reflected in the forecasts of pressure on the National Health Services, which see Sweden and Brazil with a high
occupancy rate of ICU beds in the coming months, with a consequent high number of deaths.

Conclusions: In line with what we expected, the obtained results showed that the countries that have taken restrictive measures
in terms of limiting the population mobility have managed more successfully than others to contain the spread of COVID-19.
Moreover, the model demonstrated that herd immunity cannot be reached even in countries that have relied on a strategy without
strict containment measures.

(JMIR Med Inform 2021;9(4):e24192)   doi:10.2196/24192
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Introduction

The spread of communicable diseases across a population is a
spatial and temporal process, and the study of the transmission
dynamics is becoming increasingly important for tackling the
spread appropriately.

Agent-based models (ABMs) are a class of computational
models based on computer simulations of actions and
interactions of autonomous agents, aimed at evaluating how
these actions affect the system as a whole. The agent-based
approach emphasizes the importance of learning through the
agent-environment interaction. This approach is part of a recent
trend in the computational models of learning toward developing
new ways of studying autonomous organisms in virtual or real
environments.

ABMs have proven particularly useful for answering public
health–related questions that are typically unanswerable with
the traditional epidemiological toolkit [1]. The use of ABMs
for studying phenomena related to public health is not recent
and has been used to study the spread of alcohol consumption
[2] and eating disorders [3].

Agent-based simulation modeling has been used primarily in
epidemiological studies of infectious diseases, including the
study of the reactions of the immune system during an infection
[4], the spread of malaria following the movement of mosquitoes
in a village in Niger [5], and following the trend of the influenza
virus [6]. Additionally, ABMs have been used to study the trend
of chronic diseases [7] and to analyze the public health impact
of influenza vaccinations in the United States and their
cost-effectiveness, simulating scenarios where different age
groups of the population were vaccinated [8].

More recently, ABMs have been used in population-based
studies of COVID-19, in particular to analyze the effects of
population characteristics [9,10] and of public health measures
on the spread of SARS-CoV-2 [11,12]. The importance of
ABMs in the face of a global pandemic is their ability to
reproduce situations, starting from real data, otherwise not
reproducible in reality.

In this study, we propose an epidemiological ABM for analyzing
the propagation of an infectious disease in a network of human
contacts; in particular, our model studies the effects of political
decisions on the spread of SARS-CoV-2. Other works have
been done studying this aspect [13-15], but the approach was
to simulate different pre-established situations (eg, implementing
containment measures or performing many diagnostic tests),
evaluating their impacts. A work similar to our study [16] starts
from the same research questions and arrives at similar
conclusions but uses a completely different methodology. Our
study differs from the previous ones in that it analyzes the effects
of the measures adopted by the governments in real time as they
are implemented. An increasingly used ABM for modeling
COVID-19 is Covasim [17]; although we propose a similar

model that includes demographic information and
nonpharmaceutical interventions, we considered a simplified
network structure (specifically, a dynamic random network,
where the edges are created and destroyed at each period t) with
a focus on capturing only the stylized facts for an immediate
evaluation of the effects of changes in model parameters and
in policies.

The time stamp (in days) of the model accurately reflects the
timing of the political decisions taken from the end of January
to July 1, 2020, and the model studies the evolution of the virus
from its appearance up to a year later. The parameters we
defined were derived from government policies, from real data
provided by the government bodies, and from medical
knowledge about the virus up to July 1, 2020; beyond this date,
the model makes predictions of how the virus would have spread
if all the considered variables would have followed the same
evolution (for example, maintaining the containment measures
as of July 1 in the 4 countries). There was no knowledge at the
time about virus variants nor data about the vaccination
campaign, so these have not been included.

The hypothesis from which we start is that the spread of a virus
depends, in addition to epidemiological factors and the nature
of the virus itself, on individual behavior or, more precisely, on
political decisions that induce appropriate behavioral criteria.
Our goal is to show how, through targeted measures, the damage
caused by the spread of a pandemic can be limited, both in terms
of the case-fatality rate and pressure on hospitals.

Methods

Overview of the Model
We implemented the model using NetLogo (free and
open-source software, released under a GNU General Public
License; Rel. 6.1.0), a multi-agent programmable modeling
environment (source code available on GitHub [18]). The
simulation was performed using the data of 4 countries (Italy,
Germany, Sweden, and Brazil) that have had different policy
approaches for the containment of SARS-CoV-2.

Italy was chosen in our analysis as it was the first country (after
China) to report an important diffusion of the virus in its territory
and had to make new decisions and implement measures without
having the possibility to compare their effectiveness with those
of other similar countries. Germany followed the example of
Italy but with a much higher execution speed, relying also on
a greater number of intensive care unit (ICU) beds (the highest
in Europe; Source: National Center for Biotechnology
Information [19]). Sweden took a different approach from other
European countries: it did not deny the presence and the
potential consequences of the virus spread in its territory but
decided not to impose any limitation to individual freedoms,
essentially aiming at obtaining herd immunity. Like Sweden,
Brazil did not adopt national measures to contain the spread of
the virus, despite the high number of deaths that this has caused.
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A more detailed description of the differences and the reasons
that led us to choose these 4 countries can be found in
Multimedia Appendix 1.

The model studied, through the interactions between healthy
individuals and infected individuals, how the virus spread over
time and how the actions implemented by governments
influenced its propagation. Starting from objective data provided

by government bodies (Table 1), key variables related to the
country, population, virus, and implemented policies were taken
into consideration. We provide a complete list of the measured
variables (Table 2; several indexes are the proportional
transformation of the values obtained from Table 1, defined in
the calibration phase of the model). We measured and
demonstrated the results of how these variables evolved over
time.

Table 1. Reference data used for constructing the model.

NotesData (%)Demographics

Italy

Source: Eurostat [20]22.60Older than 65 years

Source: OECDa [21]0.26Beds for seriously ill patients

Source: World Health Organization [22]76.89Recovery rate

Source: World Health Organization [22]14.55Case-fatality rate

Source: Ministero della Salute [23]2.40Seriously ill

Source: Ministero della Salute [23]25.40Hospitalization rate

Source: Ministero della Salute [23]74.60Not seriously ill

Germany

Source: Eurostat [20]21.40Older than 65 years

Source: OECD [24]0.60Beds for seriously ill patients

Source: World Health Organization [25]91.15Recovery rate

Source: World Health Organization [25]4.67Case-fatality rate

Source: Worldometer [26]1.48Seriously ill

Source: Worldometer [26]6.20Hospitalization rate

Source: Worldometer [26]92.30Not seriously ill

 Sweden 

Source: Eurostat [20]19.80Older than 65 years

Source: OECD [27]0.20Beds for seriously ill patients

Source: Worldometer [26]12.74Recovery rate

Source: World Health Organization [28]9.02Case-fatality rate

Source: Worldometer [26]2.55Seriously ill

Source: Worldometer [26]25.68Hospitalization rate

Source: Worldometer [26]69.30Not seriously ill

 Brazil 

Source: CIAb [29]8.60Older than 65 years

Source: AMIBc [30]0.19Beds for seriously ill patients

Source: World Health Organization [31]49.81Recovery rate

Source: World Health Organization [31]4.65Case-fatality rate

Source: Worldometer [26]2.00Seriously ill

Source: Worldometer [26]8.00Hospitalization rate

Source: Worldometer [26]90.00Not seriously ill

aOECD: Organisation for Economic Co-operation and Development.
bCIA: Central Intelligence Agency.
cAMIB: Associação Medicina Intensiva Brasileira.
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Table 2. List of the model variables.

BrazilSwedenGermanyItalyVariables

1000100010001000Total population (units)

90200210230Older than 65 years (units)

6666Initial infectious people (units)

0.300.300.300.30Transmissibility rate (%)

100100100100Immunity duration: mild cases (days)

LifetimeLifetimeLifetimeLifetimeImmunity duration: severe cases

2.02.02.02.0Initial productivity index

0.010.010.010.01Noncontagion index

After 100 casesAfter 100 casesAfter 60 casesAfter 100 casesVirus recognition

9203013Beds for seriously ill patients (units)

2.51.56.05.0Recovery index

0.30.40.30.8Case-fatality index

1.31.51.01.5Seriously ill index

6.04.75.05.0Not seriously ill index

7.15014.314.3Mask use (decrease in transmissibility; %)

5.110.210.210.2Physical distancing (decrease in transmissibility; %)

1122Infected tourists (max number; units)

Description of the Model
The model examined a sample of the population of each of the
4 countries, fixed at 1000 (i ∈ {1,2,...,1000}). It was similar to
a small neighborhood of a city where the characteristics of the
entire population are reproduced (the data we were interested
in are reported in Tables 1 and 2). We assumed that an outbreak
of COVID-19 has developed in this neighborhood. Naturally,
government provisions were applied to this neighborhood as
they were issued and with the same timing.

To better explain the logic behind our choices, we should
imagine the considered space where the agents live as a
laboratory where we applied the different policies, compliance
to nonpharmaceutical measures, health structures, knowledge
about the virus, etc. The laboratory space and the number of
agents go beyond the geographical context, as they are meant
to represent an exportable sample for each of the analyzed
countries. Only the different measures and country specifications
influence the results obtained from the simulations.

The time span of the simulation was 1 year, divided into 365
daily cycles. The first cycle coincided with the first infections
in the given country.

The initialization of the model (at time t=0) requires the loading
and setting of the required variables for the simulations and
analyses. The variables derived from the national and
governmental bodies, as well as institutional sources for each
country, were automatically loaded following country selection.
In this phase, the model also set the time stamps in which
political decisions were made with respect to the containment
measures for the spread of SARS-CoV-2. After the initial

setting, the model was ready to simulate the evolution of
COVID-19 for the selected country.

The following shows the (simplified) scheme followed by the
model. The total 1000 agents move randomly within the model
environment, simulating daily activities (eg, going to work or
school); movement speed was set at a lower level (50%) for
older adult agents (older than 65 years), as they perform fewer
activities (the number of older adults was modeled according
to the national statistics, see Table 2). Among the agents, some
are infected (we denoted them as Ii, and we fixed them at 6 at
time t=0). Moving inside the environment, they come into
contact with healthy agents. A healthy agent Hi has a certain
probability P(I) ∈ [0,1] to be infected, defined by the following
equation:

P(I) = 1 – (1 – TR)n

where TR ∈ [0,1] is the transmissibility rate of the virus, and n
is the number of infected neighbors; in our topology the number
of infected agents present in a closed ball was determined by

B1 = {x ∈ R2:‖x-y‖≤1}, with radius 1 and center y ∈ R2,
where the healthy agent Hi is located in time t. Notice that P(I)
is monotonically increasing with respect to TR and n.

The propagation of the virus is not immediately recognized as
such by the governments, and before this happens, the number
of infected agents Ii exceeds a certain threshold (see virus
recognition in Table 2 for the country-specific threshold values).

After the virus is recognized, at each time t, we assume that
each infected agent and those who have come into contact with
them have a probability P(test)=0.5 to perform a virus
recognition test [32]. Therefore, half of them do not perform
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the test and continue to move inside the model space becoming,
if infected, a symptomatic infected agent or an asymptomatic
infected one. Asymptomatic agents will perform the virus
recognition test at the next period t + 1 only if they come into
contact again with an infected agent, while symptomatic agents
will have the same constant probability P(test) to be tested in
each period.

Infected agents do not present symptoms immediately, but we
considered that there is an incubation period that can vary
according to age. For individuals younger than 65 years, we set
the incubation period according to a normal distribution with
mean 7 (SD 2; IY ~ N(7,4)), while for those who are older than
65 years, the incubation period is defined according to a normal
distribution with mean 3 (SD 1; IO ~ N(3,1)).

The viral load, and therefore the ability to infect other agents,
has not been set the same for all of the Ii agents. For those who
are in the incubation phase, the viral load is lower, and it
increases period by period as the development of the infection
approaches; for asymptomatic agents, it is lower than for agents
with mild symptoms, who in turn, will have it lower than
seriously ill agents (that will need to be hospitalized).

Infected agents Ii can therefore be of four types: in incubation,
asymptomatic, mildly ill, and seriously ill (see Tables 1 and 2).
The mildly ill, when found, are isolated at home; in our model,
this translates to their mobility being set to 0 (but they can still
spread the virus). The seriously ill, when found, will be
hospitalized, and their mobility will also be set to 0.
Furthermore, the latter are to be considered in an isolated space,
so we also considered that they will not spread the virus
anymore.

If ICU beds (see beds for seriously ill patients in Table 2) are
saturated, seriously ill patients will be placed in home isolation
(with mobility at 0), but their probability of recovery (see Tables
1 and 2) decreases.

Seriously ill patients can die with a probability equal to that
listed in Table 1 (case-fatality rate) and Table 2 (case-fatality
index). For older adults, this probability is higher (we consider
their greater fragility and the possible presence of other existing
pathologies). Dead agents are denoted with Di; we set both their
mobility and their transmissibility rate to 0.

Ill patients can recover with a probability equal to that listed in
Table 1 (recovery rate) and Table 2 (recovery index).

Recovered agents develop antibodies to the virus (ie, they
become immune). We denoted the immune agents with IMi.
For those who were seriously ill, we considered that their
antibodies lasted for the whole simulation, while those who
were mildly ill will develop an immunity that lasts only for 100
days [33] (see Table 2). Recent studies [34] confirm that there
is a difference in the duration of immunity, which depends on
the severity of the development of the disease.

We also considered noncontagious asymptomatic cases (ie,
there is a small proportion of healthy individuals who, following
infection, immediately develop antibodies without showing
symptoms and never become carriers of the virus). They
transition from Hi in t to IMi in t +1 and are not counted as Ii.
Notice that in each t, the sum of all the agents (healthy, infected,
immune, and dead) is equal to 1000.

The industrial productivity (economic index) is proportional to
the mobility of the agents. By setting the prepandemic level to
0, the reduced mobility of the agents will lead to a decrease in
productivity.

Figure 1 shows a simplified flowchart of the mechanisms
previously described.

Political decisions were then applied to this scheme, according
to the times and the ways they have been implemented by the
governments of the analyzed countries. Thus, for example, the
decision of closing schools will lead to a reduction in the initial
mobility of the agents; a lockdown of nonessential activities
will further reduce it (with negative repercussions on industrial
productivity, but a positive result in terms of limiting the spread
of the contagion). The adoption of precautions or medical aids
was translated into the model as a decrease in the transmissibility
rate (see Table 2). We analyzed only a small sample of the
population; therefore, in the rest of this study, the political
decision of closing the national borders was translated into a
further limitation on the mobility of agents, while their
reopening was simulated as a partial restoration of the original
mobility and the introduction of new infected agents (see
infected tourists in Table 2).

A more detailed explanation of the parameters and the variables
we used can be found in Multimedia Appendix 1.
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Figure 1. Simplified flowchart of interaction mechanisms in the model.

Results

It should be remembered that the reported results were obtained
considering the government measures in force until July 1, 2020;
from this date onward, the forecasts are based on the last known
measures being kept in place. In the summer of 2020, individual
behavior and governments’attitudes were not so strict: therefore,
despite the model correctly forecasting a second wave, such
forecasts were underestimated.

Italy
The simulation recorded 309 cases of COVID-19 with 243
recoveries and 48 deaths. The case-fatality rate was 15%
(48/309), with an older adult (older than 65 years) case-fatality
rate of 65% (31/48).
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Total Number of COVID-19 Cases, Hospitalizations,
Isolations, and Asymptomatic Infections
At the end of the simulation, the total number of positives was
17, including 8 asymptomatic, 2 in home isolation, and 0
hospitalizations. The number of COVID-19 cases rose

exponentially with a peak at t=61 (Figure 2a). In the second
half of the simulation (t=279), the number of COVID-19 cases
rose but never reached the height of the initial peak.

The total number of hospitalizations and home isolations reached
a peak at t=64.

Figure 2. (a) Positive, hospitalized, in isolation, and asymptomatic figures for Italy. (b) Evolution of the contagion for Italy. The graphs consider the
sum of the agents belonging to each category shown in the legend for each day of the simulation.

Immunity and Case Fatality
The proportion of individuals who acquired immunity reached
a peak of 16.5% (165/1000) at t=150, albeit with an immunity
of 10% (99/1000) at the end of the simulation (Figure 2b). The
case-fatality rates increased throughout the simulation despite
a decreasing number of cases. At the end of the simulation, the
case-fatality rate was 4.8% (48/1000).

R0 and RE

The trends of R0 (range 0-3.5) and RE (range 0-3.0) exhibited
strong fluctuations during the time span of the simulation (Figure
3a).

A sensitivity analysis conducted in a simulation that assumed
that national borders remained closed (Figure 3b) showed that
no new cases occurred once the no contagion value was reached,
and the borders remained closed.
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Figure 3. (a) R0 and Re indexes for Italy (with national borders reopening). (b) R0 and Re indexes for Italy (with no national borders reopening).

Herd Immunity, ICU Beds, and Productivity
The model showed that immunity was reached in approximately
11% (116/ 1000) of the population.

The simulation indicated that the ICU beds were never saturated;
although at t=66, the occupancy rate reaches 77% (10/13).

The model showed a sharp drop in productivity following the
implementation of containment measures, and the loss in
productivity at its maximum reached –18.7% (compared to the
prepandemic value of 0).

Germany
The simulation recorded 270 cases of COVID-19 with 233
recoveries and 18 deaths. The case-fatality rate was 6.7%
(18/270), with an older adult case-fatality rate of 61% (11/18).

Total Number of COVID-19 Cases, Hospitalizations,
Home Isolations, and Asymptomatic Infections
At the end of the simulation, the total number of positive cases
was 19, including 10 asymptomatic, 2 in home isolation, and 1
hospitalized. The number of COVID-19 cases rose rapidly with
a peak at t=117 (Figure 4a). After the peak and following the
adopted containment measures, the number of COVID-19 cases
gradually decreased.

The total number of hospitalizations and home isolations reached
a peak around t=110.
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Figure 4. (a) Positive, hospitalized, in isolation, and asymptomatic figures for Germany. (b) Evolution of the contagion for Germany. The graphs
consider the sum of the agents belonging to each category shown in the legend for each day of the simulation.

Immunity and Case Fatality
The proportion of individuals who acquired immunity reached
a peak of 17.1% (171/ 1000) at t=175, albeit with an immunity
below 8% (77/1000) at the end of the simulation (Figure 4b).
The case-fatality rate increased throughout the simulation. In
the last part of the simulation, despite new cases of COVID-19,
the case-fatality rate did not increase. At the end of the
simulation, the case-fatality rate was 1.8% (18/1000).

R0 and RE

The trends of R0 (range 0-3.8) and RE (range 0-3.0) exhibited
strong fluctuations during the time span of the simulation.

The sensitivity analysis showed that no new cases occurred
once the no contagion value was reached (same as the analysis
for Italy; Figure 3b), and the borders remained closed.

Conversely, in a situation with open national borders,
COVID-19 was not completely eradicated despite the
implemented measures.

Herd Immunity, ICU Beds, and Productivity
The model showed that immunity was reached in approximately
10% (96/1000) of the population.

The simulation indicated that the ICU beds were far from being
saturated, with the highest rate being 17% (5/30) at t=131.

The model showed a sharp drop in productivity following the
implementation of containment measures, with a maximum loss
of productivity of –18.2% (compared to the prepandemic value
of 0).
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Sweden
The simulation recorded 765 cases of COVID-19 with 533
recoveries and 141 deaths. The case-fatality rate was 18.4%
(141/765), with an older adult case-fatality rate of 43% (61/141).

Total Number of COVID-19 Cases, Hospitalizations,
Home Isolations, and Asymptomatic Infections
At the end of the simulation, the total number of positive cases
was 91, including 38 asymptomatic, 29 in home isolation, and
9 hospitalized.

The number of COVID-19 cases reached a peak at t=116 (Figure
5a) with the number of cases decreasing slowly, remaining at

high values until the end of the simulation. Despite a descending
trend in the second half of the simulation, there were situations
where the number of cases increased again. Given the high
number of positive cases, the infection was not considered under
control.

The total number of hospitalizations and home isolations reached
a peak around t=129.

A sensitivity analysis that did not place a limit on the number
of ICU beds showed that in the second part of the simulation
there was a sharper decrease, with an overall lower number of
COVID-19 cases.

Figure 5. (a) Positive, hospitalized, in isolation, and asymptomatic figures for Sweden. (b) Evolution of the contagion for Sweden. The graphs consider
the sum of the agents belonging to each category shown in the legend for each day of the simulation.
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Immunity and Case Fatality
Immunity was reached in 29% (290/1000) of the population,
with a COVID-19 mortality rate of 14% (141/1000) at the end
of the simulation (Figure 5b). The recovery rate was 60%
(443/733; we did not count the number of positive agents at the
end of the simulation).

The sensitivity analysis showed that an increase in the number
of ICU beds would lead to a decrease in the total number of
positive cases and would result in an increased recovery rate
(447/588, 76%; we did not count the number of positive agents

at the end of the simulation) and a decreased case-fatality rate
(80/693, 11.5%).

R0, RE, and Herd Immunity

The trends of R0 (range 1.1-2.3) and RE (range 0.5-2.2)
presented less fluctuations during the time span of this
simulation (Figure 6a).

The model showed that immunity was reached in approximately
39% (388/1000; we counted the immune plus the currently
positive cases) of the population (Figure 6b).

Figure 6. (a) R0 and Re indexes for Sweden. (b) Herd immunity rate for Sweden.

ICU Beds
In the first part of the simulation, full saturation of ICU beds
was reached on a number of occasions (Figure 7a). In the second
part of the simulation, the bed saturation rate remained above
50%.

The sensitivity analysis showed that approximately an additional
40% (an increase of 8 out of the current 20) of the available
ICU beds would have been necessary to cope with the peak of
a maximum emergency (at t=116; Figure 7b). An additional
10% of available beds would have met the needs of the
population throughout most of the simulation period.

Figure 7. (a) Hospital saturation rate for Sweden. (b) Hospital saturation rate for Sweden (with no limit on the number of ICU beds). ICU: intensive
care unit.

Productivity
The loss in productivity at its maximum reached –18.8%
(compared to the prepandemic value of 0). The government
measures have generated a decrease in productivity, and as these
measures were still in place as of July 1, 2020, we could not
see a rise due to the restoration of normality. The loss of
productivity was mainly affected by the high number of infected

individuals in hospital and in home isolation, and the high
case-fatality rate.

In the sensitivity analysis without a limit on ICU beds, the
productivity was higher than in the main analysis.
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Brazil
The simulation recorded 883 cases of COVID-19 with 658
recoveries and 90 deaths. The case-fatality rate was just over
10% (90/883), with an older adult case-fatality rate of 34%
(31/90) out of total deaths.

Total Number of COVID-19 Cases, Hospitalizations,
Home Isolations, and Asymptomatic Infections
At the end of the simulation, the total number of positive cases
was 137, including 63 asymptomatic, 47 in home isolation, and
3 hospitalized.

The number of COVID-19 cases gradually rose throughout most
of the simulation period without reaching a clear peak. The final

part of the simulation showed that there was a decrease in the
number of cases due to the large number of immune individuals.
Given the high number of people still positive at the end of the
simulation, the infection was not to be considered under control
(Figure 8a).

The total number of hospitalizations and home isolations reached
a peak around t=190.

A sensitivity analysis that did not place a limit on the number
of ICU beds resulted in a peak of the number of COVID-19
cases at t=75, followed by a gradual decrease in the number of
cases.

Figure 8. (a) Positive, hospitalized, in isolation, and asymptomatic figures for Brazil. (b) Evolution of the contagion for Brazil. The graphs consider
the sum of the agents belonging to each category shown in the legend for each day of the simulation.
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Immunity and Case Fatality
The proportion of immune individuals reached 37% (374/1000)
of the population (Figure 8b). The proportion of recovered cases
reached 74% (658/883).

The sensibility analysis showed that an increase in the number
of ICU beds would lead to a decrease in the number of cases
and would result in a recovery rate of 84% (415/492) and a
case-fatality rate of 7% (34/492).

R0 and RE, Herd Immunity, ICU Beds, and Productivity

The trends of R0 (range 0.5-4.1) and RE (range 0.2-2.5) exhibited
contained fluctuations during the time span of this simulation
but always remained higher than 1.

The model showed that immunity was reached in approximately
51% (511/1000) of the population, while a figure of 75% was
required to obtain herd immunity for the entire population.

The simulation model showed that the number of ICU beds
were insufficient with respect to the needs resulting from the
spread of the COVID-19 pandemic (Figure 9a).

The sensitivity analysis, which removed the limit on the number
of ICU beds, showed that, approximately, an additional 75%
(an increase of 7 out of the current 9) of the number of available
ICU beds would have been necessary to cope with the peak of
maximum emergency (at t=84; Figure 9b).

The loss in productivity at most reached –12.4% (compared to
the prepandemic value of 0).

Figure 9. (a) Hospital saturation rate for Brazil. (b) Hospital saturation rate for Brazil (with no limit on the number of ICU beds). ICU: intensive care
unit.

Discussion

Objective
The objective of this study was to present a model that simulates
the propagation of the COVID-19 pandemic based on real-world
containment measures, as they were implemented by the
governments of 4 countries: Italy, Germany, Sweden, and Brazil.
The model thus allows for a prediction on the evolution of
COVID-19 by reporting forecasts on key indexes such as the
case-fatality rate, the recovery rate, herd immunity, ICU bed
occupancy rates, home isolation rates, and the countries’
productivity rates. The proposed model is highly flexible and
allows for the addition or removal of parameters such as
requirements and policies. Moreover, the model consequently
studies how the contagion evolves over time. This offers the
possibility to run additional simulations that predict the course
of the pandemic under alternative policies by each government.

Previous models of SARS-CoV-2 have assessed the impact of
the use of personal protection and early diagnosis [11], studied
the impact of face masks on the spread of the virus [12], and
analyzed the impact of the virus according to age [9,10], family
situation, and the presence of comorbidities [10]. Meanwhile,
other ABMs have considered the impact of home isolation on
the saturation of ICU beds [35], assessed infection and fatality
rates assuming a 20-fold underreported number of cases [36],
or hypothesized the economic effects in Japan of a Tokyo

lockdown [37]. Our model thus differs from previous models,
as it focuses on the effects of contagion and on its evolution
over time, considering both the real data made available by
government bodies and the policy measures implemented to
stop or limit the propagation of SARS-CoV-2.

The model outputs shown in this paper are the results of several
simulations for each country. Due to the nature of ABMs, the
quantitative results will differ with each simulation. Any
conditions that occur within the model will vary over time while
maintaining parameter values and keeping initial variables
constant. Although each simulation will not yield identical
quantitative results for each country, the qualitative behavior
always follows the same trend. Consequently, we have been
able to draw some considerations about the analyzed parameters.
These are presented on a country by country basis.

Italy
The simulations for Italy show a low total number of COVID-19
cases compared to the simulations for Sweden and Brazil,
indicating a success of the adopted containment measures.
Similarly, the numbers of hospitalized individuals and those in
home isolation seemed to remain under control. Overall, this
resulted in a large fluctuation of R0 and RE, where a small
increase in the number of infections lead to a large growth in
the indexes’ values. Additionally, the simulations for Italy
indicated a slow reduction in the number of asymptomatic
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individuals, which highlights an increased possibility of new
infections that in turn could be extended to a recommendation
not to loosen the implemented containment measures as of July
1, 2020. This is further supported by the trends in immunity,
where the proportion of immune individuals were comparatively
low. Bearing in mind that our model was implemented at the
end of June 2020 and that it used statistical data available at
that time, it was able to correctly predict that, with the reopening
of the national borders and the free movement of people, there
would be a new increase in the number of positive cases (thereby
partly invalidating national containment efforts). This was
indeed confirmed in our sensitivity analysis where the national
borders remain closed. Such a situation is not replicable in
reality, but it leads to no new cases.

Despite its relatively low number of cases, Italy recorded the
second highest case-fatality rate (48/309, 15%; Germany:
18/270, 6.7%; Sweden: 141/765, 18.4%; Brazil: 90/883, 10%).
Italy’s proportion of older adults ranks among the highest in
the world (Source: Istituto Nazionale di Statistica [38]), which
could serve to partially explain the exceedingly high case-fatality
rate. Indeed, the simulation indicates that COVID-19 affects
older adults predominantly, where the case-fatality rate reached
65% (31/48) of total deaths.

Herd immunity in Italy would be obtained in a situation where
70% of the population are immune to SARS-CoV-2. The results
of the model, however, indicated that only 11% of the Italian
population reached immunity, a number that considers both
immune individuals and active cases. This low proportion of
immune individuals is expected given the policy decisions aimed
at limiting the spread of the virus.

Germany
For Germany, our model was able to make a complete analysis
of the contagion peak and its gradual descent, as well as
predicted possible developments in the coming months.

The simulations for Germany showed a situation with a
comparatively low number of infected individuals and strong
fluctuations in R0 and RE indexes. The low infection rates
resulted in a very low case-fatality rate; however, it also resulted
in a low proportion of immune individuals. Like the simulations
for Italy, the low number of positive cases and the low
proportion of immune individuals was a consequence of the
policy implementations aimed at containing the spread of
SARS-CoV-2. Overall, the results at the end of the simulation
for Germany are not too different from the results obtained for
Italy, a situation under control with regard to hospitalizations
and home isolation cases. Moreover, as for Italy, asymptomatic
cases were still recorded (1%), which indicates a situation where
SARS-CoV-2 is still present in the population, with the risk of
continued virus spread if the containment measures were to be
loosened. The model, starting from the data at the end of June
2020, correctly predicted that this percentage of asymptomatic
people would have led to the formation of new outbreaks and
a relatively new spread of the virus.

The simulations for Germany showed two notable differences
compared to Italy. First, the proportion of recoveries was higher
in Germany (233/251, 93% vs 243/292, 83%). Second, although

the German simulations showed an older adult case-fatality rate
of 61% (11/18), the overall case-fatality rate was only 6.7%
(18/270). Germany’s markedly lower overall case-fatality rate
as compared to Italy could be the result of the prompt diagnosis
and case management due to the widespread controls carried
out by the public health authorities. The same containment
measures, however, also result in the low proportion of immune
individuals (96/1000, 10%), which are far from the proportion
necessary to reach herd immunity as indicated by the model
(73%). Consequently, and similar to Italy, the model predicted
that Germany would have had a high risk of possible second
waves, as it indeed happened with the reopening of the national
borders.

Compared to Italy, Germany also fared better with regard to
ICU bed occupancy rates; the simulations indicated that even
in the most acute phase of the pandemic, bed occupancy rates
never exceeded 20% (6/30) of total capacity. It should be kept
in mind that Germany has by far the highest number of ICU
beds in the 4 countries considered in our analysis [18].

Finally, the impact of the pandemic on the German economy
is evident, as the containment measures had a strong impact on
the productivity, which at one point reached –18.2%. However,
contrary to the situation for Italy, the forecasts of major
economic institutes such as the OECD and the World Bank
considered the German recovery period to reach the precrisis
values quicker than Italy.

Sweden
The simulations for Sweden demonstrate a situation that is not
under control a year after the first recorded case and are thus in
stark contrast to those obtained for Italy and Germany. These
discrepancies are most likely due to the comparatively limited
containment measures initiated by the Swedish Public Health
Authority. First, both R0 and RE remain at higher values through
the simulations, with an R0 that never goes below 1. Second, at
the end of the simulation, the total number of COVID-19 cases
was much larger than in Italy and Germany; the high number
of hospitalized and asymptomatic cases being of particular
concern. Third, the proportion of recovered cases (443/733,
60%) was lower than the corresponding proportion in any of
the other countries. Fourth, the case-fatality rate (141/765,
18.4%) was higher than the rates obtained for Germany, Italy,
and Brazil.

A major difference of Sweden from Italy and Germany was the
low number of available ICU beds. Despite its high focus on
welfare, Sweden has a low number of ICU beds per capita.
Although Sweden managed to double the number of ICU beds
at the start of the pandemic (Source: Folkhälsomyndigheten
[39]), the pressure on hospitals remains critical throughout the
simulations. Indeed, as the sensitivity analyses showed, Sweden
would have required an additional 40% of its ICU capacity at
the peak of the pandemic. Moreover, the sensitivity analysis
also showed that the case-fatality rate decreased from 18.4% to
11.5% with a higher number of ICU beds. It is therefore fair to
conclude that an increase in the ICU capacity would have the
potential to save many lives.
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Despite the adverse outcomes, Sweden does not reach the
threshold of herd immunity as determined by the simulations.
The herd immunity threshold (57%) was derived based on
specific considerations in the model (ie, lifelong immunity for
those with serious COVID-19 and temporary immunity to those
with milder forms of the disease). To the best of our knowledge,
there is no clear data on immunity. Indeed, if the parameters in
the model are accurate, herd immunity for COVID-19 would
be difficult to reach. It is therefore possible to conclude, based
on the simulations, that implementing containment measures
and recommending the use of face masks have positive effects
in limiting the spread and the consequences of COVID-19, even
a year after the first recorded case.

The simulated productivity drop for Sweden would, unlike the
situations in Italy and Germany, not be influenced by the
country’s containment measures but rather be a consequence
of its large number of COVID-19 cases.

Brazil
As expected, our model foresees that Brazil has the highest
number of COVID-19 cases among the 4 analyzed countries.
This is most likely due to Brazil’s implemented policy decisions,
which are more in line with those of Sweden than Italy and
Germany. Consequently, Brazil and Sweden share many
similarities in the analyses. First, the total case numbers in Brazil
resemble those of Sweden and are assumed to be a result of the
less restrictive containments measures. Moreover, R0 and RE

did not exhibit strong fluctuations, with R0 remaining above 1
for the duration of the simulation. Despite a situation that could
be considered out of control, Brazil displayed a notably lower
case-fatality rate than Sweden (10.2% vs 18.4%). This is most
likely due to the low proportion of older adults (8.6% vs 19.8%
in Sweden). Another noteworthy difference between Brazil and
Sweden was the encouraging recovery rate of 74% (658/883),
again most likely due to the two countries’ demographic
differences in age.

The proportion of immune individuals in Brazil reached 37%
(374/1000) of the population, the highest proportion of all the
analyzed countries. Despite this high immunization rate, the
model foresees that herd immunity will not be reached due to
a calculated threshold of 75%. Indeed, the total proportion of
immunized and positive cases at the end of the simulation
reached 51% (511/1000).

The severity of the situation in Brazil was further highlighted
by the sensitivity analyses, identifying a required 75% increase
in the number of ICU beds for Brazil to cope with its situation.
According to the models, such an increase in capacity would
notably reduce not only the number of recorded COVID-19
cases but also the case-fatality rate (from 10.2% to 7%). It is,
however, questionable whether an ICU capacity increase of
such magnitude is feasible to implement, as Brazil over the past
years has progressively decreased the availability of ICU beds
(Source: Central Intelligence Agency [29]).

Brazil has adopted few measures concerning the closure of
commercial activities (Source: Conselho Nacional de Secretários
de Saúde [40]). This led to a lower drop in productivity (in
absolute terms) than in European countries, with the difference

that the contagion curve in Brazil lowers slowly; the model
predicted that the negative effects of the pandemic will last for
a long time so that it seems likely that other countries (that
implemented stronger containment measures) will be able to
reopen all their activities sooner. The productivity trend reflects
this, as there is no rise toward pre–COVID-19 values.

The effects of reopening national borders cannot be assessed
for Brazil, which unlike Germany and Italy, has never
implemented closure of national borders as a measure to contain
the spread of COVID-19.

Principal Results
By considering 4 countries with different policy approaches in
the prevention and containment of the spread of COVID-19,
our simulation model is able to highlight the consequences of
policy decisions on a number of measures. The results obtained
from our models showed the importance of prevention through
widespread testing over large areas of territory (Germany) and
of lockdown measures for the reduction of virus transmissibility
(Italy and Germany). On the other hand, the countries that have
not adopted these measures (Sweden and Brazil) are facing a
situation that is not under control. From our results, we also
highlight how important the mandatory use of face masks and
the imposition of physical distancing are in reducing the number
of COVID-19 cases. Our study also stresses how important it
is to have an adequate number of ICU beds to deal with
emergencies. This is evident particularly in the simulations for
Sweden and Brazil, where the sensitivity analyses demonstrated
an improvement in both recovery rates and case-fatality rates.
Finally, the simulations showed that the reopening of national
borders will not allow individual countries to maintain a
monotonic decreasing curve of infections; indeed, only the
simulations with the national borders being kept closed led to
a complete stop of the spread of COVID-19.

In the context of an increasing number of positive COVID-19
cases, the main priority is the successful containment of the
spread of SARS-CoV-2. However, prolonged lockdown
measures have devastating effects on the economy of a country.
The results of our model point toward a situation where
countries that implemented mild policies against the virus at
the start of the pandemic may inevitably need to strengthen
them in the near future. Consequently, we suggest that the best
course of action is to plan and implement aggressive political
actions, both in the contagion containment phase (eg, limitations
on the personal mobility and closure of nonessential activities)
and in the economic recovery phase (eg, strong tax breaks for
businesses and robust actions to stimulate consumption, as also
indicated by the European Central Bank, even if doing this will
result in a large budget deficit), with a long-term perspective
from the beginning. According to the simulations, such actions
may allow nations to overcome the economic impact of the
pandemic sooner. This is important given that the data provided
by the international economic organizations (International
Monetary Fund, Organisation for Economic Co-operation and
Development [OECD], World Bank, and others) leave no room
for optimism [41-43].
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Strengths and Limitations
There are a number of limitations that need to be mentioned.
The main point concerns the input data for the model. We have
retrieved the values from the most reliable sites among those
that provide daily information about the spread of the virus, but
this information is constantly evolving. Consequently, to keep
the model updated, it is necessary to set up the most recent
information. In this paper, the model photographs the situation
at the end of June 2020, and it provides a forecast based on
those data. Another limitation is that we considered only a small
sample (which can be thought of as an infection outbreak). Even
if this sample has the same national characteristics, the obtained
results may not perfectly be the same when translated on a larger
scale; that said, what we have obtained remains valid when
studying a representative outbreak.

The economic results obtained from the model measured only
the impact resulting from political decisions to contain the
spread of COVID-19. The economic ramifications that will
occur after a complete reopening of borders, such as a decrease
in consumption and tourism, an increase in unemployment, and
the shutdown of various economic activities, have not been
taken into consideration.

The simulations also have a number of strengths. They take into
consideration the age distribution of the respective countries.
This is crucial given the impact of COVID-19 on the older adult
population. The data in all the simulations is based on official
statistics, as they are obtained through the national statistical
databases of each country. This is a major strength for Sweden,
Germany, and Italy, but a limitation for the analyses relating to
Brazil. Moreover, the model can be extended to include

additional new and relevant variables as they become available
or are deemed necessary by researchers and policy makers.

Future Considerations
Further development of the model could allow for comparisons
of the outcomes of a number of different policy proposals (eg,
obligatory vs voluntary use of face masks, whether or not to
increase the number of ICU beds, or whether or not to
implement lockdown measures). The model could therefore be
used to evaluate the needs and requirements for the considered
territory, and the policies with the greatest impact over time.
We plan to better explore these points in future research.

Additionally, with regard to the economic consequences of the
pandemic, further considerations should be made for data
concerning productivity and the economy in general. At the
time of writing, the return to a situation similar to the one before
the pandemic seems likely to occur only after the vaccination
campaign ends, covering at least 75% of the population [44].

Conclusions
This study used real-world data to analyze how different political
decisions aiming to deal with the spread of SARS-CoV-2
influence the extent of COVID-19. The results of the simulations
lead to three main conclusions. First, strict containment
measures, including the mandated use of face masks and the
implementation of social distance, lead to a reduction in the
number of COVID-19 cases. Second, the number of ICU beds
are an important measure to reduce case-fatality rates. Third,
herd immunity cannot be reached, and any national strategy
aiming to reach herd immunity by loosening containment
measures should be avoided.
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Abstract

Background: In clinical research, important variables may be collected from multiple data sources. Physical pooling of
patient-level data from multiple sources often raises several challenges, including proper protection of patient privacy and
proprietary interests. We previously developed an SAS-based package to perform distributed regression—a suite of
privacy-protecting methods that perform multivariable-adjusted regression analysis using only summary-level information—with
horizontally partitioned data, a setting where distinct cohorts of patients are available from different data sources. We integrated
the package with PopMedNet, an open-source file transfer software, to facilitate secure file transfer between the analysis center
and the data-contributing sites. The feasibility of using PopMedNet to facilitate distributed regression analysis (DRA) with
vertically partitioned data, a setting where the data attributes from a cohort of patients are available from different data sources,
was unknown.

Objective: The objective of the study was to describe the feasibility of using PopMedNet and enhancements to PopMedNet to
facilitate automatable vertical DRA (vDRA) in real-world settings.

Methods: We gathered the statistical and informatic requirements of using PopMedNet to facilitate automatable vDRA. We
enhanced PopMedNet based on these requirements to improve its technical capability to support vDRA.

Results: PopMedNet can enable automatable vDRA. We identified and implemented two enhancements to PopMedNet that
improved its technical capability to perform automatable vDRA in real-world settings. The first was the ability to simultaneously
upload and download multiple files, and the second was the ability to directly transfer summary-level information between the
data-contributing sites without a third-party analysis center.

Conclusions: PopMedNet can be used to facilitate automatable vDRA to protect patient privacy and support clinical research
in real-world settings.

(JMIR Med Inform 2021;9(4):e21459)   doi:10.2196/21459
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Introduction

Researchers often have to pool data from multiple sources for
their studies. One common scenario is to combine data from
multiple distinct cohorts of patients to achieve sufficient
statistical power, especially in studies where the exposure or
outcome of interest is rare. Another scenario is when important
variables such as exposures, outcomes, or confounders are
available from multiple data sources. However, physical pooling
of patient-level data dispersed across multiple data sources often
raises several concerns, including ownership of the data,
unapproved use of the transferred data, and proper protection
of patient privacy and proprietary interests of the
data-contributing sites [1-5].

In most studies that analyze patient-level data from multiple
sites, researchers can remove direct patient identifiers (eg, name,
social security number) before sharing the data. It is also
possible to relativize certain data attributes such as dates (eg,
by setting the cohort entry date as time zero and converting all
dates to numerical values relative to the time zero), perturb data

attributes that may be used to reidentify patients (eg, rare
covariates or laboratory values), or encrypt the deidentified
patient level. However, these data manipulation techniques may
not be feasible in certain studies and do not always guarantee
adequate levels of privacy protection, which may deter
collaboration and data sharing.

A number of privacy-protecting analytic methods have been
developed to complement available data manipulation
techniques. These methods, including meta-analysis of
site-specific effect estimates and methods that leverage
confounder summary scores, generally only require
data-contributing sites to share summary-level information,
thereby offering better privacy protection [6-8]. However, most
methods were developed to analyze horizontally partitioned
data (Figure 1), a setting where distinct cohorts of patients with
the same data attributes are available in multiple
data-contributing sites [9,10]. There are few valid and practical
privacy-protecting methods to analyze vertically partitioned
data (Figure 2), a setting where the data attributes of one distinct
cohort of patients are available in two or more data-contributing
sites.

Figure 1. Distributed regression analysis in horizontally partitioned data environments. In this hypothetical example, surgery, sex, and race are the
independent variables, while BMI is the dependent variable. Both data-contributing sites have the same set of variables.
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Figure 2. Distributed regression analysis in vertically partitioned data environments. In this hypothetical example, surgery, sex, and race are the
independent variables, while BMI is the dependent variable. Data-contributing site 1 has data on the independent variables, while data-contributing site
2 has data on the dependent variable. Data-contributing site 2 can also have additional independent variables, as another variant of vertically partitioned
data environments.

A promising privacy-protecting analytic method for both
horizontally and vertically partitioned data is distributed
regression, a suite of methods that perform
multivariable-adjusted regression analysis with only highly
summarized intermediate statistics of the patient-level data from
the data-contributing sites (Figure 3) [11-13]. We have
previously developed an SAS-based distributed regression
analysis (DRA) package integrated with PopMedNet, an
open-source file transfer software [14-17], to perform

automatable distributed regression within horizontally
partitioned data environments (horizontal DRA [hDRA]). We
successfully tested the application in a real-world setting [18].
The feasibility of using PopMedNet to facilitate DRA with
vertically partitioned data (vertical DRA [vDRA]) has not been
evaluated. In this article, we describe the feasibility of using
PopMedNet and enhancements to PopMedNet to facilitate
automatable vDRA to protect patient privacy and support
clinical research in real-world settings.
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Figure 3. A hypothetical example of intermediate statistics shared by data-contributing sites in distributed linear regression analysis of vertically
partitioned data. In this hypothetical example, surgery, sex, and race are the independent variables, while BMI is the dependent variable. Data-contributing
site 1 has data on the independent variables, while data-contributing site 2 has data on the dependent variable.

Methods

Required Processes for Distributed Regression Analysis
Distributed regression in both horizontally and vertically
partitioned environments requires two distributed analytic
processes and a file transfer process (Figures 1 and 2) [11-13].
The first analytic process, which occurs at the data-contributing
sites, involves computing and sharing the intermediate statistics
of patient-level data with other data-contributing sites or a
semitrusted third-party analysis center. The second analytic
process, which occurs at the analysis center, involves
aggregating the intermediate statistics and computing regression
parameter estimates, standard errors, model fit statistics, and
any necessary graphs (collectively called regression results
hereafter). For some regression model types (eg, logistic and
Cox proportional hazards), these two processes are iterative and
continue until a prespecified convergence criterion is met or a
prespecified maximum number of iterations is reached. When
one of these prespecified conditions is fulfilled, the regression
results are retained as the final results and the analysis is
completed. Otherwise, the updated regression results are shared
with the data-contributing sites and used to further refine the
intermediate statistics. Manual transfer of the intermediate
statistics can be cumbersome and error-prone. Alternatively, a
semiautomated or fully automated file transfer process can be
used to facilitate the iterative transfer of the intermediate
statistics and regression results between the participating parties.

Implementation of hDRA Using SAS and PopMedNet
We have previously developed an SAS-based DRA package to
perform the two distributed analytic processes for hDRA in a
real-world setting [11,12]. This package requires an analysis
center to facilitate its execution. We developed an automatable
file transfer process during the execution of the DRA package
by enhancing PopMedNet [1], an open-source file transfer

software currently used by several large, distributed data
networks, to securely transfer files through a locally installed
Microsoft Windows application known as a DataMart Client
using HTTPS/SSL/TLS connections [19]. PopMedNet ensures
that only approved data queries are requested. Authenticated
data-contributing sites are only able to transfer files to the
analysis center and not to each other. All file transfers are
managed by a web-based portal accessible only by the analysis
center.

We integrated the SAS-based DRA package with PopMedNet
to create a DRA application. The DRA application can perform
distributed linear, logistic, and Cox proportional hazards
regression analysis [18]. We were able to compute regression
results through DRA that were precise (difference <10-12) to
the regression results from the corresponding pooled
patient-level data analyses using standard SAS procedures. We
were also able to generate model fit graphics that were similar
to the graphics obtained from the corresponding patient-level
regression analysis using standard SAS procedures. With a
sample size of 5452 patients, each regression model type
required less than 20 minutes to complete, with the file transfer
time accounting for approximately 90% of the total execution
time. The hDRA application did not require participating
data-contributing sites to install new software or substantially
modify their hardware configuration because PopMedNet and
SAS were already installed on their systems.

Feasibility of Performing vDRA Using PopMedNet
The distributed matrix computations are more complex and
computationally more intensive in vDRA than in hDRA [20].
Data-contributing sites are also required to share more granular
summary-level information in vDRA, leading to larger files
being transferred. In hDRA, the modeling process is comprised
of data-contributing sites computing the intermediate statistics
and the analysis center aggregating the intermediate statistics
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and computing the regression results. Most of these
computations can be completed in parallel. In contrast, numerous
parts of the vDRA modeling process are sequential. Specifically,
the data-contributing sites must first compute components of
the intermediate statistics and then compute the intermediate
statistics from the components. For example, to compute the
intermediate statistic known as the global covariance matrix

( , where denotes a matrix of covariates) for vDRA, the

data-contributing sites must first compute their site-specific

covariance matrix ( , where k denotes data-contributing site

k) and then the off-diagonal components ( ) of the global
covariance matrix using a sequential and secure matrix
multiplication algorithm (Figure 4) [20]. Once all of the
components are computed, the analysis center then aggregates
the intermediate statistics and computes the regression results.

Figure 4. Processes required to perform distributed linear regression in horizontally or vertically partitioned data environments with two data-contributing
sites and an analysis center.

PopMedNet was not designed to optimally support these
differences. Thus, we gathered the statistical and informatic
requirements of vDRA and performed a feasibility analysis of
using PopMedNet to facilitate vDRA with an automatable file
transfer process. We used the results of this analysis to identify,
develop, and implement enhancements to PopMedNet to
improve its technical capability to facilitate automatable vDRA.
As guiding principles, we required enhancements to support
execution times that lasted for only a few hours, to not disrupt
existing PopMedNet workflows, to be developed and
implemented with minimal to moderate effort at the
data-contributing sites, and to not lead to major modifications
to hardware configurations or new software installations at the
data-contributing sites.

Results

Findings From Assessment of the Existing PopMedNet
Functionalities to Facilitate Automatable vDRA
With the prior enhancements to PopMedNet (version 6.7) to
facilitate automatable hDRA, we had the necessary technical

infrastructure to perform automatable vDRA. However, vDRA
would be limited to analysis of small cohort sizes and regression
models with few covariates. As described above, vDRA requires
matrix computations that are more complex and computationally
more intensive than hDRA, data-contributing sites to share more
granular information and files of larger sizes, and a modeling
process that is mostly sequential. These differences would
increase computation time and file transfer time, which would
lead to considerably longer execution times (Table 1). Moreover,
executing vDRA with a large cohort of patients or a large
number of covariates would further increase execution time and
render the PopMedNet configuration developed for hDRA
impractical. Additional enhancements to PopMedNet were
necessary to ensure that DRA is a feasible analytic option for
vertically partitioned data.
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Table 1. Differences between horizontal and vertical distributed regression analysis and their impacts on execution time.

Distributed regression analysis

Impact on execution time in vertical

distributed regression analysisa
VerticalHorizontalComponent of analysis

Increases computation and file trans-
fer times

Computation sequenceb 1.1. Computes components of the intermediate
statistics

Computes intermediate
statistics

2.2. Computes intermediate statisticsComputes regression re-

sultsc 3. Computes regression resultsc

Increases computation and file trans-
fer times

Most computations require a sequential processMost computations can be
completed in a parallel pro-
cess

Computation process

Increases file transfer timesKilobytes to infinitydKilobytes to megabytes [18]File transfer sizes

Increases file transfer timesn × np × pDimension of an example

matrix transfere

aExecution time in horizontal distributed regression analysis serves as the baseline.
bSequence of computations required to compute regression results; the sequence is iterative for some regression model types.
cInclude regression parameter estimates, standard errors, model fit statistics, and model fit graphics.
dFile sizes increase as cohort size or number of covariates in the regression model increases.
ep is the number of regression model covariates; n is the number of observations at each data-contributing site.

Implemented Enhancements to PopMedNet to Enable
Automatable and Efficient Implementation of vDRA
We identified and implemented two enhancements to
PopMedNet to improve its technical capability to facilitate
automatable vDRA in the real-world setting. These
enhancements decrease execution time, require only minimal
or moderate development and implementation efforts, do not
disrupt existing PopMedNet workflows, and do not require
data-contributing sites to modify their hardware configurations.

First, we enhanced PopMedNet to allow simultaneous upload
and download of multiple files. The previous version of
PopMedNet only allowed one file to be uploaded and
downloaded at a given time. Concurrent transfer of multiple
files decreases file transfer time. Second, we enhanced
PopMedNet to allow direct file transfers between
data-contributing sites (Figure 5). Previously, PopMedNet did
not allow direct file transfers between data-contributing sites.
File transfer was only possible between the analysis center and

the data-contributing sites; any files to be shared between
data-contributing sites first had to be transferred through the
analysis center. This design aimed to reduce the potential risk
of two or more data-contributing sites colluding against the
other sites to derive information about specific patients using
the summary statistics, but it doubled the file transfer times.
Allowing direct file transfers between the data-contributing
sites would enable vDRA algorithms that are simpler, share less
granular information, share smaller files, and require fewer file
transfers. It would also allow more computations to be done in
parallel, which would decrease computation and file transfer
times.

To minimize the risk of collusion under the enhanced file
transfer process, we implemented a trust matrix, where the
analysis center can prespecify and govern the file transfer
process between data-contributing sites. Only the analysis center
will have access and permission to modify the trust matrix. Any
data-contributing sites that violate the trust model will prompt
PopMedNet to terminate the analysis.
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Figure 5. Enhanced PopMedNet workflow to enable automatable distributed regression analysis in vertically partitioned data environments. In this
hypothetical example, surgery, sex, and race are the independent variables, while BMI is the dependent variable. Data-contributing site 1 has data on
the independent variables, while data-contributing site 2 has data on the dependent variable.

Discussion

Principal Findings
PopMedNet can facilitate the execution of automatable vDRA.
We identified and implemented two enhancements to
PopMedNet that improved its technical capability to facilitate
vDRA in real-world settings. The first enhancement was
concurrent uploading and downloading of multiple files and the
second involved enhancing the PopMedNet trust model to allow
certain prespecified and preapproved file transfer processes
between the data-contributing sites. Both enhancements decrease
the file transfer and computation times needed to perform
vDRA, which limit connectivity issues (eg, firewall timeouts,
network connections, and connections to the internet) as a barrier
to performing vDRA in real-world settings. Connectivity may
seem inconsequential with high-speed internet and
high-performing computers, but issues of connectivity are
compounded when there are multiple parties participating in a
regression analysis that requires numerous iterations and file
transfers.

Other Research in vDRA
There have been efforts to make vDRA a practical analytic
option in real-world settings. Li and colleagues [3] developed
VERTIcal Grid lOgistic regression (VERTIGO) to perform
distributed logistic regression analysis in vertically partitioned
data. Dai and colleagues [4] recently developed VERTICOX
to perform distributed Cox proportional hazards regression
analysis in vertically partitioned data. Both studies found that
cohort size influenced the operational performance of their
methods. Similar to the findings in our feasibility analysis, Li
and colleagues [3] concluded that vDRA performed with
VERTIGO was limited to analyzing relatively small cohort
sizes. These authors identified several potential solutions to
improve the operational performance of VERTIGO, including
performing the matrix computations on graphic processing units,
parallelizing the matrix computations on multiple cores or
machines, and dividing the matrix computations into smaller
parts (a divide-and-conquer strategy). Performing vDRA on
graphic processing units may require new hardware, which
would violate our guiding principles. We explored parallelizing
the matrix computations in our feasibility analysis but concluded
that it would require meaningful changes to the hardware
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configuration and installation of new software at the
data-contributing sites. We explored implementing a similar
divide-and-conquer strategy in the design of our vDRA
algorithms by first horizontally partitioning the vertically
partitioned data sets into smaller blocks and then performing
the required matrix computations within the blocks. This design
should decrease computation times because the computations
are completed with smaller matrices.

Limitations
Our two enhancements improved PopMedNet’s technical
capability to facilitate vDRA. However, there are several factors
that may limit the use of PopMedNet to enable automatable
vDRA in real-world settings. First, real-world implementation
of PopMedNet-supported vDRA will be driven by the degree
of automation between the participating data-contributing sites
and the file transfer speed of the slowest site. Numerous parts
of the vDRA modeling process are executed sequentially. Thus,
if a site performs vDRA with a manual file transfer process or
has a slow file transfer speed, the overall execution time will
be limited by the response time of the slowest site. This may
deter data-contributing sites from using vDRA or PopMedNet
to analyze data from multiple data sources.

Second, we could only implement enhancements to PopMedNet
that adhered to our guiding principles, which were developed
based on existing PopMedNet users. There may be unforeseen
challenges that require major enhancements or changes to the
PopMedNet topology and infrastructure if vDRA were to be
conducted in other data-contributing sites with different software
and hardware configurations.

Third, the acceptance of automatable vDRA and enhanced
PopMedNet capabilities by data-contributing sites should not
be overlooked. In our previous experience, data-contributing
sites were reluctant to use the fully automated PopMedNet
workflow to facilitate hDRA. It was only after an initial roll-out
phase with the manual and semiautomated workflows and
confirmation that the intermediate statistics did not contain
identifiable patient information that they were willing to
experiment with the fully automated PopMedNet workflow.
With vDRA requiring the transfer of more granular information
and longer computation and file transfer times than hDRA, some

data-contributing sites may require a similar roll-out phase to
build trust and acceptance of automatable vDRA.

Fourth, we chose to build upon our previous work and enhanced
PopMedNet to facilitate vDRA. This may limit our vDRA
package to organizations who use PopMedNet as their file
transfer software. However, PopMedNet is currently used by
several large distributed data networks, including the Sentinel
System [14], the National Patient-Centered Clinical Research
Network [15], and the National Institutes of Health Health Care
Systems Research Collaboratory [16]. These networks have
established infrastructure (eg, harmonized data, data use
agreements, governance) and processes that can streamline the
use of vDRA to analyze data from multiple data sources. Thus,
these networks can readily implement PopMedNet-supported
hDRA and vDRA.

Future Work
With the enhancements to PopMedNet, we have started
implementing the divide-and-conquer vDRA algorithms that
leverage PopMedNet’s new functionality to transfer files
between data-contributing sites. We are also exploring
enhancements to the vDRA algorithms to reduce the number
of files needed to be transferred. Reducing the number of files
transferred will decrease the overall file transfer time and make
vDRA a practical analytic option in real-world settings. To offer
better privacy protection, we are only implementing vDRA
algorithms that limit the potential for back calculations. We will
explore the feasibility of combining our vDRA algorithms with
data manipulation techniques, such as perturbation and
encryption, to provide additional layers of protection [5]. We
plan to integrate these vDRA algorithms with PopMedNet to
create a vDRA application and test it with real-world data.

Conclusion
PopMedNet can be used to facilitate automatable vDRA. We
have implemented two enhancements to the PopMedNet
workflow to improve its technical capability to facilitate vDRA
in real-world settings. PopMedNet has the potential to increase
clinical research and collaboration across multiple
data-contributing sites while protecting patient privacy and
proprietary interests of the data-contributing sites.
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Abstract

Background: Cardiovascular disease (CVD) is the greatest health problem in Australia, which kills more people than any other
disease and incurs enormous costs for the health care system. In this study, we present a benchmark comparison of various artificial
intelligence (AI) architectures for predicting the mortality rate of patients with CVD using structured medical claims data.
Compared with other research in the clinical literature, our models are more efficient because we use a smaller number of features,
and this study could help health professionals accurately choose AI models to predict mortality among patients with CVD using
only claims data before a clinic visit.

Objective: This study aims to support health clinicians in accurately predicting mortality among patients with CVD using only
claims data before a clinic visit.

Methods: The data set was obtained from the Medicare Benefits Scheme and Pharmaceutical Benefits Scheme service information
in the period between 2004 and 2014, released by the Department of Health Australia in 2016. It included 346,201 records,
corresponding to 346,201 patients. A total of five AI algorithms, including four classical machine learning algorithms (logistic
regression [LR], random forest [RF], extra trees [ET], and gradient boosting trees [GBT]) and a deep learning algorithm, which
is a densely connected neural network (DNN), were developed and compared in this study. In addition, because of the minority
of deceased patients in the data set, a separate experiment using the Synthetic Minority Oversampling Technique (SMOTE) was
conducted to enrich the data.

Results: Regarding model performance, in terms of discrimination, GBT and RF were the models with the highest area under
the receiver operating characteristic curve (97.8% and 97.7%, respectively), followed by ET (96.8%) and LR (96.4%), whereas
DNN was the least discriminative (95.3%). In terms of reliability, LR predictions were the least calibrated compared with the
other four algorithms. In this study, despite increasing the training time, SMOTE was proven to further improve the model
performance of LR, whereas other algorithms, especially GBT and DNN, worked well with class imbalanced data.

Conclusions: Compared with other research in the clinical literature involving AI models using claims data to predict patient
health outcomes, our models are more efficient because we use a smaller number of features but still achieve high performance.
This study could help health professionals accurately choose AI models to predict mortality among patients with CVD using only
claims data before a clinic visit.

(JMIR Med Inform 2021;9(4):e25000)   doi:10.2196/25000
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Introduction

Background
In Australia, cardiovascular disease (CVD) is the most
concerning health problem, killing more people than any other
disease and placing heavy burdens on the health care system
because of enormous costs and on individuals and the
community owing to resulting disabilities. CVD was the leading

cause of death among Australians in 1997, accounting for 52,641
deaths, 41% of all deaths [1]. An estimated 1.2 million (5.6%)
Australian adults aged 18 years and more had one or more
conditions related to heart or vascular disease, including stroke,
in 2017-2018, based on self-reported data from the Australian
Bureau of Statistics 2017-2018 National Health Survey. The
prevalence of CVD by age group and sex, in 2017-2018, is
shown in Table 1.

Table 1. Prevalence of cardiovascular disease by age group and sex, 2017-2018.

Total, % (95% CI)bWomen, % (95% CI)bMen, % (95% CI)bTotal, naWomen, naMen, naAge group (years)

1.0 (0.7-1.3)1.2 (0.7-1.8)0.7 (0.3-1.1)88,00056,60031,40018-44

3.0 (2.4-3.6)2.6 (1.7-3.5)3.3 (2.4-4.2)92,90042,30050,60045-54

8.9 (7.4-10.5)7.9 (6.0-9.9)10.0 (7.6-12.4)251,500114,700136,70055-64

15.9 (14.3-17.5)12.2 (10.0-14.4)19.8 (17.2-22.4)344,500135,600208,90065-74

25.7 (23.1-28.2)20.3 (17.5-23.1)32.1 (27.1-37.0)373,300160,100213,20075+

5.6 (5.2-5.9)4.8 (4.3-5.3)6.5 (5.9-7.0)1,150,200509,300640,800Persons (number/age-

standardized ratec)

aDue to rounding, discrepancies may occur between sums of the component items and totals.
bCI is a statistical term describing a range (interval) of values within which we can be “confident” that the true value lies, usually because it has a 95%
or higher chance of doing so.
cAge-standardized to the 2001 Australian Standard Population (Source: AIHW analysis of ABS 2019).

The major risk factors for CVD are tobacco smoking, high blood
pressure, high blood cholesterol, overweight, insufficient
physical activity, high alcohol use, and type 2 diabetes [1]. CVD
treatments are usually prescribed in combination with other
drugs such as antidiabetics, antihypertensives, lipid-lowering
drugs, anticoagulants, and antiplatelet agents [2]. Medication
use is an important management factor for patients diagnosed
with heart disease besides eating a healthy diet and maintaining
fitness with regular physical activity. Medications are used to
minimize symptoms, reduce the risk of exacerbation, and
improve the quality of life.

Many methods have been developed to predict the mortality
rate of patients with CVD by using many algorithms and
predictor variables. There are 3 main methods for forecasting
mortality: explanation, expectation, and extrapolation [3]. Of
these, the most common basis of forecasting mortality is
extrapolation, which assumes that the future state is highly
correlated to the past. In the clinical literature, historical
electronic health records (EHRs) are widely used to develop
artificial intelligence (AI) models that can predict the health
outcomes of patients. Information commonly extracted from
EHR as input for AI models includes patient demographics,
health indices, medical conditions, biomedical images, or
clinical notes, whereas structured medical claims data are rarely
used. Although medical claims data inadequately inform patient
health conditions, this source of information is crucial in
reflecting patient health care access frequency and level of
participation in disease prevention or treatment, which has a
great impact on patient health outcomes.

In this study, we present a benchmark comparison of the
performance of different AI architectures: 4 classical machine
learning (ML) algorithms (logistic regression [LR], random
forest [RF], extra trees [ET], and gradient boosting trees [GBT])
and a deep learning algorithm, which is a densely connected
neural network (DNN) that uses medical scheduling and
pharmaceutical dispensing information from historical claims
data to predict the mortality rate of patients with CVD.
Compared with other research in the clinical literature involving
AI models using claims data to predict patient health outcomes,
our models are more efficient because we use a smaller number
of features but still achieve high performance. Furthermore, we
also propose Synthetic Minority Oversampling Technique
(SMOTE), a technique to enrich training data and handle class
imbalance, as a tool to improve the performance of the
developed AI models.

Related Work
Recent trends involve using AI models to learn patterns from
large data sets to predict mortality with higher accuracy [4].
The American College of Cardiology Foundation’s National
Cardiovascular Data Entry conducted a study that used statistical
analysis to predict the rate of risk in percutaneous coronary
intervention. The study results show that ML models perform
better in terms of accuracy than classical statistical models [5].
One study showed that ML models such as RF, decision tree,
and LR perform exceptionally well owing to today’s
computational power, which allows them to process data from
the electrical health records [6] of patients. ML models deployed
on routine clinical data performed better than standard
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cardiovascular risk assessment models and had great merits in
terms of preventive treatment and avoidance of mistreatment
for CVD according to a study conducted on a large sample of
patients in the United Kingdom [7]. Moreover, using neural
networks for predictive analysis of illnesses was shown to be
fruitful as early as in 2005 [8]. Wang et al [9] predicted the
mortality rate because of heart failure by deploying a
convolutional, layered neural network that inculcated feature
rearrangement to select the best features. Another study has
shown that deep neural networks perform better than traditional
ML models with respect to accuracy and available sample size
[10].

Many factors have been considered to predict the health
outcomes of patients with heart disease. Some techniques used
to extract learning features include automated imaging
interpretation [11,12], natural language processing or text mining
[13,14], and EHR extraction [15-18]. Imaging interpretation
has been carried out by using deep neural networks [12] with
promising results. Natural language processing of clinical notes
has been shown to be able to correctly identify risks of CVD
patients [13], whereas systematic application of text mining to
the EHR has had variable success in the detection of
cardiovascular phenotype [14]. It has been proven that applying
ML helps identify clinically relevant patterns in the data [19].
Feature extraction from EHR allows the use of many factors,
such as patient demographics, characteristics, and health
conditions, including cardiovascular health (CVH) indices [20]
or percutaneous coronary intervention indices [16,17] in
predicting mortality risks.

On the basis of these studies, the mortality rate of patients in
the cardiology cohort has been accurately predicted using a
variety of algorithms, methods, and predictor features. However,
there has been little focus on using medical claims to predict
the health outcomes of patients with CVD. This information
reflects patient medication usage, health care access frequency,
and level of participation in disease prevention or treatment,
which have a great impact on the determination of patient health
outcomes [21]. Hence, to close this literature gap, in this study,
mortality will be predicted based on patient medical schedule
information and pharmaceutical dispensing history acquired
from medical claims.

The Pharmaceutical Benefits Scheme (PBS) and Medicare
Benefits Schedule (MBS) claims data collected by the
Department of Human Services and held by the Department of
Health have great potential to provide further insight into the
medical scheduling and pharmaceutical dispensing history of
patients with CVD. This study uses the PBS and MBS claims
data in the period between 2004 and 2014 to investigate the
mortality rate of patients with heart disease conditions in
Australia and to build and compare 5 AI models to predict the
mortality risk of a patient under these conditions. We built
prediction models based on the patient’s age, gender, relevant
medication prescriptions, medical schedule information, and
pharmaceutical dispensing history obtained from the data set.
We then assessed and compared the performance of each model
and suggested recommendations for future work.

Objectives
The primary aim of this research is to support health clinicians
to accurately predict mortality among patients with CVD using
only claims data before a clinic visit. Compared with other
research in the clinical literature involving AI models using
claims data to predict patient health outcomes, our models are
more efficient because we use a smaller number of features but
still achieve high performance. This study has applications in
supporting health clinicians to accurately predict mortality
among patients with CVD using only claims data before a clinic
visit.

Methods

AI Architectures
In this study, 4 classical ML algorithm architectures, LR, RF,
ET, and GBT, along with a deep learning algorithm called DNN
were used to develop mortality prediction models. The MBS
and PBS data sets are well structured and very informative and
allows simple algorithms to learn better. Because our study
deals with a probabilistic prediction problem, we put more
emphasis on the discrimination and calibration of the model
performance. Through initial experiments we found that LR,
RF, ET, and GBT are classical ML algorithms that produce the
best performance in terms of these two criteria. On the other
hand, we were curious about how a state-of-the-art deep learning
algorithm might perform on the data set. We developed the
simplest neural network, a DNN, for further comparison and
insights. We chose not to develop more complex deep learning
architectures such as RNN or CNN because these algorithms
are not necessary for such structured data sets to perform well.
In this section, these experimental algorithms are described and
their architectures proposed.

Logistic Regression
LR is a supervised ML algorithm. It is a powerful and
well-established method for binary classification problems [22].
LR is extended based on linear regression and can be used to
calculate the probability of an event that has 2 possible outcomes
by assigning weights to a number of predictor variables
(features). Given a set of independent variables

x1,x2,x3,…,xn (1)

and a dependent variable y, which takes values between 0 and
1, first, LR is designed to find a set of weights

b1,b2,b3,...,bn (2)

for each of the independent variables so that the following linear
equation outputs a logit score:

logit = b0 + b1x1 + b2x2 + b3x3 + ... + bnxn (3)

From this logit score, probability y is then derived by the
following formula:

To use the LR as a binary classifier, a threshold must be assigned
to differentiate between 2 classes. Normally, LR will classify
an input instance with P>.50 as a positive class; otherwise, it is
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classified as a negative class. Depending on the problem, 0 and
1 can be translated into different meanings.

Random Forest
Before describing the RF algorithm, it is important to understand
the concept of the decision tree algorithm [23]. DT is one of
the simplest and earliest ML algorithms. It structures the
decision logic into a tree-like model. The nodes in a DT tree
are partitioned into different levels, where the uppermost node

is called the root node, whereas other nodes that have at least
one child represent tests on input variables/features [24].
Depending on some criterion of the test, higher nodes are split
into lower nodes repeatedly toward the leaf nodes [25], which
have no child at all and correspond to the decision outcomes.
An illustration of a simple DT is shown in Figure 1. According
to Figure 1, the 3 circles -Sex, Age, and A10- are tested on the
corresponding input variables, whereas the rhombuses at the
end are the classification outcomes (deceased or alive).

Figure 1. Decision tree.

An RF is an ensemble classifier consisting of many DTs similar
to a forest with many trees [26]. Different DTs in an RF are
trained using different parts of the training data set and tested
on different subsets of input variables. To classify a new
instance, the input vector of the instance is pushed through each
DT in the forest. Each DT makes decisions on a different part
of the input vector and provides a classification outcome. The
forest then makes a final prediction by majority vote in
classification problems and by arithmetic average in regression
problems. Because the RF algorithm aggregates outcomes from

many different DTs to make a decision, the result has a smaller
variance compared with the consideration of a single DT for
the same data set. In addition, similar to other tree-based
ensembles, variables for each tree in RF are randomized,
whereas node-splitting cut points are locally optimized according
to the criterion [26]. Figure 2 illustrates the RF algorithm. As
shown in Figure 2, the training data set is randomly split into
the desired number of trees in the forest, and each random
subsample is then used to train a decision tree that is tested on
a randomly selected subset of input variables.
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Figure 2. Random forests.

Extra Trees
The extremely randomized trees or the ET algorithm is also an
ensemble classifier consisting of many single DTs similar to
RF. The ET method also uses a random subset of features to
train each base estimator [27]. However, the two main
differences between RF and other tree-based ensemble methods
are that RF splits nodes by choosing cut points fully at random
(or random selection of threshold), and RF uses the whole
learning sample to grow each tree in the ensemble rather than

a subset of training data [28]. The final prediction produced is
the aggregate of the predictions of all trained trees, yielded by
the majority vote or arithmetic average in classification problems
or regression problems, respectively. In terms of bias variance,
ET is able to reduce the variance more effectively than the
weaker randomization schemes used by other ensemble methods.
On the other hand, a full training sample rather than bootstrap
batches is used to train each base estimator in an attempt to
minimize bias [28]. A simple illustration of the ET model is
shown in Figure 3.

Figure 3. Extra trees.
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Gradient Boosting Trees
GBT is another popular ML algorithm that uses a tree-based
ensemble method, and was first proposed by Friedman [29].
This approach trains learners (decision trees) by minimizing
the loss function, which is computed using the gradient descent
method [30]. To train a GBT, the algorithm first selects a very
simple decision tree from the learning sample with equal

weights. On the basis of the results of this weak learner, it tries
to create a new learner who assigns higher weights to nodes
that are more difficult to split and lower weights to those that
are easier to split [30]. By doing this, the new learner is able to
minimize the errors of the previous learner. As this process
continues, the loss function is optimized [29], making each new
model have a better goodness of fit with the observation data.
Figure 4 illustrates the mechanism of the GBT algorithm.

Figure 4. Gradient boosting trees workflow.

Densely Connected Neural Network
An artificial neural network (ANN) [3] is a deep learning
architecture that replicates the neuron system inside the human
brain. McCulloch and Pitts [31] first proposed ANN, and the
concept was later popularized by the research work of Rumelhart
et al [32]. In the human brain, neurons are linked together by
numerous axon connections [33] and are responsible for
adapting, processing, and storing information toward (inputs)
and away (outputs) from the brain. Likewise, an ANN has
hundreds or even thousands of artificial neurons called
processing units, which are interconnected by nodes. In the
ANN architecture, nodes are grouped into layers, depending on
the activation they implement on the data. In the ANN, the
output of one node is the input to another node. Subsequently,

the input node after receiving information from the previous
output node, based on an internal weighting system, attempts
to produce the next output. Through repeated training, the weight
system can amplify or weaken the level of communication
between nodes. After mature training, which optimizes the
weight system, a trained ANN can predict the test data. Because
ANNs can be constructed by many layers and neurons, this
method is considered a deep learning algorithm. Many types of
ANNs are currently used in the literature, including feedforward
neural networks, recurrent neural networks, convolutional neural
networks, and modular neural networks. In this study, because
our input data are well structured, allowing a neural network to
learn effectively, we present the simplest form of ANN, which
is a DNN. Figure 5 shows an illustration of the proposed DNN
with 3 hidden layers.
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Figure 5. Artificial neural network architecture. ReLU: Rectified Linear Unit.

Results

Benchmark Data
On August 1, 2016, the Department of Health released
approximately 1 billion lines of anonymous historical health
data relating to approximately 3 million Australians on
data.gov.au. The information released includes details on
medical services provided to Australians by health professionals,
along with details of subsidized information. Claims data for a
random 10% sample of Australians are made available for
research institutions, health professionals, and universities. The
data release includes historical medicare data (from 1984) and
PBS data (from 2003) up to 2014. The release comprises 2 files
corresponding to the 2 types of service information (MBS and
PBS) and a separate patient demographic file. The data set used
in this study was obtained from the MBS and PBS service
information and patient demographic data by patient IDs. It
originally included 346,201 records corresponding to 346,201
patients; however, 19 patients who had inadequate information
were removed. Following this exclusion, the final data set
comprised a total of 346,182 patients.

The data set included four classes of variables (ie, features):

1. Demographic variables: year of birth, sex, and age
(calculated until January 1, 2015).

2. Numerical variables: A total of 13 continuous measurements
are presented in the data set, including the number of MBS
records, number of states, total amount of medical fees
charged, total amount of medicare schedule fees, total
amount of medical rebates paid, total number of MBS
services, total duration of patients accessing medical
services, number of PBS records, number of patient’s PBS
codes, total amount of medication cost paid by the
government, total amount of medication cost self-paid, total

number of prescriptions, and total duration of patients
accessing PBS services.

3. Categorical variables: These are 3 relevant medications
classified by the Anatomical Therapeutic Chemical code
and patient state. The medications presented are drugs used
in diabetes (code: A10), drugs used for the cardiovascular
system and hypertension (code: C0), and lipid-modifying
agents or drugs used for patients with high cholesterol
(code: C10).

4. Date variables: The 4 date variables include the date of the
first medical schedule, date of the last medical schedule,
date of the first PBS claim, and date of the last PBS claim.

Among these variables, except for the year of birth, age, and
numerical variables that were kept constant, other variables
were transformed as follows: sex and medication variables were
mapped into binary values, whereas patient state was converted
into 6 binary variables corresponding to 6 states. The year of
birth, date of first medical schedule, and date of first PBS claim
were used to calculate the age at which the patient had the first
medical schedule and the first PBS claim, respectively, and then
removed. Regarding the prediction target variable, because PBS
and MBS claim data on their own do not include information
about patients’ health outcomes, the labels must be inferred.
Between the date of the last medical schedule and date of the
last PBS claim, the latter was used to calculate the duration of
patients discontinuing PBS and MBS services until January 1,
2015. Following this calculation, any patient who discontinued
PBS and MBS for more than 180 days (6 months) was labeled
deceased, otherwise alive. After preprocessing, the data set had
26 features and 1 label that used for model development.

In terms of feature scaling, each feature value was standardized
to center around its mean with a unit standard deviation. This
means that the mean of the attribute becomes zero and the
resultant distribution has a unit standard deviation [34]. This
step allows the algorithm to learn effectively as it eliminates
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sensitivity to multiple features spanning varying degrees of
magnitude, range, and units.

In terms of class distributions, there are only 93,164 patients
out of the total number of 346,182 classified into the deceased
group, whereas the rest are alive patients. This reflects a highly
imbalanced class distribution, which might affect the learning
performance of the infrequent class [35] because of the lack of
samples. To address this issue, a separate experiment using
SMOTE was conducted as a trial to enrich the training set.

Evaluation Metrics
Descriptive statistics were used to learn the characteristics of
the study population, stratified by health outcome status (ie,
alive or deceased). Models were derived from the training set
and then assessed on the testing set by calculating the traditional
accuracy, precision, and recall scores with the addition of brier
loss. In addition, reporting discrimination and calibration is
important for assessing a prediction model [36]. The area under
the receiver operating characteristic curve (AUROC) score and
the plotting reliability diagram (calibration curves) were also
calculated to assess the performance of the AI models.

• Brier loss from scikit-learn measures the accuracy of
probabilistic predictions by calculating the mean squared
difference between the predicted probability assigned to
the possible classes and the actual classes. It is composed
of refinement loss and calibration loss so that the lower the
Brier score is for a set of predictions, the better the
predictions are calibrated or the better the model is.

• The AUROC score is used to measure the probability that
the model ranks a random deceased patient higher than a
random alive patient in terms of mortality rate. A higher
AUROC score means that the model has a better ability to
discriminate between deceased and alive populations.

• Calibration curve, a reliability diagram, is a line plot of the
relative frequency of what was observed versus the
predicted probability frequency. The closer the points
appear along the main diagonal from the bottom left to the
top right, the better calibrated a forecast or more reliable a
model [37].

Hyperparameters
To develop the models, the study population was stratified into
a training set, in which the mortality risk algorithms were
derived, and a testing set, in which the algorithms were applied
and tested. The training set consisted of 90.00%
(311,564/346,182) of the study data set, and the testing set
consisted of the remaining 10.00% (34,618/346,182). The
training and testing sets were split at the patient level and in a
stratifying manner according to class ratio so that patients did
not appear in both the training and testing sets and the ratio of
patient labels (deceased or alive) in both sets were equivalent
to that of the study population. After stratified assignment, the
hyperparameters were determined by using a grid search of
5-fold cross-validation to determine the values that led to the
best accuracy. After the grid search, each algorithm was refitted
to the training set with its best hyperparameters to derive the
final models. Table 2 presents the parameter search space of
the 4 algorithms and the grid results.

Table 2. Hyperparameters for grid search.

OptimalSearch spaceAlgorithms and parameter name

Logistic regression

••• l2(‘l1’, ‘l2’, ‘none’)Penalty
••• 1.0(0.01, 0.1, 1.0)C

• ••tol 0.0001(0.0001, 0.001, 0.01)
•• •(‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’) (‘au-

to’, ‘ovr’, ‘multinomial’)
solver lbfgs

•• automulti_class

Random forest

••• 100(5, 10, 50, 100, 150)n_estimators
••• None(1, 2, 3, 5, None)max_depth

• ••max_features auto(’auto’, ’sqrt’)
•• •(2, 5, 10)min_samples_splitmin_samples_leaf 2

•• 1(1, 2, 4)

Extra trees

••• 100(5, 10, 50, 100, 150)n_estimators
••• None(1, 2, 3, 5, None)max_depth

• ••max_features auto(’auto’, ’sqrt’)
•• •(2, 5, 10)min_samples_splitmin_samples_leaf 2

•• 1(1, 2, 4)

Gradient boosting trees

••• deviance(‘deviance’, ‘exponential’)Loss
••• 100(5, 10, 50, 100, 150)n_estimators

• ••max_depth 3(1, 2, 3, 5)
•• •(0.001, 0.01, 0.1)learning_rate 0.1

••• friedman_mse(’friedman_mse’, ’mse’, ’mae’)criterion
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After the grid search, it was found that LR with L2
regularization, which is also known as Ridge Regression [38],
produces the most accurate predictions in cross-validation, with
the C value and tolerance rate of 1.0 and 0.0001, respectively.
This can be explained by the fact that our data set had a small
number of features, making L1 regularization, which is Lasso
Regression and works well for feature selection in a data set
with high dimensionality [39], less favorable. Next, both RF
and ET achieved optimal accuracy after grid search with the
max_depth None scheme. According to the scikit-learn team,
in this scheme nodes are expanded until all leaves are pure or
until all leaves contain less than min_samples_split samples,
which is optimized at 2 in both cases. Besides, the number of
trees grown in both algorithms is the same, 100 (n_estimators).
Last, errors in GBT are minimized using the deviance loss
function; there are also 100 trees built with the maximum
number of nodes equal to 3.

To develop the DNN model, the study population was stratified
into training and testing sets with ratios of 90% and 10%,
respectively. The training set was then broken down into training
and validation sets with the same ratio. The purpose of the
validation set was to provide an unbiased evaluation of the
model while tuning the weights of the model [40]. The input
layer had 26 units corresponding to the number of features,
whereas the output layer had one unit. At the last step, sigmoid
was used as the activation function to return the sigmoid values
of the final output. The architecture of the DNN used is
composed of 3 fully connected hidden layers. The number of
neurons in each hidden layer are 128, 64 and 32, respectively,

and the rectified linear unit is used as the activation function.
During the training process, the parameters of the DNN are
initialized using uniform initialization [41]. For each batch of
training data, parameters of the DNN were modified gradually
to decrease the cross-entropy of the loss function. A callback
was set to stop the training process after 10 epochs when the
model reached the highest value of AUROC.

After the training process, all models were evaluated using the
holdout (10%) testing set. The final results were compared and
used to make recommendations.

Model Performance
In our experiments, we trained the models using the original
learning sample and then applied SMOTE to further improve
their performance.

Performance Without SMOTE
The details of the model performance without SMOTE are
presented in Table 3. After adjusting for multiple comparisons,
there was no significant difference in accuracy among RF
(98.5%), GBT (98.4%), LR (97.8%), ET (97.9%), and DNN
(97.1%). In terms of discrimination, GBT and RF achieved the
highest AUROC (97.8% and 97.7%, respectively), followed by
LR and ET (96.4% and 96.8%, respectively), whereas DNN
was the least discriminative (95.3%). In terms of brier loss,
GBT and RF produced the smallest difference between the
probability assigned to the predicted classes and the probability
of the actual class (both 0.012), whereas DNN predictions
showed the largest difference (0.024).

Table 3. Performance metrics of machine learning models without the Synthetic Minority Oversampling Technique.

Brier lossRecallPrecisionArea under the receiver operating characteristic curveAccuracyAlgorithms

0.01693.498.5a96.497.8Logistic regression

0.012c96.198.197.798.5bRandom forest

0.01694.298.196.897.9Extra trees

0.012c96.5e97.597.8d98.4Gradient boosting trees

0.02491.896.695.397.1Artificial neural network

aThe highest precision.
bThe highest accuracy.
cThe least Brier loss.
dThe highest area under the receiver operating characteristic curve.
eThe highest recall.

According to Table 4 showing the training times, LR turns out
to be superior compared with other models with less than 1-min
training time. However, DNN takes up to 30 minutes to train.
This could be explained by the complexity level of the 2
algorithms; whereas LR is a very simple and straightforward
model based on a linear regression equation, DNN is an
architecture that is composed of many neurons, layers, and more
complex activation functions.

Clearly, all of our models show very similar behavior for the 2
classes (Figures 6-10). According to the confusion matrices,
RF and GBT managed to identify the deceased patients with
higher accuracy than other algorithms. Compared with other
models, DNN classifies a larger number of deceased patients
as alive.
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Table 4. Training time of machine learning models without Synthetic Minority Oversampling Technique.

Training time (seconds)Algorithms

6.6aLogistic regression

106.8Random forest

46.8Extra trees

186Gradient boosting trees

1277.4Artificial neural network

aThe least training time.

Figure 6. Confusion matrices of logistic regression.

Figure 7. Confusion matrix of random forest.

JMIR Med Inform 2021 | vol. 9 | iss. 4 |e25000 | p.181https://medinform.jmir.org/2021/4/e25000
(page number not for citation purposes)

Tran et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 8. Confusion matrix of extra trees.

Figure 9. Confusion matrix of gradient boosting trees.
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Figure 10. Confusion matrix of artificial neural network.

In terms of prediction reliability, calibration curves for the 5
models in Figures 11-20 show that LG was the least calibrated
compared with the other 4 algorithms, highly overestimating
patient death risks at all levels of probabilities. RF was well
calibrated for patients with a lower mortality rate and
overestimated the risk of death when the probability of risk was
more than 50%. ET’s goodness of fit was only seen in the

probability of death at 30%, whereas it underestimated and
overestimated the risk for patients with lower and higher
probabilities of death, respectively. Predictions by GBT and
DNN were the most well calibrated, whereas DNN slightly
overestimated patients with probabilities of death greater than
10% and less than 90%.

Figure 11. Calibration curve of random forest without Synthetic Minority Oversampling Technique.
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Figure 12. Calibration curve of random forest without Synthetic Minority Oversampling Technique.

Figure 13. Calibration curve of extra trees without Synthetic Minority Oversampling Technique.
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Figure 14. Calibration curve of gradient boosting trees without Synthetic Minority Oversampling Technique.

Figure 15. Calibration curve of artificial neural network without Synthetic Minority Oversampling Technique.
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Figure 16. Calibration curve of logistic regression with Synthetic Minority Oversampling Technique.

Figure 17. Calibration curve of random forest with Synthetic Minority Oversampling Technique.
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Figure 18. Calibration curve of extra trees with Synthetic Minority Oversampling Technique.

Figure 19. Calibration curve of gradient boosting trees with Synthetic Minority Oversampling Technique.
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Figure 20. Calibration curve of artificial neural network with Synthetic Minority Oversampling Technique.

Performance With SMOTE
Details of the model performance with SMOTE are presented
in Table 5, and their calibration plots are displayed in Figure 8.
As can be seen in Table 5, SMOTE slightly improves the
performance (in italics) of the 5 models. However, it helps
calibrate the predictions of LR significantly. After upsampling,
the LR model no longer overestimates death risks of the patient,
and its predictions are more closely aligned with the perfectly
calibrated line. Meanwhile, ET is now seen as having goodness

of fit in predictions of patients with death risk between 50%
and 60% but still underestimates and overestimates those with
low and high death risks, respectively. On the other hand, RF
predictions change from being well calibrated for less than 50%
probabilities of death risk and overestimating higher ones into
being well calibrated for greater than 80% probabilities of death
risk and underestimating the rest. More interestingly, DNN and
GBT are subject to adversarial effects from the upsampling
technique, generally underestimate the risk.

Table 5. Performance metrics of machine learning models with the Synthetic Minority Oversampling Technique.

Brier lossRecallPrecisionArea under the receiver operating characteristic curveAccuracyAlgorithms

0.01595.997.3a97.498.2Logistic regression

0.012d97.396.898.0c98.4bRandom forest

0.01695.897.197.498.1Extra trees

0.01497.7e95.297.998.1Gradient boosting trees

0.02695.193.096.296.7Artificial neural network

aThe highest precision.
bThe highest accuracy.
cThe highest area under the receiver operating characteristic curve.
dThe least Brier loss.
eThe highest recall.

In short, SMOTE is only helpful for further improving the model
performance and prediction calibration of LG. Meanwhile, using
or not using SMOTE does not affect the performance of RF and
ET in predicting mortality in patients with CVD. Last, SMOTE
introduces an adversarial effect into the GBT and DNN models,

making their predictions less reliable, and these 2 models already
work well with class imbalanced data.

In terms of training duration, as shown in Table 6, using SMOTE
requires more computing time for all the algorithms. However,
LR is still the most time-efficient model even when applying
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SMOTE and produces higher accuracy and better prediction
performance in terms of AUROC, recall, and brier loss
compared with LR with original data. Furthermore, SMOTE

helps LR outperform ET and become the second-best algorithm
after RF. Clearly, when introducing SMOTE into the table, ET
and LR are worth considering for this data set.

Table 6. Training time of machine learning models with the Synthetic Minority Oversampling Technique.

Training time (seconds)Algorithms

292.9aLogistic regression

497.9Random forest

347.5Extra trees

648.1Gradient boosting trees

5480.3Artificial neural network

aThe least training time.

Discussion

Principal Findings
This study shows that structured medical and pharmaceutical
claims data can be used as input for AI models to accurately
predict the mortality risk of individuals with CVD. The LR, RF,
ET, GBT, and ANN models trained in this study had high
accuracy (ie, 97.0%-98.0%) and discrimination (ie, AUROC
95.0%-98.0%) in predicting the mortality rate, which are much
higher than for traditional statistical models such as the Cox
Proportional-Hazards model [42] or the models trained with
traditional electrical health records [43-45].

Although there was no statistically significant difference in
accuracy among the 5 experimental algorithms, the RF model
had an advantage over the other models. In addition, the RF
model outperformed the other models in terms of recall and
brier loss. In terms of discrimination and calibration, the GBT
proved to be the most superior. Without SMOTE, LR is unable
to make highly calibrated predictions while using SMOTE
significantly improves the reliability of the model’s predictions.
All models with SMOTE had very high precision (ie,
93.0%-97.0%) and recall (ie, 95.0%-97.0%), particularly when
compared with other LR and RF prognostic models that did not
deal with class imbalance published in the literature [44,45].
On the other hand, although the ANN had the most moderate
performance among the experimental algorithms, it was proven
to be efficient even with class imbalanced data. It is also
suggested that ANNs are capable of predicting CVD mortality
rates more accurately than other ML algorithms if more
feature-engineering techniques are applied [46,47], indicating
it is a very promising area for further research.

To our knowledge, this is the first study comparing AI
algorithms using medical and pharmaceutical claims data to
predict mortality in a large general cardiology population. Unlike
previously developed ML-based prognostic tools in cardiology
that used the clinical information of patients, including clinical
features [43-45], our models were trained only on claims data
of patients with CVD. These claims data primarily provide
information about a patient’s medical scheduling and
pharmaceutical dispensing history, which reflect the patient’s
disease treatment cost, access patterns, and medications but not
the patient’s state of health or other clinical indices.

Furthermore, compared with previously published classifiers
in cardiology, our models used fewer features and are
comparatively more efficient than previously trained models in
the general cardiology setting.

Limitations
Despite high accuracy and strong discrimination, some models,
including RF, ET, and ANN, still have not yielded optimal
calibrations. This means that the distribution and behavior of
the predicted probability is not similar to the distribution and
behavior of the probability observed in training data. To increase
the reliability of AI algorithms, other techniques should be
investigated to better calibrate and improve the performance of
these models, especially ANNs.

Conclusions
We developed, validated, and compared 5 AI architectures to
predict the mortality rate of patients with CVD. On the basis of
the evaluation results, we can draw the following conclusions
or insights that could help with the choice of AI models: (1)
without health indices or health condition information, AI
architectures are able to accurately predict mortality of patients
with CVD before a clinic visit using only medical scheduling
and pharmaceutical dispensing claims data; (2) although there
was no statistically significant difference in accuracy among
the experimental AI algorithms, the tree-based, that is, RF and
GBT models have an advantage compared with other models;
(3) although the regression-based LR method produces
predictions having the least calibration level because of a lack
of minority class samples, the upsampling technique, that is,
SMOTE helps significantly improve the reliability of this
algorithm's predictions; and (iv) tree-based algorithms and
densely connected neural networks perform well with class
imbalanced data. Finally, this study showed the feasibility and
effectiveness of different AI architectures based on structured
medical scheduling and pharmaceutical dispensing claims data
in identifying patients with CVD who had a risk of mortality;
AI algorithms can be a useful tool for precise decision making.
Future research, considering the promising potential of the ANN,
should focus on improving the prediction performance of this
algorithm. It is suggested that ANNs are capable of predicting
CVD mortality rates more accurately than other ML algorithms
if more feature-engineering techniques are applied, indicating
they are a very promising area for further research.
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Abstract

Background: Without timely diagnosis and treatment, tachycardia, also called tachyarrhythmia, can cause serious complications
such as heart failure, cardiac arrest, and even death. The predictive performance of conventional clinical diagnostic procedures
needs improvement in order to assist physicians in detecting risk early on.

Objective: We aimed to develop a deep tachycardia onset prediction (TOP-Net) model based on deep learning (ie, bidirectional
long short-term memory) for early tachycardia diagnosis with easily accessible data.

Methods: TOP-Net leverages 2 easily accessible data sources: vital signs, including heart rate, respiratory rate, and blood oxygen
saturation (SpO2) acquired continuously by wearable embedded systems, and electronic health records, containing age, gender,
admission type, first care unit, and cardiovascular disease history. The model was trained with a large data set from an intensive
care unit and then transferred to a real-world scenario in the general ward. In this study, 3 experiments incorporated merging
patients’personal information, temporal memory, and different feature combinations. Six metrics (area under the receiver operating
characteristic curve [AUROC], sensitivity, specificity, accuracy, F1 score, and precision) were used to evaluate predictive
performance.
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Results: TOP-Net outperformed the baseline models on the large critical care data set (AUROC 0.796, 95% CI 0.768-0.824;
sensitivity 0.753, 95% CI 0.663-0.793; specificity 0.720, 95% CI 0.645-0.758; accuracy 0.721; F1 score 0.718; precision 0.686)
when predicting tachycardia onset 6 hours in advance. When predicting tachycardia onset 2 hours in advance with data acquired
from our hospital using the transferred TOP-Net, the 6 metrics were 0.965, 0.955, 0.881, 0.937, 0.793, and 0.680, respectively.
The best performance was achieved using comprehensive vital signs (heart rate, respiratory rate, and SpO2) statistical information.

Conclusions: TOP-Net is an early tachycardia prediction model that uses 8 types of data from wearable sensors and electronic
health records. When validated in clinical scenarios, the model achieved a prediction performance that outperformed baseline
models 0 to 6 hours before tachycardia onset in the intensive care unit and 2 hours before tachycardia onset in the general ward.
Because of the model’s implementation and use of easily accessible data from wearable sensors, the model can assist physicians
with early discovery of patients at risk in general wards and houses.

(JMIR Med Inform 2021;9(4):e18803)   doi:10.2196/18803

KEYWORDS

tachycardia onset; early prediction; deep neural network; wearable monitoring system; electronic health record

Introduction

Tachycardia, a heart rhythm disorder, is defined as an adult
resting heart rate that exceeds 100 bpm [1]. According to the
mechanisms, causes, expressions and outcomes, tachycardia
can be classified as sinus tachycardia, atrial fibrillation, atrial
flutter, ventricular tachycardia, or ventricular fibrillation [2].
Spontaneous ventricular tachyarrhythmia is a major cause of
sudden cardiac death; approximately 180,000 to 300,000 people
suffer from this condition in the US yearly [3,4]. Atrial
fibrillation is a risk factor for stroke, congestive heart failure,
and premature death. Patients suffering from atrial fibrillation
for the first time have a high rate of mortality [5,6]. In addition,
tachycardia has been correlated to poor outcomes [7].
Conventional tachycardia detection depends on cardiologists
or clinical experts reading electrocardiogram (ECG) signals.
Due to limited numbers of measurements and the intermittent
nature of the diseases, the symptoms of tachycardia might not
be captured when ECGs are recorded in hospitals [8]. Therefore,
continuous monitoring enables clinicians to early diagnose,
predict the disease, and have enough time to prevent patients
from deteriorating.

Recently, several hospitals have attempted to utilize wearable
devices for continuous monitoring of vital signs such as heart
rate, respiration rate, and oxygen saturation (SpO2) [9,10]. The
adoption of wearable devices in hospitals facilitates the
acquisition of patient status anywhere and anytime to reduce
the workload of nurses. Compared with the use of
single-threshold alarm monitoring devices and commonly used
early warning scores defined by clinical experts [11], machine
learning methods can automatically discover patterns and
relationships within data without human instructions. Thus,
machine learning has been proven as an effective clinical tool
to identify abnormal events or provide early warning of diseases
based on electronic health record, biomarker, gene expression,
and imaging data [12-14]. Forkan et al [15] leveraged a hidden
Markov model to predict 7 clinical onsets, including tachycardia
onset, and further improved performance by using random forest
algorithms to forecast events within 1 to 2 hours [16]. Lee et al
[17] developed an artificial neural network to predict ventricular
tachycardia within 1 hour. Szep et al [18] utilized an archetypal
cardiac monitoring system with regression and boosting models

to detect arrhythmia and predict the fatal arrhythmia several
minutes before onset.

With nonlinear computation and flexible feature extraction,
deep learning models show strong performances in
representation learning and exploration of unknown information
[19]. Researchers have recently used deep learning models for
disease diagnosis and prediction based on physiological signals
or electronic health records [20-22]. Since measuring and
acquiring vital signs are easily measured and some open-source,
labeled physiological signal (especially ECG signals) data sets
are available [23,24], there exist many studies employing deep
learning in cardiology [25]. Hannun et al [26] reported a
convolutional neural network algorithm that detects heart
arrhythmias using ECG signals acquired with a single-lead
wearable sensor. Shashikumar et al [27] also presented a
convolutional neural network model that detects and monitors
atrial fibrillation. Teijeiro et al [28] introduced a long short-term
memory (LSTM) network based on a set of features extracted
from ECG records to classify normal sinus rhythm, atrial
fibrillation, and anomalies. Gotlibovych et al [8] constructed a
model combining a convolutional neural network and LSTM
to achieve nearly real-time identification of atrial fibrillation.
Cho et al [29] obtained a convolutional neural network model
to predict atrial fibrillation within 4 to 6 minutes using ECG
signals.

Cardiovascular diseases are complex and heterogeneous;
multiple factors such as genetics, environment, age, and gender
can affect the occurrence and severity of cardiovascular disease
[30,31]. Age has been proven to be an independent risk factor,
and being female is a greater risk factor for cardiovascular
disease when elderly [31]. Few studies have attempted to
develop a prediction tachycardia onset model that accounts for
the patient’s personal information. Respiratory dysfunction and
common lung diseases, such as asthma, chronic obstructive
pulmonary disease, and lung fibrosis are significantly more
likely to cause cardiovascular disease [32]. Abnormal respiratory
rate and its relative changes are a critical indicator to predict
cardiac arrest [33], and SpO2 has also been shown as a
diagnostic marker of acute heart failure [34]. However, this
useful information has not been used effectively, though it can
be easily acquired with wearable sensors.
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The aim of this study was to develop a bidirectional long
short-term memory (BiLSTM) model—TOP-Net—that is
applicable to both intensive care units and general wards [35],
leverages easily accessible data, enables real-time evaluation
and early prediction of tachycardia onset with a long forecast
range, and is based on vital signs and electronic health record
data with the following contributions: (1) combining electronic
health record (sparse records) and biosensor data (high
frequency records) to accomplish early prognosis and real-time
prediction of tachycardia onset, and its performance of early
prediction; (2) being the first to consider 2 other important vital
signs and explore their different combinations being with deep
learning models to predict tachycardia onset, which can improve
the precision of early forecast; and (3) utilizing a large critical
care data set and a model that is transferrable to real clinical
scenarios wards where patients are monitored by medical-grade
wearable embedded systems, for example, transferable between

different countries (US to China), ethnicities (multiracial to
Asian), and medical departments (intensive care unit to general
ward).

Methods

Overview
We leveraged a large data set from the Medical Information
Mart for Intensive Care III (MIMIC-III) [24] and its matched
physiological waveform database (recorded with monitors) [36]
to develop the TOP-Net model (codes available [37]). The
pretrained model was transferred to a relatively small data set,
from patients who were continuously monitored with a
medical-grade wearable embedded system (SensEcho, Beijing
SensEcho Science & Technology Co Ltd) in a real clinical
environment [38]. The process is presented in Figure 1.

Figure 1. The process of developing and transferring the early tachycardia onset model, TOP-Net. GW: general ward; ICU: intensive care unit.

Methodology
We combined 2 types of data to develop TOP-Net: (1)
information from biological sensors (wearable), including heart
rate, respiratory rate and SpO2; (2) patients’personal information
from electronic health records, which represents their individual
health status when admitted to the hospital, including age,
gender, admission type, first care unit, and history of
cardiovascular disease.

TOP-Net Tachycardia Onset Early Prediction Using
BiLSTM Model

Model Overview
BiLSTM [39], a sequential model, can capture the complex and
multivariate dynamics in longitudinal electronic health record
data and continuously collected physiological signals that is
typically used in acute condition prediction, classification, and
subphenotype identification [40]. We developed the model
(Figure 2) using BiLSTM to take advantage of potential
long-term and short-term changes and associated characteristics
of physiological state.
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Figure 2. An overview of TOP-Net using the cohort admission and personal measurement data in hospital. BiLSTM: bidirectional long short-term
memory; EHR: electronic health record; HR: heart rate; RR: respiratory rate; SpO2: blood oxygen saturation.

Step 1: Calculate Statistical Features
We used a BiLSTM algorithm to represent the relationship
between the multiple timeseries collected by biological sensors.
Data from an observing window before tachycardia onset were
used to train the model. Inspired by convolutional-LSTM model
[41], we designed the model to use the statistical features of the
raw timeseries signals as inputs within a sliding sub–observing
window. The results for all sub–observing windows were
concatenated along the time and fed into the model.

We explored 8 types of statistical features—mean, standard
deviance, slope, quantiles, sum, absolute energy (ƒ1),
aggregation function of autocorrelation (ƒ2), and measurement
of discrimination power (ƒ3)—that are commonly used to
describe the timeseries characteristics. Herein, we focus on
explaining the calculation process of ƒ1, ƒ2, and ƒ3.

The absolute energy of the timeseries is calculated as

The correlation of a timeseries and its time lag is described by
ƒ2,

which is a similarity measurement index where Xi is a timeseries

value at one time point, n is the length of X, σ2 and μ are
estimations of the timeseries variance and mean, respectively,
and l is the time lag [42].

The nonlinearity of a timeseries is quantized using

where lag is a time delay operator (equal to l) [43].

Step 2: Fuse Patient Characteristics
We extracted the previously mentioned static patient information
which was merged with the statistical features. The concatenated
vectors were normalized and input to the BiLSTM model.

Step 3: Obtain Tachycardia Onset Risk Score
In this step, TOP-Net determines a real-time risk score that
evaluates an individual risk probability of tachycardia onset.
When the risk score continuously exceeds the threshold set by
the doctor for a period of time, the caregiver is alerted.
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Medical Information Mart for Intensive Care (MIMIC)
MIMIC III is a large, publicly available critical care database
(version 1.4 [24]), with 38,557 adult patients’ (52,955 ICU
admissions) detailed hospital information such as demographic
information, laboratory test results, and diagnosis codes.
Patients’ multiple physiological signals (waveforms) and
corresponding numeric format of vital signs are stored in the
MIMIC III Waveform Database, which contains 10,282 patients’
time alignment information and 22,247 numeric records that

can be matched to the clinical database [36]. The basic
information is stored in the tables of admissions, patients’
hospital admission information; icustays, ICU transfer (in and
out) information; patients, individual birth and death dates; and
diagnoses_icd, diagnosis codes during hospitalization. All of
the tables can be associated with subject_id, a unique identity
of patients. The waveform database includes the header files
(name, unit, and recording frequency) and segments of
recordings (numeric signals). Figure 3 presents the method used
to link tables of information with the temporal waveforms.

Figure 3. The connection between clinical and waveform information in the MIMIC-III database.

Continuous Monitoring Database for the General
Ward
The use of general ward data was approved by the ethics
committee of the General Hospital of PLA (S2018-095-01). In
the general ward, we utilized a SensEcho medical-grade
monitoring system, which can monitor patients anytime and
anywhere. SensEcho contains 3 parts (Figure 4): a wearable
multisensor system unit, a wireless network and data
transmission unit, and a central monitoring system [35,38]. The
multisensors include a single-lead ECG sensor (200 Hz), a
sensor for respiratory inductive plethysmography (25 Hz), a
noninvasive photoplethysmogram sensor for SpO2 monitoring

(1 Hz) based on near-infrared spectroscopy, and a posture
recognition sensor using a 3-axis accelerometer. These signals
are collected and stored in a data logger. The logger has an
ultra–low power Wi-Fi module and supports long-term data
transmission by relying upon hospital networks. The central
monitoring system receives information, processes data, and
delivers and displays information. The algorithms deployed on
the system included signal quality evaluation, signal processing,
real-time abnormal event monitoring and early prediction, and
patients’ health assessment, which were packaged as a toolkit
(Midas). The accuracy, stability, and effectiveness of our system
have been validated in previous studies [44-46].
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Patients admitted to the hospital were assessed by a doctor using
the system. Continuous monitoring physiological signals were
transmitted to the hospital server and the data in numeric format
were acquired based on the waveform processing function in

Midas. The clinical information was stored separately in the
hospital information system. Data from the different sources
were linked (Figure 5) using patient_id, a unique identification
of patients similar to subject_id in MIMIC III.

Figure 4. Overview of the SensEcho system.

Figure 5. The connection between clinical and waveform information monitored by SensEcho.
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Tachycardia Onset Diagnostic Criteria
Diagnostic tachycardia onset criteria were determined by 3
clinical experts from the Emergency Department, the general
ward, and surgical ICU. A tachycardia event was defined as
any of the following: (1) heart rate above 100 bpm sustained
over 30 minutes; (2) heart rate above 130 bpm sustained over
20 minutes; (3) heart rate above 150 bpm sustained over 5
minutes. The initial timepoint meeting of any of these conditions
was recognized as tachycardia onset.

Experiments

Data Set
In the ICU environment, we selected 5699 patients with the
following criteria: age over 18 years old, admitted to the hospital
and ICU for the first time, monitoring data longer than 14 hours
with heart rate, respiratory rate, and SpO2 recordings. The size
of the observing window was chosen as 2 hours, which was
used to extract the statistical features. The negative sample set
was built by extracting information in the observing window
with a 1-hour sliding step throughout monitoring for patients
without tachycardia. The positive sample set was acquired by

selecting the same features in the observing window before the
occurrence of tachycardia with a forecast range. To balance the
ratio of positive and negative samples, we kept extracting
positive samples with a 5-minute delay based on the former (for
target replication), which is a method used in a previous study
[47]. The data were downsampled from per second to per minute
by averaging. If more than 30% were null or 0 values of all
variables at a certain time, the missing values were filled using
the forward interpolation method. We randomly picked the
number of negative samples close to the positive samples to
further decrease class imbalances. There were 2748 and 2130
negative and positive samples, respectively.

In the general ward, we deployed the wearable grade monitoring
system (Figure 6a) in a cardiovascular disease department in
January 2018. We collected data from 367 patients for research.
The inclusion criteria for monitoring duration was reduced to
from 14 hours to 4 hours to take into account patient length of
stay. A total of 259 patients were included, and 2300 negative
samples and 270 positive samples were extracted. Figure 6b
shows a patient wearing a multisensor shirt, and Figure 6c shows
an example of a patient encountering tachycardia.

Figure 6. Continuous monitoring using (a) SensEcho system with (b) example of a patient with sensors attached, and (c) sample data. HR: heart rate;
RR: respiratory rate; SpO2: blood oxygen saturation.
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Developing the Prediction Model
In the early prediction model, developed from the MIMIC-III
data set, predictions (forecast ranges) with TOP-Net were
explored from 0 hour to 6 hours with a 2-hour interval. A total
of 21 statistical features were included (Table 1). The size of
sub–observing window and sliding step were individually set
to 20 minutes and 5 minutes, respectively. We calculated all
statistical values in sub–observing windows, sequentially
amalgamated, and fed them into the model. The data set was
randomly split to 80% of the training set and 20% of the testing

set according to the patient’s hospitalization number. The 5-fold
cross-validation together with random search was used to tune
the hyperparameters based on the training set considering the
sample size [48]. The hidden size was set to 32. We tested

learning rates ranging from 1-4 to 1-2 with an interval of 1-4 and
training epochs from 5 to 100 with an interval of 10. The best
hyperparameters were determined by minimizing validation
loss. We retrained the model using the optimal hyperparameters
on the training set, and the performance of the model was
assessed on the test set.

Table 1. Statistical features constructed in this study.

Feature descriptionFeature type and name

Heart rate (n=10)

Mean heart ratehr_mean

Heart rate SDhr_std

Sum of heart ratehr_sum

Slope of heart ratehr_slope

ƒ1 of heart ratehr_abs_energy

ƒ3 of heart rate with lag=2hr_c2

ƒ3 of heart rate with lag=3hr_c3

10% quantile of heart ratehr_quantiles_01

30% quantile of heart ratehr_quantiles_03

70% quantile of heart ratehr_quantiles_07

Respiratory rate (n=5)

Mean respiration rateresp_mean

Respiration rate SDresp_std

Slope of respiration rateresp_slope

ƒ1 of respiration rateresp_abs_energy

ƒ3 of respiration rate with lag=3resp_c3

SpO2
a (n=5)

Mean SpO2spo2_mean

SD of SpO2spo2_std

Slope of SpO2spo2_slope

ƒ3 of SpO2 with lag=3spo2_c3

ƒ1 of SpO2spo2_abs_energy

Together (heart rate, respiratory rate, SpO2) (n=1)

Mean value of ƒ2 using all vital signs with the default l=40all_autocorrelation

aSpO2: blood oxygen saturation.

Comparison With Baseline Models
To further investigate the performance of TOP-Net, we designed
subexperiments 1, 2, and 3 to obtain a comprehensive
assessment. In subexperiment 1, the model was acquired without
considering personal information and bidirection memory
functions. That is, LSTM and convolutional neural network
models were obtained in a total cohort without considering the

personal information of patients. The structure of the LSTM
was consistent with that of a BiLSTM, and the convolutional
neural network model had 2 convolutional layers. In
subexperiment 2, conventional machine learning methods,
including extreme gradient boosting [49], multilayer perceptron,
and random forest, were compared with TOP-Net with default
model parameters. In subexperiment 3, different feature
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combinations were examined: (1) all vital signs, (2) heart rate,
(3) heart rate and respiratory rate, and (4) heart rate and SpO2.

Performance Evaluation Metrics
Prediction performance was measured with 6 metrics:
sensitivity, specificity, accuracy, F1 score, precision, and area
under the receiver operating characteristic curve (AUROC).

Model Validation and Transfer to the General Ward
The performance of TOP-Net was validated using the data
collected in the general ward (small data set obtained within 1
year) by the SensEcho system. A transferrable model suitable
for non-ICU patients was acquired by finetuning the ICU
scenario model. The model performance was also assessed with
the 6 metrics using 5-fold cross-validation due to the small
sample size.

Experimental Platform
We utilized PostgreSQL (version 9.6; PostgreSQL Global
Development Group) to extract the clinical data. All data
processing and analyses, model development, and result
visualization was performed with Python (version 3.7.1) and
CUDA (version 10.0).

Results

Data Sets
Table 2 shows admission information summary statistics for
the study cohorts. The patients’ ages were slightly higher in the
ICU cohort and most of them were admitted to the hospital for
emergencies. A large proportion of patients were admitted for
elective reasons in the cardiovascular disease department of our
hospital. Furthermore, a higher proportion of patients had a
history of cardiovascular diseases in the general ward.

Table 2. Study cohorts.

General ward cohort (n=259)ICUa cohort (n=5699)

61.00 (53.00, 67.50)66.15 (53.97, 77.78)Age (years), median (IQR)

Gender, n (%)

105 (40.5)3262 (57.2)Female

154 (59.5)2437 (42.8)Male

Admission type, n (%)

227 (87.6)979 (17.2)Elective

32 (12.4)4550 (79.8)Emergency

—b170 (3.0)Urgent

First care unit, n (%)

—1190 (20.9)Coronary care

—1118 (19.6)Cardiac surgery recovery

—1501 (26.3)Medical ICU

—1320 (23.2)Surgical ICU

—570 (10.0)Trauma/surgical ICU

234 (90.3)4933 (86.6)Cardiovascular diseases, n (%)

aICU: intensive care unit.
bNo data.

Model Performance

Evaluation Based on the ICU Cohort
We leveraged 5-fold cross-validation to select optimal
hyperparameters with the training set and assessed the
performance of the model on the test set. The hyperparameter
values that we selected were learning rate =0.0002, epoch=20,
and batch size=64. Figure 7 and Table 3 summarize the results
from subexperiment 1 and subexperiment 2. The AUROC and
F1 score for TOP-Net were consistently better than those of
other models, with the exception of F1 score (TOP-Net’s was
slightly lower than that of the LSTM model for 6 hours
prediction, though TOP-Net’s sensitivity was slightly higher
than of the LSTM at this time).

Although the 95% CI in subexperiment 1 overlaps, TOP-Net
has better performance than LSTM and convolutional neural
network in each prediction range above 0.5%-1%. Therefore,
fusing patient personal information and bidirection memory
makes the prediction model more accurate and robust. In
subexperiment 2, TOP-Net was consistently superior to the
other machine learning models, especially 6 hours before
tachycardia onset; TOP-Net performs well (AUROC 0.796,
95% CI 0.768-0.824; sensitivity 0.753, 95% CI 0.663-0.793;
specificity 0.720, 95% CI 0.645-0.758; and F1 score 0.718).

In Table 4, the results for models using heart rate (n=10), heart
rate and respiratory rate (n=15), heart rate and SpO2 (n=15),
and statistical features of all vital signs (n=21) are shown. For
2- to 6-hour forecast ranges the model with all of the features
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input has the best performance with highest AUROC values.
The performance is slightly reduced when inputting heart rate
and respiratory rate, or heart rate and SpO2. The performance
was the worst when including only heart rate statistical features.
The statistical characteristics of heart rate play a dominant role
in real-time diagnosis. Furthermore, we employed the extreme
gradient boosting algorithm to rank the importance of 21

designed features for a forecast range of 6 hours. The top 8
features (Figure 8) were hr_abs_energy, hr_quantiles_01, hr_c3,
hr_c2, hr_quantiles_03, resp_c3, hr_mean, and hr_quantiles_07.
The nonlinearity features—hr_c3 and hr_c2 (ƒ3 with lag=3 and
lag=2)—were ranked third and fourth, respectively. The
respiratory feature resp_c3 was ranked sixth.

Figure 7. TOP-Net performance: (a) AUROC and (b) F1 score. AUROC: area under the receiver operating characteristic curve; CNN: convolutional
neural network; LSTM: long short-term memory; XGBoost: extreme gradient boosting; MLP: multilayer perceptron; RF: random forest; TO: tachycardia
onset.

JMIR Med Inform 2021 | vol. 9 | iss. 4 |e18803 | p.202https://medinform.jmir.org/2021/4/e18803
(page number not for citation purposes)

Liu et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. The detailed information of performance comparison (TOP-Net vs other models).

Precision (%)F1 score (%)Specificity (%) (95% CI)Sensitivity (%) (95% CI)Accuracy (%)AUROCa (%) (95%
CI)

Forecast range and
model

0 hours

90.589.892.1 (85.9-94.3)89.1 (81.9-91.8)90.195.5 (94.2-96.8)TOP-Net

92.188.992.3 (87.0-95.1)85.9 (80.7-89.4)89.394.5 (93.0-96.0)CNNb

89.989.490.8 (81.1-93.8)88.9 (83.9-91.8)89.894.4 (92.9-96.0)LSTMc

94.987.993.0 (87.4-96.0)81.9 (75.7-85.6)88.393.2 (91.5-94.9)XGBoostd

89.587.589.9 (84.6-93.2)85.6 (80.2-88.9)87.993.0 (91.3-94.8)MLPe

88.686.889.0 (82.1-92.8)85.1 (80.2-88.8)87.392.3 (90.5-94.2)Random forest

2 hours

80.679.181.6 (74.2-85.1)77.6 (70.8-81.3)79.685.6 (83.2-88.0)TOP-Net

75.677.177.8 (71.2-81.4)78.6 (71.3-83.2)77.684.6 (82.1-87.1)CNN

76.877.767.4 (56.8-71.5)88.6 (81.0-92.0)78.285.1 (82.7-87.5)LSTM

80.577.480.9 (73.9-84.5)74.5 (66.7-79.1)78.083.8 (81.2-86.3)XGBoost

75.877.077.7 (69.9-82.0)78.3 (71.3-82.2)77.583.9 (81.4-86.4)MLP

83.777.182.3 (76.4-86.0)71.5 (63.6-76.6)77.782.8 (80.2-85.4)Random forest

4 hours

69.475.872.2 (63.8-74.7)83.5 (75.5-85.9)76.383.3 (80.7-85.8)TOP-Net

77.874.578.8 (70.0-82.5)71.5 (63.6-76.3)75.280.9 (78.2-83.7)CNN

74.173.676.3 (69.6-80.1)73.1 (65.5-77.9)74.281.9 (79.2-84.5)LSTM

77.872.678.5 (72.0-82.8)68.1 (60.2-72.7)73.480.4 (77.7-83.2)XGBoost

70.672.272.0 (65.1-76.3)73.9 (66.9-78.7)72.980.1 (77.3-82.8)MLP

82.572.479.9 (73.4-84.8)64.5 (60.6-71.4)73.379.0 (76.1-81.9)Random forest

6 hours

68.671.872.0 (64.5-75.8)75.3 (66.3-79.3)72.179.6 (76.8-82.4)TOP-Net

63.570.564.1 (57.1-69.1)79.3 (72.8-83.7)70.978.3 (75.4-81.1)CNN

70.572.271.8 (64.1-76.0)74.0 (67.0-78.4)72.578.7 (75.9-81.5)LSTM

62.068.464.1 (55.1-68.9)76.3 (69.5-75.4)69.176.1 (73.1-79.0)XGBoost

68.470.169.4 (61.7-74.5)71.9 (65.1-76.7)70.676.7 (73.8-79.6)MLP

63.966.466.7 (59.3-70.6)69.1 (59.0-74.3)67.274.4 (71.4-77.5)Random forest

aAUROC: area under the receiver operating characteristic curve.
bCNN: convolutional neural network.
cLSTM: long short-term memory.
dXGBoost: extreme gradient boosting.
eMLP: multilayer perceptron.
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Table 4. Performance of TOP-Net with the different types of features.

Precision (%)F1 score (%)Specificity (%) (95%
CI)

Sensitivity (%) (95%
CI)

Accuracy (%)AUROCa (%) (95%
CI)

Forecast range and feature
type

0 hours

90.589.892.1 (85.9-94.3)89.1 (81.9-91.8)90.195.5 (94.2-96.8)All

90.890.191.9 (85.9-94.1)89.4 (84.7-93.1)90.495.2 (93.8-96.6)HRb+SpO2
c

89.689.691.0 (84.8-94.3)89.6 (84.7-92.3)90.095.3 (93.9-96.7)HR+RRd

80.689.892.1 (86.5-94.9)89.1 (83.9-92.3)90.195.5 (94.2-96.9)HR

2 hours

80.679.181.6 (74.2-85.1)77.6 (70.8-81.3)79.685.6 (83.2-88.0)All

75.176.176.4 (69.4-80.4)77.1 (70.6-81.0)76.983.3 (80.8-85.9)HR+SpO2

82.178.682.0 (75.3-86.5)75.4 (69.1-79.3)79.184.4 (81.9-86.9)HR+RR

74.176.373.9 (66.7-78.0)78.6 (71.8-82.7)76.982.9 (80.3-85.5)HR

4 hours

69.475.872.2 (63.8-74.7)83.5 (75.5-85.9)76.383.3 (80.7-85.8)All

73.675.074.9 (67.6-79.2)76.5 (70.0-81.3)75.882.3 (79.6-84.9)HR+SpO2

77.575.077.9 (70.0-82.3)72.7 (66.4-77.7)75.682.1 (79.5-84.8)HR+RR

70.572.972.7 (66.0-77.0)75.5 (67.2-79.9)73.680.4 (77.6-83.2)HR

6 hours

68.671.872.0 (64.5-75.8)75.3 (66.3-79.3)72.179.6 (76.8-82.4)All

73.071.574.5 (66.5-78.6)70.0 (62.6-74.4)71.977.6 (74.7-80.5)HR+SpO2

65.671.667.6 (61.2-72.0)78.8 (71.6-83.3)72.078.7 (75.8-81.5)HR+RR

71.769.473.3 (66.9-77.7)67.2 (59.5-72.1)70.075.5 (72.5-78.6)HR

aAUROC: area under the receiver operating characteristic curve.
bHR: heart rate.
cSpO2: blood oxygen saturation.
dRR: respiration rate.
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Figure 8. Statistical feature rankings.

Model Validation in the General Ward
We assessed the performance of the model 2 hours before
tachycardia onset because the interval between the tachycardia
onset and the admission time to the department was short in our
scenario of the general ward. Given the limited training data,
we used the transfer learning method to finetune the model. The
parameters were learning rate=0.0002, epoch=18, and batch
size=32. The 5-fold cross-validation was also used to assess the
performance and prevent possible overfitting. The retraining
results can be seen in Table 5. TOP-Net had a stable outcome
and outperformed the other 5 models (AUROC 0.965, accuracy
0.937, sensitivity 0.955, specificity 0.881, F1 score 0.793, and
precision 0.680. Compared with the model in ICU, the difference

in prediction performance might be caused by the difference in
the severity of the patient’s disease. Although convolutional
neural network’s F1 score was much higher, its sensitivity, to
which clinicians pay more attention, was lower than that of
TOP-Net.

Figure 9 shows real-time risk scores of tachycardia onset and
an example of early tachycardia onset prediction with TOP-Net.
In Figure 9a, the patient encountered a tachycardia event after
admission from 675 to 725 minutes. The risk probability was
assessed every 5 minutes; Figure 9b presents real-time risk. We
set the alarm threshold to 0.40 with a trade-off predictive effect
of sensitivity and specificity. The risk score begins to rise after
the 555th minute, showing that our model can predict the
tachycardia event 125 minutes beforehand.
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Table 5. TOP-Net performance based on transfer learning in the general ward (2-hour forecast range).

Precision (%), mean
(SD)

F1 score (%), mean
(SD)

Specificity (%),
mean (SD)

Sensitivity (%),
mean (SD)

Accuracy (%), mean
(SD)

AUROCa, mean
(SD)

Model

68.0 (5.99)79.3 (4.33)88.1 (4.28)95.5 (4.85)93.7 (1.02)96.5 (1.92)TOP-Net

78.8 (9.85)83.8 (5.38)88.1 (8.4)90.1 (2.88)95.3 (1.43)93.8 (2.02)CNNb

60.0 (4.89)73.0 (3.4)81.5 (5.6)93.6 (2.76)92.6 (0.61)93.2 (1.89)LSTMc

66.6 (6.8)73.7 (3.7)82.6 (7.9)83.4 (5.2)92.9 (1.1)89.9 (2.1)XGBoostd

54.0 (2.9)62.6 (2.0)78.9 (9.1)75.9 (9.6)91.0 (0.7)84.2 (4.1)MLPe

73.8 (4.9)75.0 (3.7)86.8 (4.7)76.6 (5.2)92.5 (1.0)87.3 (3.0)Random forest

aAUROC: area under the receiver operating characteristic curve.
bCNN: convolutional neural network.
cLSTM: long short-term memory.
dXGBoost: extreme gradient boosting.
eMLP: multilayer perceptron.

Figure 9. Example of a tachycardia event and our risk score of predicting tachycardia onset. HR: heart rate.

Discussion

General
In this study, we developed a model using a publicly accessible
data set and transferred it to a real clinical scenario. The
performance of TOP-Net for predicting tachycardia onset 0 to
6 hours in advance was better than that of the baseline models
(timeseries prognosis methods and conventional machine

learning methods without timing characteristics); TOP-Net
outperformed benchmarks of 2 deep learning models, 2
ensemble, and 1 neural network models for predictions 6 hour
in advance.

Many continuous monitoring physiological status studies have
indicated the deterioration of vital signs occurred more than 6
to 12 hours before serious adverse events [50]. Continuous
monitoring, early prediction, and intervention tachycardia can

JMIR Med Inform 2021 | vol. 9 | iss. 4 |e18803 | p.206https://medinform.jmir.org/2021/4/e18803
(page number not for citation purposes)

Liu et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


reduce the occurrence of heart failure, cardiac arrest, and death.
This paper proposed TOP-Net, a tachycardia onset early
prediction model leveraging the BiLSTM algorithm with 8
easily accessible vital signs and personal information. TOP-Net
was trained using a large ICU data set and transferred to the
general ward scenario with patients monitored by wearable
sensors. TOP-Net has been validated to be consistently superior
to the baseline models when predicting tachycardia onset from
0 to 6 hours in advance. Including patient characteristics allowed
more accurate tachycardia onset prediction than those by other
models without this information. Moreover, TOP-Net achieved
forecasting tachycardia onset 6 hours beforehand, and the
transferred model also performed well in our clinical scenario.

In recent years, some novel models for early risk prediction of
adverse events have been developed based on electronic health
records or physiological signals. Pan et al [51] utilized a
self-correcting deep learning approach to predict whether acute
kidney injury would occur in a subsequent 6 hours. Futoma et
al [52] developed a multitask Gaussian process recurrent neural
network classifier to early detect sepsis achieving 4 hours in
advance. Tonekaboni et al [53] trained a convolutional neural
network and LSTM fusion model to predict cardiac arrest from
physiological signals 24 hours in advance. For tachycardia onset
prediction, Lee et al [17] used an artificial neural network–based
model and 104 samples to predict ventricular tachycardia 1-hour
before occurrence. Yoon et al [54] adopted a random
forest–based model and 1494 samples achieving detection 75
minutes in advance. Our real-time prediction model, using the
deep neural architecture on 4878 sample sets, demonstrated
better and more robust performance than those of multiple
baseline models, which included artificial neural network and
random forest models, when predicting tachycardia onset 0 to
more than 6 hours beforehand.

It is necessary for clinicians to combine a patient’s current
symptoms, basic information, and past medical history to
diagnose disease severity [55]. For example, the proportion who
might have cardiovascular disease and the risk of sustained high
heart rate is not the same for patients of different ages with
different histories of disease. This useful information is usually

recorded in electronic health records. Recently, several
researchers have tried to combine the analysis of 2 kinds of
materials to represent comprehensive information and improve
the performance of the models: Xu et al [56] proposed a model
to predict physiological decompensation and length of ICU stay
by analyzing ECG and medical records data, and Nemati et al
[57] employed high-resolution vital signs and electronic health
records to achieve early sepsis prediction. However, little
attention has been paid to tachycardia prognosis. In this paper,
we integrated electronic health record and biosensor data to
accomplish early prediction. The results of subexperiment 1
show that fusing electronic health record information can
improve the accuracy of early prediction compared with the
LSTM and convolutional neural network models.

Risk prediction is a core task in the artificial
intelligence–assisted medical domain. Cardiovascular disease
prediction models based on electronic health record analysis
have been studied [58-60]. Doctor AI [58] requires diagnosis
codes, medication codes, or procedure codes to achieve
multilabel predictions including heart failure. Jin et al [60]
utilized 1864 diagnostic events to train a sequential model to
predict the risk of heart failure but because they were limited
by the need to obtain more information, the model cannot be
used in hospitals with low information integration or in homes.
Deep learning models using ECG signals have also been used
for predictive health care tasks [61]. While ECG signals are
susceptible to interference from physical artifacts, sensors can
obtain heart rate using photoplethysmography instead of ECG
signals. Therefore, models based on core vital signs can easily
be used and to improve prediction performance. We selected 3
vital signs and 5 types of personal information that can easily
be acquired from wearable sensors and hospital information
systems, respectively. TOP-Net was developed using a large
data set and transferred to our actual demand scenario. The
results show that it has the potential to be used in ICU and the
general ward, which also can be extended to home use. Table
6 presents a comparison between TOP-Net and other
state-of-the-art approaches based on input information, model
types, scenario for evaluating the model, sample sizes, and
performance.

Table 6. Review of the performance of related algorithms.

PerformanceSample sizesScenarioModel typesInformationReference

1 hour before ventricular tachycardia:
sensitivity 88%; specificity 82%; AU-

ROCb 93%

52 (positive records); 52
(negative records)

ICUaNontemporal, classic
machine learning

High-frequency vital
signs (1)

Lee et al 2016
[17]

1-2 hours before tachycardia onset: accu-
racy 95.85%

4893 (positive and nega-
tive records)

ICUNontemporal, classic
machine learning

High-frequency vital
signs (6)

Forkan et al
2017 [16]

75 minutes before tachycardia onset: ac-
curacy 84.7%-78.2%; AUROC 92.1%-
84.2 %

787 (positive records);
707 (negative records)

ICUNontemporal, classic
machine learning

High-frequency vital
signs (3)

Yoon et al
2019 [54]

6 hours before tachycardia onset: accura-
cy 72.1%; AUROC 79.6%

2130+270 (positive
records); 2748+2300
(negative records)

ICU and the
general ward

Temporal, deep
learning

High-frequency vital
signs (3) and electronic
health record data (5)

TOP-Net

aICU: intensive care unit.
bAUROC: area under the receiver operating characteristic curve.
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Limitations
This study had some limitations. Because SensEcho was
deployed in the clinic for only 1 year after our research project
began, the limited data collected prevented us from directly
developing a general ward model. Moreover, interventions such
as beta-blocker medication may affect the occurrence of
tachycardia onset and cause it to not be captured by the input
features. Electronic health records contain rich information such
as laboratory tests, clinical orders, and nursing notes that can
characterize a patient’s health status and depict the trajectory
of diseases. Further studies involving the integration of
multivariate timeseries from electronic health records are
expected to improve the prediction performance of tachycardia
onset, and more data from the general ward for TOP-Net
performance evaluation are required.

Conclusions
TOP-Net for real-time evaluation and early prediction of the
risk of tachycardia onset, which made it possible to achieve an
early forecast of tachycardia onset 6 hours in advance with
clinically acceptable performance. TOP-Net was assessed using
6 metrics, 3 subexperiments, different prediction times from 0
to 6 hours. The comparison between the TOP-Net and the other
5 approaches (2 deep learning models, 2 ensemble models, and
1 artificial neural network model) showed that TOP-Net was
superior to the other models. The model with personal
information from electronic health records had better
performance than those without. The easily accessible input
data of the model (3 vital signs and 5 types of personal
information) and the good performance of the transferred model
in the general ward indicated the early prediction of tachycardia
onset using wearable sensors is possible in hospitals or houses.
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Abstract

Background: Family history information, including information on family members, side of the family of family members,
living status of family members, and observations of family members, plays an important role in disease diagnosis and treatment.
Family member information extraction aims to extract family history information from semistructured/unstructured text in
electronic health records (EHRs), which is a challenging task regarding named entity recognition (NER) and relation extraction
(RE), where named entities refer to family members, living status, and observations, and relations refer to relations between
family members and living status, and relations between family members and observations.

Objective: This study aimed to introduce the system we developed for the 2019 n2c2/OHNLP track on family history extraction,
which can jointly extract entities and relations about family history information from clinical text.

Methods: We proposed a novel graph-based model with biaffine attention for family history extraction from clinical text. In
this model, we first designed a graph to represent family history information, that is, representing NER and RE regarding family
history in a unified way, and then introduced a biaffine attention mechanism to extract family history information in clinical text.
Convolution neural network (CNN)-Bidirectional Long Short Term Memory network (BiLSTM) and Bidirectional Encoder
Representation from Transformers (BERT) were used to encode the input sentence, and a biaffine classifier was used to extract
family history information. In addition, we developed a postprocessing module to adjust the results. A system based on the
proposed method was developed for the 2019 n2c2/OHNLP shared task track on family history information extraction.

Results: Our system ranked first in the challenge, and the F1 scores of the best system on the NER subtask and RE subtask
were 0.8745 and 0.6810, respectively. After the challenge, we further fine tuned the parameters and improved the F1 scores of
the two subtasks to 0.8823 and 0.7048, respectively.

Conclusions: The experimental results showed that the system based on the proposed method can extract family history
information from clinical text effectively.

(JMIR Med Inform 2021;9(4):e23587)   doi:10.2196/23587

KEYWORDS

family history information; named entity recognition; relation extraction; deep biaffine attention

Introduction

Family history information plays an important role in the
diagnosis and treatment of diseases, especially genetic disorders.

Family history information is always embedded in electronic
health records (EHRs) in a semistructured/unstructured format,
which needs to be unlocked by natural language processing
(NLP) technology.
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In order to promote research on family history information
extraction, Harvard Medical School and Mayo Clinic organized
national NLP challenges on family history information
extraction in 2018 and 2019. The family history information
extraction task includes the following two subtasks: (1)
recognizing family members, living status, and observations
and (2) determining which family members the recognized
living status and observations belong to, which correspond to
two fundamental NLP tasks, namely named entity recognition
(NER) and relation extraction (RE). The NER task is usually
regarded as a sequence labeling task, while the RE task is the
subsequent classification task, and they are tackled by pipeline
methods.

For the NER task, traditional machine learning methods, such
as hidden Markov model (HMM), conditional random field
(CRF) [1], and structured support vector machine (SSVM) [2],
and deep learning methods, such as Bidirectional Long Short
Term Memory network (BiLSTM) CRF [3] and its variants
[4,5], have been widely applied. For the RE task, the typical
machine learning methods include support vector machine
(SVM) [6], convolutional neural network (CNN) [7], and
recurrent neural network [8]. The methods mentioned above
have also been applied for clinical entity recognition and RE,
such as the NLP challenges organized by i2b2 in 2009 [9], 2010
[10], 2012 [11], and 2014 [12], the NLP challenges organized
by SemEval in 2015 [13] and 2016 [14], the NLP challenges
organized by ShARe/CLEF in 2013 [15] and 2014 [16], and
the NLP challenges organized by BioCreative/OHNLP in 2018
[17]. Most of these methods process NER and RE tasks in a
pipeline way, which can suffer from error propagation [18].

A number of joint learning methods have been proposed [18,19]
for NER and RE subtasks to avoid error propagation from NER
to RE. In the case of family history information extraction, Shi
et al [17] developed deep joint learning based on the BiLSTM
that won the 2018 BioCreative/OHNLP challenge [20]. Joint
learning methods generally used pretrained neural language
models. Neural language models pretrained on large-scale
unlabeled text have recently been proven to be surprisingly
effective in many downstream tasks, and Bidirectional Encoder
Representation from Transformers (BERT) [21] is one of the
most popular neural language models.

In this study, we proposed a novel graph-based model with
biaffine attention. Inspired by the dependency parsing task
[22,23], we designed a novel graph-based schema to represent
family history information and introduced deep biaffine attention
[22,23] to extract family history information from clinical text.
A system based on the proposed method was developed for the
2019 n2c2/OHNLP challenge on family history information
extraction, and it achieved the highest F1 scores of 0.8823 on
subtask1 and 0.7048 on subtask2.

Methods

Task Description
There were two subtasks in the 2019 n2c2/OHNLP challenge
on family history information extraction. For subtask1, we need
to recognize family members with the side of the family, living
status mentioned in clinical text, and observations in the family
history. All family members can be normalized to standard
forms in Table 1. The property of family members named “side
of family” includes the following three possible values: NA
(“not applicable”), maternal, and paternal. Following the work
of Shi et al [17], we compared two different strategies. The first
strategy recognized three types of entities (family member,
observation, and living status) and determined the “side of
family” property for each family member entity through a
postprocessing module. The second strategy recognized five
types of entities (NA, maternal, paternal, observation, and living
status), directly determining the “side of family” property of
family members.

For subtask2, we need to extract the relations between family
members, observations, and living status. Living status is used
to represent the health status of family members, and it has the
two properties of “Alive” and “Healthy.” Each property was
measured by a real-valued score (yes: 2, NA: 1, and no: 0). The
total living status score of family members was their alive score
multiplied by their health score. We also need to predict the
negation information (Negated and Non_Negated) for each
observation, that is, to judge whether the family members have
certain diseases or not.

Table 1. Normalized family member names.

Normalized family member namesDegree

Father, Mother, Parent, Sister, Brother, Daughter, Son, and Child1

Grandmother, Grandfather, Grandparent, Cousin, Sibling, Aunt, and Uncle2

Data Statistics
We conducted experiments on the corpus provided by the 2018
and 2019 n2c2/OHNLP shared task tracks on family history
information extraction. The training set of the 2019
n2c2/OHNLP shared task together with the test set of the 2018
BioCreative/OHNLP shared task was used as the final training

set of 149 EHRs for model training. The test data set of the 2019
n2c2/OHNLP shared task, including 117 EHRs, was used for
the model test. During model training, we randomly selected a
development set of 14 EHRs from the training set for parameter
optimization. The statistics of the corpus used in this study is
shown in Table 2.
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Table 2. Detailed data set statistics.

Test set, nDevelopment set, nTraining set, nItem

11714149Document

64471770Sentence

—b941128FMa: overall

—55631FM: NAc

—24272FM: maternal

—15225FM: paternal

—1271439OBd

—52596LSe

—971064FM-OB: overall

—57575FM-OB: NA-OB

—23265FM-OB: maternal-OB

—17224FM-OB: paternal-OB

—53605FM-LS: overall

—29334FM-LS: NA-LS

—12145FM-LS: maternal-LS

—12126FM-LS: paternal-LS

aFM: family member.
bNot available.
cNA: not applicable.
dOB: observation.
eLS: living status.

Graph-Based Schema
Similar to the dependency parsing task where each token has a
head token, we transformed the family history information
extraction task to a dependency parsing problem, where a
dummy root (denoted by “ROOT”) was appended to each
sentence at the beginning and arcs denoted links between two
tokens. In the “dependency parsing tree” of a sentence, tokens
in each entity were connected together by an “app” arc from
right to left, two entities with a relation were connected through
linking the right most token by an arc labeled with the entity

type, and tokens not in any entity were connected with the
“ROOT” node by “NULL” arcs. Figure 1 shows an example of
using a “dependency parsing tree” to represent family history
information extraction, where the family member entity
“children” was determined by the “Family Member” arc from
“ROOT” to “children,” the living status entity “generally

healthy” was determined by “generally generally,” and the
relation between “children” and “generally healthy” was

determined by the arc from “children” to “healthy” .

Figure 1. Example of using a graph-based schema to represent family history information.

Model Architecture
As shown in Figure 2, our model contained the following two
main parts: (1) a representation module, which represented input
text using BERT and CNN-BiLSTM and (2) a biaffine attention

module to predict label score vectors, including unlabeled arc
prediction (top left in Figure 2) and arc label prediction (top
right in Figure 2). We have presented them in the following
sections in detail.
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Figure 2. Overview architecture of our model.

Representation Layer
Given a sentence s = x1…xi…xn, where xi is the ith token of s,
we used BERT and CNN-BiLSTM to represent it separately as
follows:

where CNN [4] is first used to get the character-level
representation of each token, and BiLSTM is then used to get
the contextual representation of each token in CNN-BiLSTM.
The final representation of token xi is

Biaffine Attention Layer

Unlabeled Arc Prediction
Considering the ith token and the jth token, we fed their
corresponding representations into a bilinear transformation
extension called a biaffine function to get the score of the arc
from token i (head) to j (dependent) as follows:

where rj
(arc−dep)∈Rp and rj

(arc−head)∈Rp are the outputs of

multilayer perceptron, U(arc)∈Rp×p is a weight matrix controlling

the strength of the arc from token i to j, and u(arc)∈Rp is a bias
vector.

Assume that sj
(arc) = [s1j

(arc);…;snj
(arc)] is the score vector of all

possible heads of the jth token. We adopted the softmax function
to compute the probability distribution dj of all possible heads
of token j and the cross-entropy between the predicted dj and

gold standard dj
(arc) as the loss function as follows:

Thereafter, the best head of token j was determined according
to

Arc Label Prediction
For each unlabeled arc, we need to determine its label. Assume

that sij
(lab)∈R|L| is the label score vector for each arc from token

i to j, where |L| is the size of the label set. We can compute sij
(lab)

as follows:

where rj
(label−dep)∈R|L|×p and rj

(label−head)∈R|L|×p are outputs of the

multilayer perceptron, U(label)∈R|L|×p×p is a third-order tensor,

W(label)∈R|L|×2p is a weight matrix, and u(label)∈R|L| is a bias
vector.

We also adopted the softmax function to compute the probability
distribution dij of all possible labels of the arc from token i to j
and the cross-entropy between the predicted dij and gold standard

dij
(label) as the loss function as follows:

Thereafter, the best label of the arc from token i to j was
determined by

The total loss function was set as

Postprocessing Rules
We designed a rule-based postprocessing module to adjust the
outputs of our model. It included the following five parts:

1. Converting the output to entities and relations.

(1) Combining all tokens connected by “app” arcs to form
entities and assigning them the label of their last token.
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(2) If there was an arc between two entities, but not an “app”
arc, there was a relation between them.

2. Normalizing family members.

(1) Converting family member entities into normalized forms
as shown in Table 1. For example, we converted the recognized
“father’s father” into “grandfather” and “aunt’s son” into
“cousin.”

(2) Excluding unnecessary family members. For example, a
patient’s nonblood relatives, such as “father” in section
“partner’s father,” should be removed. If the family member
“father” belonged to section “partner’s father,” we removed
“father” since father-in-law was not in Table 1.

3. Determining the side of family members when using the
strategy of three types of entities.

(1) If a family member was a first-degree relative, the side of
the family was set as “NA.”

(2) If a family member was in the section “maternal family
history” or “paternal family history,” the side of the family was
set as maternal or paternal.

(3) If there was an indicator (“maternal” or “paternal”) near a
family member, the side of the family was determined by the
indicator.

(4) Otherwise, the side of the family of a family member was
set as “NA.”

4. Determining the living status score of family members
following the work of Shi et al [17].

(1) Determining the scores of the properties “Alive” and
“Healthy” of a family member through searching the keywords
listed in Table 3 from the family member’s living status. If a
living status entity contained some keywords listed in Table 2,
we assigned its property scores with the corresponding scores;
otherwise, both its alive score and healthy score were set as
NA=1.

(2) The total living status score was determined according to
the alive score and healthy score. For a relative with
“Alive=Yes” and “Healthy=Yes,” for example, the living status
score should be 4.

5. Determining the negation information of observations.

(1) Determining the negation information of an observation
through searching keywords (no, never, not, none, negative,
neither, nor, unremarkable, and deny) from the observation’s
context. If the context of an observation contained a keyword
mentioned above, we set its negation information as “Negated;”
otherwise, it was set as “Non_Negated.”

(2) Reversing the negation information of an observation if
there were specific phrases, such as “apart from” and “except
for,” in the observation’s context. For example, the negation
information of the observation entity “Meniere disease” in “there
is no history of hearing loss apart from the father's history of
Meniere disease” was set as “Non_Negated” rather than
“Negated.”

Table 3. Keywords used to determine the properties “Alive” and “Healthy.”

KeywordsProperty

Alive and livingAlive: Yes=2

Dead, die, deceased, death, died, stillborn, and passed awayAlive: No=0

Good, health, without problems, healthy, and wellHealthy: Yes=2

Experimental Settings
The hyperparameters used in our experiments are listed in Table
4, and all other parameters were optimized in the validation set.
The pretrained BERT model we used was [BERT-Base,
Uncased] [24].

We first investigated our model in the following two settings:
(1) a pipeline model that tackled unlabeled arc prediction and
arc label prediction separately and (2) a joint model that tackled
unlabeled arc prediction and arc label prediction simultaneously.
The joint model predicated the arc and label of each token in
our model jointly. The pipeline model first trained one model
to predict the head of each token and then trained another model
to predict the head of each token according to the result of the
predicted head. Thereafter, we compared our model with the
BERT-based model using the same architecture as that of the
model by Shi et al [17], except that we used BERT instead of

word embeddings in the input layer (denoted by
BERT-2BiLSTM). Finally, we looked into the effect of the
sentence representation based on CNN-BiLSTM on our model
and the effect of different data sets on our model. The
performance of all models for the two subtasks was measured
by precision, recall, and F1 score (F1) as follows:

where TP denotes the number of true-positive samples, FP
denotes the number of false-positive samples, and FN denotes
the number of false-negative samples. We used the tool provided
by the organizers [25] to calculate them. The tool accepted
partial matching of the observations, for example, the recognized
observation “diabetes” whose gold standard observation is “type
2 diabetes” was considered as a true-positive sample. The source
code is available at GitHub [26].
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Table 4. Major hyperparameters.

ValueParameter

256BiLSTMa size

500Arc MLPb size

100Label MLP size

768BERTc size

25Char embedding size

(3, 4, 5)CNNd kernel size

50Char-level CNN size

0.5Dropout

AdamOptimizer

2e-5Learning rate

32Batch size

100Max epoch

aBiLSTM: Bidirectional Long Short Term Memory network.
bMLP: multilayer perceptron.
cBERT: Bidirectional Encoder Representation from Transformers.
dCNN: convolutional neural network.

Results

As shown in Table 5, the performance of the model considering
five types of entities was better than that considering three types
of entities. The joint model considering five types of entities
achieved the highest F1 score of 0.8823 on the NER subtask
and 0.7048 on the RE subtask, which were higher than the values
for the joint model considering three types of entities by 1.20%
on the NER subtask and 1.87% on the RE subtask.

Compared to the pipeline model, the joint model performed
better on both the NER and RE. For example, when considering
five types of entities, the joint model outperformed the pipeline
model by 1.21% in the F1 score on the NER subtask and 1.97%
in the F1 score on the RE subtask. It indicated that error
propagation was partially alleviated in our joint model. When
considering five types of entities, the joint model achieved
higher F1 scores than BERT-2BiLSTM on the NER subtask
and RE subtask by 1.18% and 0.39%, respectively.

Table 5. Performance of different models.

Five types of entitiesThree types of entitiesModelSubtask

F1 scoreRecallPrecisionF1 scoreRecallPrecision

0.87020.82230.92410.86170.80620.9254PipelineNERa

0.88230.85140.91540.87030.84150.9012JointNER

0.87050.83470.9096———dBERTb-2BiLSTMcNER

0.68510.60510.78950.68270.60050.7909PipelineREe

0.70480.64870.77170.68610.62000.7679JointRE

0.70090.64410.7686———BERT-2BiLSTMRE

aNER: named entity recognition.
bBERT: Bidirectional Encoder Representation from Transformers.
cBiLSTM: Bidirectional Long Short Term Memory network.
dNot available.
eRE: relation extraction.

The performance of our best model on each type of family
member information and relation (except living status not
provided in the test set) is listed in Table 6. On the NER subtask,
our model performed better on observations than family
members by 3.80% in terms of the F1 score. Among the three

types of family members, our model achieved the highest F1
score of 0.8702 for maternal family member and the lowest F1
score of 0.8411 for paternal family member. On the RE subtask,
the F1 score of our model on the family member-living status
relation was nearly the same as that of our model on the family
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member-observation relation. Among the family
member-observation relations, our model performed worse on
the maternal-observation relation than the other two types of

relations. Among the family member-living status relations, our
model performed worse on the paternal-living status relation
than the other two types of relations.

Table 6. Performance of the best model on each type of family member information.

F1 scoreRecallPrecisionTypeSubtask

0.85940.83860.8814FMb: overallNERa

0.86060.85150.8699FM: NAcNER

0.87020.82670.9185FM: maternalNER

0.84110.81080.8738FM: paternalNER

0.89740.85980.9385OBdNER

———fLSeNER

0.88230.85140.9154OverallNER

0.70470.63970.7843FM-OB: overallREg

0.71340.60980.8595FM-OB: NA-OBRE

0.68260.66010.7067FM-OB: maternal-OBRE

0.71130.71500.7077FM-OB: paternal-OBRE

0.70500.65530.7627FM-LS: overallRE

0.70500.65530.7627FM-LS: NA-LSRE

0.72390.73750.7108FM-LS: maternal-LSRE

0.68250.68250.6825FM-LS: paternal-LSRE

0.70480.64870.7717OverallRE

aNER: named entity recognition.
bFM: family member.
cNA: not applicable.
dOB: observation.
eLS: living status.
fNot available.
gRE: relation extraction.

As shown in Table 7, without using the additional data for
BioCreative/OHNLP 2018, our model considering five types
of entities achieved an F1 score of 0.8648 on the NER subtask

and 0.6612 on the RE subtask (the F1 score was significantly
reduced both on the NER subtask and RE subtask), showing
the importance of the data.
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Table 7. Performance of our model with different data.

Five types of entitiesThree types of entitiesData setSubtask

F1 scoreRecallPrecisionF1 scoreRecallPrecision

0.86480.84580.88470.85840.84090.87672019NERa

0.87450.83720.9154———c2018+2019bNER

0.88230.85140.91540.87030.84150.90122018+2019dNER

0.66120.60640.72700.65450.59730.72402019REe

0.68100.62650.7459———2018+2019bRE

0.70480.64870.77170.68610.62000.76792018+2019dRE

aNER: named entity recognition.
b2018+2019: the challenge submission performances of our model.
cNot available.
d2018+2019: the performances of our best model after challenge.
eRE: relation extraction.

Discussion

Effect of Sentence Representation
In order to investigate the effect of sentence representation based
on CNN-BiLSTM on our model, we evaluated the model
without using the representation and obtained an F1 score of
0.8802 on the NER subtask and an F1 score of 0.7059 on the
RE subtask when considering five types of entities. The sentence
representation based on CNN-BiLSTM can bring improvement
in the NER subtask, but a little loss in the RE subtask. Possibly,
we can only share BERT on NER and RE for further
improvement.

Impact of Different Decoders on the NER Subtask
Traditional approaches regarded the NER task as a sequence
labeling task, in which each token was assigned with a combined
label of entity boundary and type. The entity boundaries were
represented by the BIO schema, where “B” indicates the

beginning of an entity, “I” indicates the inside of an entity, and
“O” indicates the outside of an entity. Using a graph schema,
we can also convert NER into a graph in the following way: (1)
connect all tokens with “ROOT,” that is, the heads of all tokens
are set to 0 and (2) set the label of the nonentity token to
“NULL,” set the label of the last token in the entity to the entity
type, and set the label of the remaining token in the entity to
“app.”

We compared different decoders, that is, CRF for sequence
labeling, biaffine for NER only (biaffine-NER), and biaffine
for joint NER and RE (biaffine-Joint). As shown in Table 8,
the performance of biaffine-NER was slightly better than that
of CRF, while biaffine-Joint was considerably better than the
other two models. Although the head prediction was not directly
related to the NER task, the arcs of different types among tokens
provided global information that was beneficial to the NER
task.

Table 8. Comparison of different decoders on the named entity recognition subtask.

Five types of entitiesThree types of entitiesDecoder

F1 scoreRecallPrecisionF1 scoreRecallPrecision

0.87170.83900.90700.86390.83160.8989CRFa

0.87290.85700.88950.86410.83100.9001Biaffine-NERb

0.88230.85140.91540.87030.84150.9012Biaffine-Joint

aCRF: conditional random field.
bNER: named entity recognition.

Error Analysis
We performed error analysis on our model considering five
types of entities in the development data set. In the case of the
NER subtask, 88.24% of errors were boundary errors because
of wrong “app” arc prediction, while the remaining 11.76% of
errors were type errors that have a correct boundary but wrong
entity type. For example, in the sentence “The paternal
grandmother, age 53, has wind sucking attributed to not having

intestinal during her life,” the paternal entity “grandmother”
with the observation entity “wind sucking” was wrongly
recognized as a family member entity. In the RE subtask, all
errors were caused by incorrect entities. For example, in the
sentence “The patient’s father is 43 years old and healthy. His
father is 72 years old and was diagnosed with esophageal cancer
at age 70,” the family member entity “grandfather” with the
observation entity “esophageal cancer” was wrongly extracted
as the family member entity “father” with the observation entity
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“esophageal cancer” as our model could not understand that
“his” refers to “the patient’s father,” which needs strong indirect
relative reasoning.

Limitations and Future Work
The rule-based postprocessing module in our system cannot
handle all cases properly, as shown by the example in the error
analysis section. In future work, we will try to solve indirect
relative reasoning for further improvement.

Conclusions
In this study, we proposed a novel graph-based model with
biaffine attention, where a graph-based schema was design to
represent entities and relations regarding family history in a
unified way and deep biaffine attention was adopted to extract
the entities and relations from clinical text. Our system based
on the proposed model achieved the highest F1 score of the
challenge to date.
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Abstract

Background: Family history information is important to assess the risk of inherited medical conditions. Natural language
processing has the potential to extract this information from unstructured free-text notes to improve patient care and decision
making. We describe the end-to-end information extraction system the Medical University of South Carolina team developed
when participating in the 2019 National Natural Language Processing Clinical Challenge (n2c2)/Open Health Natural Language
Processing (OHNLP) shared task.

Objective: This task involves identifying mentions of family members and observations in electronic health record text notes
and recognizing the 2 types of relations (family member-living status relations and family member-observation relations). Our
system aims to achieve a high level of performance by integrating heuristics and advanced information extraction methods. Our
efforts also include improving the performance of 2 subtasks by exploiting additional labeled data and clinical text-based embedding
models.

Methods: We present a hybrid method that combines machine learning and rule-based approaches. We implemented an end-to-end
system with multiple information extraction and attribute classification components. For entity identification, we trained bidirectional
long short-term memory deep learning models. These models incorporated static word embeddings and context-dependent
embeddings. We created a voting ensemble that combined the predictions of all individual models. For relation extraction, we
trained 2 relation extraction models. The first model determined the living status of each family member. The second model
identified observations associated with each family member. We implemented online gradient descent models to extract related
entity pairs. As part of postchallenge efforts, we used the BioCreative/OHNLP 2018 corpus and trained new models with the
union of these 2 datasets. We also pretrained language models using clinical notes from the Medical Information Mart for Intensive
Care (MIMIC-III) clinical database.

Results: The voting ensemble achieved better performance than individual classifiers. In the entity identification task, our
top-performing system reached a precision of 78.90% and a recall of 83.84%. Our natural language processing system for entity
identification took 3rd place out of 17 teams in the challenge. We ranked 4th out of 9 teams in the relation extraction task. Our
system substantially benefited from the combination of the 2 datasets. Compared to our official submission with F1 scores of
81.30% and 64.94% for entity identification and relation extraction, respectively, the revised system yielded significantly better
performance (P<.05) with F1 scores of 86.02% and 72.48%, respectively.

Conclusions: We demonstrated that a hybrid model could be used to successfully extract family history information recorded
in unstructured free-text notes. In this study, our approach to entity identification as a sequence labeling problem produced
satisfactory results. Our postchallenge efforts significantly improved performance by leveraging additional labeled data and using
word vector representations learned from large collections of clinical notes.
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Introduction

Family history (FH) information included in the electronic health
record (EHR) is important to assess the risk of inherited medical
conditions. For certain diseases such as breast cancer [1,2] and
colorectal cancer [3,4], FH is an important risk factor. FH
information has been recorded in both structured and narrative
free text, but often documented only in the latter. Polubriaginof
et al [5] reported that free-text notes contained more
comprehensive information than structured data. Natural
language processing (NLP) has the potential to extract this
information from unstructured free-text notes to improve patient
care and decision making.

This manuscript describes the end-to-end information extraction
(IE) system the Medical University of South Carolina (MUSC)
team developed when participating in the 2019 National Natural
Language Processing Clinical Challenge (n2c2)/Open Health
Natural Language Processing (OHNLP) track on FH extraction
[6]. This shared task is built on the BioCreative/OHNLP 2018
FH extraction task [7]. It involves (1) identifying mentions of
family members and observations in EHR text notes and (2)
recognizing the relations between family members, observations,
and living status.

Entity identification and relation extraction are often considered
subtasks of IE. The semantic types of concepts of interest have
been defined for different target tasks. Named entity recognition
(NER) was introduced in the sixth of a series of Message
Understanding Conferences [8] and Automatic Content
Extraction programs [9]. The goal of NER is to extract and
classify proper named or specialized entities into predefined
categories [8]. Relation extraction deals with a pair of concepts
[10] (ie, binary relations) or higher-order relations, which are
n-ary relations among n typed entities [11]. It aims to determine
whether entities are in a relation and how they are semantically
related. Medical concept extraction is closely related to our
target task and has advanced from the general text NER by
sharing the algorithms and features. It has aimed to extract
medical information such as disease diagnoses, medications,
laboratory data, and appliances from EHR text notes [12-16].

Several studies focusing on FH information have been reported.
Goryachev et al [17] created a rule-based system for identifying
family members and their related diagnoses. They observed that
FH was often mentioned intermixed with the patient's own
medical history, making this task challenging. Bill et al [18]
developed an NLP system for extracting FH information from
History and Physical notes. Their NLP pipeline identified family
member and observation entities, relations between them, and
attributes such as vital status and age. FH information extraction
was the focus of the BioCreative/OHNLP 2018 task [7]. The
best performance on this shared task was achieved by Shi et al
[19] with F1 scores of 89.01% on subtask 1 and 63.59% on

subtask 2. They proposed joint modeling of entities and relations
by 2 stacked neural networks with shared parameters.

The goal of this study was to extract the health information of
patients and their relatives from unstructured EHR notes. Our
system aims to achieve a high level of performance in this task
by integrating heuristics and advanced information extraction
methods. We approach entity identification as a sequence
labeling problem. We applied a bidirectional long short-term
memory (Bi-LSTM) [20] algorithm, a widely used structured
prediction algorithm. The input of the LSTM network included
vector representations generated by Embeddings from Language
Models (ELMo) [21] contextual embeddings. We hypothesized
that applying the LSTM to this problem can yield accurate FH
information extraction. Our voting ensemble is created based
on the fact that the LSTM algorithm is not deterministic; that
is, every time the model is trained, the results vary. The
proposed ensemble can provide efficient and convenient
integration of individual LSTM models. For relation extraction,
we implemented online gradient descent (OGD) [22] models
with lexical features.

This study's contribution also includes improved performance
on both subtasks by exploiting additional labeled data and
clinical text–based embedding models. We added other labeled
data used in the previous shared task to the training set. We
retrained the classifier using a larger set of training data. We
also used word embeddings pretrained with large quantities of
clinical text. Our experimental results show that these efforts
significantly improve the performance of both subtasks,
especially relation extraction.

The following sections describe the details of the 2 subtasks
and discuss IE models developed to recognize the entities and
their relations from EHRs. We then present the experimental
results and investigate the performance improvements resulting
from our postchallenge efforts.

Methods

Our research focuses on the extraction of mentions of family
members and related information recorded in EHR text notes.
The first subtask, entity identification, involves detecting 2 types
of entities: family members and observations. Only relatives in
the first degree (eg, ‘Mother’ and ‘Son’) and second degree (eg,
‘Grandparent’ and ‘Cousin’) are annotated [7]. Other relatives
such as ‘Spouse’ and ‘Nephew’ are excluded. The normalized
name and the side of family are annotated as attributes of each
family member. Observation (disease) entities in the family
history are also annotated. The second subtask, relation
extraction, is to determine the existence of relations between
family members and other information (ie, living status or
observation). Two types of relations were therefore annotated:
family member-living status and family member-observation.
For relations between a family member and living status, the
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score representing the health status of the family member is
annotated. Negation information is annotated to indicate whether
the observation is negated in the relation between a family
member and the associated observation.

Data Description
Clinical text notes representing patient FH information were
selected from the Mayo Employee and Community Health

cohort [7]. Table 1 shows the number of annotated entities and
relations in the training set. The training set includes 99 clinical
notes with 801 family member and 978 observation entities.
Living status entities are less common and account for about
half of the number of family members. For the observation
category, the number of relations is less than the number of
entities. This means that some observations are not related to
any family member.

Table 1. Number of annotated entities and relations in the training set.

RelationsEntitiesVariable

N/Aa801Family member

425415Living status

753978Observation

aN/A: not applicable because relations between family members were not annotated.

Entity Identification Methods
We addressed entity identification with rule-based and machine
learning–based approaches. We describe each approach and
present a voting ensemble–based method.

Rule-Based System for Family Member Entities
Our rule-based system for family member entity recognition
uses a sliding window with simple term matching and
part-of-speech filtering. We used NLTK [23] (a Python Natural
Language Toolkit) to split each note into sentences and then
each sentence into tokens annotated with part-of-speech tags.
Each token matching a relevant family member term (eg,
“daughter”, “son”, or “child”) that was also tagged as a noun
(ie, NN, NNP, or NNS) was flagged as a valid mention.

Machine Learning–Based Models
We trained sequence labeling models using Bi-LSTM [20,24]
to assign a semantic category label to each word in a sequence.
Bi-LSTM can combine both forward and backward information
of each word.

For this sequence labelling problem, we tokenized the input
text. The training data were annotated with BIO token tags (B:
beginning, I: inside, or O: outside of an entity; eg,
“B-observation” for a token at the beginning of an observation
mention). We also included the outputs of the 2 external
resources (the 2010 Informatics for Integrating Biology and the
Bedside [i2b2] [25] and MetaMapLite [26]) described in the
following paragraphs as inputs to the LSTM network. Similar
to the word token, the prediction from each external resource
was also encoded with BIO tags.

First, we used the medical concept extraction model trained
with the 2010 i2b2 challenge data [25]. The training set
containing 349 text documents was used to create a Bi-LSTM
model that identified medical problem, treatment, and test
concepts from the FH extraction task corpus. We also used
MetaMapLite [26] (2019 AA version) to identify Unified

Medical Language System (UMLS) Metathesaurus concept
mentions along with their semantic type. We aligned MetaMap
outputs with the entity types of subtask 1 to choose the relevant
semantic types. Table 2 lists the 10 most frequently aligned
UMLS semantic types used by MetaMap for observation entity
extraction. The first and second columns display semantic type
names and abbreviations. The third column shows the number
of observation entities from the training corpus aligned with
each semantic type. The last column shows the mapping
probability for each semantic type and observation category.
For instance, “Disease or Syndrome” was mapped to the
observation category with a probability of 79.89%. We used
the training data to automatically create these heuristics. We
used all (21) semantic types with a mapping probability of over
70%. The output semantic type was converted to a family
member or observation entity, such as B-family_member or
I-observation.

Our Bi-LSTM model incorporated 2 embedding layers for
pretrained word embeddings. We used dependency-based
embeddings by Komninos and Manandhar [27] as static word
embeddings. These embeddings were trained using the structure
of dependency graphs. They were built with the English
Wikipedia Dump of August 2015. As context-dependent
embeddings, we used the ELMo [21] model trained on a dataset
of 5.5 billion tokens from Wikipedia and the news crawl corpus.
The output of each external resource (the 2010 i2b2 and
MetaMapLite) was represented as a one-hot vector and mapped
to a 10-dimensional embedding. The concatenation of these
embeddings (2 pretrained embeddings and 2 one-hot vectors)
was fed to the LSTM layer.

To fine-tune the parameters of LSTM models, we randomly
selected 10 documents from the training set (about 10% of the
training set) as held-out data. We tuned the hyperparameters to
maximize the F1 score with the held-out data. After
experimenting with different dropout [28] rates of 10%, 20%,
30%, 40%, and 50%, the models were trained using the Nadam
[29] optimizer for 30 epochs with a dropout rate of 50%.
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Table 2. The 10 most frequent Unified Medical Language System (UMLS) semantic types aligned with labeled observations in the training set.

Probability, %CountAbbreviationSemantic type name

79.89433dsynDisease or syndrome

78.20165neopNeoplastic process

74.6859mobdMental or behavioral dysfunction

70.0028sosySign or symptom

90.0027cgabCongenital abnormality

83.3310anabAnatomical abnormality

72.738bdsyBody system

100.007tisuTissue

83.335cellCell

80.004phsfPhysiologic function

We trained 10 different Bi-LSTM models that use the same
hyperparameters but differ in random weight initialization and
shuffling of training data. Then, we created a voting ensemble
method that combined the predictions of all Bi-LSTM trials.
Although these LSTM models were trained with the same
hyperparameters, we hypothesized that they can be contributory
to the voting ensemble in terms of diversity. Reimers and
Gurevych [30] showed that nondeterministic LSTMs can even
lead to statistically significant differences between multiple
runs.

The voting ensemble collected candidate entities that received
more votes than the voting threshold. When there were
overlapping text spans on 2 different entities, the entity with
more votes was selected. For overlapping entities with the same
vote count, the one produced by the higher-ranking model was
selected. To determine the ranking of 10 individual models, we
measured how each model agreed with the other 9 models.
Rankings were based on F1 scores measured with other models.
The higher the average F1 score, the higher the model ranking.

Heuristic Rules for Family Member Attributes
We assigned each family member entity a normalized form
using a simple dictionary-based mapping. For example, a family
member with the text “his dad” was assigned ‘Father.’ We
changed the text to lower case and removed the numeric values
(eg, “three uncles” becomes 'Uncle'). We also looked at the
preceding words to search for another family member term that
modified the target entity. When such a term was found,
normalization was performed taking it into account. For
example, in the phrase “mother has sister,” the family member
‘sister’ was normalized to ‘Aunt.’

Our rule-based system looked at words in sentences near the
family member and considered the degree of relatives to
determine the family side. For each family member who was
not a first-degree relative, the side of family (ie, ‘Paternal’ or
‘Maternal’) was assigned. For each label, we compiled the list
of cue words indicating the side of family. For example, the
cues for Paternal included ‘paternal,’ ‘patient's father,’ ‘father
had,’ and ‘paternal family history.’ First, we searched for cue
words within the entity term itself. If no cue word was found,
the search was expanded to sentence boundaries.

Relation Extraction Methods
Subtask 2 aimed to identify related pairs of 3 entity types: family
members, observations, and living status. Two types of relation
exist between the 2 entities: family member-living status
relations and family member-observation relations. We trained
2 relation extraction models. The first model determined the
living status of each family member. The second model
identified observations associated with each family member.

For 2 binary-class models, we defined lexical features: words
contained in each concept, 7 preceding and 7 following words
for each concept, and the words between the 2 concepts. We
also created 1 feature to measure the number of family member
entities appearing between the pair. We created 2 binary-class
OGD (also called stochastic gradient descent) [22] classifiers
using the Vowpal Wabbit [31] online learning library. This
online learning algorithm is getting more attention recently in
large-scale machine learning problems. Using the default
hyperparameters, each model was trained for 100 iterations.

Training examples included positive examples (participating in
a relation) and negative examples (pairs of entities that are not
related to each other). Pairs of reference standard entities were
used to train the classifiers. Entity pairs identified by the
aforementioned voting ensemble were used as test examples.
We filtered out the negative examples when there was a carriage
return character (‘\n’) between the pair.

For living status relations, once we extracted phrases that
represent the living status of each family member, we assigned
scores for the alive and healthy attributes. We compiled not
alive (ie, dead) and healthy cues from the training data and
calculated the score using the text phrase of each living status
entity. If our algorithm detected any trigger phrase of not alive
(eg, “deceased,” “passed away,” and “no longer living”), the
algorithm assigned a score of 0. Otherwise, if the family member
was in good health (eg, “good general health,” “healthy,” and
“alive and well”), the algorithm assigned a score of 4. If no cues
of not alive or healthy were found, a score of 2 was assigned.

For each observation entity in the relation, we needed to
determine whether it was negated or not. We used FastContext
[32], an efficient and scalable Java implementation of the
ConText algorithm [33] with customized trigger terms. After
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manually analyzing the examples from the training data, we
added new trigger terms such as “not aware of,” “not
significant,” and “no family history of.” For this binary
classification, the algorithm detected the negated contextual
attribute in the sentence for the observation entity and assigned
1 of 2 values: Negated or Non_Negated.

In summary, we built an end-to-end system with multiple IE
and attribute classification components, as shown in Figure 1.
The architecture includes a voting ensemble with Bi-LSTM
models that accept the outputs of the MetaMap and 2010 concept
models, an OGD model that extracts relations between entities,
and postprocessing modules for family side, name normalization,
living status, and negation classification.

Figure 1. End-to-end system architecture. Bi-LSTM: bidirectional long short-term memory; EHR: electronic health record; i2b2: Informatics for
Integrating Biology and the Bedside; OGD: online gradient descent.

Improvements to Both Subtasks After the Shared Task
Challenge
This subsection describes further improvements to both entity
identification and relation extraction as postchallenge efforts.
We made 2 major changes in the pipeline system. The first
revision was the addition of labeled examples to the training
data. We used another text collection created for the 2018
BioCreative/OHNLP shared task [7] to build new Bi-LSTM
and OGD models. The combined dataset included the original
99 clinical notes and 50 text files used in the 2018
BioCreative/OHNLP test set. Extending from the previous
models used for submission to the shared task, we investigated
how well the new model trained with the union of 2 datasets
performed. We trained the new models by reusing the classifier
configuration optimized with the 2019 training data.

Next, we used word embeddings trained with clinical text to
construct vector representations of words. We pretrained 2
language models. One was trained using fastText [34] as static
word embeddings, and the other was trained using ELMo [21]
contextual embeddings. We used all clinical notes from the
Medical Information Mart for Intensive Care (MIMIC-III)
clinical database (version 1.4) [35]. We pretrained ELMo
embeddings by following the default hyperparameter setting
used for other publicly available ELMo models [21]. Pretraining
lasted about 3 months, and it was manually stopped after
1,073,750 iterations. This process was performed on a NVIDIA
Tesla P4 GPU.

From these pretrained language models, we generated word
vectors as input features. Then, we created new Bi-LSTM
models for entity identification. As with the previous models,
these models were trained for 30 epochs with 50% dropout to
the recurrent units. Naturally, the predictions of these new
Bi-LSTM models were used to create test instances that paired

the 2 entities for relation extraction. In the next section, we
present the experimental results from our official submission
and revised systems.

Results

The input for subtask 1 (entity identification) was clinical text
notes. The entity annotation file for subtask 1 contains family
member and observation entities, one entity per line. The family
side is provided for each family member entity. For subtask 2
(relation extraction), entity annotations were additionally used
as input. The relation annotation file for task 2 contains 2 entities
with their relation, 1 relation per line. Each living status relation
has a score to represent living status. In each observation
relation, the negation of the observation entity was identified.

Evaluation Metrics
We measured recall, precision, and F1 score (harmonic mean
of recall and precision with equal weight). We used the 2019
n2c2/OHNLP shared task [6] evaluation script to calculate
performance measures. To be considered a true positive, the
entity attributes must also match. For observation entities, a
match was counted if the reference annotation contained 1 or
more words in common with the system-detected concept.

Results for the 2019 n2c2/OHNLP Shared Task
The 2019 n2c2/OHNLP shared task corpus consisting of a test
set of 117 clinical notes was used for the evaluation. First, we
present the results generated by systems implemented for the
2019 n2c2/OHNLP shared task submission.

Table 3 shows the microaveraged overall precision, recall, and
F1 score for each of our submissions. The following 3 systems
were submitted for subtask 1: System 1.1 was a rule-based
system for collecting family member entities and a voting
ensemble with a voting threshold of 5 for extracting observation
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entities, system 1.2 was a voting ensemble consisting of 10 trials
with a voting threshold of 5 for extracting family member and
observation entities, and system 1.3 was a voting ensemble with

a voting threshold of 6. Among them, system 1.2 achieved the
highest F1 score, 81.30%, in subtask 1.

Table 3. Results produced for the 2019 National Natural Language Processing Clinical Challenge (n2c2)/Open Health Natural Language Processing
(OHNLP) shared task.

F1 scoreRecall scorePrecision scoreSystem

Subtask 1 (entity)

78.7486.0172.61System 1.1

81.3083.8478.90System 1.2

81.1381.9880.29System 1.3

Subtask 2 (relation)

64.9464.4165.48System 2.1

64.5362.7866.37System 2.2

63.7359.7968.23System 2.3

Similarly, we submitted 3 systems for subtask 2: System 2.1
was an OGD model with input pairs generated from predictions
of the voting ensemble with a voting threshold of 4, system 2.2
was an OGD model with outputs from system 1.2, and system
2.3 was an OGD model with outputs from system 1.3. System
2.1 achieved a higher F1 score than the others. The range of
vote thresholds for task submission was selected after
experimenting with values from 1 to 10 on the validation set.

The highest F1 score was obtained in subtask 2 with a voting
threshold of 5 on the validation set.

Improved Results After the Shared Task
We report the results of further improvements for both subtasks
as described earlier. The contributions of features or data are
shown in Table 4. Systems from rows 1 to 3 were developed
for the 2019 n2c2/OHNLP challenge, and rows 4 and 5 were
postchallenge efforts.

Table 4. Improved performance by feature or data accumulation.

F1 scoreRecall scorePrecision scoreSystem

Subtask 1 (entity)

81.2684.2878.50(1) word

81.4884.3478.87(2) + MetaMap, i2b2a 2010

81.3083.8478.90(3) + voting

85.1386.6983.63(4) + 2018 data (postchallenge)

86.0287.2484.83(5) + MIMICb embeddings (postchallenge, [2018 + 2019]mim)

Subtask 2 (relation)

63.1461.1465.35(1) word

63.6661.2466.34(2) + MetaMap, i2b2 2010

64.5362.7866.37(3) + voting

71.4670.7972.15(4) + 2018 data (postchallenge)

72.4871.7073.27(5) + MIMIC embeddings (postchallenge, [2018 + 2019]mim)

ai2b2: Informatics for Integrating Biology and the Bedside.
bMIMIC: Medical Information Mart for Intensive Care.

As a baseline, only sequences of word tokens were used as input
to train the Bi-LSTM models (row 1). The system was enhanced
with the output of MetaMapLite [26] and the 2010 i2b2 [25]
concept model as inputs (row 2). For rows 1 and 2, we report
the average value between the 10 trials of each Bi-LSTM model.
From row 3, the results of applying the voting ensemble are
displayed. For comparison, we report results with a voting
threshold of 5. Row 4 shows a further performance improvement

when the 2018 BioCreative/OHNLP shared task [7] data were
added. This additional training example achieved substantial
performance improvements in both subtasks. Compared to the
submission for the challenge (row 3), the recall increased by
8.01% (70.79%-62.78%) in subtask 2. MIMIC embeddings
(row 5) allowed for an improvement over general text
embeddings. They led to F1 scores of 86.02% and 72.48% for
subtask 1 and subtask 2, respectively. We used a chi-squared
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test to measure statistical significance. The significance level
was set to .05. The performance of the full-featured system,
called (2018 + 2019)mim, (row 5) was significantly better than
other systems with P values <.001 except the system with the
2018 BioCreative/OHNLP shared task data (row 4).

Table 5 displays the precision, recall, and F1 scores of relation
categories produced by the (2018 + 2019)mim system. F1 scores
for living status relations were 84.62% and 74.72% for subtask

1 and subtask 2, respectively. It was more challenging to
determine whether the pair of family member and observation
was related. For observation relations, the F1 score was 71.79%,
which was lower than for living status relations. A manual
analysis of labeled examples from the training set revealed that
distant pairs of family member and observation appeared more
often than living status entities. In addition, there were more
unrelated entity pairs (ie, negative examples) because many
observation entities were not involved in the relation.

Table 5. Results of full-featured system for each relation category.

F1 scoreRecall scorePrecision scoreSystem

Subtask 1 (entity)

84.6286.2183.08Living status

86.9487.9285.99Observation

86.0287.2484.83Overall

Subtask 2 (relation)

74.7276.2273.28Living status

71.7970.3773.27Observation

72.4871.7073.27Overall

Discussion

The experimental results show that our end-to-end pipeline
system substantially benefited from the combination of the 2
datasets. Another finding is that a voting ensemble could achieve
better performance than individual classifiers. This section
analyzes the improvements resulting from the voting ensemble
method. We also describe the detailed results of attribute
classification.

Voting Ensemble Analysis
We analyzed the performance of the voting ensemble at each
voting threshold. Figure 2 shows the results of the voting

ensembles with 5 trials of the (2018 + 2019)mim system. The
graphs on the left and right represent the results of subtask 1
and subtask 2, respectively. The y-axis scale of each graph does
not start at zero to focus on the value ranges of interest. The
results with voting thresholds ranging from 1 to 10 are presented.
The curves show that as the threshold gets higher, precision
increases but recall simultaneously decreases. When the
threshold was set to 3, the ensemble achieved the highest F1

score (86.07%) in subtask 1. For subtask 2, the ensemble
obtained an F1 score of 72.48% at the voting threshold of 5.

Figure 2. Results of the voting ensemble for (A) subtask 1: entity identification and (B) subtask 2: relation extraction.
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Attribute Classification Analysis
We applied heuristics to determine the attributes of entities. As
the entity-level reference standard in the test set was being
withheld, we evaluated the performance of these rule-based
methods on the training set. Table 6 shows the accuracy of the
4 classification tasks with the given reference standard concepts.
Accuracy was computed as the percentage of correct predictions
among total instances. The accuracy of family member
normalization was 94.01%. Our classifier rarely failed to assign

normalized terms to some entities. For example, our dictionary
did not contain normalized terms for “twin” and “paternal
relatives.” Most errors occurred when the normalized term did
not match the actual relationship with the patient. For example,
although it said “brother” in the text, it sometimes referred to
the relationship with the patient’s parents, not the patient
himself. The classifier often could not determine the family
member as the patient's “Uncle.” This type of error was
propagated in family-side decisions because the family-side
information should only be provided to first-class relatives.

Table 6. Accuracy of attribute classification of given reference standard concepts.

Accuracy (%)Task

94.01Normalization of family members

95.38Determination of the side of family

92.53Assessment of family member’s living status

98.06Detection of negation information for observations

In addition to the entity-level assessment described in the
previous paragraph, we conducted another document-level
evaluation of the entity attributes against the test set. To measure
the performance impact of each attribute classification, the
system was tested by ignoring one attribute of the entity. Table
7 shows the results of the 2 subtasks on the test set by the (2018
+ 2019)mim system. We report results for living status and
negative information only for subtask 2 because they are not
considered in subtask 1. A match is made if the system correctly

detects an entity while the attribute is ignored. Compared to the
default evaluation, which considered all attributes, it led to
higher values for all metrics. Ignoring living status scores had
the biggest impact. If the living status of every family member
was correctly determined, the F1 score could be increased by
about 2%. Negative information had the least impact because
it only applied to observations and might have been determined
more accurately than other attributes.

Table 7. Performance impact of attribute classification.

F1 scoreRecall scorePrecision scoreSystem

Subtask 1 (entity)

86.0287.2484.83Default evaluation

87.4989.1185.92Ignoring the side of the family

N/AaN/AaN/AaIgnoring the living status

N/AbN/AbN/AbIgnoring negation

Subtask 2 (relation)

72.4871.7073.27Default evaluation

74.4873.6475.33Ignoring the side of the family

74.5873.7875.40Ignoring the living status

73.3772.9073.85Ignoring negation

aN/A: not applicable as the living status information was removed from evaluation for subtask 1.
bN/A: not applicable as the negation information was removed from evaluation for subtask 1.

Limitations
We observed in this study that determining the voting threshold
can be challenging for both subtasks. Our results showed that
the best performing voting ensemble for one task did not achieve
the highest accuracy for the other task. More efficient ensemble
approaches will be desired to provide more diversity between
individual models and reduce the error rate through optimal
control of agreements among them. In the relation extraction
task, the negative examples were filtered out when there was a

carriage return character between the pairs, because they rarely
appeared in the training data (about 2.6%). This instance pruning
would make it impossible to find pairs of entities that existed
in different sentences but were related. When training new
models by combining 2 corpora, we reused the classifier
configuration optimized for the 2019 n2c2 model. New
development data randomly selected from both corpora would
be needed for hyperparameter tuning.
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Conclusions
We presented a hybrid method that combined machine learning
and rule-based approaches developed as part of the 2019
n2c2/OHNLP track on FH extraction [6]. The MUSC team
ranked 3rd and 4th among the participating teams in subtask 1
and subtask 2, respectively. This study demonstrated that our
end-to-end pipeline system could successfully extract FH
information recorded in unstructured narrative free text. Our
experimental results confirmed that the voting ensemble of
multiple trials outperformed the individual classifiers that
produced nondeterministic results. Our postchallenge efforts
significantly improved performance by leveraging additional

labeled data and using word vector representations learned from
large collections of clinical notes.

Further research includes creating machine learning–based
classifiers that will replace rule-based systems that determine
the attributes of entities. They could lead to more accurate results
on attribute classification as reported in several studies carried
out for similar clinical NLP tasks [36-39]. Another direction
for future work is to exploit unlabeled data to collect texts from
the family history section. For efficient extension of the amount
of training data, semisupervised learning can be employed with
an instance selection method that uses text similarity measures
to consider representativeness and diversity [40].
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Abstract

Background: The prognosis, diagnosis, and treatment of many genetic disorders and familial diseases significantly improve if
the family history (FH) of a patient is known. Such information is often written in the free text of clinical notes.

Objective: The aim of this study is to develop automated methods that enable access to FH data through natural language
processing.

Methods: We performed information extraction by using transformers to extract disease mentions from notes. We also
experimented with rule-based methods for extracting family member (FM) information from text and coreference resolution
techniques. We evaluated different transfer learning strategies to improve the annotation of diseases. We provided a thorough
error analysis of the contributing factors that affect such information extraction systems.

Results: Our experiments showed that the combination of domain-adaptive pretraining and intermediate-task pretraining achieved
an F1 score of 81.63% for the extraction of diseases and FMs from notes when it was tested on a public shared task data set from
the National Natural Language Processing Clinical Challenges (N2C2), providing a statistically significant improvement over
the baseline (P<.001). In comparison, in the 2019 N2C2/Open Health Natural Language Processing Shared Task, the median F1
score of all 17 participating teams was 76.59%.

Conclusions: Our approach, which leverages a state-of-the-art named entity recognition model for disease mention detection
coupled with a hybrid method for FM mention detection, achieved an effectiveness that was close to that of the top 3 systems
participating in the 2019 N2C2 FH extraction challenge, with only the top system convincingly outperforming our approach in
terms of precision.

(JMIR Med Inform 2021;9(4):e24020)   doi:10.2196/24020
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Introduction

Motivation and Contributions
The widespread use of electronic health records (EHRs) is
believed to be one of the key enabling factors leading to the
improvement of patient outcomes through data analytics. The
analysis of EHRs has been successfully carried out for more
than a decade in various health care scenarios [1,2]. Nonetheless,
a significant proportion of the information stored in digital
patient files is trapped in free-text representations. In particular,
family history (FH) reports, vital in the diagnosis and treatment
of genetic disorders and familial diseases, such as cardiovascular
diseases and cancers, are often stored within EHRs as lengthy
textual fields.

In the natural language processing (NLP) subfield of artificial
intelligence, information extraction (IE) from free text has been
studied for decades. However, IE for biomedical and clinical
text is one of the most difficult scenarios for 3 main reasons:
(1) entities are complex and diverse [3], (2) clinical text is
fragmented and contains shorthand terms, and (3) annotated
data are scarce.

We describe a system for extracting information contained in
FH reports. The aim of our system is to detect family member
mentions (family member [FM] type) and detect mentions of
diseases (Observation type). It is developed and evaluated within
Track 2 of 2019 N2C2/Open Health Natural Language
Processing Shared Task [4], subtask 1.

We leverage pretrained biomedical neural language models
(LMs) and combine them with rule-based heuristics and
coreference resolution to identify diseases (observations) and
FMs in clinical notes. Our main contributions are as follows:

• An entity detection system for FH notes with a
state-of-the-art named ennity recognition (NER) model for
disease mention detection and a set of heuristics for
annotation and normalization of FM mentions

• A detailed evaluation of different transfer learning strategies
to improve the annotation of diseases

• A discussion of contributions of individual system
components in FM mention detection paired with a detailed
error analysis

• An analysis of applicability of coreference resolution to the
problem of FM annotation

Our experimental evaluation shows that our system performs
better than the median for all systems participating in the shared
task by a considerable margin. We believe that an architecture
such as ours, which uses domain-specific rules where training
data are noisy or scarce, has high applicability in the creation
of refined training data sets for FH IE.

Background and Previous Work

EHRs - Context
EHRs, the majority of which contain free text, such as clinical
notes, discharge summaries, and pathology reports, have led to
an improvement in health care quality by electronically
documenting patients' medical conditions [5,6]. EHRs are used

for various primary and secondary purposes, such as care
process modeling, clinical decision support, biomedical research,
and epidemiological monitoring of the nation's health. Although
NLP and machine learning (ML) applications in clinical text
are receiving attention, the progress is limited because of the
lack of shared data sets and tools because of privacy and data
confidentiality constraints. To overcome these challenges, efforts
have been made by shared task organizers, such as the National
Natural Language Processing Clinical Challenges (N2C2), to
promote clinical NLP research and provide a standard
benchmark to evaluate the performance of the proposed systems.

In next subsections, we introduce some of the related IE
techniques and provide a summary of past studies on FH
extraction.

Clinical IE
IE is the process of translating free text into structured data. It
often includes 2 tasks: (1) NER, where mentions of named
entities are identified in free text, and (2) relations between
these named entities are identified. In the clinical setting, these
entities can be symptoms, drugs, or diseases [6].

Earlier IE systems often relied on expert rules to identify
mentions of predefined entities. Rule-based toolkits specialized
for clinical text, such as MetaMap [7,8], rely on external
knowledge sources of biomedical terms, such as the
SPECIALIST lexicon, and use complex rules to identify all
possible mention variants of an entity, including acronyms,
abbreviations, synonyms, or derivational variants. These tools
can usually achieve high precision (when the identified mentions
are indeed correct) at the expense of low recall (when many
mentions are missed). Another shortcoming of rule-based
systems is that expensive human efforts are required to maintain
the resources and to expand the rules, enabling them to stay up
to date with evolving language use and domain knowledge.

ML-based systems [9,10] replace hard rules as soft features and
estimate the importance (weights) of features using annotated
training data. Despite the successful applications of ML-based
IE systems, they still display domain discrepancies. That is, the
distribution of training data, based on which feature templates
are designed and weights are estimated, differs from the data
distribution where the system is employed. Therefore, the quality
of manually designed feature templates is critical for the system.
These features should be informative and should generalize for
unseen data.

To alleviate the burden of manually building feature templates,
deep learning models have been increasingly applied on clinical
IE tasks. A key idea that enables the success of recent deep
learning–based models in NLP is that word meanings can be
encoded in dense vectors via pretraining on raw text [11-13].
Efforts along this direction in clinical NLP focus on obtaining
better word representations for clinical text [14]. For example,
Alsentzer et al [15] and Huang et al [16] pretrained Bidirectional
Encoder Representations from Transformers (BERT) models
on clinical notes and achieved better performance than BERTs
pretrained on generic-domain text. Zhang et al [17] investigated
strategies to adapt generic-domain embeddings to the clinical
domain. Another direction in clinical IE is to identify complex
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entities that are less common in generic NLP. For example,
Wang and Lu [18] and Dai et al [3] proposed models to
recognize overlapping or discontinuous entities that usually
represent compositional concepts that differ from concepts
represented by individual components.

Previous Work
FH plays an important role in the decision-making process of
diagnosis and treatment of medical conditions, as it captures
shared genetic variations among FMs. Information such as age,
gender, and the degree of relatives are also considered in the
risk assignment of various common diseases [19]. Many care
process models use FH information for decision making in
diagnosis and treatment [5]. Modern health care systems usually
record FH through structured forms, including free-text sections,
which are filled either by a patient or by a clinician.
Polubriaginof et al [20] assessed the quality of the FH captured
in EHRs. They found that free-text observations were more
comprehensive than structured observations, which motivated
our study.

The task of extracting FH from clinical notes is challenging
because the information can be spread in the patient's progress
notes [21]. In addition, FH information is expressed via relations
between named entities and may contain contextual information
such as certainty and negation, vital statistics, and age modifiers
[22]. If we predict that a patient is at an increased risk of
developing a certain disease based on FH, we could potentially
diagnose it early, leading to early treatment. Computer-based
tools can facilitate the effective use of FH and, therefore, provide
better personalized care [20]. To provide comprehensive
patient-provided FH data to physicians, there is a need for NLP
systems that can extract FH from text. The task of FH IE
generally includes NER or relation extraction [23].

Friedlin and McDonald [24] developed a rule-based system, a
Regenstrief Data Extraction (REX) tool, for extracting and
coding FH data from hospital admission notes. The REX tool
first locates and extracts the FH section from the admission
notes. It then attempts to identify diseases. This system led to
a sensitivity of 93% and a positive predictive value of 97% on
the 1 years’ worth of hospital admission notes. However, the
study was limited to only 12 diseases. Goryachev et al [25]
developed a rule-based system to identify and extract FH from
discharge summaries and outpatient clinical notes. The Health
Information Text Extraction [26], which is built on top of a
General Architecture for Text Engineering [27] framework, is
used to parse discharge summaries and patient notes.
Experiments on a set of 2000 reports yielded 85% precision and
87% recall. The architecture yielded promising results; however,
the validation set used in the study was small.

Lewis et al [21] followed a 2-step method that selects candidate
FH sentences based on the presence of words such as mother
or brother and then uses a set of dependency-based syntactic
patterns to extract appropriate diagnoses and identify the FMs
referred to. This study restricted observations to concepts that
could be mapped to the International Classification of Diseases,
ninth edition, codes. They also limited their work to per-sentence
IE without considering any cross-sentence anaphoric or

coreference resolution. In our study, we experimented with a
coreference resolution and evaluated it in our setup.

Almeida and Matos [28] developed rule-based methods using
dependency parsing and a phrase-characteristic extraction
approach to extract FH information from clinical notes. They
used Stanford CoreNLP [29] to process the data, perform
dependency parsing and coreference resolution, and then
annotate their data for all FMs and observations. This way,
context from previous sentences was also considered. On the
N2C2 2019 shared task, which is the same data set that we used,
they reported F1 scores of 72% and 74% for the discovery of
FMs and observations, respectively. Their approach relied on
heuristics to detect arguments of relations, such as using a
predefined list of family relationships and diseases or making
use of it as arguments in the noun phrases that are detected close
to the suspected relationship markers. However, finding relation
arguments is challenging because of their variable lengths.

When NER and relation extraction are applied in a pipeline, the
error propagates from the NER module to the relation extraction
module. To avoid this error propagation, Shi et al [23] proposed
a joint learning method that tackles both of these tasks by
sharing parameters in a unified neural network framework. The
FH IE is performed at different levels, including FMs,
observation, and living status and the side of the family
(maternal, paternal, and not available). Each input token is
represented by word embeddings and corresponding
Part-of-Speech embeddings and is given as an input to the
bidirectional long short-term memory (BiLSTM) model. Their
proposed model ranked first in the 2018 N2C2 FH extraction
challenge. They achieved an F1 score of 89% for entity
identification and 64% for FH extraction. On the basis of the
error analysis, the authors found that a large number of errors
are caused by indirect relatives, which can be improved by
considering relations among relatives, a feature we incorporate
in this study.

Dai [30] formulated the FH IE task as a sequence-labeling
problem in which a neural sequence-labeling model was
employed along with different tag schemes to distinguish FMs
and their observations. They proposed a BiLSTM-Conditional
Random Fields (CRFs) model with 3 layers: the character
sequence representation layer, the word sequence representation
layer, and the inference layer. The proposed method achieved
an F1 score of approximately 85% on the test set, which ranked
second in the FH entity recognition subtask of the 2018 N2C2
FH extraction challenge. Although the proposed BiLSTM-CRF
network is effective in modeling contextual information and
label dependencies, it has limitations in that the network can
only exploit contexts within individual sequences (sentences)
but cannot obtain context from cross-sentence information. To
overcome this limitation, Dai et al [31] introduced a neural
attention model to exploit cross-sentence information to identify
mentions.

Zhan et al [32] fine-tuned the BERT model by including an
additional biaffine classifier adapted from the dependency
parsing to extract FH mentions.
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FH Extraction Task
FH IE, as defined in the N2C2 FH 2019 shared task, includes
the following 2 subtasks:

1. Entity identification, including FMs, the side of family
(paternal, maternal, and not applicable [NA]), and
observation (disease)

2. Relations between FMs, including observations (negated
or not) and their living status.

The possible FMs in this task are father, mother, parent, sister,
brother, daughter, son, child, grandmother, grandfather,
grandparent, cousin, sibling, aunt, and uncle. Other relatives,
such as spouses (not blood related), nieces, and nephews were
excluded. For first-degree relatives—parents, children, and
siblings—the side of family is NA.

In relation extraction, a living status score is defined per
extracted FM to encode whether they are alive and healthy. In
this study, however, we focused only on the entity identification
subtask.

Data Set
The data set for the FH task was curated from synthetic English
patient notes, which were randomly sampled from the Mayo
Employee and Community Health cohort. It contains 216 notes,
which we refer to as documents, from which 99 documents are
for training and 117 for testing. A total of 2 annotators and 1
adjudicator annotated the corpus, with an interannotator
agreement of 0.84 for entities and 0.70 for relations. The overall
statistics of the corpus are shown in Table 1.

Table 1. Statistics (counts) of entities and relations in the National Natural Language Processing Clinical Challenges family history data set.

Test size, nTraining size, nData set’s artifact

11799Document

760803Family member

1062978Observations

Evaluation Metrics
For entity extraction, a system extracts either a triplet (document
identifier, family member, and side of family) for FM mentions
or a pair (document identifier and text of observation) for
observation mentions. These triplets and pairs were matched
against the gold standard.

Observation partial matches are acceptable. For example,
diabetes is accepted for diabetes type 2. The standard F1 score,
precision, and recall metrics are used to evaluate the
effectiveness of the proposed models as follows:

TP denotes true positive, FP denotes false positive, and FN
denotes false negative.

Importantly, recall and precision are defined on sets of
annotations pertinent to each document. That is, a document
can mention cancer multiple times, but detection of any of these
mentions contributes to the TP count only once. Conversely,
the lack of detection of any of these mentions contributes only
once to the FN count.

For statistical significance testing, we use a paired approximate
randomization test [33] for pairwise comparisons between
system variants. We obtain the significance levels by running
9999 pseudorandomized shuffles of the test set results.

Methods

Overview
Our task consists of detecting 2 types of mentions: Observation
and FamilyMember. The dual objective of the task is reflected
in the design of our system, in which the disease mentions are
detected with an ML-based NER component, whereas
FamilyMember mentions are detected with a hybrid (rule based,
with some ML components) module. The overall architecture,
together with the inputs and outputs, is illustrated in the top part
of Figure 1.
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Figure 1. Overview of the system and the FamilyMember mention detection. N/A: not applicable; NER: named entity recognition.

Observation-NER

Problem formulation
We formulated the observation-NER as a sentence-level
sequence tagging problem, in which each word in the sentence
is assigned a tag. The tag, which uses the
Beginning-Inside-Outside schema [34], can be used to infer
whether the word is the first word within a mention or inside a
mention or does not belong to any mention.

The sequence tagger we use is a state-of-the-art model: the
BERT-CRF model [11,35]. It takes advantage of large-scale
pretrained LMs using BERT to create contextual representations
for each word and a probabilistic graphical model using CRFs
[36] to capture dependencies between neighboring tags.

BERT-Based Encoder
Given a sentence, the tokenizer, coupled with the pretrained
BERT model, first converts each word in the sentence into word
pieces. That is, if the original word does not exist in the
vocabulary of the tokenizer, it will be segmented into several
units from the vocabulary [37]. Then, the word pieces are
mapped to dense vectors via a lookup table (also known as token
embeddings). Finally, the sum of token embeddings and
positional embeddings, which indicate the position of each token
in the sequence, is fed into a stack of multihead self-attention
and fully connected feed-forward layers [38]. Following the
work by Devlin et al [39], we use the final outputs corresponding
to the first word piece within each word as the word
representation.

CRFs in NER
Instead of assigning a tag to each word independently, we
modeled them jointly using CRFs [40]. That is, given a sequence
of word representations X= (x1, x2,..., xn), we aim to predict a

sequence of tags (Y= (y1, y2,..., yn)) that has the maximum
probability over all possible tag sequences. This conditional
probability can be calculated using the following equations:

Ai,j is the compatibility score of a transition from the tag i to tag
j and Pi,j is the score of the tag j given Xi.

The parameters from both BERT and CRFs are trained to
maximize the conditional probability of the gold tag sequence,
given the training sentences.

Enhancing BERT
The vanilla BERT model is pretrained using generic-domain
data such as books and Wikipedia, which are very dissimilar to
task data. A previous study has shown that the effectiveness of
pretrained LMs is highly affected by the similarity between
source pretraining and target task data [41].

Thus, we explored 2 approaches to improve the effectiveness
of vanilla BERT on the target task: domain-adaptive pretraining
(DAPT) [42] and intermediate-task pretraining (ITPT) [43].

DAPT Approach

The DAPT approach consists of continued pretraining of BERT
on a large volume of unlabeled in-domain text. The training
uses a masked language modeling objective to adapt the weights
of BERT to the domain of the target task. We use BioBERT
[44] and ClinicalBERT [15] as proxies for DAPT. These models
employed continued BERT pretraining on biomedical scientific
papers and hospital discharge summaries.
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ITPT Approach

ITPT consists of the pretraining of BERT together with CRFs
by training on a target task-related NER data set (usually
annotated with similar entity types). The training uses the
sequence tagging objective to jointly optimize the weights of
both BERT and CRF layers toward the specific task. We used
the National Center for Biotechnology Information
(NCBI)-disease [11] data set for ITPT. This data set consists of
793 PubMed abstracts that are fully annotated at the mention
and concept levels. It contains 6892 disease mentions, which
are mapped to 790 unique disease concepts. The motivation for
this choice is 2-fold. First, we used the NCBI-disease data set

because of the semantic overlap between the Disease and
Observation concepts and because of the size of the
NCBI-disease data set, which is larger than the in-domain data
(NCBI-disease consists of nearly 800 documents, with almost
7000 disease mentions). Second, this choice results in a more
direct comparison with our off-the-shelf baseline, which was
trained on the same NCBI-disease corpus (our experimental
setup is explained in more detail at the beginning of the Results
section).

We also explored the combination of these 2 approaches, that
is, DAPT and ITPT. A high-level comparison of these 3
approaches is presented in Figure 2.

Figure 2. Different approaches to enhance Bidirectional Encoder Representations from Transformers for a given target task (domain-adaptive pretraining
and intermediate-task pretraining). BERT: Bidirectional Encoder Representations from Transformers; DAPT: domain-adaptive pretraining; ITPT:
intermediate-task pretraining; NER: named entity recognition.

After DAPT or ITPT, we continued to fine-tune the model
weights of the target task's training data.

Owing to the aforementioned semantic overlap between classes
of interest, NCBI-disease was our first choice for ITPT.
Nonetheless, for the sake of completeness, we also present an
ITPT evaluation (for all DAPT configurations) for other publicly
available candidate data sets, which involve annotation of
diseases, that is, Integrating Biology and the Bedside (i2B2)
2010 [45] and Shared Annotated Resources - Conference and
Labs of the Evaluation Forum 2013 [46].

Details of implementation and training of our BERT-CRF
models are outlined in Multimedia Appendix 1.

FamilyMember Mentions
The FamilyMember mentions’ detection often requires an
out-of-sentence context to make correct inferences. In the

example shown in Figure 1, an out-of-sentence context is needed
to resolve coreference to “the mother” and correctly normalize
the brother or uncle mention. Another instance where a broader
document context is required is deciding whether the
information provided in a given fragment of an FH note pertains
to the patient's or their partner's family. The task is focused on
extracting the information on the patient's blood relatives;
therefore, the mentions of the partner's family should not be
annotated, although at the sentence level, the information can
be identical.

Given the moderate size of the training corpus of approximately
100 documents and the complexity of the FamilyMember
normalization task, which entails multiple entity classes, during
our participation in the shared task, we opted for a rule-based
approach enhanced with some ML elements. This early design
choice determines the scope of our focus; however, we compare
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our approach with state-of-the-art deep learning baselines trained
on the available in-domain data.

In our hybrid system, the documents are analyzed sentence by
sentence with a series of pattern-matching rules. The previous
sentence is used as context when producing FamilyMember
annotations for a given sentence (we split each document into
sentence-level bigrams). We experimented with a state-of-the-art
coreference resolution model neuralcoref [47]. Coreference
resolution is used on pairs of consecutive sentences to
incorporate context information from possessive pronouns (eg,
her son) or other third-person pronouns (she has a son) and
alternative references (eg, this woman has a son).

To detect paragraphs of the notes containing information on the
partner's family, we incorporate a state-of-the-art text
classification model. Owing to the lack of dedicated
partner-paragraph annotations, we fine-tune a BERT [39] model
on the available training data. We formulate the task as a binary
classification problem, where the model predicts whether a
given paragraph is valid (containing patient-focused
information). The previous paragraph is also fed to the model
to provide contextual information. We derive validity from the
existing training data. That is, a paragraph is valid if at least
one annotation is present within its scope in the training data
set. At the annotation time, we skip sentences predicted to be
part of invalid paragraphs by the model.

Our first step is to predict the validity of each of the paragraphs
of an FH note using a BERT-based paragraph filter. This step
results in filtering out the paragraphs that are predicted to be
invalid by the model. We then iterate all the remaining document
sentences to create sentence-level annotations. These annotations
are then put into one document-level annotation set. The
procedure for FamilyMember mentions’ detection within the
scope of a sentence, given a previous sentence and its
annotations as context for coreference, consists of the following
steps:

1. Check if a sentence is not part of an invalid paragraph. If
it is, we skip to the next sentence.

2. Detect candidate mentions in the second sentence
(predictions for FamilyMember for the previous sentence
are already available); candidate mentions are occurrences

of words denoting family relationships relevant to the task
as per the task definition, such as brother, sister, mother,
and father.

3. Build a graph of candidate-candidate relationships. For
example, an expression mother's sister would result in
vertices mother and sister and a directed edge from mother
to sister; this graph incorporates coreference information.

4. Generate FamilyMember annotations from the graph
structure according to a set of rules. For example, the
mother-to-sister structure would generate annotations
Mother-NA (not applicable) and Aunt-Maternal.

To build a graph of candidate-candidate relationships, we look
for specific linguistic patterns between pairs of adjacent
candidate mentions. These patterns are “X's *Y, X*has/had *Y,
Y of *X,” where X and Y denote candidates such as brother,
sister, or uncle and the * symbol denotes a wildcard matching
any text. We also detect candidate-candidate relationships as
adjacency of candidate mentions to expressions linked with
coreference resolution to other candidates or FamilyMember
mentions from the previous sentence. For example, if in the
sentence pair “Mr. Williams' mother is alive and well. She has
an older sister...,” the word mother is annotated with as Mother
and word She falls into the same coreference cluster as the word
mother, and then a Mother-Sister relationship will be added to
the graph as an X*has*Y pattern is triggered. Downstream, this
relationship is used to normalize the annotation of the sister
according to the rules (to Aunt, Maternal).

To convert the candidate graph to a final representation, we
apply a set of rules to each of the vertices. The procedure,
together with these rules, is presented in the pseudocode in
Figure 3.

In addition, we apply a simple heuristic approach to determine
the family side for those annotations where the side of the family
cannot be determined by inspecting the parent node in the
candidate graph. We look for the last occurrence in the text of
words maternal, mother or paternal, father, before the given
candidate is mentioned. The maternal or paternal status is
determined according to this last occurrence. We only assign
NA if none of these words appear in the document before the
candidate is mentioned.
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Figure 3. A pseudocode representation of the rule-based processing.

Results

Observation Extraction
The gold standard tags are recreated naively by string matching
the gold annotations provided. For example, given a gold
annotation mental retardation, we find all occurrences of this
annotation in the corresponding document and assign
B-Observation I-Observation tags to all the identified spans.
We select the first 18 documents from the training set as the
development set. The trained model that is most effective on
the development set, measured using the span-level F1 score,
is used to evaluate the test set. In addition to the different

variants of BERT models, we use an off-the-shelf disorder NER
model as the baseline [48].

We present the results of our main experiments with the
Observation annotation in Table 2. We achieve the best results
for a BERT model using both DAPT and ITPT. We provide a
detailed discussion of these results in the Discussion section.

The results of the additional ITPT experiments with i2b2 2010
and ShARe-CLEF (Shared Annotated Resources-Conference
and Labs of the Evaluation Forum) 2013 are presented in Table
3. The results indicate that, although improvements from ITPT
alone are comparable with those obtained with the NCBI-disease
data set, the DAPT+ITPT combination with the alternative
disease annotation data sets is less successful.
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Table 2. Evaluation results on Observation concepts in the test seta.

F1 scoreRecallPrecisionMethod

P valueValueP valueValueP valueValue

N/A78.1N/A75.0N/Ab81.5Stanza [48]

N/A78.1 (1.1)N/A87.3 (1.5)N/A70.7 (2.7)BERTc (baseline), mean (SD)

.0879.4 (0.6)<.00186.5 (1.7)<.00173.4e (2.2)DAPTd (BioBERT), mean (SD)

.00279.5e (1.0)<.00183.4 (3.1)<.00176.2e (3.5)DAPT (ClinicalBERT), mean (SD)

<.00179.8e (0.6)>.9985.3 (1.1)<.00175.0e (1.8)ITPTf (NCBIg-disease), mean (SD)

<.00181.1e (1.1).0885.1 (2.8)<.00177.7e (2.6)DAPT (BioBERT)+ITPT (NCBI-disease), mean (SD)

<.00181.3e (1.2).5684.4 (1.5)<.00178.6e (3.2)DAPT (ClinicalBERT)+ITPT (NCBI-disease), mean (SD)

aDocument-level precision, recall, and F1 score are reported using official evaluation scripts.
bN/A: not applicable.
cBERT: Bidirectional Encoder Representations from Transformers.
cDAPT: domain-adaptive pretraining.
eRepresents results that are significantly better than the Bidirectional Encoder Representations from Transformers baseline (approximate randomization
test; P=.05). Although the recall of baseline Bidirectional Encoder Representations from Transformers is the highest, the differences are not significant
except those for 2 domain-adaptive pretraining variants.
fITPT: intermediate-task pretraining.
gNCBI: National Center for Biotechnology Information.

Table 3. Evaluation results on Observation concepts in the test set for different intermediate-task pretraining and domain-adaptive pretraining

combinationsa.

F1 score, mean (SD)Recall, mean (SD)Precision, mean (SD)ITPTb and BERTc model

79.8 (0.6)85.3 (1.1)75.0 (1.8)BERT

NCBId-disease

81.1 (1.1)85.1 (2.8)77.7 (2.6)+DAPTe (BioBERT)

81.3 (1.2)84.4 (1.5)78.6 (3.2)+DAPT (ClinicalBERT)

79.2 (1.5)88.9 (2.4)71.6 (3.4)BERT

i2b2f 2010

80.5 (1.4)86.2 (1.4)75.6 (1.9)+DAPT (BioBERT)

80.3 (0.7)89.0 (1.8)73.2 (2.0)+DAPT (ClinicalBERT)

78.6 (1.3)88.7 (1.5)70.7 (2.7)BERT

ShARe-CLEFg 2013

79.8 (0.8)88.3 (2.3)72.9 (2.5)+DAPT (BioBERT)

79.8 (0.9)86.5 (3.8)74.2 (2.6)+DAPT (ClinicalBERT)

aDocument-level precision, recall, and F1 score are reported using official evaluation scripts.
bITPT: intermediate-task pretraining.
cBERT: Bidirectional Encoder Representations from Transformers.
dNCBI: National Center for Biotechnology Information.
eDAPT: domain-adaptive pretraining.
fi2b2: Integrating Biology and the Bedside.
gShARe-CLEF: Shared Annotated Resources-Conference and Labs of the Evaluation Forum.

FamilyMember Extraction
We experimented with the different settings of our approach by
evaluating, both on training and test sets, different combinations

of the elements of our systems. In addition, we experimented
with removing child, sibling, parent, and grandparent from the
set of relationships, as we hypothesized that the corresponding
words are not often used to introduce a particular FM (eg, “She
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has 4 siblings: two brothers and two sisters”). We obtained the
best results on the test set for a system with a restricted set of
relationships, using all the rule 1 (R1) to R6 and with
BERT-based paragraph filtering, but without the coreference
resolution.

The performance of the best system is presented in the first row
of Table 4. Subsequent rows demonstrate the impact of
modifying the best run by adding the remaining relations (row
2), adding coreference resolution (row 3), removing the BERT

paragraph filter (row 4), and removing rules R1-R6 (rows 5-10).
Row 11 shows a baseline system with no rules, no paragraph
filter, and no coreference resolution, working with the full set
of relations.

We compare the results obtained with our hybrid approach with
those obtained with a BERT-CRF baseline, identical to those
employed for disease annotation. For the sake of completeness,
we include baseline results for domain-adapted flavors of
BERT—BioBERT and ClinicalBERT.
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Table 4. FamilyMember detection for different settings of the system.

Test, F1
score (P
value)

Training,
F1 score (P
value)

Test, recall
(P value)

Training,
recall (P
value)

Test, preci-
sion (P val-
ue)

Training,
precision
(P value)BPFcR6R5R4R3R2R1b

Corefer-
ence

Number
of rela-

tionsaRow

82.14f,g87.91f82.9185.60f81.38f90.34f✓✓✓✓✓✓✓e—d11(1)

79.68f,h

(<.001)
87.64f

(.68)
86.67g,h

(<.001)
89.35f,h

(<.001)
73.73f,h

(<.001)
86.00f,h

(<.001)

✓✓✓✓✓✓✓—15(2)

78.67f,h

(<.001)
85.49h

(<.001)
79.78f,h

(<.001)
83.05f,h

(<.001)
77.59f,h

(<.001)
88.07f,h

(<.001)

✓✓✓✓✓✓✓✓11(3)

80.81f,h

(.01)
86.96f,h

(.04)

83.85 (.13)86.50f,h

(.03)
77.98f,h

(<.001)
87.42f,h

(<.001)

—✓✓✓✓✓✓—11(4)

81.87f

(.35)
87.69f

(.51)

82.13 (.07)85.45f

(>.99)
81.61f

(.40)
90.04f

(.51)

✓✓✓✓✓✓——11(5)

81.84f

(.19)
87.77f

(.51)
81.97h

(.03)
85.60f

(>.99)
81.71f,g

(.14)
90.06f

(.51)

✓✓✓✓✓—✓—11(6)

81.47f

(.25)
88.13f,g

(.50)
81.34f

(.09)
85.75f

(>.99)
81.60f

(.59)
90.64f,g

(.50)

✓✓✓✓—✓✓—11(7)

81.81f

(.27)
87.73f

(.26)

83.54 (.13)85.75f

(>.99)
80.15f,h

(.004)
89.79f

(.14)

✓✓✓—✓✓✓—11(8)

82.01f

(.74)
87.96f

(>.99)

82.91
(>.99)

85.45f

(>.99)
81.13f

(.56)
90.62f

(.73)

✓✓——✓✓✓—11(9)

82.14f,g

(>.99)
87.91f

(>.99)

82.91
(>.99)

85.60f

(>.99)
81.38f

(>.99)
90.34f

(>.99)

✓—✓✓✓✓✓—11(10)

75.96h

(>.001)
85.53h

(.01)

84.48 (.38)89.95h

(>.001)
69.01h

(>.001)
81.52h

(>.001)

————————15(11)

80.35f

(.26)

N/A81.35 (.45)N/A79.72f

(.33)
N/Aj————————(12)i

81.29f

(.70)

N/A81.03
(.462)

N/A81.55f

(.95)

N/A————————(13)k

81.06f

(.62)

N/A79.47 (.17)N/A82.71f

(.62)

N/A————————(14)l

aDenotes size of the relationship set.
bR1-R6 denote uncle rule, aunt rule, grandparents rule, sibling's kids rule, cousin rule 1, and cousin rule 2, respectively.
cBPF: Bidirectional Encoder Representations from Transformers–based paragraph filter.
dNot available.
eDenotes that the corresponding rule is applicable.
fDenotes statistically significant (P≤.05) difference from the baseline (row 11).
gWe report the P values corresponding to the test against the best system. Highest measured value is denoted in italics.
hDenotes statistically significant (P≤.05) difference from the top system (row 1).
iBidirectional Encoder Representations from Transformer-Conditional Random Field baseline results on the test set for Bidirectional Encoder
Representations from Transformer.
jN/A: not applicable.
kBidirectional Encoder Representations from Transformer-Conditional Random Field baseline results on the test set for BioBERT.
lBidirectional Encoder Representations from Transformer-Conditional Random Field baseline results on the test set for ClinicalBERT.

Discussion

Principal Findings
Challenges of recognizing diseases in clinical narratives, such
as a wide variety of naming patterns and data anonymization,
have been widely studied in the literature [49,50].

Therefore, we provide only a discussion on disease identification
that relates specifically to FH extraction tasks and a detailed
discussion on FM identification.
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Annotation of Observations

Impact of Domain Adaptation
From Table 2, we observe that both DAPT and ITPT can
improve over the baseline of the BERT-CRF model, and
combining these 2 approaches first with DAPT and then ITPT
achieves the best F1 score. On the basis of this result, we argue
that DAPT and ITPT can complement each other. In other
words, they enhance pretrained LMs by providing different
inductive biases. We hypothesize that in the ideal scenario,
DAPT enforces the model to be more compatible with the
language distribution of the target data and ITPT enforces the
model to pay more attention to features that are informative to
the NER task.

The aforementioned hypothesis can also be used to explain the
results presented in Table 3. We observe that NER problem and
disorder classes (i2b2 and ShARe-CLEF, respectively) are less
semantically aligned to our Observation class than Disease from
NCBI. In particular, a large proportion of the problem and
disorder mentions could be classified as symptoms (eg,
headaches, fever, and pain). Disease names annotated in
NCBI-disease seem closer to our target task's Observation entity
category. It is possible that the alternative ITPT data sets provide
an isolated improvement by exposing the model to documents
similar to that of the target corpus but offer little improvement
when combined with DAPT (which, we assume, already
provides this inductive bias).

Error Analysis
To provide some insight into the role of task-specific fine-tuning
with BERT-like models, we provide a detailed error analysis
performed on the outputs generated by an off-the-shelf baseline
(trained on the NCBI-disease data set, not tuned on the FH
extraction task) and our best system, which is ClinicalBERT
with ITPT on the NCBI-disease data set.

The error analysis, apart from counts of FP and FN errors,
involves a fine-grained classification of 50 errors of each type
(FN/FP) per model. The errors were sampled by taking the first
50 errors of a given type from the output log with randomly
shuffled documents.

We classify FP errors into the following categories:

• True FPs: The span does not cover a valid Observation
candidate. For example, “The patient's father had six-vessel
bypass surgery at age 56.”

• Relative error: The Observation mention by itself is
identified correctly but is linked to a relative who is not a
suitable candidate for a FamilyMember annotation (eg, a
great-uncle would be an example of a too distant
relationship, according to the annotation guidelines provided
for the task). Importantly, this class of FP errors also covers
disease mentions pertaining to the family of the patient’s
partner (thus, not related by blood); for example, “His
[husband's] brother died at age 14 of suicide and was
thought to have depression.” Note that errors are classified
as relative errors if the identified Observation looks correct,
and it can be linked to a non-FamilyMember; the annotation

is missing from the gold standard test data set; for example,
the gold standard annotations expect a span containing
stomach cancer, a string that does not appear in the
corresponding document.

• Nonobservation errors: FNs where the gold-standard
annotation is missed by the system, although it appears in
the document, but it could be debated whether it constitutes
an actual Observation. For example, “She has some
freckles.”

• Questionable and nonerrors: The candidate mention looks
correct and is linked to a valid FamilyMember candidate.
For example, “Mrs. William's sister has had three
miscarriages and a son.”

• Trauma or procedure errors: The predicted span includes
a name of a procedure or a traumatic injury. For example,
“These last two maternal aunts have had hysterectomies.”

• Negation errors: The predicted span covers a valid
Observation candidate, but it appears in a negated and often
general context. For example, “There is no known history
of ADHD or schizophrenia.”

We propose the following categorization for the FN errors:

• True FNs: An actual valid observation was missed by the
model. For example, “Her father is 53 with high
cholesterol.”

• Gold standard errors: Errors in the gold standard.
• Mental health/substance abuse–related errors: FNs where

the models fail to annotate mental health conditions or
addictions. We present this special case of true FNs
separately, as the evaluated models particularly struggle
with detection of this type of observations. For example,
“Maternal grandfather, age 67, smokes but is healthy.”

Overall, the off-the-shelf baseline yielded 166 FPs and 244 FNs,
with 733 correct annotations. ClinicalBERT-ITPT generated
150 FPs, 172 FNs, and 805 correctly identified mentions. For
Stanza, the off-the-shelf baseline values are shown in Table 2.
For ClinicalBERT+ITPT, we analyze the run that achieves the
highest F1 score among all 5 experimental runs (0.8333 F1
score, 0.8429 precision, and 0.8240 recall).

Table 5 shows the distribution of the error classes over the
evaluated sample of FPs. The distribution of the FN errors is
shown in Table 6.

An inspection of FPs reveals that for both models, the main
source of error is the annotation of observations pertaining to
FMs that are not related by blood to the patient (eg, partner's
family) or the family relation is too distant (eg,
great-grandparents). The BERT-based model alleviates this
problem by fine-tuning, at least to a certain degree. However,
as the observation-NER is done on a stand-alone basis (ie,
without the joint modeling of Observation and FamilyMember
spans), the context awareness of the BERT-based model
regarding family relationships remains low.

Both models lead to approximately 20% of FPs that appear to
be correct; however, they are not present in the gold standard
annotations.
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Table 5. Results (counts) of error analysis for false-positive errors for the Observation entity type.

ClinicalBERTa with ITPTb, nStanza [48], nError type

2031Relative

910Nonerror

62Trauma or procedure

97Negation

60True

aBERT: Bidirectional Encoder Representations from Transformers.
bITPT: intermediate-task pretraining.

Table 6. Results (counts) of error analysis for false negative errors for the Observation entity type.

ClinicalBERTa with ITPTb, nStanza [48], nError type

44Gold standard

1514Nonobservation

613Mental or substance

2519True

aBERT: Bidirectional Encoder Representations from Transformers.
bITPT: intermediate-task pretraining.

The BERT-based model is more likely to correctly annotate
spans of medical procedures or traumatic injuries. This may be
a consequence of fine-tuning. Interestingly, these entities are
identified inconsistently throughout the data set; that is,
examples of this class can be found both in FPs (“These last
two maternal aunts have had hysterectomies” where
hysterectomies is an FP) and FNs (“The patient's maternal
grandmother died at 83 of diabetes and asthma and had a broken
hip,” where the broken hip is an FN, undetected by the system).

Both models produce a similar proportion of errors resulting
from annotating negated or general contexts (not pertaining to
a specific FM). For both models, spans of this type appear
among FPs (“There is no known history of ADHD or
schizophrenia,” attention-deficit hyperactivity disorder [ADHD]
and schizophrenia are the erroneous predictions of the systems)
and FNs (“Overall, the family history is not significant for
mental retardation, birth defects, multiple miscarriages or
neonatal death, or known genetic conditions”; “genetic
conditions” is present in the gold standard but missed by the
systems).

Finally, the BERT-based model makes some mistakes by
selecting spans that do not correspond to valid observations.
This might be because of the model being fine-tuned on a small
amount of noisy data (examples of negated contexts and
traumas/procedures are mentioned earlier).

The analysis of FNs for both models shows a similar trend
regarding true errors. That is, a large proportion of the
observations missed by both models corresponds to expressions
such as “They do not look different from other members of the
family, and do not have any major internal birth defects,” where
the missed span appears in a negative context. Interestingly,
this is also true for the off-the-shelf model, which may suggest
an inherent problem with negations (as the noisy fine-tuning

data cannot be blamed with the off-the-shelf model, which does
not undergo fine-tuning altogether).

Similarly, both models struggle with detecting questionable
observations. For example, “She attended elementary school
and could not walk until the age of 0,” where “could not walk”
is the gold standard annotation.

A key noticeable difference between the models is that the
fine-tuned ClinicalBERT with ITPT does a better job at
detecting mental disorders and behavioral traits (eg, “Maternal
grandfather, age 67, smokes but is healthy”), resulting in a 50%
decrease in this type of errors. This suggests that fine-tuning is
beneficial.

Learning Points From Annotation of Observations
The first learning point from our experiments is that an
off-the-shelf state-of-the-art model trained for annotating
diseases on the NCBI-disease data set provides a strong baseline,
which yields much fewer true FP errors than the precision alone
suggests. The analysis of the FPs shows that most of the
predictions from the models are actually correct in the sense
that they correctly identify Observation candidates. It is the
detection of only those mentions that are linked only to specific
FMs that are the most problematic. This type of constraint is
inherently application specific (eg, if the aim were to assess the
genetic risk of the child from FH notes collected during
pregnancy, then Observations from the patient's partner FH
would also be relevant). This means that an off-the-shelf model
may be a good starting point for some applications.

Second, we have demonstrated a cumulative value of DAPT
and ITPT. This finding highlights an important advantage of
the BERT-CRF-based architecture over other state-of-the-art
NER approaches, such as BiLSTM. BERT-based architectures
offer an out-of-the-box transfer learning framework, with a

JMIR Med Inform 2021 | vol. 9 | iss. 4 |e24020 | p.246https://medinform.jmir.org/2021/4/e24020
(page number not for citation purposes)

Rybinski et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


focus on sharing models domain adapted on huge corpora (eg,
BioBERT and ClinicalBERT used here).

We have also identified the key improvements achieved via
fine-tuning by exposure to actual in-domain training data. The
fine-tuned model provides better recall, at the expense of
precision, achieving the highest aggregated F1 score (although
the best-case scenario, ie, the best of our 5 models, outperforms
the baseline both in terms of recall and precision). Fine-tuning
contributes to better adjustment to the specificity of the task,
such as tying Observations to particular FMs. More importantly,
however, the model learns to detect behavioral and mental health
issues from limited training data, thereby providing a qualitative
improvement. This improvement, in this particular evaluation
scenario, outweighs the downside of tuning the model on a
relatively noisy and low-volume sample of in-domain data
(which may result in some loss of precision).

Finally, we observe that, even in the fine-tuned model, there is
still room for improvement with respect to adherence to the
restrictions relating to the interplay between the observations
and FMs. This means that we do not fully capitalize on BERT's
capability to capture long-distance relationships in text. In fact,
in our experiments, raw BERT-CRF yields a similar F1 score
to that of the long short-term memory–based off-the-shelf
baseline. We hypothesized that using an alternative training
approach or using a network that jointly models both entity
types could be the key to better alignment to this specific task.

Annotation of FMs

Impact of Different System Elements
To provide more insight into the effectiveness of our rule-based
approach in FM detection, we analyze the errors generated by
our best system in row 1 of Table 4.

An ablation study, where we disable one rule at a time, is
presented in Table 2. It can be immediately noted that R6
(cousin rule 2; row 10 of Table 4) is a nonfactor. Indeed, it only
changes the default behavior (of adding one annotation per
surface form, without changing the relationship type), when
cousin annotation is affected by a candidate mention of any of
the grandparents (eg, “grandmother's cousin”). In such cases,
the cousin mention would not be added to the output. The results
show that such an interaction between mentions is not detected
in either of the training or test data sets.

In addition, removal of R3 (grandparents rule; row 7 of Table
4) and R5 (cousin rule 1; row 9 of Table 4) minimally increases
the effectiveness of our system on the training data set, which
does not hold for the evaluation of the test set. Elimination of
all other rules (R1, R2, and R4 corresponding to rows 5, 6, and
8, respectively, of Table 4) from the best system impacts the
results negatively consistently across data sets.

BERT-based parameter filtering (absent in row 4 of Table 4)
impact in the test set evaluation can be seen as a sanity check.
As the model was trained on the entire training data set, we
assume that it can determine which paragraphs should yield no
annotations, as this data set was seen at the training time.
Therefore, recall is almost unaffected (we use a cutoff threshold
lower than 0.5, which explains the minor change), whereas

precision improves, as no annotations are generated from the
paragraphs that contain no gold standard annotations. In the test
set evaluation, we can see that the BERT-based paragraph filter
increases effectiveness in terms of F1 score, but there is some
precision-recall trade-off. The increase in precision of
approximately 3.5% points comes at a cost of approximately
1% decrease in recall. This decrease in recall can be attributed
to 2 types of situations:

• Paragraphs are filtered out correctly but contribute to an
annotation missed elsewhere in the text.

• Paragraphs are incorrectly filtered out (misclassified).

By comparing rows 1 and 2 of Table 4, we can see that
restriction on the relationship set works in the same direction
as BERT-based filtering, which uses only specific relations to
increase precision at the expense of recall. Results indicate that
it yields a better F1 score; therefore, in terms of F1 optimization,
the gain in precision outweighs the loss in recall.

Our experiments with coreference resolution, row 3 of Table
4, show that applying conference resolution within a rule-based
system does not improve the annotation effectiveness. Error
analysis indicates that coreference resolution often gets it wrong
in grammatically ambiguous cases, such as “The patient's mother
is 61 and well. Her brother, aged 21, is healthy....” The
coreference module, which is trained in isolation from the task,
resolves pronouns in a strictly language-focused manner.
Resolving the her pronoun as a reference to the patient's mother
(and consequently producing an Uncle annotation) is
grammatically plausible but is unlikely from the annotation
standpoint. The results and subsequent analysis indicate that
the use of coreference leads to an accumulation of such cases,
thereby reducing annotation effectiveness.

The results do not point to the standout importance of a single
specific technique of those included in our best-performing
system. Nonetheless, a combination of the rules with
BERT-based filtering and a refined subset of family
relationships improves the test F1 score by almost 6% points.
We believe that this finding points to the accumulative potential
of small improvements in rule-based systems.

Comparisons With the BERT-CRF Baseline
Although our best system (row 1) and other variants yielding
similar performance outperform the BERT-CRF baselines (rows
12-14) in absolute values over all metrics, these differences are
not statistically significant. Our initial assumption was that the
N2C2 FH extraction training data set is too small to successfully
train a fully ML-based model for this problem. This assumption
ultimately led us to develop a hybrid solution to the
FamilyMember annotation problem.

The lack of statistical significance in the advantage of our hybrid
model against a strong neural (state-of-the-art) baseline suggests
that the assumption was not entirely valid. In fact, the relatively
strong performance of the BERT-CRF baseline indicates that
this model can cope with the FamilyMember annotation and
normalization, despite the small size of the training data set.
However, this result also suggests that our hybrid model yields
results comparable with those of a state-of-the-art ML model.
It is worth noting that a purely rule-based version of our system
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(without ML components whatsoever; row 4) still yields
comparable results, which would make it an effective, simple
baseline (without the need for retraining any of the system's
elements) to be considered as a starting point reference for
real-world deployment of FH annotation systems. Nevertheless,
the impact of individual rules still needs to be considered in the
context of the target corpus and task.

Finally, our hybrid system allows for relatively intuitive
prioritizing of specific performance aspects (eg, prioritizing
recall over precision) by tuning system settings (row 2 of Table
2).

Sentence-Level Error Analysis: FP
We present the findings of a full error analysis performed on
the results of our best-performing system (row 1 of Table 2) on
the test data. To classify the errors, we examine individual
instances in which sentence-level annotations contributed to
incorrect predictions. The percentages correspond to
sentence-level observations. For example, in a hypothetical

passage “Mrs. X has one child, a healthy son. She also has a
healthy brother whose partner recently gave birth to a daughter,
and a sister, who also gave birth to a healthy daughter,” the
incorrect annotation daughter counts twice (once per
occurrence).

We categorize the FPs into the following classes: nonerrors
(annotations that we believe to be correct but are not present in
the gold standard), nonmentions (relationship word is used but
does not denote this particular FM), partner's family (annotations
pertinent to the family of the partner rather than the patient),
deficiency of rules (when an expression is worded in a way that
the rules miss it altogether or produce an undesired output),
lack of coreference (context from outside the sentence is missing
to produce a correct annotation), wrong family side
(maternal/paternal heuristic failing), and other (the annotation
looks fine, but even after reading the entire note, we were not
able to tell if it is an actual nonerror). We analyze all errors
detected on the test set and provide counts for each of the classes
together with examples (Table 7).

Table 7. Error classes for false positives with counts and examples obtained for the best-performing FamilyMember extraction.

PredictionExampleCount, nClass

(Uncle, paternal)“Mr William’s [from context: Mr Williams is the husband of the pa-
tient—Ms Williams] father has a brother who is currently healthy”

39Partner’s family

(Father, N/Aa)“States on her father's side, ‘there is untreated depression’”38Nonmention

(Son, N/A)“She [sister] has a 2-year-old son”32No coreference

(Grandmother, paternal)“Mrs Alexander's paternal grandmother reportedly had one miscarriage”31Nonerror

(Daughter, N/A)“Mrs William has a healthy 30-year-old sister who has a healthy son and
a daughter who...”

25Rules

(Mother, N/A)“Noah's mother died at age 72”10Other

(Cousin, paternal)“...maternal paternal cousin...”2Wrong side

aN/A: not applicable.

Partner's family annotations constitute the largest group of errors
(approximately 23%), despite the use of the BERT-based
paragraph filter. Without the filter, the number increased by
more than 100%.

A large proportion (approximately 38%) of the errors fall into
nonmention (approximately 21%) and nonerror (approximately
17%) categories. The distinction between these 2 classes is not
always easy; for example, we classify an annotation of father
in “[Patient's] father works in landscapin.” as a nonmention,
although it could well be interpreted as a nonerror. We believe
this explains some of the differences in precision between the
test set and the training set. On the training set, these 2 classes
of FPs account for approximately 30% of total errors.

Lack of coreference contributes to approximately 18% of the
errors. A closer look into the problem shows that many of these
errors would require long-distance contexts (more than one
sentence) to correctly resolve the references. A fairly common
pattern is: “Patient's father suffers from.... His brother.... A
sister....” The reference (brother/uncle) from the middle sentence
can be resolved correctly fairly easily using a coreference
resolution module. The reference form of the last sentence,
however, is not explicit, and it requires context from both

previous sentences. This points to an inherent limitation of our
approach of applying the coreference resolution in the scope of
sentence pairs.

Errors related to rule deficiencies account for approximately
14% of all FPs. The majority of these errors are related to the
fact that our approach does not deal with enumerations, as only
adjacent candidates are considered in rule-based processing (as
shown in the example in Table 7). This problem can potentially
be solved by incorporating sentence syntactic parsing. However,
sentence parsing could introduce another algorithmic source of
errors because errors in parsing caused by, for example,
punctuation errors that are common in medical notes propagate
into the downstream task.

Other errors refer to cases in which we were unable to determine
whether the annotation is a nonerror or not. These notes refer
to many different people by their first names, without explicitly
stating who is the main subject of the note. A context external
to the note might be necessary to produce the correct
annotations.

Finally, sentence-level analysis shows that the family side
heuristic works exceptionally well, producing very few errors
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on rare occasions, such as with double cousins, as shown in
Table 7.

A Closer Look at Coreference Resolution
To provide a better insight into the difficulty of incorporating
a coreference resolution into a rule-based system, we compare
the sentence-level analysis presented earlier with a similar
experiment performed with the coreference resolution module.

We observe that the total number of errors is only 13 at the
sentence level, but different errors are made. It is the larger
variety of errors that contributes to lower precision. To provide
an example of a common pattern, we can consider the following
passage: “Her mother is healthy at age 63. Her father died at
age 48 of COPD (Chronic Obstructive Pulmonary Disorder).”
A system without the coreference resolution will produce correct
Mother and Father annotations. A system with coreference
resolution produces Mother and Grandfather, Maternal
annotations, the latter being incorrect. Although it is incorrect,
it is plausible both context-wise and grammatically. It is the
accumulation of this type of mistake that negatively affects the
precision score of the system with coreference resolution. We
believe that a key takeaway is that in ambiguous cases (without
explicit specification), choosing the patient as a reference point
for a family relation is statistically safer than the coreference
approach.

Missed FamilyMembers: FNs
Analyzing FNs within the test set is an inherently labor-intensive
task, as it requires inspecting the entire FH note (to find the
sentence-level evidence and identify why the system got it
wrong). Our selective analysis indicates that a large proportion
of the annotations missed by our system are related to the
nonerrors detected in the exploration of FPs. For example, for
the passage,

“This maternal aunt has three healthy children, but also had a
daughter that died within the first few days of life secondary to
hydrocephaly,” our system provides an annotation (Cousin,
Maternal). The gold standard requires an annotation of (Cousin,
NA), which we assume relates to this particular text. As we
believe the output of our system is correct, we classify it as a
nonerror. At the same time, by correctly interpreting the
sentence-level evidence, the system misses the gold standard
annotation and the same nonerror penalizes both recall and
precision.

Learning Points From FamilyMember Annotation
Our experiments with the FamilyMember annotation point to
several high-level conclusions, which may be relevant for future
work in this domain. First, the careful optimization of the system
(error analysis on training data for debugging, choosing a more
reliable set of relationships, and introducing BERT-based
filtering) improves the overall performance of the system by
more than 6% points, which we consider to be a fairly
encouraging result. We are convinced that these results can be
pushed even further with minor tweaks; however, it would be
difficult to point to a specific thing that would drastically
improve effectiveness if fixed. In addition, crafting additional
rules that are very specific to the relatively few observed errors

carry a risk of overfitting. In this sense, our approach has been
taken relatively far for effective tuning.

Second, our experiments with coreference resolution
demonstrate the intrinsic difficulty of configuring a language
understanding component as an add-on to a rule-based system.
We imagine that it is possible to come up with a much broader
rule set that could take advantage of the coreference resolution.
Nonetheless, not all context understanding can be solved with
coreference resolution, especially for grammatically ambiguous
cases or when deciding whether a matching surface form is an
actual mention or a nonmention. This is even less useful when
the coreference resolution is trained without task-specific context
understanding. We believe that this points to a general limitation
in rule-based approaches to the problem.

The use of pretrained neural LMs is the most viable path toward
incorporating language understanding in the FamilyMember
annotation. In our experiments, we demonstrate a simple
BERT-based paragraph filtering approach, which improves the
effectiveness of the final system. Its incorporation is easier than
that of coreference resolution because we identify an isolated
task (the interaction with the rest of the system is simple), which
has task-specific training data (the method sees the contexts
from a task-specific perspective). Nevertheless, a fully optimized
ML baseline (BERT-CRF) does not outperform the rule-based
approach.

In an ideal scenario, with thousands of training records, the
FamilyMember annotation problem could be approached
identically to that of Observations. However, with limited
training data available for the task, such a model achieves
effectiveness slightly lower than that of a rule-based system, as
per our baseline experiments.

The third important takeaway relates to another advantage of a
rule-based system, beyond the possibility of tuning F1 with very
little training data. The rule-based system can generate
conceptually correct annotations, regardless of the quality or
completeness of the training data. We believe this is the reason
we see so many nonerror FPs—our rules are conceptually sound.
Therefore, the system will generate those outputs, even if the
training data often miss a particular type of relationship. This
means that rule-based systems, or their combinations, play an
important role in creating annotated data sets that are needed
to train deep learning approaches.

Overall Effectiveness of the System
We provide an overview of our best system’s performance for
FamilyMember and Observation annotations combined,
compared with other approaches on the same data set, as shown
in Table 8. As the FH notes collection is relatively new, most
systems we compare against are those that participated in the
2019 N2C2 shared task (we selected the top 5 runs). We are
aware that this comparison is not entirely fair, as we continued
refining our system after the release of the test data, but it does
put our results in perspective. For our best run, we present a
combination of DAPT (ClinicalBERT) with ITPT
(NCBI-disease) for Observation annotation and the
best-performing system for the FamilyMember annotation. We
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train the neural component for Observations with 5 different
seeds and report average results with SDs.

The combined results demonstrate that the proposed system
performs on par with top systems from the 2019 N2C2 shared
task, with the exception of the Harbin Institute of Technology
(HIT) team’s approach, which achieves superior precision. We
believe this is because of HIT proposing a model that jointly
addresses both FamilyMember and Observation mentions via
ML. It seems that their approach aligns better with the perks of

this specific task (eg, annotating only diseases pertinent to
specific FamilyMembers). In addition, our experiments with
the BERT-CRF baseline for FamilyMember annotation indicate
that the gap cannot be easily closed by simply using a
state-of-the-art NER model for FamilyMember annotation. This
also indicates that the key source of the difference in
effectiveness between our best system and that of HIT is the
HIT's feature of joint modeling of FamilyMember and
Observation mentions.

Table 8. Comparison with other systems for both types of mentions combineda.

F1 scoreRecallPrecisionRun

81.63 (0.8)83.64 (1.2)79.60 (2.2)Our best run, mean (SD)

87.4583.7291.54HITb

82.2583.6580.90EZDI

81.3083.8478.90MUSCc

80.6880.9380.43NTTUd

79.4479.2079.69UFe

76.59——gN2C2f official median

75.1088.9265.01A1h [28]

71.8062.1185.07A2h [28]

aNational Natural Language Processing Clinical Challenges median is calculated from all valid runs participating in the original evaluation within the
shared task.
bHIT: Harbin Institute of Technology.
cMUSC: Medical University of South Carolina.
dNTTU: National Taitung university.
eUF: University of Florida.
fN2C2: National Natural Language Processing Clinical Challenges.
gNot available.
hThese are variants of the system described in the cited study.

In this study, we investigate the impact of a set of techniques
(DATP and ITPT for disease annotation; rules and paragraph
filtering for annotation of FMs) to improve the performance of
a very simple yet reasonably effective baseline system (78.10
and 75.86 F1 scores for Observations and FamilyMembers,
respectively, place it close to N2C2 median performance). Our
experiments suggest that the proposed improvements, although
subtle, generate a considerable cumulative effect, resulting in
a final system performing at a close to state-of-the-art level. We
also present a detailed error analysis for errors for the relatively
less explored problem of annotating FMs in clinical notes.

Conclusions
We investigate the problem of detecting diseases and FM
mentions in FH reports. We propose an approach that leverages
state-of-the-art NER for disease mention detection, coupled
with a hybrid method for FM mention detection. The hybrid
method implements a rule-based approach combined with a text
classifier to filter out irrelevant paragraphs from the reports (eg,
pertaining to the patient partner's family).

Our approach achieved effectiveness close to the top 3 systems
participating in the 2019 N2C2 FH extraction challenge, with
only the top system outperforming it convincingly in terms of
precision.

We believe that immediate improvements could be achieved
by refining the rules used in the FM mention detection module.
Nonetheless, alternative strategies, revolving around the use of
semisuperised and distantly supervised learning, are closer to
our research interests. A more encompassing approach toward
improving performance would be a system that jointly models
diseases and FMs, thereby improving cases that relate directly
to the interplay between both entity types (eg, not annotating
diseases of nonblood-related FMs).

In our future work, we will concentrate on applying FH
extraction to a broader set of medical notes. This broader
approach will not only cater to new use cases but will also allow
for harnessing the FH-related knowledge scattered across other
sections of EHRs.
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Multimedia Appendix 1
Implementation details. The configuration of our BERT model follows the original BERT-based model. In particular, our model
is based on a bidirectional transformer with 768 hidden dimensions, 12 hidden layers, and 12 self-attention heads. The total
number of parameters was approximately 110 million. We implemented our model using PyTorch and trained it using 1 RTX
2080 Ti graphics processing unit. As the training set size is small, iterating all instances once (1 epoch) takes less than 15 seconds.
We adapted the early stop method, wherein the training will stop once there is no improvement (measured on the development
set) during the last 5 consecutive epochs. The trained model that was most effective on the development set (measured using the
F1 score) was used to evaluate the test set. BERT: Bidirectional Encoder Representations from Transformers.
[DOCX File , 9 KB - medinform_v9i4e24020_app1.docx ]
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Abstract

Background: Big data technology provides unlimited potential for efficient storage, processing, querying, and analysis of
medical data. Technologies such as deep learning and machine learning simulate human thinking, assist physicians in diagnosis
and treatment, provide personalized health care services, and promote the use of intelligent processes in health care applications.

Objective: The aim of this paper was to analyze health care data and develop an intelligent application to predict the number
of hospital outpatient visits for mass health impact and analyze the characteristics of health care big data. Designing a corresponding
data feature learning model will help patients receive more effective treatment and will enable rational use of medical resources.

Methods: A cascaded depth model was successfully implemented by constructing a cascaded depth learning framework and
by studying and analyzing the specific feature transformation, feature selection, and classifier algorithm used in the framework.
To develop a medical data feature learning model based on probabilistic and deep learning mining, we mined information from
medical big data and developed an intelligent application that studies the differences in medical data for disease risk assessment
and enables feature learning of the related multimodal data. Thus, we propose a cascaded data feature learning model.

Results: The depth model created in this paper is more suitable for forecasting daily outpatient volumes than weekly or monthly
volumes. We believe that there are two reasons for this: on the one hand, the training data set in the daily outpatient volume
forecast model is larger, so the training parameters of the model more closely fit the actual data relationship. On the other hand,
the weekly and monthly outpatient volume is the cumulative daily outpatient volume; therefore, errors caused by the prediction
will gradually accumulate, and the greater the interval, the lower the prediction accuracy.

Conclusions: Several data feature learning models are proposed to extract the relationships between outpatient volume data
and obtain the precise predictive value of the outpatient volume, which is very helpful for the rational allocation of medical
resources and the promotion of intelligent medical treatment.

(JMIR Med Inform 2021;9(4):e19055)   doi:10.2196/19055
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Introduction

Over the past two decades, there has been dramatic growth in
the amount of data being generated in many areas worldwide,
including health care data, sensor data, various types of
user-generated data, internet data, and financial company data.
Big data is emerging as the amount of data in every field grows;
however, “big data” is an abstract concept that does not simply
mean a large collection of data. Big data has some features that
are different from data sets, and its characteristics differ from
those of massive data and large data sets. Research studies
examining concepts such as the Internet of Things and wearable
technology have helped reduce the cost of real-time monitoring
of human health, which has driven development in this industry
[1]. Big data technology provides unlimited potential for
efficient storage, processing, querying, and analysis of medical
data. Technologies such as deep learning and machine learning
simulate human thinking, assist physicians in diagnosis and
treatment, provide personalized health services, and promote
intelligent processes of health care applications. The
development and application of the Internet of Things, wireless
networks, the internet, cloud computing technology, etc., provide
guarantees for the analysis, processing, and transmission of big
data. In short, in the field of health care, the rapid development
of big data analysis, wearable technology, artificial intelligence,
Kyrgyz computing, supercomputing technology, etc., all provide
possibilities for the realization and development of smart
medical applications [2,3].

Medical health data is multimodal, complex data that continues
to grow rapidly and contains a wealth of information. The
challenges associated with medical health data include how to
quickly and accurately collect medical health data and how to
efficiently use high-speed networks to reliably and efficiently
transmit medical health data [4]. Other challenges include the
use artificial intelligence–related machine learning and deep
learning techniques to extract useful information from health
medical big data and the development of intelligent applications
for medical staff and ordinary people. In this paper, our aims
included analyzing health care data, addressing intelligent
application–related issues, predicting the number of hospital
outpatient visits for mass health impacts, and analyzing the
characteristics of health care big data. Designing a corresponding
data feature learning model will help patients receive more
effective treatment and enable rational use of medical resources.

Methods

Cascaded Deep Learning Model

Model Framework
Deep learning is a process of feature extraction and combination.
Through multilayer nonlinear operation combination, the model

can abstract high-order semantic information as data. In practice,
a cascaded multilayer operation is performed on the
preprocessed raw data. Each layer consists of three sublayers:
feature extraction, nonlinear transformation, and feature
selection. The input of the initial layer is the pretreated original
data, the input of the second layer is the output of the upper
layer, and the output of the third layer is the final abstract
representation of the data. In each layer, the representation
characteristics of the data are extracted by feature
transformation, which is generally a process of dimension
increasing [5]. Compared with the input, the transformed
features have certain representative characteristics; however,
the number of features is much greater. Through feature
selection, we reduce the dimension once, and at the same time,
we choose the discriminant feature or the representation feature.
Some feature selection methods are used to improve the regional
adaptability of the model, such as max-pooling and
mean-pooling operations in convolutional neural networks.
Nonlinear transformation is usually performed in the middle of
feature transformation and feature selection, and it is an
important part of the framework. Nonlinear transformation can
imitate the activation and inactivation of neurons. Another
important application of nonlinear transformation is when linear
transformation is used in the feature extraction. Multilayer linear
transformation is still a linear transformation. Multilayer
operation plays the same role as learning a linear transformation
directly and does not play a role of layer-by-layer abstraction.

In this paper, to eliminate possible differences in measurement
scales between different features, the original data were
normalized by the maximum and minimum method. In the
feature extraction stage, to obtain the structural information of
the data, a method of feature transformation with little
relationship to the domain was selected, that is, the vanishing
component analysis (VCA) method was used to extract the
polynomial characteristics of the data. Because the VCA method
itself is a nonlinear transformation, the nonlinear operation
cannot be carried out in the framework [6]. Because the
dimension of the VCA input data cannot be too high, we used
principal component analysis (PCA) to reduce the dimensions
of the VCA input data (PCA reduces the dimension of the loss
of information and can reduce the feature dimensions; therefore,
it can also be regarded as a special feature selection method).
In the final classification, we used a boosting algorithm, which
is a method that can classify and select features; in the
classification of the use of the features, we could use all the
features learned at each level or only use the last level of
features. At this point, our depth feature learning framework
was formed, as shown in Figure 1.
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Figure 1. The cascaded deep learning framework. IVI: innovation value intuitive; AdaBoost: adaptive boost; PCA: principal component analysis; RSR:
regularized self-representation; VCA: vanishing component analysis.

Characteristic Learning
According to the existing cascaded depth learning framework,
we implemented a specific depth model. Therefore, we needed
to study and explain the training process of the model. The
cascade depth model proposed in this paper is a multilayer
structure. Between different layers, the output of the upper layer
is the input of the next layer. Within the same layer, a PCA
dimensionality reduction stage, VCA feature transformation
stage, and L2,p – RSR feature selection stage, where RSR is
regularized self-representation, are included. Each layer of the
model can learn the output features of the current layer [7]. The
abstract information of the different layers is different. The
features of the lowest layer are closest to the original feature
space. The high-level features can provide complementary
information for the low-level features. We made full use of the

characteristics learned from all levels and proposed an effective
feature combination method. Finally, we used the boosting
classifier based on the binary classification problem and
extended its success to the multiclassification problem.

PCA Dimension Reduction Stage
VCA feature transformation requires stringent data space
dimension control; therefore, it was necessary to reduce the
dimension before the VCA feature transformation. There are
two ways to reduce the dimension of PCA; one is to specify the
reserved dimension directly, and the other is to set the ratio of
an eigenvalue to the total sum of the eigenvalues. Proportion
setting can theoretically control the retention percentage of data
information; however, it is challenging to control the retained
feature dimension using this method, especially when the feature
dimension is difficult to control. In this model, the VCA
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transform will produce a large number of features, and its input
space needs to strictly control the feature dimension. Therefore,
we directly set the reservation dimension of the PCA transform
[8]. Because different dimensions retain different information,
the performance of the model and the experimental results are
affected, and this effect is not positively correlated with the
retention dimension. Therefore, in our experiments, it was
necessary to debug the PCA dimension.

VCA Feature Transformation Stage
The VCA method can map raw data into zero polynomial space,
thus playing the role of feature extraction. Using this method,
it is not necessary to know the domain of data usage or other
prior knowledge because as long as the input space is a real
matrix, we can learn its zero space polynomial transformation
representation. This transformation method can not only extract
the linear features in the data samples but can also extract the
nonlinear features, that is, if the first-order polynomial contains
the zero space of the data, the polynomial contains the linear
information of the data. Other polynomials with different
numbers can extract 2 or even higher order nonlinear
characteristics of data. In this model, the use of VCA for feature
transformation involves two specific problems: (1) polynomial
number setting and initial feature dimension setting; (2)
algorithm solution using singular value decomposition with the
minimum setting.

L2,p – RSR Feature Selection Phase

VCA feature transformation will produce a large number of
features, and we need to select features for many reasons.
Moreover, feature selection is one of the reasons why the depth
learning model is effective, as it can effectively select
task-related features. The L2,p – RSR method proposed in this
paper can not only effectively select features that play important
roles in the linear representation of features but can also exclude
the roles of singular samples due to the use of L2,1 norm
constraint loss terms. This method is based on the
self-representation property of the feature space. Any matrix
space data possesses this property; therefore, it is
domain-independent, which meets the requirements of the
generalization ability of our model. In this model, we only
needed to set the P value of L2,p norm and regularization
parameter λ value in the method. The input of the L2,p – RSR
feature selection operation is the output space after VCA
transformation, and the output is the output feature of the current
layer of the depth model.

Boosting Classification and Feature Selection
After features are learned, it is necessary to classify them. There
are many general classification methods, of which the nearest
neighbor classifier is the simplest. Support vector machine
(SVM) classifiers are also widely used in research and
applications, and kernel-based SVM classifiers can also solve
nonlinear problems. For this model, we used a classification
method with a feature selection function: the Gentle Adaptive
Boosting (AdaBoost) classifier based on a pile function. The
Gentle AdaBoost algorithm based on a pile function can not
only classify but can also select features from the feature space,
that is, it can select one feature from each feature space and

classify it, and it can select features by controlling the number
of weak classifiers [9]. This is in good agreement with the
framework proposed in this paper. The Gentle AdaBoost
algorithm can not only play a classification role but can also
perform feature selection. It can also be used only as a
classification method or for feature selection. Next, we analyzed
and implemented the boosting classifier based on a pile function.

Brief Summary of the Discrete AdaBoost Algorithm
Based on a Pile Function
For the discrete AdaBoost algorithm based on a pile function,
the inputs are training sample X and tag Y, and the output is

the classifier model .

Step 1: Weight matrix initialization: wi = 1/m,i = 1, …, m

Step 2: Repeat: t= 1, 2, …, T

Step 3: For d = 1, …, n, do: (errd, δd, ad, bd) = 

Step 4: feaId = ar g min (errd), (feaId, δ, a, b) = (feaId,δ feaId,

afeaId, bfeaId)

Step 5: ft(x) = ah(x feaId > δ) + b

Step 6: Update: , i = 1, 2, …, m, standardization of w makes

Step 7: Repeating end

The Gentle AdaBoost algorithm based on the pile function
follows the boosting algorithm framework and uses a simple
classifier model:

in which the weak classifier fm is defined as

The h function is the indicator function. represents the d
dimension characteristic of the i sample. δ is the threshold (the
so-called pile). a and b are parameters of the linear regression
function. When learning the weak classifier, each feature of the
sample learns a pile function based on the least squares, and the
error value of the least squares is obtained and recorded; then,
the corresponding feature is selected when the error value is the
minimum. Therefore, (d, δ, a, b) can be obtained through the
weighted least squares method:

After obtaining the weak classifier Fm, the weights of W are
updated:

The F function is updated to F = F + f. The final classification
result is sign (F(x)). The absolute value of the F(x) value
provides the credibility of the classification.
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Feature Combination
Through the research and analysis of each stage of the cascade
depth model, we successfully constructed a multilevel depth
learning model and learned multilevel features. The different
layer features provide different information. The underlying
feature is the closest to the real information of the data and
contains the most data information; however, it contains less
semantic information and is not sufficiently abstract. When a
model has two or three layers, it abstracts the features at
different levels, including certain semantic information. When
the number of layers is higher, the model contains a higher level
of abstract information. We believe that each layer of features
is useful; the underlying features ensure that the data information
distortion is not too great, and the high-level features can provide
the underlying features with complementary structure
information that the underlying features do not possess [10]. If
we can effectively combine each layer of features, we will obtain
a good machine learning model. Using the combination of
Gentle AdaBoost feature selection and classification functions,
in this section, we propose an effective method of combining
each layer of features and classifying them using the

combination features [11-14]. The combination of the two levels
of features is shown in Figure 2.

The classifier we used in the cascaded depth model is the Gentle
AdaBoost classifier with a feature selection function. Therefore,
we input the features of the different layers into the classifier
algorithm to classify them and achieve the purpose of combining
the features of each layer. The Gentle AdaBoost classifier is in

the form of . Assuming that the feature space of the first layer
is X1 and the feature space of the second layer is X2, a strong

classifier is learned from the features of the first layer.
Because the classification algorithm gives the current weight
W of each sample after each weak classification, it can initialize
the sample weight before F2 training by using the weight
distribution W of the sample at the end of F1 after F1 has been

generated. Then, we learn the classifier , and the final
classification result is F1 + F2. F1 uses only the first layer feature
and F2 uses only the second layer feature; however, the sample
weight W is used in the F1 process.

Figure 2. The combination of two levels of features used in our model.

Data Analysis
We used the Letter, Pendigit, and USPS data sets to conduct
comparative experiments [15-18]. Specifically, the example,
feature, and class labels are 20,000, 16, and 26 for the Letter
data set, 10,992, 16, and 10 for the Pendigit data set, and 9298,
256, and 10 for the USPS data set, respectively. From Table 1,
we can see that the data pair classification accuracy was low;
we selected the lowest number, and the corresponding sequence
was (31 41 45 125 128 157 164 173 304). The bandwidth of
the first layer PCA was (4810 1316), that of the second layer
was (358 11 13 15 20) and that of the third layer as (358 11 13
15). The classification accuracy of the selected data under one
level of PCA is shown in Table 1. As can be seen from the table,

the optimal value was PCA1=13. With a fixed PCA1 of 13, the
second layer under different PCA2 values of classification
accuracy is shown in Table 2; the optimal value was PCA2=11.
Moreover. the third layer results are shown in Table 2, and the
corresponding PCA3 was 13. In actual bandwidth settings, PCA
reserve values can be set for several more groups because Letter
data have a smaller sample size per class. Finally, each layer
used the PCA reservation dimension (13 11 13) setting to obtain
the total classification accuracy of Letter data under each layer.
Tables 1-2 also show that the classification accuracy increases
with the increase of the number of layers when the model
classifies Letter data with attribute values. Figure 3 and Figure
4 show the classification accuracies of the Pendigit and USPS
data sets at different layers, respectively.
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Table 1. Classification accuracy of the first layer of Letter data with different PCA1 retention values (%).

PCA1a retention valueData serial number

16131084

99.1399.6299.6298.6392.1031

98.5197.5994.5894.5885.9341

97.9098.8998.8998.4697.1345

98.5298.5296.7894.2083.87125

99.6599.6596.9895.9689.92128

95.8997.8794.9296.3384.59157

99.2798.8097.4295.1294.10164

97.3098.5896.8995.1191.83173

100.00100.0099.2996.9285.66304

98.7298.8997.2896.1889.60Average value

aPCA1: principal component analysis 1.

Table 2. Classification accuracy of Letter data under different PCA2 retention values (%).

PCA2a retention valueData serial number

151311853

99.6299.6299.1399.6299.6299.6231

97.8998.5998.5997.5997.9997.5941

99.7899.2399.7899.2399.7899.7845

99.2599.8299.3999.3999.3999.39125

99.6599.6599.6599.65100.0099.65128

98.9498.4998.9498.9498.9498.94157

99.1999.1998.7399.7399.1999.19164

98.5898.9198.9198.9198.9198.91173

100.00100.00100.00100.00100.00100.00304

99.6999.7599.5999.5899.6999.59Average value

aPCA2 : principal component analysis 2.

Figure 3. Classification accuracy of the Pendigit data set at different layers.
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Figure 4. Classification accuracy of the USPS data set at different levels.

Prediction of Hospital Outpatient Volume Based on
the RNN-RBM Network Model

Prediction Model Construction
Recurrent neural networks (RNNs) and restricted Boltzmann
machine (RBM) networks have strong ability to predict time
series. To make use of the advantages of these two network
models to predict hospital outpatient volumes, the two networks
were combined to form a depth structure network RNN-RBM
model. This deep neural network can describe the time
dependence of high-dimensional sequences.

Among the various deformations of RBM, there is a deformation
called conditional RBM. Conditional RBM is different from
standard RBM in that it adds two types of connections: one is
an autoregressive connection, and the other is a hidden layer
connection between the previous time step and the current time
step. A conditional RBM can also be trained by a contrastive
divergence (CD) algorithm. This structure can be used to handle
time series data effectively; therefore, it can be used to solve
time series problems. The RNN-RBM model in this paper can

also refer to conditional RBM. and represent the offset
vectors of the visible layer and the hidden layer in the RBM

model at time t, and they are updated by the hidden unit ut – 1

in the RNN model at time t – 1. Weight matrices Wuv and Wuh

are used to connect the RNN network model and RBM network
model. The bias vector can be expressed as follows:

where bv and bh are the initial offset values of the visible and
hidden layers in the RBM network model. The RNN network
model expands gradually with the time step and is used to
generate the state of the hidden units in the RBM network

model, which are based on the input layer v(t) and the hidden

layer u(t) in the RNN network model. In this way, the hidden
layer can only blame the activation function of the hidden unit.

u(t) = sigmoid (bu+Wuuu
(t-1)+Wvuv

(t))

From this, we can see that the overall process of the algorithm
is:

1. The hidden unit in the RNN model is activated.
2. u(t-1) is used in Step 1 to update the bias values in the RBM

network model.
3. The parameters are updated in the RBM network model.
4. The RBM output is used as the input of the prediction layer,

and the parameters are initialized randomly.
5. The backpropagation (BP) method is used to fine-tune the

model from top to bottom. Error values are propagated back
to the RBM and RNN network models. The weight matrices
wuv and wuh are updated, and the RNN network models are
trained to predict.

Results

The experimental simulation data were obtained from real-world
hospital outpatient volume data. In the data pretreatment stage,
in this paper, we extracted the outpatient volume information
of each department of the hospital and performed certain
statistical processing methods. In the actual processing data,
the outpatient data for hospital holidays were significantly
reduced; to avoid the impact of these data, we deleted the related
statistical processing methods.

To better satisfy the prediction function, these data were counted
according to the three time intervals of day, week, and month.
To better conform to the prediction model based on the depth
neural network proposed in this paper, these data were processed
and expressed as a data matrix. The matrix is as follows:
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in which represents the outpatient volume data of department
n in interval T.

In this paper, RNN and RBM neural networks were combined
to form a deep-seated neural network model, and the model was
used to predict the outpatient volume of the hospital. In the
actual simulation, we selected the outpatient volume data of 15
important outpatient clinics as the input of the depth model, that
is, the input layer of the model was set to 15. The number of
hidden layer neurons in the RNN was set to 20, the number of
hidden layer neurons in the RBM was set to 30, and the output
of the predicted layer was 15.

Figure 5 and Figure 6 show the prediction results of the
RNN-RBM model. In the simulation experiment, the outpatient
volume data were trained in different intervals (daily outpatient
volume, weekly outpatient volume, and monthly outpatient
volume). From the simulation results, it can be seen that the
forecast of the daily outpatient volume is closer to the real value
than that of weekly outpatient volume and monthly outpatient
volume. The depth model created in this paper is more suitable
for the daily outpatient volume forecast, and we analyzed the
causes of this phenomenon. We believe that there are two
reasons for this result. On the one hand, the amount of training
data in the daily outpatient volume forecast model is larger;
therefore, the training parameters of the model more closely fit

the actual data relationship. On the other hand, the weekly and
monthly outpatient volume is the cumulative daily outpatient
volume; therefore, the errors caused by the prediction will
gradually accumulate, and the greater the interval, the lower the
prediction accuracy.

In practical applications, medical managers often require more
short-term outpatient volume forecasts. Because forecasting a
shorter interval of outpatient volume can provide support for
medical management, this method still has certain advantages
in practical applications.

We compared the outpatient volume forecasting method based
on the RNN-RBM depth model with existing popular forecasting
algorithms, and the results are shown in Table 3. Here, the
prediction algorithm based on the auto regressive integrated
moving average (ARIMA) model, the BP neural network
prediction algorithm, the radial basis function (RBF) neural
network prediction algorithm, and the SVM algorithm were
selected.

Compared with the current popular outpatient volume prediction
algorithm, it can be readily concluded that the prediction
algorithm based on the RNN-RBM depth model is superior to
other current prediction algorithms for the daily outpatient
volume, weekly outpatient volume, and monthly outpatient
volume, and the prediction accuracy is relatively high.

Figure 5. Daily outpatient volume forecast results.
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Figure 6. Weekly outpatient volume forecast results.

Table 3. Comparison of outpatient volume prediction methods.

Monthly outpatient volumeWeekly outpatient volumeDaily outpatient volumeMethod and error

RNN-RBMa

11966.62395.124.83MAEb

5.94.63.9MREc (%)

ARIMAd

19525.53562.737.9MAE

6.86.15.4MRE (%)

BPe

2549.54145.553.48MAE

9.68.97.3MRE (%)

SVMf

2647.83796.944.3MAE

9.47.96.4MRE (%)

RBFg

229783586.338.9MAE

97.15.7MRE (%)

aRNN-RBM: recurrent neural network-restricted Boltzmann machine.
bMAE: mean absolute error.
cMRE: mean relative error.
dARIMA: auto regressive integrated moving average.
eBP: backpropagation.
fSVM: support vector machine.
gRBF: radial basis function.
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Discussion

Big data in the field of health care is an integral part of the
strategic layout of national big data, and the analysis and mining
of valuable information is also related to the development of
national health care. At present, the problems that must be
solved in the analysis and application of health care data include
timely and accurate collection and acquisition of health care
data as well as efficient use of high-speed networks for reliable
transmission of health care–related digital, image, voice, and
other information. Machine learning and in-depth learning
technology related to artificial intelligence can be used to mine
useful information from health care–related big data and develop

intelligent applications for medical staff and ordinary people.
In this paper, we studied a feature learning model of medical
health data based on probabilistic and in-depth learning mining,
mining information from medical big data and addressing
intelligent application–related problems, and we studied the
differences between medical risk assessment–related data and
general big data, multimodal data feature representation, and
learning–related content. Several data feature learning models
are proposed to extract the relationship between the outpatient
volume data and to obtain precise predictive value of outpatient
volume, which is very helpful to the rational allocation of
medical resources and the promotion of intelligent medical
treatment.
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Abstract

Background: SARS-CoV-2 is straining health care systems globally. The burden on hospitals during the pandemic could be
reduced by implementing prediction models that can discriminate patients who require hospitalization from those who do not.
The COVID-19 vulnerability (C-19) index, a model that predicts which patients will be admitted to hospital for treatment of
pneumonia or pneumonia proxies, has been developed and proposed as a valuable tool for decision-making during the pandemic.
However, the model is at high risk of bias according to the “prediction model risk of bias assessment” criteria, and it has not been
externally validated.

Objective: The aim of this study was to externally validate the C-19 index across a range of health care settings to determine
how well it broadly predicts hospitalization due to pneumonia in COVID-19 cases.

Methods: We followed the Observational Health Data Sciences and Informatics (OHDSI) framework for external validation
to assess the reliability of the C-19 index. We evaluated the model on two different target populations, 41,381 patients who
presented with SARS-CoV-2 at an outpatient or emergency department visit and 9,429,285 patients who presented with influenza
or related symptoms during an outpatient or emergency department visit, to predict their risk of hospitalization with pneumonia
during the following 0-30 days. In total, we validated the model across a network of 14 databases spanning the United States,
Europe, Australia, and Asia.

Results: The internal validation performance of the C-19 index had a C statistic of 0.73, and the calibration was not reported
by the authors. When we externally validated it by transporting it to SARS-CoV-2 data, the model obtained C statistics of 0.36,
0.53 (0.473-0.584) and 0.56 (0.488-0.636) on Spanish, US, and South Korean data sets, respectively. The calibration was poor,
with the model underestimating risk. When validated on 12 data sets containing influenza patients across the OHDSI network,
the C statistics ranged between 0.40 and 0.68.

Conclusions: Our results show that the discriminative performance of the C-19 index model is low for influenza cohorts and
even worse among patients with COVID-19 in the United States, Spain, and South Korea. These results suggest that C-19 should
not be used to aid decision-making during the COVID-19 pandemic. Our findings highlight the importance of performing external
validation across a range of settings, especially when a prediction model is being extrapolated to a different population. In the
field of prediction, extensive validation is required to create appropriate trust in a model.

(JMIR Med Inform 2021;9(4):e21547)   doi:10.2196/21547

KEYWORDS

external validation; transportability; COVID-19; prognostic model; prediction; C-19; modeling; datasets; observation;
hospitalization; bias; risk; decision-making

Introduction

Background
The novel coronavirus SARS-CoV-2, which causes COVID-19,
is quickly spreading throughout the world and burdening health
care systems worldwide [1]. Numerous prediction models are
being developed and released to the public to aid
decision-making during the pandemic [2]. Many of these models
aim to inform people of their risk of developing severe outcomes
due to COVID-19 [3-5]. A recent systematic review found that
all the then-published models suffered from high risk of bias
along with one or more limitations, including small data sets
used to develop the models and lack of external validation [2].

The COVID-19 vulnerability (C-19) index [5] is an example of
a prognostic model developed to identify people susceptible to
severe outcomes during COVID-19 infection. The model is
potentially valuable because it aims to predict hospitalization
risk in the general population [2]. At the time of the study, a
paper on the model was available as a preprint [5], and the model
itself was publicly available at a website [6]. The C-19 index
aims to predict which patients will require hospitalization due

to pneumonia (or proxies for pneumonia) within 3 months. The
model was developed using retrospectively collected Medicare
data (patients aged 65 years or older) that did not include
patients with COVID-19.

Objectives
In this paper, we aim to show the importance of external
validation and demonstrate the feasibility, during times of
urgency, of using a collaborate network for this purpose. We
chose to demonstrate this with the C-19 index because it is
available as a commercial product to the public, prior to being
peer-reviewed, as a model that can predict COVID-19 severity,
but it has not undergone any external validation. It is unknown
whether this model is currently being used for medical
decision-making, but it has been advertised as a decision-making
tool. However, the process illustrated in this paper and the
lessons learned are applicable to any COVID-19 prediction
model. Furthermore, the C-19 index model was developed using
non–COVID-19 data, and there is no guarantee that a model
trained on Medicare patients who do not have COVID-19 will
perform similarly or even adequately in patients with
COVID-19. Research has shown that there is high risk of bias
for a model that lacks external validation [7]. In addition, it is
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recommended to assess the knowledge of a model’s
reproducibility and transportability before it is used clinically
[8]. Models must be reliable, as poor predictions can be
detrimental to decision-making [2].

The Observational Health Data Science and Informatics
(OHDSI) collaboration is a group of researchers who are
collaborating to develop best practices for analyzing
observational health care data [9]. OHDSI has developed a
framework that enables timely validation of prediction models
across a large number of data sets worldwide [10]. The OHDSI
network currently contains large COVID-19 cohorts from the
United States, Europe, and Asia. In this study, we aim to
demonstrate the importance of performing external validation
of a model before its predictions can be trusted. As a case study,
we chose to investigate the predictive performance of the C-19
index when applied to COVID-19 data from databases across
the world. This study provides information about the suitability
of using the C-19 index model to aid decision-making during
the COVID-19 pandemic.

Methods

Existing C-19 Index Models
Three models were developed in the C-19 index paper [5]. The
simplest model was a logistic regression with a limited number
of predictors: age, sex, hospital usage, 11 comorbidities, and
their age interactions. The other two models were less
parsimonious gradient boosting machines with more than 500
variables. Only one of these gradient boosting machine models
was reported. Withholding a model results in noncompliance
with the TRIPOD (Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis)
statement [11] and makes external validation impossible. In this
paper, we chose to evaluate the simple logistic regression model,
recognizing that COVID-19 prediction models are urgently
needed worldwide and that parsimonious models are more
readily implemented across health care settings.

Data Source
Electronic medical records (EMRs) and administrative claims
databases from primary care and secondary care systems
containing patients from Australia, Japan, the Netherlands,
Spain, South Korea, and the United States were analyzed in a
distributed network, as detailed in Multimedia Appendix 1,
Table S1. Of these data sets, 5 contained COVID-19 cases and
9 did not. All data sets used in this paper were mapped into the
OHDSI Observational Medical Outcomes Partnership Common
Data Model (OMOP-CDM) [12]. The OMOP-CDM was
developed to provide researchers with diverse data sets with a
standard database structure. This enables analysis code and
software to be shared among researchers, which facilitates
external validation of prediction models. Deidentified or
pseudonymized data were obtained from routinely collected
records from clinical practice. Analyses were performed using
the following databases: the Australia Electronic Practice–Based
Research Network (AU-ePBRN) (linked primary and secondary
care database from Australia); Japanese Medical Data Center
(JMDC) (Japanese claims); Integrated Primary Care Information
(IPCI) (primary care EMR from the Netherlands); Information

System for Research in Primary Care (SIDIAP) (primary care
EMR from Spain); Ajou University School of Medicine
(AUSOM) and Health Insurance Review and Assessment
(HIRA) (EMR and claims database, respectively, from South
Korea); Commercial Claims and Encounters (CCAE),
ClinFormatics, Medicare (MDCR), Medicaid (MDCD) (US
claims databases), Optum EHR, Department of Veterans Affairs
(VA), Columbia University Irving Medical Center (CUIMC)
and Tufts Medical Center Research Data Warehouse (TRDW)
(US EMRs). All analyses were conducted locally in a distributed
network in which the analysis code was sent to participating
sites and only aggregate summary statistics were returned, with
no sharing of patient-level data between organizations.

Consent to Publish
Each site obtained institutional review board approval for the
study or used deidentified data; therefore, the study was
determined not to be human subject research. Informed consent
was not necessary at any site.

Participants
The purpose of the C-19 index is to identify which patients with
COVID-19 are more likely to require hospitalization due to
severe complications. The C-19 index model was developed
using non–COVID-19 data; therefore, we externally validated
it in (1) COVID-19 cohorts, to see how well the model transports
to patients it is being advertised for, and (2) non–COVID-19
cohorts, to see how well the model transports to patients similar
to those used to develop it.

We chose to investigate the performance of the model when
applied to patients with an outpatient or emergency department
(ED) visit with initial symptoms. We chose this approach
because it mimics the situation in which patients first seek
treatment or medical advice due to developing symptoms or
testing positive for COVID-19 (or influenza).

For the external validation using COVID-19 data, patients were
included in the target population if they satisfied the criteria
below:

• Presenting at an outpatient or ED visit with COVID-19
(COVID-19 was identified by a diagnosis code for
SARS-COV-2 or a positive test for SARS-COV-2 that was
recorded after January 1, 2020)

• Aged ≥18 years during the outpatient or ED visit
• ≥365 days of observation time in the data prior to the

outpatient or ED visit
• No diagnosis of influenza, influenza-like symptoms, or

pneumonia in the preceding 60 days (to ensure the index
date is the date of the most recent symptom of COVID-19)

The index date was defined as the date of the valid outpatient
or ED visit.

For the external validation using non–COVID-19 data (influenza
data), patients were included in the target population if they
satisfied the criteria below:

• Presenting at an outpatient or ED visit with a record of
influenza or influenza-like symptoms (ie, fever and either
cough, shortness of breath, myalgia, malaise, or fatigue)
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• Aged ≥18 years during the outpatient or ED visit
• ≥365 days of observation time in the data prior to the

outpatient/ED visit
• No diagnosis of influenza, influenza-like symptoms, or

pneumonia in the preceding 60 days (to ensure the index
date is the date of the most recent symptom of influenza)

The index date was defined the date of the valid outpatient or
ED visit.

Outcome
The outcome was hospitalization with pneumonia on the index
date (valid outpatient or ED visit) and within 30 days after index.

Multimedia Appendix 2 contains the definitions of pneumonia,
influenza, influenza-like symptoms, and COVID-19 used in
this study. The full details of the participant cohorts and the
outcomes used for validation can be found in the study package
[13].

Predictors
The predictors of the logistic regression version of the C-19
index are age in years, male sex, number of inpatient visits
during the prior 12 months, and indicator variables for various
Clinical Classifications Software Refined (CCSR) categories.
A table with the C-19 predictors and coefficients is presented
in Multimedia Appendix 3. The CCSR categories used were
pneumonia except that caused by tuberculosis, other and
ill-defined heart disease, heart failure, acute rheumatic heart
disease, coronary atherosclerosis and other heart disease,
pulmonary heart disease, chronic rheumatic heart disease,
diabetes mellitus with complication, diabetes mellitus without
complication, chronic obstructive pulmonary disease and
bronchiectasis, and other specified and unspecified lower
respiratory disease. Age interactions with each CCSR variable
were also included as predictors. Each CCSR category
corresponds to an aggregation of International Classification of
Disease, Tenth Revision (ICD-10) codes that belong to the
category.

In the development data, if a patient had an ICD-10 code that
was part of the CCSR “pneumonia except that caused by
tuberculosis” grouping during a specified time period prior to
index, their value for the predictor “pneumonia except that
caused by tuberculosis” was 1; otherwise, it was 0. This
assignment was repeated for each CCSR predictor. Data in the
OMOP-CDM do not use ICD-10 codes, but instead use
Systematized Nomenclature of Medicine (SNOMED) codes.
Therefore, to replicate the predictors in the OMOP-CDM data,
we needed to find the sets of SNOMED codes that corresponded
to each CCSR predictor. We accomplished this by finding the
SNOMED equivalent of each ICD-10 code in a CCSR category.

The SNOMED groupings per CCSR category used by the
OHDSI implementation of the C-19 are presented in Multimedia
Appendix 3.

Sample Size
We identified 41,381 patients with an outpatient or ED visit for
COVID-19 in 2020: 1985 patients from South Korea, 37,950
patients from Spain, and 1446 patients from the United States.

We also identified a total of 9,429,285 patients with an
outpatient or ED visit for influenza or influenza-like symptoms
in databases from six countries. The number of visits for
influenza or influenza-like symptoms per database ranged
between 2793 and 3,146,801.

Missing Data
The prediction models used a cohort design that included any
patient who satisfied the inclusion criteria. We did not exclude
patients who were lost to follow-up during the 30-day period
after the valid outpatient or ED visit.

Statistical Analysis Methods
The model performance was evaluated using the standard
discriminative metrics: area under the receiver operating
characteristic (AUROC) curve (equivalent to the C statistic)
and area under the precision recall curve (AUPRC). The latter
is a useful addition to the AUROC when assessing rare outcomes
[14]. An AUROC of 1 corresponds to a model that can always
assign a higher risk to patients who will experience the outcome
compared to those who will not. An AUROC of 0.5 corresponds
to a model that randomly guesses a patient’s risk. Precision is
defined as the number of true positives over the number of true
positives plus the number of false positives. Recall is defined
as the number of true positives over the number of true positives
plus the number of false negatives. The precision-recall curve
shows the tradeoff between precision and recall for different
thresholds. The AUPRC performance is relative to the rareness
of the outcome. An AUPRC greater than the percentage of the
population with the outcome indicates that the model is
discriminating, and the greater the value (closer to 1), the better
the discrimination. The AUPRC gives some insight into the
false positive rate; a low AUPRC value indicates that the model
will lead to many false positives. The calibration was determined
by creating deciles based on the predicted risk and plotting the
mean predicted risk versus the observed risk in each decile. If
a model is well calibrated, the mean predicted risk will be
approximately equal to the observed risk for each decile.

We followed the TRIPOD statement guidelines [11] for
reporting the model validation throughout this paper. For
transparency, an open source package for implementing the
model on any OMOP-CDM data is available on GitHub [13].

Development Versus Validation
The differences between the C-19 index model development
settings and the validation settings include a different target
population and different data sets. Our validation design settings
were chosen to mimic the situation in which a clinician needs
to decide whether to admit a patient with COVID-19.
Importantly, we validated the C-19 index model on patients
with COVID-19.

The C-19 index was developed using a cohort design that
entered adult patients into the cohort on September 30, 2016,
and predicted whether they would be hospitalized for pneumonia
or proxies (influenza, acute bronchitis, or other specified upper
respiratory infections) in the following 3 months. Patients were
required to have data for 6 or more months, and patients who
left the database within 3 months of index and whose deaths
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were not recorded were excluded. In our external validation,
we used a cohort design but entered adult patients into the cohort
when they had an initial outpatient/ED visit for influenza (or
COVID-19) rather than a fixed date; also, we predicted
hospitalization due to pneumonia in 30 days rather than 3
months. We excluded patients with influenza or pneumonia
within the 60 days prior to index to restrict the data to initial
visits. This mimics the situation during the COVID-19 pandemic
in which clinicians need to decide whether to hospitalize a
patient initially presenting with COVID-19. We required 12
months of prior observation and did not exclude patients who
left the database within 3 months of index.

The C-19 index was developed using a subset of patients from
the MDCR database prior to the pandemic. This is a US claims
database containing patients aged 65 years or older. In this study,

we were able to externally evaluate the C-19 index model on
COVID-19 data, including adult patients under 65 years of age,
from South Korea, Spain, and the United States.

Results

Web-Based Results
The complete results of our analysis are available as an
interactive app [15].

The characteristics of the MDCR data (same data source as the
development data but different patient subset) and the HIRA,
SIDIAP, and VA data (patients with COVID-19) are displayed
in Table 1. The characteristics for all data sets used in the study
are available in Multimedia Appendix 4.

Table 1. Characteristics of patients at baseline in MDCR (database similar to the development data) and the data sets with COVID-19 data.

Target population hospitalization during 30 days after index by data setPredictor

VAcSIDIAPbHIRAaMedicare supplemental

NoneRequiredNoneRequiredNoneRequiredNoneRequired

58.0769.6449.6163.2845.0965.5376.4180.92Mean age (years)

0.220.32——d0.681.380.350.58Mean number of inpatient visits in prior 365 days

8095435946564552Male sex (%)

Fraction of patients with a history of each condition (not including index)

————0000Acute rheumatic heart disease

0.210.270.030.060.210.380.250.43Chronic obstructive pulmonary disease and
bronchiectasis

————000.020.03Chronic rheumatic heart disease

0.130.170.010.020.090.210.150.19Coronary atherosclerosis and other heart disease

0.240.380.010.030.130.310.180.24Diabetes mellitus with complication

0.320.500.050.130.200.430.320.38Diabetes mellitus without complication

0.120.230.010.020.070.200.200.37Heart failure

0.060.110.010.010.010.020.150.25Other and ill-defined heart disease

0.450.580.380.430.880.920.590.73Other specified and unspecified lower respiratory
disease

0.140.200.060.060.150.310.200.39Pneumonia (except that caused by tuberculosis)

————0.000.000.040.09Pulmonary heart disease

aHIRA: Health Insurance Review and Assessment.
bSIDIAP: Information System for Research in Primary Care.
cVA: Department of Veterans Affairs.
d—: Data not included due to a low cell count.

Model Performance
When C-19 was transported to patients with COVID-19, it
achieved AUROCs between 0.36 and 0.56; full details are
provided in Table 2. The AUROC and calibration plots are
presented in Figure 1. The internal discriminative performance
of the C-19 index was an AUROC of 0.73. When we validated
the model on patients in the MDCR database (patients aged ≥65
years with supplemental Medicare coverage), but with our target
population consisting of symptomatic influenza patients, the

performance was 0.65, a substantial drop from the development
performance of 0.73. The AUROC performance when externally
validated across other databases containing influenza patients
ranged between 0.40 and 0.68. Full results are presented in
Table 3, and the AUROC and calibration plots are presented in
Multimedia Appendix 5. As a sensitivity analysis, we also
validated the C-19 index on a target population consisting of
patients who had COVID-19 or symptoms of the disease in
2020; the results were similar and are presented in Table S2 in
Multimedia Appendix 1.
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Table 2. External validation of the COVID-19 vulnerability index model on COVID-19 data. The target cohort was patients with an outpatient or
emergency department visit with a COVID-19–positive record in 2020 and no symptoms in the prior 60 days.

AUPRCcAUROCa (95% CI)bOutcome size, n (%)Target size, nDatabase

0.070.56 (0.488-0.636)89 (4.48)1985HIRAd

0.030.3631223 (3.22)37950SIDIAPe

0.140.529 (0.473-0.584)149 (10.30)1446VAf

aAUROC: area under the receiver operating characteristic curve.
bThe 95% CI is reported when the outcome count is <1000.
cAUPRC: area under the precision recall curve.
dHIRA: Health Insurance Review and Assessment.
eSIDIAP: Information System for Research in Primary Care.
fVA: Department of Veterans Affairs.

Figure 1. Receiver operating characteristic and calibration plots of the COVID-19 vulnerability index model for the three data sets with sufficient and
suitable COVID-19 data. HIRA: Health Insurance Review and Assessment; SIDIAP: Information System for Research in Primary Care; VA-OMOP:
Department of Veterans Affairs– Observational Medical Outcomes Partnership.

Table 3. External validation of the COVID-19 vulnerability index model on influenza patient data (non–COVID-19 data).

AUPRCcAUROCa (95% CI)bOutcome size, n (%)Target population size, nDatabase

0.160.6832,987 (6.15)536,806Medicaid

0.0040.58 (0.55-0.60)728 (0.06)1,276,478Japanese Medical Data Center

0.210.6531,059 (12.47)248,989Medicare supplemental

0.040.5833,824 (1.07)3,146,801Commercial Claims and Encounters

0.070.6234,229 (2.07)1,654,157Optum EHRd

0.170.67105,030 (5.04)2,082,277ClinFormatics

0.040.52 (0.41-0.63)49 (1.58)3105Ajou University School of Medicine

0.060.63 (0.58-0.69)147 (2.34)6272Tufts Medical Center Research Data Warehouse

0.030.59 (0.45-0.72)29 (1.04)2793Australia Electronic Practice–Based Research Network

0.100.641121 (5.10)27,356Columbia University Irving Medical Center

0.000.40 (0.26-0.54)22 (0.08)29,132Integrated Primary Care Information

0.000.49 (0.45-0.52)512 (0.12)415,119SIDIAPe

aAUROC: area under the receiver operating characteristic curve.
bThe 95% CI is reported when the outcome count is <1000.
cAUPRC: area under the precision recall curve.
dEHR: electronic health record.
eSIDIAP: Information System for Research in Primary Care.
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Discussion

The C-19 index is available on the web as a tool to predict
severity in patients with COVID-19; however, it lacks validation
for this population. Our validation across three data sets with
sufficient COVID-19 data showed poor discriminative
performance (AUROCs <0.6) and calibration. We observed
similarly poor performance when the model was validated across
12 data sets with influenza patients, with the best AUROCs
<0.70.

Interpretation
The key finding of this study is the performance of the C-19
index model when transported to patients with COVID-19. The
model performance was poor (AUROCs 0.36-0.56) across the
COVID-19 data sets. The performance was worse than random
guessing in the SIDIAP data, which is consistent with the poor
performance seen when the model was applied to European
patients with influenza. The calibration plots show that the C-19
index consistently underestimated risk in the patients with
COVID-19.

The data sets used to perform the validation had very different
patient populations. MDCR had the oldest patient population,
and many patients in this data set had comorbidities. Compared
to MDCR, the CCAE and JMDC data sets presented healthier
and younger patients (mean age approximately 40 years) in the
target population. Although the MDCD data set contained
younger patients, these patients often had comorbidities (ie,
20% these patients had chronic obstructive pulmonary disease,
11% had heart failure, and 17% had a history of pneumonia).
The rate of hospitalization ranged greatly across the data sets,
with values between 0.1% (JMDC) and 12.4% (MDCR). The
rate of the outcome in the data set used to develop the C-19
index was 0.23%, much lower than that in the MDCR data set
used to validate the model in this study. This is because our
study was restricted to patients at the point they had an
outpatient or ED visit due to influenza or COVID-19. Although
five data sets contained patients with COVID-19, only four
(VA, HIRA, SIDIAP, and CUIMC) contained sufficient data
for external validation. The result of the C-19 index model when
applied to patients with COVID-19 in CUIMC was poor, with
an AUROC <0.5; however, this data set consisted mostly of
hospitalized patients and therefore did not seem to be suitable
for validating a model that predicts hospitalizations.

We chose a target population of symptomatic patients because
this resembles the situation in which COVID-19 prediction
models may be clinically implemented during the pandemic:
clinicians would not be likely to admit asymptomatic patients.
This suggests that the internal C-19 AUROC estimate, which
was evaluated within the general population rather than among
people with symptoms, may be optimistic compared to its use
in a realistic setting due to the inclusion of many healthy patients
in the model development data. When applied to predict
hospitalization in influenza patients across US data, the
discriminative performance ranged between 0.58 and 0.68. The
performance was worse on the CCAE data set with younger
patients, likely because age is a key predictor in the model.
When the C-19 index was transported across non-US data sets,

the discrimination was poor to reasonable in the Australian and
Asian data (0.52-0.64) and poor in the European data (0.4-0.49).
The European data were extracted from general practice settings,
but the C-19 index model was developed using US claims data.
Given the differences in clinical settings, it is not surprising that
the performance was poor. This finding highlights that models
often may not transport to different health care settings. The
AUROC of 0.36 when the C-19 index model was validated in
SIDIAP was worse than random guessing, and inverting the
predicted risk would lead to an AUROC of 0.64. This may be
a result of the C-19 including age interaction terms, which
resulted in a negative age coefficient. Table 1 shows that in
SIDIAP, the model’s age-interacting comorbidities are not
recorded as often as in the other databases. As a result, younger
patients may have been assigned higher risks than older patients
in SIDIAP.

The calibration was poor when applying the C-19 to COVID-19
data. This is not unexpected, as it is known that patients with
COVID-19 have a higher risk of hospitalization due to
pneumonia than the general COVID-19–free population. The
calibration could likely be improved by performing recalibration
using a sample of data from patients with COVID-19.

Implications
The results provide extensive insight into the performance of
the logistic regression C-19 index when used for COVID-19
data. The external validation uncovered that the logistic
regression C-19 index model is unreliable when predicting
hospitalization risk for patients with COVID-19. Given this
result, we do not recommend using the logistic regression C-19
index to aid decision-making during the COVID-19 pandemic.
The model did not appear to transport to patients with
COVID-19, highlighting the importance of externally validating
models, especially models whose target population differs from
the development population.

There are numerous potential reasons why the logistic regression
C-19 index model failed to predict hospitalization due to
pneumonia in the investigated patients with COVID-19. The
first reason may be that the model was developed on patients
aged 65 years or older but was applied to patients aged 18 or
older. Age had a negative coefficient in the model, which may
have caused issues when the model was applied to younger
patients. A second reason may be due to incorrect phenotyping
of the predictors. We matched the SNOMED codes to the CCSR
ICD-10 codes provided; however, the predictors may require
database-specific phenotypes due to coding differences across
data sets and health care settings. This may explain the poor
performance in the European data sets, which were obtained
from databases that may record entries differently than those in
the United States. A third reason is the study design. The C-19
index was developed to predict hospitalization from a set date
in 2016; however, we validated it in a target cohort of
symptomatic patients with an outpatient or ED visit, as this
more closely matches the clinical use case of the model.
Therefore, we were likely to have a sicker population, in which
discrimination may have been more difficult. A fourth potential
reason is that the C-19 index model was developed using data
prior to 2017 but was validated on data from 2020: temporal
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changes and concept drift may have negatively impacted the
performance. Although we do not know the reason for the
unreliability of the C-19 index model on patients with
COVID-19, we were able to quantify it by large-scale external
validation across a network of data sets. In future work, it would
be beneficial to develop techniques that can identify reasons
for poor external validation performance, as this may inform
new best practices for model development.

This study highlights the importance of performing extensive
external validation across different settings. During times of
uncertainty, such as pandemics, medical staff who are under
pressure to make important decisions could benefit from
implementing vetted prediction models. However, it is important
to gain an unbiased and reliable evaluation of a model’s
performance across numerous patient populations before the
model is used. Internal validation can often be biased (eg, the
population used to develop the model does not match the
intended target population) and can provide optimistic
performance estimates (eg, a poor design or small data set may
result in overestimated discriminative performance). The
approach used by the OHDSI collaboration enables efficient
external validation of models across multiple data sets, and this
is a valuable resource when urgency is required.

Limitations
A common issue when using observational health care data,
especially across a network of databases, is the difficulty in
developing phenotypes that are valid on all data sets. In this
study, we used predictor definitions given by the researchers
who developed the model. However, these definitions may not
transport across all the data sets and may account for some of
the decrease in performance. We were also limited to validating

the less complex C-19 index model due to the large number of
variables and lack of transparency for the more complex models.

The C-19 index model used in this paper to demonstrate the
importance of external validation may have limited use for
medical decision-making. Other COVID-19 models, such as
those including physiological measurements, may be making
more clinical impact. However, we choose the C-19 index model
because it was available early in the pandemic and was being
advertised to the public as a useful tool while being reported in
a preprint paper with no formal peer review.

Conclusions
We have demonstrated the importance of implementing external
validation in multiple data sets to determine the reliability of
prediction models. We picked a newly developed model, the
C-19 index, that aimed to predict which patients with COVID-19
are at risk of severe complications due to SARS-CoV-2. The
model reported an internal AUC of 0.73 but was deemed to
have a high risk of potential bias [2]. The C-19 index addresses
an important issue that could have greatly aided decision-making
during the COVID-19 pandemic; however, its performance in
patients with COVID-19 was unknown. Our results show that
the C-19 index performs poorly when applied to newly
diagnosed patients with COVID-19 in Asia, Europe, and the
United States. Overall, we suggest that the model currently only
be used to predict hospitalization due to pneumonia in older
patients in the United States. The results of this study
demonstrate that internal validation performance should be
considered optimistic estimates and that a prediction model
requires validation across multiple data sets in the target
population where it will be used (or a close proxy) before it
should be trusted.
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Abstract

Background: In the context of the COVID-19 outbreak, 80% of the persons who are infected have mild symptoms and are
required to self-recover at home. They have a strong demand for remote health care that, despite the great potential of artificial
intelligence (AI), is not met by the current services of eHealth. Understanding the real needs of these persons is lacking.

Objective: The aim of this paper is to contribute a fine-grained understanding of the home isolation experience of persons with
mild COVID-19 symptoms to enhance AI in eHealth services.

Methods: A design research method with a qualitative approach was used to map the patient journey. Data on the home isolation
experiences of persons with mild COVID-19 symptoms was collected from the top-viewed personal video stories on YouTube
and their comment threads. For the analysis, this data was transcribed, coded, and mapped into the patient journey map.

Results: The key findings on the home isolation experience of persons with mild COVID-19 symptoms concerned (1) an
awareness period before testing positive, (2) less typical and more personal symptoms, (3) a negative mood experience curve,
(5) inadequate home health care service support for patients, and (6) benefits and drawbacks of social media support.

Conclusions: The design of the patient journey map and underlying insights on the home isolation experience of persons with
mild COVID-19 symptoms serves health and information technology professionals in more effectively applying AI technology
into eHealth services, for which three main service concepts are proposed: (1) trustworthy public health information to relieve
stress, (2) personal COVID-19 health monitoring, and (3) community support.

(JMIR Med Inform 2021;9(4):e23238)   doi:10.2196/23238
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Introduction

COVID-19
In December 2019, a new type of coronavirus causing acute
respiratory syndrome (COVID-19) was discovered in Wuhan.
COVID-19 spread rapidly around the world and was designated
as a Public Health Emergency of International Concern by the
World Health Organization (WHO) on January 30, 2020 [1].
By 2 AM CEST (Central European Summer Time) on June 29,
2020, there had been 9,962,193 confirmed cases and 498,723
confirmed deaths [2]. Although lockdown measures have been
eased in many countries, a WHO COVID-19 situation report
(June 28) still shows a rising trend [3]. This worldwide pandemic
has had a far greater impact than expected, and the upward trend
is likely to continue in the near future until effective vaccines
and antivirals are introduced.

Home Isolation for 80% of Persons With Mild
COVID-19 Symptoms
Looking back at the early months of the outbreak, the rapid
spread of COVID-19 and the growing number of patients placed
a burden on unprepared medical systems worldwide [4,5]. Some
countries such as China and Spain set up mobile cabin hospitals
to relieve the pressure on their hospitals [6-8]. However, to
ensure that the limited health care resources were spent on
urgent cases involving severe symptoms, most countries decided
that persons with mild symptoms could be isolated at home for
a self-recovery trajectory [9]. According to the early WHO
studies, about 80% of COVID-19 cases present mild symptoms,
and most of these patients should typically be able to recover
at home [10-13]. Therefore, disease control centers in various
countries (eg, the United Kingdom, the United States, the
Netherlands, Italy, and Canada) directed persons with mild
COVID-19 symptoms to stay at home and contact their general
practitioner by phone instead of directly visiting the hospital.
New guidelines for home care were developed by the WHO
and countries’ public health departments to present the proper
measures for the home care of patients [13-17].

Strong Demand for eHealth Services
As an alternative solution to conventional health care services,
the uptake of eHealth services rapidly expanded during the
COVID-19 pandemic [18]; the main fields of application have
been telemedicine, remote patient monitoring, and triage and
risk assessment [19]. Enabling better response to the pandemic,
such digital health care solutions not only reduce the risk of
disease transmission thanks to the provision of remote medical
care services but also hold the promise to improve the mental
health of isolated patients with distance guidance [18-20]. Initial
studies have shown that, since the outbreak began, the frequency
of internet searches related to “online medical care” has
increased significantly, and the public’s interest in eHealth is
rising as the number of infected cases climbs [21,22]. Although
the limited capacity of the existing eHealth service systems
cannot immediately meet this growing demand [22], there is no
doubt that the COVID-19 pandemic will impact the current
service provision of medical institutions and lead to an
accelerated transition to digital health care.

Potential of Artificial Intelligence
The large number of digital health applications that have been
released in response to the COVID-19 outbreak includes a
growing number of artificial intelligence (AI) tools; these
include tools that make use of natural language data processing
and machine learning with big data lakes, such as in decision
support agents, advanced self-diagnoses tooling, and AI-enabled
mental health interventions [23-27]. These AI tools have the
potential to add new service options to remote health care modes
such as remote assessment, remote diagnosis, remote interaction,
and remote monitoring [24]. The main touchpoints of AI
technology appeared to be mobile phone apps, wearable devices,
and chat robots [25]. Prior research in the context of public
eHealth and disease prevention has found that AI technology
improves patients’ health conditions more efficiently [24].
Moreover, application of AI appeared to enable more
personalized care pathways based on personal health profiles
[18]. The COVID-19 pandemic requires existing health care
models to have better integration, delivery, and distribution
capabilities, and thus, new requirements for AI in eHealth have
been put forward [18,28,29]. Thus far, the main fields that AI
technology has been applied to during the pandemic is early
detection and diagnosis of infections, personal contact tracking,
case and mortality prediction, drug and vaccine development,
reducing the workload of medical staff, and other aspects of
controlling and managing the spread of the virus [23]. Overall,
the emerging AI tools have the potential to perform a useful
role in combating COVID-19, and in particular, AI has the
potential to improve the quality of home care by providing more
personalized, sophisticated, and continuous medical services
[18,24].

A Lack of Understanding of the Real Needs: Home
Isolation Experiences
Despite the potential of AI in digital health services, many
attempts to integrate AI technology into health have failed
[24,30]. The primary reason for this is that the development of
AI tools and applications is predominantly focused on technical
and functional aspects, and largely ignores the demands of users
and contextual aspects [31]. Data scientists and health
professionals usually start developing AI technology without
exploring the patient perspective in advance, that is, the health
experience and needs of the users. Often users are only involved
in providing feedback after a system solution test is carried out
or after the final digital service has been released [30]. However,
without sufficient understanding of the user experience, AI
service applications will not be capable of solving the real and
serious problem of a lack of useful value [32,33]. In other words,
the real needs of patients with mild symptoms of COVID-19
have not yet been identified. Illustrative of this lack of
understanding the real needs, most of the current machine
learning algorithms behind decision support tools are too opaque
and difficult for users to reconstruct [34]. When AI machines
provide treatment suggestions, the mysteriousness of this process
basically causes users, including health professionals and
patients, to question the result [35]. If AI technology is expected
to be used to improve existing eHealth service capabilities, the
key actors should focus more on the users rather than technology
to reduce the gap between technology and user, and to improve
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the usefulness of AI [24]. Corresponding findings related to
cancer conditions indicated that AI technologies provide a way
to transition from a traditional aperiodic “snapshot” monitoring
approach to a continuous and longitudinal monitoring paradigm,
increase patients’ engagement in their care, and facilitate
doctor-patient interaction pathways [36]. In particular, a study
that applied machine learning and natural language processing
techniques on social media data from online cancer support
groups provided new insights toward informed decision making
on personalized health care delivery [37]. Likewise, an
increasing amount of AI demonstrators evidence a new service
potential of AI applications that are hardly used yet in enhanced
service providing. To be able to meet personal patients’ needs,
in-depth research is required.

Design for Better Supported Home Isolation
Experiences
To overcome the barrier of the lack of knowledge on what is
useful and what is not, AI research and development should
involve user-centered design methods to gain insights into the
real experiences and needs of users [38], as well as apply a
person-centered perspective to construct an explainable AI and
make the AI process more transparent and comprehensible to
multiple users, including patients and health professionals [39].
As Xu [32] stated, “a useful AI is defined as an AI solution that
can provide the functions required to satisfy target users' needs
in the valid usage scenarios of their work and life,” which means
the user experience should be deeply understood before the AI
development starts. However, most of the current research is
mainly focused on persons with severe COVID-19 or patients
treated at hospitals. We found no literature that explicitly
describes the home isolation experience of persons with mild
COVID-19 symptoms. Thus, knowledge of this area is still
required. This paper intends to address this gap by elaborating
on the entire process of the home isolation experience of people
with mild COVID-19 symptoms—from infection to
recovery—and then extracting in-depth insights for AI concepts
in eHealth. Specifically, our research question is how can we
improve the home isolation experience of persons with mild
COVID-19 symptoms through eHealth services with AI
technology?

Methods

Design Research
We employed a design research method in which a qualitative
approach was used to explore the home isolation experience of
persons with mild COVID-19 symptoms because this is a
relatively new field [40]. Our design research had a
phenomenology perspective that rests on the philosophical
assumptions of studying people’s experiences in their daily
living, viewing these experiences as conscious [41]. This
phenomenon study provides a real and comprehensive
description of the home isolation experience of persons with
mild COVID-19 symptoms, which is needed to obtain insights
into their user needs and tasks [40], and to find touchpoint
interaction needs for the useful application of AI in eHealth.

Patient Journey Mapping
Patient journey mapping is a method of design research for
developing health care services from a patient perspective
[42-45]. The purpose is to capture insights into a patient’s
activities, interactions, feelings, and motivations throughout the
personal health care journey, and to generate insights into user
values and dilemmas that lead to the identification of real and
underlying problems that must be solved through the successful
application of innovative solutions [42,45]. The final journey
map visualizes the commonly shared patient experiences and
includes both physical, rational, and functional aspects of the
patient experience as well as the emotional, interactional, and
feelings aspect of patient experiences [42]. The design quality
of the patient journey map is determined by its properties to
visualize the knowledge and insights about the patient’s
experience and enable sympathy of the viewers by placing them
in the perspective of the patient [44].

Prior research exemplified concise journey maps of visually
compelling stories, distilling research into all aspects of personal
experience and informing the reflections on the steps and
approach laid out in the patient journey method [42]. The design
of the patient journey map in this study contributed new
knowledge on the home isolation experience of persons with
mild COVID-19 symptoms and thereby provided the view of
the patient and enabled a deep understanding of their whole
experience from the onset of illness to recovery [45]. The patient
journey map depicts all steps of the journey to gain a better
understanding of the whole journey, taking the arising needs of
patients into account, and uncovers new research fields for
relevant AI applications [46].

Data Collection
Data on the home isolation experiences of persons with mild
COVID-19 symptoms was collected from the top viewed
personal video stories on YouTube and their comment threads.
As researchers, the global pandemic meant that we were bound
by the necessity to engage in social distancing and limit
interpersonal contacts. Therefore, we chose to use personal
video stories instead of interview techniques. YouTube, one of
the major online video sharing platforms, has become recognized
as a valuable social media source for personal stories about
health and disease [47]. We chose YouTube as the data source
because, compared to other social media platforms such as
Twitter, Instagram, and Tik Tok, its content richness and the
completeness of the stories presented on it enables more detailed
data collection about an entire journey experience. Videos also
allowed us as researchers to better understand the feelings of
the patients from their nonverbal movements and expressions
[48]. The personal video stories and comment threads provided
us with a new research opportunity to investigate actively shared
experiences instead of relying on actively obtained experiences
from interviews. From a researcher’s perspective, YouTube
videos eliminated research bias and brought to light unexpected
information that those posting them consider important from
their personal perspective. The difficulties involved in the use
of YouTube concerned the analysis of different narrative
structures that posed challenges in extracting, coding, and
synthesizing commonly shared experiences.
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Sample Strategy
Purposive sampling was selected for the in-depth study of the
experiences of persons with mild symptoms who were in home
isolation [49]. As most YouTubers are young people, who
account for a large proportion of persons with mild symptoms,
they do not represent the total population of persons with mild
COVID-19 symptoms across socioeconomic classes and ethnic
and cultural groups [47]. We were likely to find personal video
stories on home isolation experiences from the young
YouTubers population representation because they are more
likely to become the first embracer of new technology-based
services [50]. The YouTubers we selected for the study after
using the search terms “COVID-19,” “experience/personal
stories,” and “home isolation” were, first, persons who shared
their COVID-19 health conditions over a period of consecutive
days or weeks. Second, we looked for influential videos with
more than 100,000 views. Third, we selected stories that were

perceived to be authentic and did not have any negative
comment about their authenticity from more than 100,000 views,
and we excluded those videos that did. In addition, we checked
if the content stayed available (dated December 16, 2020) after
the YouTube COVID-19 Policy and Security. Fourth, to achieve
data saturation, we selected 5 as a suitable sample size to cover
the wide range of possible experiences [51]. To some extent,
this study is representative. In particular, the use of the YouTube
platform comes with constraints for validity, as it can only
represent the internet population and, in our sample of the videos
with the most viewers, those who use the English language and
live in the region of the Americas and Europe [47,48]. Further
constraints relate to the fact that upper middle class Americans
of European decent are more likely to post [47]. Table 1 lists
the characteristics of the sampled personal video stories. To dig
further into how online social support influences persons with
mild COVID-19, we also collected and analyzed the top 50
popular comments on each of the videos.

Table 1. Sample of personal video stories and comment threads.a

Comments,
n

Dislikes, nLikes, nViews, nVideo
length
(MM:SS)

Upload
date in
2020

YouTuber’s
region

Language
of personal
video story

Mild COVID-19
health and well-be-
ing condition (when
uploaded)

YouTuber’s
age (years)

No.

708293558,000661,84611:48March 10AmericasEnglishSick20-301

2350 + 725567 + 506677 +
1629

395,069
+ 61,749

10:03 +
13:37

March 25AmericasEnglishAlmost recovered20-302

12083335637248,65943:15April 11EuropeEnglishAlmost recovered20-303

13152543527183,71111:27April 9AmericasEnglishAlmost recovered20-304

331526315,000246,81410:50April 5EuropeEnglishSick415

aData collected from YouTube on May 26, 2020 (checked on December 16).

Ethics
This study was reviewed by the Human Research Ethics
Committee of the Delft University of Technology [52]. In our
sample strategy, we did not involve vulnerable groups of
children or patients older than 65 years. As the personal video
stories are published on the YouTube platform, we considered
that they, in principle, constitute a publicly available data source
for research [53]. For further confirmation, we emailed all 5
YouTubers to obtain consent and received 2 replies with
affirmative answers. To minimize potential harm, we kept their
identity anonymous and did not describe their characteristics
and contexts in detail.

Data Analysis
In the data analysis, triangulation was used by clustering the
data from the observation and the transcripts of videos and the
comment threads [54].

Patient Journey Mapping
To fully understand the experience of these patients during
home isolation, both generic and personalized experiences were
analyzed based on the similarities and differences between the
patients, respectively [42]. The analysis of the indicated stage
duration was visually mapped to make the similarities and
differences between personal journeys transparent. The

symptoms of each patient at different stages were analyzed and
mapped (see Multimedia Appendix 1).

From the transcript and narrative structure of each personal
video story, quotes about their doing, feeling, and thinking were
extracted and initially mapped separately into 4 personal journey
maps. The stages were framed and labeled based on the
similarities of activities and interactions across the first 4
personal journey maps. We generated the commonly shared
journey map and added one more personal video story (the fifth
YouTuber video), extracted the quotes, and analyzed the
activities and interactions to check whether we had reached
theoretical saturation on the generated journey map (see
Multimedia Appendix 2).

Commonly mentioned symptoms come first. We then detailed
the steps within each stage based on the “doing” quotes in
transcripts. Based on the combination of data on feelings, steps,
and symptoms, the mood experience curve was created to clarify
the generic mood experience of the patients during the whole
journey, from when they became aware of incipient symptoms
to quarantine and self-recovery. Since not all of these persons
with mild COVID-19 went through all steps, we bolded the
video timeline to indicate which steps each patient actually
experienced. The video timeline analysis of the video duration
of each stage per patient was mapped with the percentage
(divided by the total video duration), indicating which stages
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the patient attached more importance to (see Multimedia
Appendix 1). Finally, from the analysis of the touchpoint
interactions, the specific services and products were clustered,
categorized, and mapped on the resulting patient journey map
(visualized in Multimedia Appendix 2).

Comments Thread Analysis
The YouTubers usually mentioned the purpose of publishing
the video at the beginning or the end of the video, and the
comments were responses to the YouTubers. From the more
than 1000 comments per video, we selected those 50 comments
that had interaction in the form of a follow-up comment from
the YouTuber.

We thus analyzed the video purpose together with the comment
threads to figure out the interaction between the YouTuber and
the viewers, and combined these data sources to analyze the
underlying purpose for sharing the home isolation experience
in depth. In the transcripts, we annotated the quotes concerning
why they wanted to post the video by means of initial coding,
then classified the purposes mentioned by different YouTubers
and synthesized them into a classification [55] of 4 themes in
Multimedia Appendix 3.

Since each comment expressed more than one meaning and
there were overlaps between different comments, we used an
Excel (Microsoft Corporation) table to code the comment
threads. First, we put the top 50 comments on each video in the
first column in an Excel table, put the initial codes in the first
row, and marked the cells where they intersected. Second, we
counted how many viewers mentioned each code. Finally, we
categorized the codes into 13 themes (see Multimedia Appendix
3) and pointed out how many people mentioned each theme in
the 250 comments.

Touchpoint Needs Analysis in Relation to AI in eHealth
Services
Based on this data analysis of the patient journey map and
interaction between YouTubers and viewers, we synthesized
key insights by inductive reasoning [56] and clustered key
insights into 13 categories, leading to three identified needs of
persons throughout the journey of home isolation (see
Multimedia Appendix 4).

Results

Key Findings
The patient journey in Multimedia Appendix 2 maps the
commonly shared home isolation experiences of persons with
mild COVID-19 symptoms. The first key findings concerned
an extensive awareness period before testing positive,
experiences of less typical and more personal symptoms, a
severe negative mood experience curve, and inadequate home
health care service support for patients with mild COVID-19
through all stages. Second, the key finding from the analysis of
the video’s purpose and the comment threads concerned the
benefits and drawbacks of social media support for patients
with mild COVID-19. With the third and final key findings,
main touchpoint needs during home isolation were synthesized
to provide opportunities for AI eHealth concepts.

Awareness Period Before Testing Positive
The stories on personal experiences revealed a considerable
period during which the YouTubers became aware of the
outbreak of the virus and its public health impact before they
related their symptoms to COVID-19. Although most of these
persons (P2, P3, and P4) became highly aware of the public
health threat (after the prestage of unconsciousness) in less than
a week, some of them had low awareness (P1 and P5) and took
much longer to do so—from 2 weeks to as long as 2 and a half
months (stage 1). All of them went through a period of up to 4
days during which they related the public health situation to
their personal condition and symptoms (stage 2), followed by
1-2 days for the testing stage (stage 3). The home isolation
period (stage 4) lasted at least 1 and a half weeks but was around
1 month for most (P1 and P2). As none of the YouTubers had
yet fully recovered at the conclusion of their video stories, the
self-recovery period is expected to last even longer.

Less Typical and More Personal Symptoms
Based on the overall analysis of similarities and differences,
the symptoms reported in the personal stories appeared to be
different from one another. Each of the patients appeared to
experience their own specific symptoms. All in all, almost 50
different symptoms were reported, ranging from a mild
headache, loss of smell, a stomachache, high temperature, and
dizziness to the more critical symptoms of fainting, shortness
of breath, and high heart rate (Multimedia Appendix 1, bottom
layer). In addition, the occurrence of similar symptoms also
appeared to be different over time. For instance, P1 and P2 only
had a fever in stage 2, while P4 had a continuous fever until the
end. In contrast to these individually experienced physical
symptoms, a general consensus was found on negative feelings
and deteriorating mood experiences.

Negative Mood Experience Curve
The consensus on the negative feelings that all the YouTubers
experienced concerned severe anxiety about dying and related
feelings of depression and despair.

I knew I was gonna get sick and we'd go through the
process that we're seeing on TV, go to the hospital,
have complications and die. This is horrible to think
about. It's so, so scary [P2]

From the moment that they experienced their first symptom,
they experienced severe negative moods that became
dramatically worse when the symptoms continued to deteriorate,
reaching the lowest level just before testing positive. (The mood
experience curve is diagrammed on the top layer of the patient
journey in Multimedia Appendix 2.) Surprisingly, testing
positive was commonly experienced as an emotional relief.
After this, their overall negative mood improved slowly but
gradually during the home isolation period of self-recovery.
That said, some of them experienced another period in which
they felt emotionally broken again and then improved afterward.
It is worth noting that, although not all of the patients went
through the same ups and downs, overall, they all faced severe
feelings of depression and mood fluctuations throughout the
journey and especially in stages 2, 3, and 4.
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The main differences were that P3 and P5 did not repeatedly
look for medical help with no improvement in the second stage
while P1 and P2 did. P3 was the only one who had not been
tested and did not worry about having limited access to resources
because her sister is a doctor and can get timely 24-hour
professional help.

Inadequate Home Health Care Service Support
As shown in Multimedia Appendix 2, the patient journey
followed several distinct stages: prestage with unconscious and
low awareness of the public health risk posed by the virus
outbreak, experiencing suspected symptoms, relating symptoms
to COVID-19, testing and confirmed positive, and quarantine
and self-recovery.

Prestage: Unconsciousness
The patient journey starts in the stage in which the patient is
still unaware of the situation (prestage of unconsciousness).
This is the stage that the patients tried to recall to reconstruct
how they were infected. All had been to public areas and
crowded places such as supermarkets, cafés, and party locations.

I was at a party at one of the hotels – there are
probably over a thousand people [P1]

Unaware of the spread of the virus and the danger of becoming
infected, most of them also continued to visit public places.

The thought that I could have been infecting other
people is just horrific to me [P5]

This situation caused particular feelings of guilt about their
personal and public responsibility for having infected others
before being diagnosed with COVID-19 (P3, P4, and P5).

First Stage: Experiencing Suspected Symptoms
At the beginning of the first stage, before experiencing any
symptoms, some of the patients already became anxious about
the news of the COVID-19 outbreak. When the first symptoms
were appearing, the mood of most of the patients began to
decline rapidly, worsening as they experienced more physical
symptoms and paid more attention to media coverage of the
abnormality of the hospital situation.

Before my family got sick, my anxiety about all this
was pretty high [P2]

Those who were highly aware of COVID-19 could quickly
relate their own symptoms to COVID-19. Others mentioned
they had little knowledge about COVID-19 until the moment
when they got tested and diagnosed positive.

I'd been sick for two months and I still did not have
an answer, I still had all the symptoms [P1]

This had major consequences, as they had not taken enough
appropriate protective measures and infected several others—the
longest period a person went without diagnosis was 2 and a half
months.

Second Stage: Relating Symptoms to COVID-19
In the second stage, when the YouTubers started to realize that
they had a high possibility of being infected, some could accept
it, while others could not.

It's not corona, I think it's laryngitis, fingers crossed
[P3]

Most became highly anxious and even panicked due to the
overwhelming media coverage and “death statistics” on patients
with severe COVID-19 in hospitals. They started to have dark
thoughts and different levels of stress up to severe depression.

Since I got sick who would a guessed, wrote down a
few notes cuz my mind is like scrambled [P2]

These persons indicated that they paid too much attention to
COVID-19, and the overwhelming negative information led
them to live in constant anxiety. In addition, all of these persons
experienced a lack of medical help and guidance. Due to this
lack of help, some chose to endure all the symptoms to save
medical resources for others.

I didn’t necessarily want to go to the emergency room
because I didn't want to take resources away from
people who needed it [P4]

The only positive spark that provided a little comfort was the
help they received from their family and friends.

Then all of a sudden I just fainted so I got up and I
tried to go get my roommate in case anything
happened [P4]

Overall, due to the inadequate and ineffective support from
professional health care, most of these people constantly worried
about COVID-19 and its terrible consequences. All reached the
lowest level of severely negative mood at the end of this stage.

Third Stage: Testing and Confirmed Positive
In the third stage, when the persons began to seek clinical
support to test their suspicion that they had the COVID-19 virus
themselves, most experienced an improvement in their mood.
However, some of the others with mild symptoms were not
diagnosed with COVID-19 at the first consultation due to a lack
of clinical knowledge about mild COVID-19.

I did all the tests and he could not figure it out, now
the one thing he did know was I was still having night
sweats [P1]

These persons became severely upset about the ineffective
treatment they personally experienced, and their videos provided
examples of incorrect diagnoses and repeated visits to health
professionals.

He did a bunch of tests and they all came back
negative. They didn't test me for COVID-19 though
because they just said that they had to keep that for
people who really needed it [P4]

Fourth Stage: Quarantine and Self-recovering
In the fourth stage of home isolation and self-healing, the mood
of all the patients tended to fluctuate several times, as they
refrained from social interaction for a long time and had unstable
health conditions. They still felt depressed when their health
deteriorated again during isolation.

It's definitely the sickest I've ever been in my adult
life [P5]
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They required professional guidance on the proper measures to
take while in quarantine at home because they were concerned
about infecting family members.

We talked to the doctors and they said like there was
no reason that I had to stay separated from everybody
(whole family infected) [P2]

The main reasons for an improvement in mood were that the
symptoms had been mild and were getting better, and the
patients were taking on more activities and gradually returning
to a normal life. The reasons for feeling more negative were the
abnormality of life in home isolation, new severe symptoms,
and ineffective treatment. Overall, the mood of these patients
improved particularly after they received social support and
effective treatment.

Benefits and Drawbacks of Social Media Support
The findings from the analysis of the YouTubers’ purposes for
sharing their videos and the comments made by viewers
confirmed the benefits and drawbacks of the social sharing of
public health experiences. The video purpose analysis revealed
the commonly shared purpose of going through a difficult time
together and receiving support from the audience. Reasons for
sharing their personal story were to encourage viewers to pay
more attention to protective measures and take social distancing
seriously in public; to help viewers relieve their excessive
anxiety and fear, and gain a better understanding of mild
COVID-19; and to help others with similar experiences by
sharing their real condition and self-recovery advice.

The findings from the comment analysis showed that the
majority of the 250 commenters (n=166, 66.4%) expressed their
likes and thanks to the YouTubers for sharing real COVID-19
experiences and encouraged and blessed them. Of the
commenters, 25.2% (n=63) also shared their experiences and
feelings, indicating that they can relate to the YouTubers. After
watching the video, 13 of them said that they actually realized
that they might have mild COVID-19 too. Some (n=26, 10.4%)
indicated that they became scared and depressed. A minority
(n=48, 19.2%) talked about the public health response to
COVID-19 from governments, media, and the public, and asked
people to take it more seriously. Home remedies such as vitamin
C, elderberry syrup, lemons, and honey were suggested by 7.2%
(n=18) of the commenters. Only 5 health care professionals
commented. Inappropriate behavior such as going for a walk
before having fully recovered were pointed out by 9.2% (n=23)
of the commenters, and some (n=10, 4%) of the commenters
made jokes.

In summary, the positive influence of personal video stories is
that they reach people who are not familiar with the disease yet,
they encourage viewers to take mild COVID-19 more seriously,
and they provide some emotional relief; their negative influence
is that they can spread disinformation and panic.

Main Touchpoint Needs During Home Isolation
Based on these key insights of the patient journey map and
interaction between YouTubers and viewers, three needs were
identified.

Touchpoint Need 1: Stress Release
Concerning the touchpoint interactions, the patients commonly
mentioned the difficulty of obtaining trustworthy information.
Although information about COVID-19 was easily available
from various sources such as TV, friends, and websites, the
quality of these sources varies.

I think someone sent me yesterday an article with no
one delaying conditions dying but it's still kind of like
really freaks you out when you're home and can’t
breathe [P3]

The patients found it hard to judge the truthfulness of news. An
incorrect perception of the disease resulted in continued
aggravation of the symptoms and brought a strong sense of
uneasiness and anxiety to the patients with COVID-19.

When symptoms first appeared, the YouTubers wanted to find
out the cause of their physical discomfort. Due to their lack of
knowledge of all the COVID-19 symptoms at the beginning of
the outbreak, many of them behaved as they would with a
normal disease. However, their continuous uncertainty,
ineffective treatment, and deteriorating condition caused them
fear and anxiety. Care professionals working in regular health
care services were not able to diagnose patients with mild
COVID-19 with atypical symptoms, which led to a long period
of uncertainty (the longest of which was 2.5 months).

Touchpoint Need 2: Personal Health
Patients with mild COVID-19 had a need for professional
medical guidance throughout the journey, beginning from when
the symptoms appeared, with a focus on different needs at
different stages.

Everyone's kind of dealing with like some symptoms
but there's no confirmation because they couldn't give
us the testing, so this is kind of where we are at until
this next super weird symptom hit [P2]

The strong feelings of uncertainty and stress due to negative
thoughts caused an urgent need for testing; rejection could
increase the negative impact on mental health. After testing
positive, some of the patients became excited when their
physical condition temporarily improved and then experienced
mental breakdowns when their condition became worse again.

I just isolated at home and [did] not go out at all until
three days after all the symptoms disappear[ed] [P2]

It is hard for people to judge the point of recovery without a
professional diagnosis.

Touchpoint Need 3: Social Support
In all their personal video stories, the YouTubers mentioned
that their families, friends, and viewers provided them with
plenty of help, ranging from basic support for living to emotional
support for coping with anxiety. When they first felt a strong
sense of insecurity due to the onset of weird symptoms, they
longed for help from their families and friends to obtain basic
necessities like food and medicine.

I find it hard to do little things like clean my teeth
then go for a shower. I couldn't get my hands on any
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paracetamol for weeks. I really don't know what I
would have done without it [P3]

From the moment they suspected they were infected and went
into home isolation, their internet communication became more
important.

I'm separated from my family, I can't see my son or
my wife [P5]

I am on the phone with my friend and Facetime
regularly [P3]

Most of them could no longer work, study, or engage in their
usual hobbies, and they experienced feelings of boredom and
frustration about this, although some started to enjoy a new
hobby. Overall, all of these people felt lonely and helpless
during isolation. They shared their story on YouTube with the
aim of helping others who had COVID-19.

Discussion

Principal Results
This study clarifies the stages, symptoms, mood curve, and
touchpoint needs of persons with mild COVID-19 symptoms
through mapping the patient journey. This design research of
the systematic and in-depth analysis of how patients with mild
COVID-19 told their personal stories in their self-shared videos
and the comment threads found that persons with mild
COVID-19 usually took an extensive period to realize that they
were personally experiencing the public health threat of the
virus outbreak. They all faced the same problems of severe
negative and fluctuating moods while dealing with different
symptoms. They lacked adequate and effective home health
care service to overcome adversity. The home-isolated persons
with mild COVID-19 symptoms turned to their family and
friends not only for social support but also for medical assistance
and obtained additional emotional support by sharing their
stories on social media. Three principal touchpoint needs were
identified. First, there is a need to relieve the anxiety caused by
the virus by providing reliable public health information.
Second, more personal health monitoring and guidance is needed
to address personal symptoms. Third, more mental health
guidance and social support is required to positively influence
the severe moods and emotional problems of those with mild
COVID-19.

The theoretical implications concern a new contribution to better
understand underserved persons with mild COVID-19 symptoms
during their home isolation. As a contribution to the field of AI
in eHealth, we propose taking the user-centered findings and
embedding them in AI eHealth service touchpoints to improve
the home isolation experience.

Proposed Service Touchpoints of AI
As the number of patients with COVID-19 is still increasing
and some countries are still conducting limited testing, the
shortage of global medical resources will persist in the near
future, and the demand for more and better eHealth services for
patients will continue to rise. To meet the urgent need for public
health, it is time to put AI technologies into practice. Although
persons who are unfamiliar with new technologies may be less

willing to use them, research also shows that, as long as they
feel that a specific eHealth service has the ability to improve
the quality of treatment, they will intend to try it. Therefore, the
target users for eHealth innovation with AI are those who have
urgent needs for better medical service—in this study, the target
was home-isolated patients with mild COVID-19 symptoms in
the context of limited medical resources. In addition, as most
of those with mild COVID-19 symptoms are young people, the
application of AI can be easier to promote because they are
generally more receptive to new technologies [50].

We translated the patient journey insights into value creation
for AI innovations in eHealth [43] and designed 3 initial service
concepts for an AI application. We used the insights to improve
a patient’s experience with eHealth services. The three concepts
are based on the premise of an eHealth app used on smart mobile
devices.

Trustworthy Public Health Information
In this concept, persons can get more trustworthy information
about COVID-19.

• Group identification: Identify the group of people who do
not pay attention to the outbreak through social media and
automatically show more information about COVID-19 in
the areas of interest they often follow.

• Dangerous area identification: Identify dangerous areas
by tracking patients who were diagnosed and public
transportation data. Evaluate the hazard level. Release
information about dangerous areas to remind people that
they should visit these areas less often and take protective
measures while paying more attention to their physical
condition if they have been in dangerous areas.

• Symptom analysis: Collect all the atypical symptoms related
to COVID-19 that are shared on the internet, reminding the
public to pay attention to these symptoms. Meanwhile,
facilitate the work of health professionals to better study
COVID-19.

• Information analysis: Based on the user’s search history,
provide more information on the issues that cause the most
anxiety to the user and that they have the most questions
about. Meanwhile, have experts identify and refute false
information or rumors.

• Positive relaxation: Provide personalized information for
users who allow the use of their data. Show more related
information in line with their interests. If the user is
experiencing depression because of COVID-19, present
more positive information and stories of patients with mild
symptoms who have recovered.

Personal COVID-19 Health Monitoring
In this concept, by inputting symptoms and physical condition
data through text or voice, users can self-diagnose whether they
have been infected by COVID-19 and follow up with
self-monitoring and personalized care as well as daily
predictions about their potential health condition.

• Self-check: AI carries out a preliminary diagnosis based on
the symptoms indicated by the user and answers to
questions, and provides a diagnosis result in the form of a
list of all the possible causes with their probability as a
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percentage, especially the possibility of being infected with
COVID-19.

• Remote diagnosis: According to the user’s recorded
symptoms and physical data, the system can automatically
match a suitable general practitioner or specialist for the
user to communicate with while making it easier for the
doctor to arrive at a diagnosis and give treatment
recommendations.

• Controllable testing process: Based on the user’s health
condition records, AI prioritizes users with severe symptoms
(this process runs in the background to prevent users from
recording false information because they want a test as soon
as possible). AI recommends the most suitable hospital and
shows the potential waiting time. All medical assistance
provides a clear status report on progress and the estimated
waiting time for the results to improve patients’ feeling of
control.

• Professional advice: According to the diagnosis result, the
system gives suggestions for the next steps. If the
probability of infection is low, the system will suggest that
the user should continue paying attention to their physical
condition and take proper protective measures when going
out. If the probability is high, the system will suggest that
the user should go into quarantine and continuously observe
the symptoms for a few more days. In addition, based on
the user’s symptoms, the system will present similar cases
to help users better understand the disease.

• Self-monitoring and treatment: Users can connect their
monitoring device such as an oximeter to the app to
automatically collect body data or manually record their
body condition daily. The system judges the development
of the disease daily based on the data. It also provides
proper treatment according to the user’s health condition
(eg, exercises that help recovery, suitable foods to eat, or
things that the user needs to avoid). If the user’s condition
constantly worsens, the system will automatically suggest
that the user should consult an actual doctor. In the event
of an emergency, the user can press the emergency button,
and the system will match the user with the fastest medical
assistance available. If the user’s physical condition
becomes stable for a certain period of time, the system will
inform the user that they have recovered and can go outside.

• Personal recommendations: Monitor users’ mood based
on the recording of their health condition, voice diaries,
and interactions with the app. Post examples of users with
mild symptoms to show a high possibility of full recovery
and make them feel positive. In the meantime, inform users
with real cases of COVID-19 about what they might
experience in the days ahead and how to prepare themselves
for it. For example, their health condition may worsen or
fluctuate over the next few weeks. Based on the keywords
retrieved by the users and the content viewed, combined
with the health condition record, post positive information
when signals of anxiety appear. When the user’s condition
has just improved, remind them that they still need to be
careful and take it seriously.

Community Support
In this concept, users can socialize with those who have similar
experiences online to get more social support.

• Together with families: With the consent of the user, share
the users’ health and emotional condition wheir families in
case of emergency to enhance their feeling of connection.

• Peer and community wisdom: Increased socialization while
helping each other by encouraging users to post their
experiences and feelings, answer questions, and participate
in a discussion group. In addition, a specific “meme
module” can be provided to give users a chance to reduce
their stress by sharing jokes, expressing their plight, and
fostering empathy. Moreover, inspire users to try new
hobbies that are shared by others on the hobby discussion
board to reduce their boredom. Additionally, health care
experts can participate to validate the posts. Rank the videos
separately based on feedback from experts and other
patients.

Regarding the development of an eHealth application using AI
technology and its adaptation to the continuously changing
situation of mild COVID-19, we recommend that application
developers should add new concepts based on an existing
eHealth application. By making a preliminary prototype and
validating it with a small group of patients with mild COVID-19,
developers should quickly iterate to meet missing needs that
have not been considered before. It is necessary to be flexible
based on how the COVID-19 situation develops and as
regulations are updated.

Limitations and Implications for Further Research
Although the patient journey mapping is grounded on rigorous
and systematic analysis of the qualitative data on the experiences
of multiple persons with mild COVID-19 symptoms, this study
has several limitations. In this design research, we used videos
shared by people on YouTube as the main data source. The
advantage of this self-shared data is that these patients have not
been influenced by the researcher in advance, and the data is
guaranteed to represent the patient perspective, which to a
certain extent led the amount of information to exceed the
researchers’ expectations. The disadvantage is that unilateral
dialogue without questions from researchers also meant that
much of the data was irrelevant to the research question, which
required the researchers to spend more time on sampling,
extracting, and managing the risk that the personal video stories
would not provide in-depth answers to some of the subquestions
on the patients’ experiences. In this regard, future research that
includes additional face-to-face verification procedures is
recommended to further enhance the robustness and reliability
of the results. Concerning the sample strategy, the limitation of
the current sample is that the participants are all YouTubers
from the Americas and Europe, who tend to actively share and
seek social support more easily than others. Further limitations
relate to the racial and socioeconomic status disparities in online
narratives that have been documented; in particular, stories by
minorities are underrepresented on the internet, including on
YouTube [47]. For future research and eHealth service design,
more types of personal experience need to be considered. In
addition, compared with other videos that are not shared on the
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social media platform, YouTube videos have comments from
viewers under each video. From those comments, we could
easily collect different viewers’ opinions on the video content,
and we gained insights by analyzing those data. As most
comments are composed of short sentences, future research
could include AI technologies such as natural language
processing and machine learning to efficiently analyze a larger
number of comments.

Conclusions
The design of the patient journey map and the underlying
insights into the home isolation experience serve to uncover

new knowledge and enhance the professional understanding of
persons with mild COVID-19 symptoms. The journey mapping
synthesized urgent needs for eHealth service touchpoints, for
instance, that patients require reliable public health information,
personalized health monitoring guidance, and social support.
To overcome the inadequate service provision challenges that
became apparent in mapping the journey, initial service concepts
were proposed for new AI eHealth services to improve the
experience of patients with COVID-19 by providing effective
health care guidance.
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Abstract

Background: Accurate prediction of the disease severity of patients with COVID-19 would greatly improve care delivery and
resource allocation and thereby reduce mortality risks, especially in less developed countries. Many patient-related factors, such
as pre-existing comorbidities, affect disease severity and can be used to aid this prediction.

Objective: Because rapid automated profiling of peripheral blood samples is widely available, we aimed to investigate how
data from the peripheral blood of patients with COVID-19 can be used to predict clinical outcomes.

Methods: We investigated clinical data sets of patients with COVID-19 with known outcomes by combining statistical comparison
and correlation methods with machine learning algorithms; the latter included decision tree, random forest, variants of gradient
boosting machine, support vector machine, k-nearest neighbor, and deep learning methods.

Results: Our work revealed that several clinical parameters that are measurable in blood samples are factors that can discriminate
between healthy people and COVID-19–positive patients, and we showed the value of these parameters in predicting later severity
of COVID-19 symptoms. We developed a number of analytical methods that showed accuracy and precision scores >90% for
disease severity prediction.

Conclusions: We developed methodologies to analyze routine patient clinical data that enable more accurate prediction of
COVID-19 patient outcomes. With this approach, data from standard hospital laboratory analyses of patient blood could be used
to identify patients with COVID-19 who are at high risk of mortality, thus enabling optimization of hospital facilities for COVID-19
treatment.
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Introduction

SARS-CoV-2 has caused the current pandemic of COVID-19,
a disease that first emerged as an outbreak in December 2019
in the Chinese province of Hubei [1]. The management of
patients with COVID-19 remains problematic and controversial,
although this is to be expected in such a recently emerged
disease. The first symptoms of COVID-19 resemble those of
many other infections and inflammatory conditions that affect
the respiratory system; they include fever, sneezing and rhinitis,
persistent cough, and fatigue with body ache [2]. However, an
infected patient can rapidly develop additional and more severe
symptoms that can be life-threatening and require intensive care
intervention; these include pneumonia, severe shortness of
breath, diarrhea, dispersed thrombosis, and vascular
inflammation [3,4]. An additional issue in caring for patients
with COVID-19 is the presence of comorbidities that interact
with COVID-19, particularly pulmonary and vascular
conditions, which can greatly worsen the patient’s prognosis
[5]. This is an important consideration given the current lack
of effective therapy for COVID-19. However, there have been
notable advances in treating patients with advanced disease;
therefore, the ability to predict that a patient will have poor
outcomes, indicating a need for more aggressive treatment, has
the potential to save lives and enable more effective allocation
of resources.

Intensive care units (ICUs) are key to increasing the survival
of patients with severe COVID-19; they provide oxygen,
24-hour monitoring and care, and assisted ventilation when
needed. Therefore, ICU beds are a precious resource in locations
where COVID-19 case numbers are high [6-8]. Allocating
hospital wards or ICU beds for infected patients thus requires
rapid decision-making processes, both to use resources
efficiently and reduce patient suffering and mortality. In many
parts of the world, stressed care systems face significant
difficulty in deciding on ICU bed allocation; therefore, a smart,
automated system could be useful to improve care and resource
allocation. The World Health Organization has recommended
that all suspected patients with COVID-19 be tested by reverse
transcription–polymerase chain reaction (RT-PCR)–based
diagnosis methods that directly detect viral RNA [9]. Testing
by approaches other than RT-PCR does not yet show acceptable
accuracy. However, RT-PCR tests can take many hours or days
to finalize the test outcomes, by which time the health condition
and infectious status of confirmed patients may deteriorate.

Rather than seeking a new single rapid test that improves on
RT-PCR, an alternative approach could be to use results from
many different profiling tests that are already available and can
be performed quickly using existing equipment [10,11]. The
best way to use the resulting multidimensional data is currently
controversial.

Rapid blood and serology testing of clinical samples by current
equipment enables monitoring of many peripheral blood
parameters of interest, some of which indicate changes in organ
functions and are used to diagnose a range of conditions and
diseases [7,12]. This raises the possibility that such profiling of
blood samples could provide predictive information about the
disease trajectory and risk of comorbidities for patients with
COVID-19. Some data is already used in physician
deliberations; however, the many available test parameters
suggest that an agnostic statistical or machine learning (ML)
approach would improve the quality of those decisions.
Therefore, we undertook a comprehensive assessment that
examined the utility of a range of statistical and ML approaches.
Indeed, we identified algorithms that showed significantly
improved outcome estimates. Therefore, this work has the
potential to optimize decision processes regarding patient care
by clinicians who are under significant time and resource
pressure during the current COVID-19 pandemic.

Methods

Data Sets and Analyses
We used two different data sets in this study; the first included
data from 89 patients, and the second included data from 1945
patients with confirmed positive COVID-19 tests identified by
RT-PCR. For the first data set [13], we use statistical methods
such as the Student t test, chi-square test, and Pearson correlation
to identify the most significant and associative blood parameters
that can strongly distinguish between patients with COVID-19
and healthy people. Moreover, to compare the blood parameter
values of patients with COVID-19 with those of healthy patients,
we considered the standard value ranges as reference values for
each parameter. For the second data set [14], in addition to
statistical methods, we used several ML models to further
identify blood parameters that can discriminate between
COVID-19–positive patients who are at risk of serious illness
and those who are not. Figure 1 depicts a schematic of the ML
analysis workflow of our approach.
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Figure 1. Proposed methodology and workflow of the machine learning analysis in this study. ANN: artificial neural network; GBM: gradient boosting
machine; ICU: intensive care unit; LGBM: light gradient boosting machine; NCD: noncommunicable disease; SVM: support vector machine; KNN:
k-nearest neighbor; XGBoost: extreme gradient boosting.

We formulated the task of identifying patients with severe
COVID-19 to enable selection of the appropriate hospital ward
for their care as a classification problem by training ML models
with features of clinical data collected from blood samples of
patients with COVID-19. Raw data of interest collected from
the data sets underwent a data-wrangling pipeline, including
denoising, missing value imputation, transformation,
normalization, and partition. Next, several statistical
comparisons and correlation methods were adopted for feature
engineering, including the Student t test, chi-square test, and
Pearson correlation. After this, each data set was further split
into three categories based on the criteria of existing
noncommunicable disease (NCD): with NCD, without NCD,
and all data. In our study, “NCD” refers to patients with
pre-existing noncommunicable diseases or conditions. Finally,
a range of state-of-the-art ML methods were trained and
evaluated. The algorithms used included decision tree (DT),
random forest (RF), gradient boosting machine (GBM), extreme
gradient boosting (XGBoost), support vector machine (SVM),
light gradient boosting machine (LGBM), k-nearest neighbor
(KNN), and artificial neural network (ANN)–based deep
learning sequential models. Each of these steps is discussed in
the following subsections.

Data Collection
We obtained two different data sets of patients with COVID-19.
The first data set was produced by Zenodo [13], and it contains
demographic information and blood sample information from
89 COVID-19–positive patients. In this data set, 31 patients
were alive at the point of data collection, while 58 patients had
died. The second, larger data set was obtained from the Kaggle
web-based resource [14], which contains grouped information
regarding previous diseases, blood sample results, and vital sign
data of 1945 COVID-19–positive patients. The primary sources
of the data in this set are Brazilian hospitals, including Sirio
Libanes, São Paulo, and Brasilia. The parameters of the data
set included patient age percentile, gender, and demographic
information. Some patients had pre-existing NCDs, including
hypertension and immunocompromised status. The blood
parameters examined included lactate, respiratory rate, diastolic
blood pressure, hemoglobin, hematocrit, venous base excess,
leukocytes, neutrophils, albumin, arterial base excess, urea,

platelets, potassium, systolic blood pressure, venous PO2, arterial
O2 saturation, partial thromboplastin time, temperature,
gamma-glutamyl transferase, venous O2 saturation, creatinine,
international normalized ratio (INR), venous PCO2, venous pH,
arterial bicarbonate, labels of free fatty acids, venous
bicarbonate, calcium, lymphocytes, alanine aminotransferase,
aspartate aminotransferase, arterial PCO2, dimerized plasmin
fragment D (D-dimer), oxygen saturation, bilirubin, arterial
PO2, arterial pH, heart rate, blast, and glucose. During the
feature-engineering phase in our study, all these blood
parameters were considered as features.

Data Processing
For the Zenodo data set [13], which consists of 89
COVID-19–positive patients, we first removed any unwanted
parameters (eg, ethnicity, BMI, drinking or smoking habits).
We then eliminated all the missing values, resulting in a data
set of 70 patients. In the Sirio Libanes data set [14] from Kaggle,
there were 1945 individual patients with 54 types of tests. The
primary data set contained a large number of missing values.
This data set was prepared from information received from local
hospitals and some of this information was not well prepared,
which is a significant reason why most of the data have missing
entries. The rationale behind the removal of entries with missing
parameter values is that when we conducted a pilot study with
the imputation of missing values with mean, median, or
regression values, poor predictive performance was observed.
In the raw data set, the dimensions were 1925 × 205, and almost
57% of the data units (cell values) were missing; after
eliminating unwanted attributes, the amount of missing data
increased above 70%. If we considered all the data and imputed
the missing values, most of the values would be inferred, and
the analysis results would be unreliable. Therefore, we
eliminated entries that contained at least one missing value.
This elimination resulted in 545 sets of patient data entries in
the second data set that contained no missing values. Among
the patients in this data set, 264 had sufficiently severe
symptoms to be admitted to the ICU. Both data sets underwent
a denoising step, in which we removed unwanted strings.
Standard scaling techniques were performed, such as feature
scaling, in which the variance values of the data are scaled
between 0 and 1; this is calculated by subtracting the mean value
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of a feature from the original value and then dividing by the
standard deviation. After preprocessing, we considered data
from 545 patients for the analysis. For a precise study, we then
divided this data set according to whether a patient had a
coexisting NCD (NCD) or not (no NCD). We found 264 patients
with NCDs and 281 patients without NCDs; in the NCD and
no NCD groups, 156 and 108 patients were respectively classed
as displaying severe conditions. After this data preparation and
preprocessing, we considered all these data for the statistical
analysis. Due to the possibility of data leakage in ML analysis
if we separated the test set and train sets after preprocessing,
we first separated a randomly selected 80% of the grouped
patient data for model training and used the rest for model
validation testing, then performed the preprocessing steps.

Statistical Methods to Identify the Most Significant
and Associative Blood Parameters
In the statistical analysis, we used chi-square tests for categorical
variables, Student t tests for continuous variables, and Pearson
correlations among various blood sample counts. The null
hypothesis was that the data from the patients with COVID-19
and the healthy population were independent. Significant blood
parameters were chosen based on a P value <.05, while in some
cases, the selection criteria were a false discovery rate–adjusted
P value <.05 and an absolute value log 2 fold change (LFC) <1.
To understand the changes (positive or negative) of the
parameters and the number of changes, we have calculated the
LFC. LFC=1 indicates a fold change of value 2. Furthermore,
hierarchical clustering was conducted on the Pearson correlation
coefficients for grouping significant parameters [15-17].

ML Models to Classify COVID-19 Disease Severity
To identify a set of important blood samples as a feature
selection step, we employed a set of ML algorithms using
COVID-19 data sets that included data from severely and
nonseverely affected patients. We chose ML algorithms that
are known to perform classification tasks with superior
performance and fast execution [18,19]. For this purpose, we
considered a basic ensemble learning approach based on
max-voting, averaging, and weighted averaging for some
classifiers, as well as advanced ensemble learning algorithms
that function by stacking, blending, bagging, and boosting.
Ensemble learning algorithms are combinations of one or more
basic algorithms that are high-performing, efficient, effective,
and easy to debug [20,21].

We next address the parameters of the ML algorithms that were
considered when they were run. In the DT algorithm, we used
a random state of 42, a criterion of Gini, and a minimum sample
split of 2. Similarly, in the RF algorithm, the minimum sample
split was 2 and the number of estimators was 100. Degree and
kernel cache size are parameters of the SVM algorithm; the
algorithm sets a polynomial kernel with a degree of 3, and we
set the kernel cache size at 200 MB for fast execution. In the
GBM algorithm, the learning rate was 0.1, the criterion was
friedman_mse, and the number of estimators was 100. The
learning rate in the LGBM algorithm was 0.05, the feature
fraction was 0.9, the bagging fraction was 0.8, and the bagging
frequency was 5. In the XGB algorithm, we used a tree-based
booster with a maximum depth of 6, a learning rate of 0.1, and

1000 estimators. For the KNN algorithms, we used Minkowski
matrices; the weights were uniform, and the number of
neighbors was 3 (k=3).

We also experimented with a sequential deep learning model,
namely, a feed-forward 1D ANN. This model consists of an
input layer, three hidden layers, and an output layer [22]. Each
layer contains a collection of parallel processing nodes, called
neurons, that take input from the nodes of the previous layer.
All the hidden layers are activated by rectified linear units, and
the output layer is activated by a softmax function, providing
the class probability of the input sample. The network was
trained in 1000 epochs using the stochastic gradient descent
optimization algorithm with categorical cross-entropy loss as
a convergence indicator and a learning rate of 0.0001.

Shapley Additive Explanation Value Calculations
To measure the feature importance, we calculated the Shapley
Additive Explanation (SHAP) values from all the models to
estimate the degree of contribution of each of the features in
the samples of the training data set to the overall
decision-making of the model [23]. SHAP uses game theory
rules to determine the contributions of particular features to the
decision-making of the model. We used the TreeExplainer [24]
for tree-based models and the KernelExplainer [23] for
kernel-based models to calculate the feature importance. After
finding the SHAP values for all the models, we normalized the
values in a fixed range and considered the average values.

Evaluation Matrices for the ML Models
We evaluated the performance of our models using precision,
recall, F1 score, the area under the receiver operator
characteristic curve (AUC-ROC), and the log loss function. The
precision depicts the proportion of true positive instances among
all the predicted positive instances [25]; in contrast, the recall
shows the proportion of the actual true instances that are
predicted positively by the models [25]. The F1 score is the
harmonic mean of precision and recall [25]; we calculated the
F1 scores to achieve better evaluation between precision and
recall. The AUC of a classifier is equivalent to the likelihood
that the classifier will rank a randomly selected positive value
higher than a randomly selected negative value [26]. Log loss
is also essentially used as a metric for classification; it is
calculated by the probability of actual and predicted classes
[27]. Log loss is among the most useful evaluation metrics. The
function can be described as below:

where M depicts the number of classes, Ti indicates the actual
class, and p(Ti) indicates the probability of that class.

Results

Analysis Approaches
In this study, we adopted two scenarios for analyzing research
data. In the first scenario, we applied the Student t test and
Pearson correlation to the blood cell parameters of
COVID-19–positive patients and the normal ranges of the blood
cell parameters. We found that both statistical approaches
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yielded predictive capability of immature granulocytes
(absolute), hemoglobin A1c, fibrinogen, and lipase as significant
for COVID-19–positive patients. In the second scenario, we
accounted only for COVID-19–positive patients in the severity
calculation. We also applied two different analysis approaches.
The first one was the Student t test, and the second was a set of
ML methods. Using both of these approaches, we found that
respiratory rate, lactate, blood pressure (systolic and diastolic),
hemoglobin, hematocrit, venous and arterial base excess,
neutrophils, albumin, urea, platelet count, and potassium were
good indicators of the patients’disease severity and represented
a small set of predictors of COVID-19 severity measurements.

Patient Demographics
A comparison of the demographic information for the data from
the patients with severe and nonsevere symptoms is shown in
Table 1. This distribution table is included here to show the
distribution of patients in the data set clearly. Of the 545
patients, 198 (36.3%) were female, 257 (47.2%) were above 65
years of age, and 264 (48.4%) were admitted to the ICU. Among
the group that included only patients with no NCDs (n=281),
107 (38.1%) were female, and 108 (38.4%) were admitted to
the ICU. Moreover, in the group of patients who had one or
more NCDs (n=264), 167 (63.3%) were over 65 years of age,
and 156 (59.1%) were admitted to the ICU. The age percentile
is shown in Figure 2.

Table 1. Demographic information for the patients with COVID-19 in each patient group.

Values, n (%)Characteristic

Patients with NCDs (n=264)Patients without NCDsa (n=281)All patients (N=545)

167 (63.3)90 (32.0)257 (47.2)Age >65 years

Age percentile

52 (19.7)63 (22.4)115 (21.1)10th

17 (6.4)41 (14.6)58 (10.6)20th

17 (6.4)38 (13.5)55 (10.1)30th

21 (8.0)39 (13.9)60 (11.0)40th

28 (10.6)22 (7.8)50 (9.2)50th

29 (11.0)24 (8.5)53 (9.7)60th

29 (11.0)26 (9.3)55 (10.1)70th

33 (12.5)16 (5.7)49 (9.0)80th

38 (14.4)12 (4.3)50 (9.2)90th

39 (14.8)15 (5.3)54 (9.9)>90th

91 (34.5)107 (38.1)198 (36.3)Female gender

156 (59.1)108 (38.4)264 (48.4)Admitted to ICUb

aNCDs: noncommunicable diseases.
bICU: intensive care unit.
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Figure 2. Age percentiles of patients with COVID-19 for (A) both patient groups, (B) patients with NCDs, and (C) patients without NCDs. NCD:
noncommunicable disease.

Identification of Significant Routine Blood Parameters
for SARS-CoV-2 Infection
Our first data set contained 89 blood parameters for confirmed
COVID-19–positive patients. Assuming each blood parameter
value was normally distributed in the healthy population, we
performed Student t tests on the tested blood parameters to
compare the expected range values (shown in Figure 3) with
patients with COVID-19 from the first data set. The combination
of Student t test and LFC analyses indicated that the 8 most
significant candidate predictive parameters for COVID-19
severity status were lipase, C-reactive protein, procalcitonin
level, erythrocyte sedimentation rate, brain natriuretic peptide,

ferritin, D-dimer, and creatine kinase level, all of which showed
P values <.001 and absolute LFCs >1.

We applied the Student t test to the second data set to attempt
to discriminate symptoms of severe and nonsevere
COVID-19–positive patients by identifying patient
characteristics that are associated with the target variable of
disease severity; the analysis results are shown in Figure 4. The
most significant blood parameters according to the t test results
were lactate, respiratory rate, diastolic blood pressure,
hemoglobin, hematocrit, venous base excess, leukocytes,
neutrophils, albumin, arterial base excess, urea, platelet count,
potassium, and systolic blood pressure.
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Figure 3. Parameter measurements for various blood parameters and significant differences (using t tests) between patients with and without COVID-19.
Adj.p-value: adjusted P value; D-dimer: dimerized plasmin fragment D.
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Figure 4. Association of blood parameters with the severity of COVID-19 disease. Associations and significant differences (using t tests) between the
patients with severe COVID-19 and nonsevere COVID-19. Adj.p-value: adjusted P value; D-dimer: dimerized plasmin fragment D; FFA: free fatty
acids; GGT: gamma-glutamyl transferase; INR: international normalized ratio.

Clustering and Coexpression Analysis
We also performed Pearson correlation tests for the different
routine blood parameters. The Pearson correlation results are
shown in Figure 5. The purpose of the hierarchical clustering
was to observe which blood samples share similar properties
in terms of their values among all the patients. We found that
some blood features formed clusters, which indicates that they

share similar properties among patients. We found that there
were indeed some hierarchical clusters in the tests that showed
equal significance for all the patients. From the total of 59 blood
samples, we found 4 different concordant clusters that were
strongly correlated with each other. The first cluster comprised
pulse pressure and systolic blood pressure. The second cluster
comprised hemoglobin, hematocrit, and red blood cells. The
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third cluster comprised C-reactive protein, erythrocyte
sedimentation rate, diastolic blood pressure, and respiratory

rate. Procalcitonin levels, ferritin, and creatine kinase levels
composed the fourth cluster.

Figure 5. Correlation heat map among the various blood parameters examined using the data set of 89 patients. D-dimer: dimerized plasmin fragment
D.

Prediction of Severe COVID-19 for Critical Treatment
Using ML Models
In this section, we first describe the performance of the various
ML models employed and their applications. We then present
the most important reduced set of blood and physical sign
parameters that can precisely discriminate patients with severe
COVID-19 from those with nonsevere disease. The reduced
collection of blood parameters is also significant for outcomes
of patients with severe COVID-19.

For the ML analysis of the second data set, we applied the
respective methods and models; their performances and the
evaluation matrices are shown in Table 2. In the data group of
all patients with and without NCDs, we found that the RF and

GBM methods gave the highest testing accuracy score of 89%,
and the other methods and models demonstrated >80% testing
accuracy. The highest AUC was obtained for RF and GBM
(89%), and other methods and models achieved suitable AUC
values >80%. The highest precision value of 91% was observed
for XGB and GBM. The highest recall values obtained were
93% for KNN and 90% for RF and LGBM; the other methods
showed scores above 80%. The best F1 score was 90% for RF,
and the other models showed F1 scores >80%. RF and GBM
had the lowest log loss value of 3.8%, and the other methods
and models also showed particularly low values (ie, <7%). In
this patient group, we saw that all of our applied models
achieved good performance in every evaluation matrix with
accuracy scores >80%; therefore, in practice, any of the models
can be employed.
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Table 2. Accuracy and evaluation matrices for each data group.

ANNfKNNgGBMfXGBeDTdSVMcLGBMbRFaData set and matrices

Combined

0.830.840.890.880.820.840.880.89Accuracy

0.820.840.890.880.820.840.880.89AUCg

0.920.810.910.910.830.840.880.9Precision

0.690.930.880.860.830.880.90.9Recall

0.790.860.890.880.830.860.890.9F1 score

6.025.393.84.126.345.394.123.8Log loss

With NCDsh

0.740.770.890.870.840.840.930.91Accuracy

0.710.790.890.870.840.830.920.91AUC

0.770.650.820.820.850.830.890.89Precision

0.820.850.90.850.880.9110.97Recall

0.790.740.860.830.860.870.940.93F1 score

9.127.823.914.565.455.452.423.03Log loss

Without NCDs

0.740.740.880.910.860.840.910.93Accuracy

0.710.730.860.90.850.830.910.92AUC

0.860.740.840.890.850.830.910.89Precision

0.480.810.970.970.910.910.941Recall

0.620.780.90.930.880.870.920.94F1 score

9.099.094.243.034.855.453.022.42Log loss

aRF: random forest.
bLGBM: light gradient boosting machine.
cSVM: support vector machine.
dDT: decision tree.
eXGB: extreme gradient boosting.
fGBM: gradient boosting machine.
gKNN: k-nearest neighbor.
fANN: artificial neural network.
gAUC: area under the curve.
hNCDs: noncommunicable diseases.

In the data group of patients with no NCDs, we found that RF
demonstrated the highest accuracy score of 93%, LGBM and
XGB performed with 91%, and SVM and DT showed good
accuracy scores of >80%. However, KNN and ANN showed
comparatively low accuracy scores of 74% because when we
divided the data set, the size of the data was small. RF
demonstrated the highest AUC of 92%; the AUC of LGBM was
91% and that of XGB was 90%. LGBM showed the highest
precision value of 91%, while RF and XGB showed values of
89%. The highest precision value was 91% for LGBM, and
other methods and models had values >80% except for KNN
(74%). The highest recall values were 100% for RF and 97%
for XGB and GBM; the other methods and models showed
values above 80%, except ANN (48%). RF achieved the highest
F1 score of 94%; XGB achieved a score of 93%, LGBM scored
92%, and SVM and DT scored 88%. However, KNN and ANN

achieved comparatively low F1 scores, with 78% and 62%
respectively, because of the lower training sample sizes. The
lowest log loss value was 2.42% for RF, and the other methods
and models also demonstrated good log loss values below 10%.
In this patient group, we observed that excepting KNN and
ANN, all of the models achieved accuracy scores >80%, and
the evaluation matrix showed good model performance.
Therefore, the best-performing models could be usefully applied
in clinical scenarios.

In the data group of patients who had one or more coexisting
NCDs, we found that LGBM performed with the highest
accuracy score of 93%, and RF, GBM, XGB, SVM, and DT
achieved scores of 91%, 89%, 87%, 84%, and 84%, respectively.
KNN and ANN performed poorly, showing 77% and 74%
accuracy, respectively; however, this result was due to the small
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amount of available data. The highest AUC score was 92% for
LGBM, and RF, SVM, DT, XGB, GBM, KNN, and ANN scored
91%, 83%, 84%, 87%, 89%, 79% and 71%, respectively. RF
and LGBM demonstrated the highest precision value of 89%,
and the other methods and models performed with good
precision values >80%, except for KNN and ANN. LGBM
achieved the highest recall value of 100%, RF achieved 97%,
GBM 90%, SVM 83%, and DT 88%; the other methods and
models performed above 80%. The highest F1 score was 94%
for LGBM; RF also demonstrated 93%, and the other methods
and models performed above 80% except for KNN and ANN.
KNN and ANN achieved F1 scores of 74% and 79%,
respectively; however, the number of training samples for these
models was small.

Using ML analysis, we attempted to determine the most
significant blood parameters that are highly predictive for
identifying patients with severe COVID-19. We found the SHAP
(Shapley Additive Explanations) values for each of the ML
algorithms, quantile-normalized those values, and finally
calculated the average values for each blood parameter. In
Figure 6, the parameter list sorted according to the feature
importance level (average SHAP value) is presented. In this
figure, the left panel shows the combined patients (those with
NCDs and those without NCDs), the middle panel shows the
patients who have NCDs only, and the right panel shows the
patients who have no NCDs.

Figure 6. Sorted significant and impacted blood parameters of patients with COVID-19 based on SHAP values, defined as the coefficient values of
each parameter after model training: (A) combined patients group; (B) patients with noncommunicable diseases; (C) patients without noncommunicable
diseases. Artificial intelligence models were used to identify the most predictive blood parameters for the severity of COVID-19 symptoms. Higher
coefficient values of machine learning model outcomes indicate a higher significant association with disease severity. D-dimer: dimerized plasmin
fragment D; FFA: free fatty acids; GGT: gamma-glutamyl transferase; INR: international normalized ratio; SHAP: Shapley Additive Explanations;
TTPA: partial thromboplastin time.

In the above analysis, we observed that a small set of blood
parameters had high SHAP values, which indicates that those
parameters are impactful and predictable for the diagnosis of
severe COVID-19. According to the level of importance,
respiratory rate, lactate, blood pressure (diastolic and systolic),
neutrophils, and oxygen saturation level were the most
significant and common parameters for the group including all
the patients. The exceptional cases are venous PO2, venous
saturated O2, and heart rate, which were impactful for the
combined patient group, and temperature and INR, which were
impactful for the group of patients with NCDs only.

In the statistical analysis, it was found that the absolute value
of lymphocytes is a key predictor for severe patient outcomes.
The value of the lymphocytes parameter decreased with
increasing severity level of the patients with COVID-19. We
also observed the opposite scenario for neutrophil data, as in,
the lymphocytes parameter increased if the patient’s condition
deteriorated toward a severe situation.

Discussion

Principal Findings
During the worldwide outbreak of COVID-19, classifications
of disease mortality risk are of very great significance in
prevention and treatment allocation. In this investigation, we
identified a number of blood analysis parameters that can be
used as risk factors for the assessment of disease severity in
patients with COVID-19. We developed predictive algorithms
that use a large number of blood parameters and demonstrated
that these methods have potential to predict the disease severity
of patients with COVID-19 with high accuracy.

We identified a number of features of patient data that
contributed strongly to the predicted value of the algorithms
(ie, were found to contribute to the accuracy of all our best ML
algorithms), some of which were not obvious candidate
predictors. We found that the absolute value of lymphocytes in
the group of patients with severe symptoms was consistently
lower than that in the nonsevere symptom group. The neutrophil
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parameters of the severe symptom group were higher than those
of the nonsevere symptom group. A high neutrophil level
indicates a heightened level of immune activation and may play
a role in the “inflammatory storm” that is characteristic of severe
COVID-19 symptoms, which results in great harm to tissues
and cells [28]. Low lymphocyte levels may reflect impeded
antibody-based immune cell functions, which are suspected to
result in patients with severe COVID-19 who are susceptible
to bacterial infection [29]. Our results suggest that the numbers
of circulating lymphocytes in the patients who developed severe
symptoms were significantly lower than those in patients who
did not have severe symptoms. In contrast, the inclusion of
neutrophils in the severe patients in the ICU showed a greater
influence, which is consistent with the findings of Qin et al [30].

We found that the indicator factors could be reliable predictors
that discriminated between patients with severe and nonsevere
COVID-19. Recent work has revealed the utility of routine
blood parameters in the screening of patients with COVID-19.
This is facilitated by the fact that blood parameter analysis is
generally fast, affordable, and promptly accessible in the same
health facility where patients are receiving treatment. The
pathological tests of patients with COVID-19 identified
abnormalities in some blood parameters. In previous published
studies, a number of altered blood parameters in patients with
COVID-19 who developed severe symptoms were identified
in addition to the lymphocyte and neutrophil parameters noted
above, such as eosinophils, basophils, monocytes, platelets, and
total leukocytes as well as serum levels of urea, potassium,
hemoglobin, and C-reactive blood protein [31-33]; this provides
supportive evidence for our findings. Li et al [34] identified that
bacterial infection affected COVID-19 pneumonia in some cases
of mortality. Bacterial contamination also causes expanded
leucocyte count and neutrophil count, which may be linked to
defective immune responses. A few patients with COVID-19
have abnormal blood coagulation function: prothrombin time
and D-dimer level increase [28], while thrombosis is linked
with expanded platelet consumption and diminished platelet
number.

Respiratory rate is one of the principal vital signs for symptom
severity in patients with COVID-19. Abnormally high
respiratory rates (<12 or >25 breaths/min) are also seen in a
range of conditions, including asthma, heightened anxiety,
pneumonia, congestive heart failure, and lung disease (all of
which exacerbate COVID-19 conditions when presenting as
comorbidities) and are a significant feature in severely affected
patients with COVID-19 [35,36]. Elevated heart rate is similarly
a key sign [37] and may be a cause of dizziness or shortness of
breath in patients with sCOVID-19 [38]. Blood pressure is
additionally a clinical sign for patients with COVID-19 [39].
Hypoxemia is also a sign that indicates a below-average level
of oxygen saturation in the blood. The usual range of arterial
oxygen is approximately 75-100 mm Hg, and a pulse oximeter
reads the expected range from 95% to 100%; below 90%
indicates that the patient’s condition is critical [40]. This finding
is often observed in patients with COVID-19 who may lack
other obvious symptoms; therefore, it is a particularly dangerous
feature of the disease. The serum lactic acid test is also a
significant test that indicates disease severity in patients with

COVID-19. Typically, the level of lactate in the blood is very
low; a rise in lactate level is typically associated with low
oxygen levels [41,42].

In summary, a number of signs and symptoms can indicate that
COVID-19 is likely to become severe in a patient. A
standardized and objective way to combine these and other less
obvious predictors in a way that can optimize patient outcomes
and resource management is needed. Our methodology,
described here and derived from a number of different ML
algorithms, can provide such an improved method. Indeed, the
fact that high accuracy was obtained using similar predictors
by different ML algorithms (indicating that there is limited
sensitivity to the methodology) can provide confidence that
these parameters are useful and that the approach is a sound
one.

Conclusion
The results of our analysis indicated that there is a strong
relationship between particular abnormal blood parameters and
disease severity status in hospitalized patients with COVID-19.
The primary utility of our findings is that the subset of routine
blood parameters linked to disease severity could be used in a
predictive algorithm that would better enable appropriate care
to be given before the onset of severe symptoms. This is of
particular importance in developing countries, where ICU beds
in hospitals are a limited resource. This can be achieved using
a relatively small number of currently available blood-based
hospital tests to properly use ICU resources and identify patients
who need to be monitored closely.

Among the association between blood parameters that can give
predictive information regarding the severity of COVID-19
symptoms, the levels of lactate and immature granulocytes
(absolute) appeared to have the strongest predictive value.
Levels of hemoglobin, procalcitonin, erythrocyte sedimentation
rate, brain natriuretic peptide, ferritin, D-dimer, and platelets
likewise showed significant deviation from the normal control
group for prediction of disease severity. Other parameters,
namely respiratory rate, lactate, blood pressure (systolic and
diastolic), hematocrit, venous and arterial base excess,
neutrophils, albumin, and urea, showed less obvious deviations
but clearly had predictive value. Our work suggests that links
exist between these parameters and COVID-19, and similar
proinflammatory infectious diseases may merit more detailed
physiological investigations.

There were a few limitations to our study. First, the small sample
size may restrict the precision of the identification of severity.
Second, the absence of more detailed clinical information in
the data sets that were used (such as patient age, sex, and
comorbidities) may hinder better classification, although this
suggests that in future studies, we could use new data sets to
address this and improve on our work. Finally, the disease
severity and mortality of COVID-19 varies significantly from
country to country; the reasons for this are very poorly
understood, but it is suggested that this type of predictive
analysis should be conducted on data from other parts of the
world to improve the performance of the algorithm.
Nevertheless, we hope our study can be used by practitioners
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and help policy makers to improve resource allocation and outcomes for patients with COVID-19.
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Abstract

Background: COVID-19 has led to an unprecedented strain on health care facilities across the United States. Accurately
identifying patients at an increased risk of deterioration may help hospitals manage their resources while improving the quality
of patient care. Here, we present the results of an analytical model, Predicting Intensive Care Transfers and Other Unforeseen
Events (PICTURE), to identify patients at high risk for imminent intensive care unit transfer, respiratory failure, or death, with
the intention to improve the prediction of deterioration due to COVID-19.

Objective: This study aims to validate the PICTURE model’s ability to predict unexpected deterioration in general ward and
COVID-19 patients, and to compare its performance with the Epic Deterioration Index (EDI), an existing model that has recently
been assessed for use in patients with COVID-19.

Methods: The PICTURE model was trained and validated on a cohort of hospitalized non–COVID-19 patients using electronic
health record data from 2014 to 2018. It was then applied to two holdout test sets: non–COVID-19 patients from 2019 and patients
testing positive for COVID-19 in 2020. PICTURE results were aligned to EDI and NEWS scores for head-to-head comparison
via area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve. We compared the
models’ ability to predict an adverse event (defined as intensive care unit transfer, mechanical ventilation use, or death). Shapley
values were used to provide explanations for PICTURE predictions.

Results: In non–COVID-19 general ward patients, PICTURE achieved an AUROC of 0.819 (95% CI 0.805-0.834) per observation,
compared to the EDI’s AUROC of 0.763 (95% CI 0.746-0.781; n=21,740; P<.001). In patients testing positive for COVID-19,
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PICTURE again outperformed the EDI with an AUROC of 0.849 (95% CI 0.820-0.878) compared to the EDI’s AUROC of 0.803
(95% CI 0.772-0.838; n=607; P<.001). The most important variables influencing PICTURE predictions in the COVID-19 cohort
were a rapid respiratory rate, a high level of oxygen support, low oxygen saturation, and impaired mental status (Glasgow Coma
Scale).

Conclusions: The PICTURE model is more accurate in predicting adverse patient outcomes for both general ward patients and
COVID-19 positive patients in our cohorts compared to the EDI. The ability to consistently anticipate these events may be
especially valuable when considering potential incipient waves of COVID-19 infections. The generalizability of the model will
require testing in other health care systems for validation.

(JMIR Med Inform 2021;9(4):e25066)   doi:10.2196/25066

KEYWORDS

COVID-19; biomedical informatics; critical care; machine learning; deterioration; predictive analytics; informatics; prediction;
intensive care unit; ICU; mortality

Introduction

The effect of COVID-19 on the US health care system is
difficult to overstate. It has led to unprecedented clinical strain
in hospitals nationwide, prompting the proliferation of intensive
care unit (ICU) capability and of lower-acuity field hospitals
to accommodate the increased patient load. A predictive early
warning system capable of identifying patients at increased risk
of deterioration could assist hospitals in maintaining a high level
of patient care while more efficiently distributing their thinly
stretched resources. However, a recent review has illustrated
that high quality validated models of deterioration in patients
with COVID-19 are lacking [1]. All 16 of the models appraised
in this review were rated at high or unclear risk of bias, mostly
because of nonrepresentative selection of control patients. A
primary concern is that these models may overfit to the small
COVID-19 data sets that are currently available.

Early warning systems have been and continue to be applied in
hospital settings prior to the COVID-19 pandemic to predict
patient deterioration events before they occur, giving health
care providers time to intervene [2]. The prediction of adverse
events such as ICU admission and death provides crucial
information to avert impending critical deterioration; it is
estimated that 85% of such events are preceded by detectable
changes in physiological signs [3] that may occur up to 48 hours
before the event [4]. In addition, approximately 44% of events
are avoidable through early intervention [5], and 90% of
unplanned transfers to the ICU are preceded by a new or
worsening condition [6,7]. Such abnormal signals indicate that
predictive data analytics may be used to alert providers of
incipient deterioration events, ultimately leading to improved
care and reduced costs [8,9]. Given the number of unknowns
surrounding the pathophysiology of COVID-19, early warning
systems may play a pivotal role in treating patients and
improving outcomes.

One model that has been assessed in patients with COVID-19
is the Epic Deterioration Index (EDI; Epic Systems Inc) [10,11].
The EDI is a proprietary clinical early warning system that aims
to identify patients at an increased risk of deterioration and who
may require a higher level of care. The EDI has the advantage
over models built on COVID-19–specific data in that it is not
overfit to small data sets, as it was trained on over 130,000
encounters [11,12]. Recent work has suggested it may be capable

of stratifying patients with COVID-19 according to their risk
of deterioration [11]. The outcomes used in this study were
those considered most relevant to the care of patients with
COVID-19 including ICU level of care, mechanical ventilation,
and death. Although the EDI was able to successfully isolate
groups of patients at very high and very low risk of deterioration,
the overall performance as a continuous predictor was
moderately low (area under the receiver operating characteristic
curve [AUROC] 0.76, 95% CI 0.68-0.84; n=174) [11].
Additionally, much of the detail surrounding the EDI’s structure
and internal validation has not been shared publicly. This makes
the interpretation of individual predictions difficult. Since
hospitals who do not use Epic electronic health record (EHR)
systems may not have access to EDI predictions, we have also
evaluated the publicly available National Early Warning Score
(NEWS) as a secondary comparison.

In this study, we have applied our previously described model,
Predicting Intensive Care Transfers and Other Unforeseen
Events (PICTURE), to a cohort of patients testing positive for
COVID-19 [13]. Initially developed to predict patient
deterioration in the general wards, we have retrained the model
to target those outcomes considered most relevant to the
COVID-19 pandemic: ICU level of care, mechanical ventilation,
and death. PICTURE, like the EDI, was trained and tuned on a
large non–COVID-19 cohort including patients both with and
without infectious diseases (131,546 encounters). Furthermore,
we took extensive steps in the PICTURE framework to limit
overfitting and learning missingness patterns in the data, such
as a novel imputation mechanism [13]. This is critical in
providing clinicians with novel, useful, and generalizable alerts,
as missing patterns can vary in different settings and different
patient phenotypes [13]. In addition to the risk score, PICTURE
also provides actionable explanations for its predictions in the
form of Shapley values, which may help clinicians easily
interpret scores and better determine if actionability on the alert
is required [14]. We validated this system in both a
non–COVID-19 cohort and in patients who were hospitalized
testing positive for COVID-19 and compared it to the EDI and
NEWS on the same matched cohorts.
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Methods

Setting and Study Population
The study protocol was approved by the University of
Michigan’s Institutional Review Board (HUM00092309). EHR
data was collected from a large tertiary, academic medical
system (Michigan Medicine) from January 1, 2014, to November
11, 2020. The first 5 years of data (2014-2018; n=131,546
encounters) were used to train and validate the model, while
2019 data was reserved as a holdout test set (n=33,472
encounters). Training, validation, and test populations were
segmented to prevent overlap of multiple hospital encounters
between sets. Criteria for inclusion in these three cohorts were
defined as 18 years or older and who were hospitalized (having
inpatient or other observation status) in a general ward. We
excluded patients who were discharged to hospice and whose
ICU transfer was from a floor other than a general ward (eg,

operating or interventional radiology unit) to exclude planned
ICU transfers. We also excluded patients with a left ventricular
assist device to avoid artifactual blood pressure readings.

To be included in the COVID-19 cohort (n=637 encounters),
patients must have been admitted to the hospital with a
COVID-19 diagnosis and have received a positive COVID-19
test from Michigan Medicine during their encounter. These
patients were then filtered using the same criteria used in the
2019 test set, with the exception of the hospice distinction. Only
discharged patients or those who already experienced an adverse
event were included. Table 1 describes the study cohort and the
frequency of individual adverse events. When compared to the
non–COVID-19 test cohort from 2019, the proportion of Black
and Asian patients was significantly higher (Black: 4214/33,472,
12.6% vs 220/637, 34.5%; P<.001; Asian: 686/33,472, 2.0%
vs 29/637, 4.6%; P<.001). The rate of adverse events was also
higher, rising from 4.0% (1337/33,472) to 24.3% (155/637;
P<.001).

Table 1. Study population.a

P value (non–COVID-
19 vs COVID-19 test

sets)b

COVID-19Non–COVID-19Data set

Testing 2020Testing 2019Validation 2014-2018Training 2014-2018

N/Ac63733,47226,089105,457Encounters, n

N/A60023,36815,59762,392Patients, n

.0261.8 (49.6-72.0)61.0 (47.0-71.5)60.4 (46.7-71.2)60.2 (46.5-70.8)Age (years), median (IQR)

Race, n (%)

<.001329 (51.6)27,036 (80.8)21,647 (83.0)86,522 (82.0)White

<.001220 (34.5)4214 (12.6)2861 (11.0)12,344 (11.7) Black

<.00129 (4.6)686 (2.0)504 (1.9)2145 (2.0)Asian

<.00159 (9.3)1536 (4.6)1077 (4.1)4446 (4.2)Otherd

.003282 (44.3)16,760 (50.1)13,048 (50.0)53,225 (50.5)Female sex, n (%)

<.001155 (24.3)1337 (4.0)1007 (3.9)4236 (4.0)Event ratee, n (%)

<.00116 (2.5)277 (0.8)232 (0.9)920 (0.9)Death

<.001139 (21.8)1000 (3.0)717 (2.7)2979 (2.8)ICUf transfer

<.00149 (7.7)352 (1.1)299 (1.1)1330 (1.3)Mechanical ventilation

N/AN/A56 (0.2)37 (0.1)143 (0.1)Cardiac arrestg

aPatients were subset into one of four study cohorts: a training set for learning model parameters, a validation set for model structure and hyperparameter
tuning, a holdout test set for evaluation, and a final test set composed of patients testing positive for COVID-19. Values are based on individual hospital
encounters.
bP values were calculated across the two test sets using a Mann-Whitney U test for continuous variables (age) and a chi-square test for categorical
variables.
cN/A: not applicable.
dOther races comprising less than 1% of the population each were incorporated under the “Other” heading.
eThe event rate represents a composite outcome indicating that one of the following events occurred: death, ICU transfer, mechanical ventilation, and
cardiac arrest. The individual frequencies of these adverse events are also reported and represent the number of cases where each particular outcome
was the first to occur. Please see the section Outcomes for the procedure of calculating these targets.
fICU: intensive care unit.
gCardiac arrest was not used as a target in the COVID-19 positive population, as the manually adjudicated data is not yet available at the time of writing.
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Predictors
The variables used as predictors were collected from the EHR
and broadly included vital signs and physiologic observations,
laboratory and metabolic values, and demographics. We selected
specific features based on previous analysis [13]. Vital signs
used in the model included heart rate, respiratory rate, pulse
oximetry, Glasgow Coma Scale (GCS), urine output, and blood
pressure. Laboratory and metabolic features included electrolyte
concentrations, glucose and lactate, and blood cell counts.
Demographics included age, height, weight, race, and gender.
Fluid bolus and oxygen supplementation were also included as
features. A full list of features is presented in Table S1 in
Multimedia Appendix 1 alongside their respective median, IQR,
and missingness rate. Variables centered on treatment (eg,
medication administration) were largely excluded as, similar to
the missingness flags described in Gillies et al [13], the scores
generated by the model may be less generalizable and novel to
the clinician as patterns of care change between diseases (eg,
COVID-19) or institutions. Multimedia Appendix 1 Table S2
describes the effects of including medications as features in
more detail.

Outcomes
The primary outcomes in the training, validation, and
non–COVID-19 test cohorts (data collected from 2014 through
2019) were death, cardiac arrest (as defined by the American
Heart Association’s Get With The Guidelines), transfer to an
ICU from a general ward or similar unit, or need for mechanical
ventilation. Determination of ICU transfer was based on actual
location or accommodation level. Outcomes in the COVID-19
positive cohort differed slightly in two respects. First, cardiac
arrest information was not available at the time of writing and
so was not included. Second, the emergency procedures
undertaken by the hospital to accommodate the high volume of
patients with COVID-19 led to the delivery of critical care in
non-ICU settings. Thus, “ICU level of care” is used to denote
patients who were treated by ICU staff or given ICU-level care
but who may not have been physically housed in a bed
previously demarcated as an ICU bed. This information is
derived from the admission, discharge, and transfer table. Level
of care was used to determine ICU transfer in patients with
COVID-19 in addition to actual location. We discarded
observations occurring 30 minutes before the first event or later
to be consistent with other approaches [15]. For

observation-level predictions, individual observations were
labeled positive if they occurred within 24 hours of any of the
aforementioned events and negative otherwise. We refer to these
composite adverse events as the outcome or target throughout
the text. These outcomes were designed to closely follow those
of a recent analysis of the EDI at Michigan Medicine [11].

To verify the accuracy of our automatically generated labels, a
clinician (author MRM) manually reviewed the patient charts
for 20 encounters to determine whether the patient was infected
with COVID-19, whether the recorded event truly took place,
and whether the event was unplanned. To do so, we randomly
sampled two encounters (one positive, the other negative if
available) from each patient service with eight or more
encounters to ensure the accuracy of the labels across all
services. The result was a sample of 20 encounters, 11 of which
were positive. The recorded event of interest for each encounter
was reviewed by the clinician to determine whether the event
took place and whether it was emergent (not planned). For the
patients that were labeled as negative, the clinician reviewed
the entire patient chart to ensure that no adverse events occurred
during the encounter. The results indicate that all 20 patients
were infected with COVID-19, all the labels and the event times
were accurate, and all the events were unplanned. This provides
evidence that the automatically generated outcomes accurately
identify unplanned adverse events.

PICTURE Model Development
To train and evaluate the PICTURE model, we partitioned our
data into four folds: a training and validation set using data from
2014 to 2018, a test set using 2019 data, and a fourth set
consisting of data from patients who are COVID-19 positive.
We partitioned the sets such that multiple hospital encounters
from the same individual were restricted to one cohort,
preventing patient-level overlap between cohorts. Encounters
with an admission date from January 1, 2014, to December 31,
2018, were used for training and validation and hyperparameter
tuning (n=131,546 encounters). These patients were further
divided between training and validation sets using an 80%/20%
split. Those patients with an admission date between January
1 and December 31, 2019, were reserved as a holdout test set
(n=33,472 encounters). Lastly, patients testing positive for
COVID-19 from March 1 to September 11, 2020, were reserved
as a separate set (n=637 encounters). Figure 1 displays a
graphical overview of this delineation.
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Figure 1. PICTURE training and validation framework. The electronic health record data is split into COVID-19 and non–COVID-19 patients.
Encounters with an admission date between January 1, 2014, and December 31, 2018, were set aside for training (80%) and validation (20%) subsets.
Encounters with an admission date between January 1 and December 31, 2019, were used as a non–COVID-19 test set. Encounters from 2020 that
tested positive for COVID-19 were held out as a separate test set. In the case that a given patient has multiple encounters that overlap these boundaries,
only the later encounters were considered to remove patient overlap between the cohorts. EDI: Epic Deterioration Index; NEWS: National Early Warning
Score; PICTURE: Predicting Intensive Care Transfers and Other Unforeseen Events; XGBoost: extreme gradient boosting.

As the EHR stores data in a long format (with each new row
corresponding to a new measurement at a new time point), it
was first converted to a wide structure such that each observation
represented all features at a given time point for a given patient.
The training and validation sets were grouped into 8-hour

windows to ensure that each encounter would have the same
amount of observations for the same amount of time in the
hospital, avoiding emphasis on patients who get more frequent
updates while training the model as described in Gillies et al
[13]. The 2019 and COVID-19 test sets were left in a granular
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format, where each new observation represented the addition
of new data (eg, an updated vital sign). Vital signs and
laboratory values were forward filled such that each observation
represented the most up-to-date information available as of that
time, and the only time series–adjusted variables were oxygen
supplementation, oxygen device use, and oxygen saturation as
measured by pulse oximetry (SpO2), which were represented
by the maximum (oxygen supplementation and device) or
minimum (SpO2) over the previous 24 hours. Otherwise, each
observation contained only the most up-to-date data available
as of that time point and did not take historical values in to
account. The remaining missing values were iteratively imputed
using the mean of the posterior distribution from a multivariate
Bayesian regression model. This method has previously been
demonstrated to reduce the degree to which tree-based models
learn missingness patterns to bolster performance [13].
Classification was achieved using an extreme gradient boosting
model (v 0.90), an open-source implementation of a
gradient-boosting tree framework that fits additional iterations
using the errors of previous results [16]. The model uses a binary
cross-entropy objective function with a maximum tree depth of
three nodes, a learning rate of 0.05, no minimum loss reduction,
uniform sampling with a subsample parameter of 0.6, and
stopped when the validation area under the precision-recall
curve (AUPRC) had not improved for 30 rounds. The model
was applied to individual observations independently—that is,
the model used the latest information available (via forward
filling). In this sense, time dependance was not modeled aside
from those aforementioned variables. All analyses were
performed using Python 3.8.2 (Python Software Foundation).

Epic Deterioration Index and NEWS
The EDI is a proprietary model developed by Epic Systems
Corporation. Michigan Medicine uses Epic as its electronic
medical record system and has access to the EDI tool. Similar
to PICTURE, it uses clinical data that are commonly available
in the EHR to make predictions regarding patient deterioration.
It was trained using a similar composite outcome including
death, ICU transfer, and resuscitation as adverse events [11]. It
is calculated every 15 minutes. Specific details surrounding its
structure, parameters, or training procedures have not been
shared publicly.

NEWS, developed by the Royal College of Physicians, is a
second index used to detect patients at an increased risk of
deterioration event such as cardiac arrest, ICU transfer, and

death [17,18]. In contrast to the EDI, which is based on a
proprietary system, the basis of the NEWS score is openly
available. NEWS scores were calculated based on the algorithm
described in Smith et al [17]. The original NEWS was selected
over the updated NEWS2 score due to evidence that its
performance was found to be higher when predicting adverse
events in patients at risk of respiratory failure [19].

PICTURE Model Evaluation

Evaluation of PICTURE Performance in
Non–COVID-19 Cohort
We first assessed the performance of the PICTURE model on
all 33,472 encounters in the holdout test set comprising patients
from 2019. Another early warning aggregate score, NEWS, was
used for comparison in this preliminary analysis [17,18]. For
each observation time point, the NEWS score was calculated
according to their published scoring system and compared to
PICTURE scores. Performance was assessed on two scales:
observation level and encounter level. The term observation
level is used to denote the performance of the model at each
time the data for a patient is updated, with observations
occurring 24 hours prior to a target event marked as 1 and
otherwise marked as 0. Encounter level describes the model
performance across the entire hospital encounter for one patient.
It refers to the maximum model score during the patient’s stay,
occurring between admission and at least 30 minutes (or longer
for different minimal lead times; see the section Comparison
of PICTURE to EDI in a Non–COVID-19 Cohort) before the
first event. The target in this case is 1 if the patient ever met an
outcome condition during their stay, and 0 otherwise.

Comparison of PICTURE and EDI
Since the EDI makes a prediction every 15 minutes, we
simulated how the PICTURE score, calculated at irregular
intervals each time a new data point arrives, would align with
the EDI. This limited the available number of encounters to
21,740 in the 2019 test set and 607 encounters in the COVID-19
cohort. The PICTURE scores were merged onto EDI values by
taking the most recent PICTURE prediction before the EDI
prediction. This was to give the EDI any advantages in the
alignment procedure. Figure 2 displays a visual schematic of
this alignment. We then evaluated the two models using the
same observation-level and encounter-level methods described
in the previous section.
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Figure 2. Alignment of PICTURE predictions to EDI scores. Although the PICTURE system outputs predictions each time a new observation (eg, a
new vital sign) is input in to the system, the EDI score is generated every 15 minutes. To give the EDI any potential advantage, PICTURE scores are
aligned to EDI scores by selecting the most recent PICTURE score before each EDI prediction. In both cases, observations occurring 30 minutes before
the target and after are excluded (red). For the patients who did not experience an adverse event, the maximum score was calculated across the entire
encounter. EDI: Epic Deterioration Index; PICTURE: Predicting Intensive Care Transfers and Other Unforeseen Events.

Performance Measures
AUROC and AUPRC were used as the primary criteria for
comparison between the models. AUROC can be interpreted
as the probability that two randomly chosen observations (one
with a positive target, the other negative) are ranked in the
correct order by the model prediction score. AUPRC describes
the average positive predictive value (PPV) across the range of
sensitivities. We also calculated 95% CIs for encounter-level
statistics with a bootstrap method using 1000 replications to
compute pivotal CIs. For observation-level statistics, block
bootstrapping was used to ensure randomization between
encounters and within the observations of an encounter. P values
for AUROC differences were computed by counting the fraction
of bootstrapped test statistics less than 0. If there were no
simulations where the test statistic was greater than 0, the P
value was recorded as P<.001.

Feature Ranking and Prediction Explanation
Despite the many benefits yielded by increasingly advanced
machine learning models, use of these models in the medical
field has lagged behind other fields. One contributing factor is
their complexity, which make the resulting predictions difficult
to interpret and in turn make it difficult to build clinician trust
[20]. To better provide insight into the PICTURE predictions,
tree-based Shapley values were calculated for each observation.
Borrowed from game theory, Shapley values describe the

relative contribution of a feature to the model’s prediction
[14,21]. Positive values denote features that influenced the
model toward a high prediction score (here indicating a higher
likelihood of an adverse event), while negative values indicate
the feature pushed the model toward a lower prediction score.
The sum of the Shapley values across a single prediction plus
the mean log-odds probability of the model is proportional to
the log-odds of the prediction probability. Shapley values can
be used to provide insight into individual model predictions or
aggregated to visualize global variable importance.

Calibration and Alert Thresholds
Neither PICTURE nor the EDI are calibrated scores—that is,
even though their output ranges from 0 to 1 (or 0 to 100 in the
case of EDI), these values do not reflect a probability of
deterioration [11]. Furthermore, both PICTURE and the EDI
were trained on cohorts of non–COVID-19 patients. which have
a much lower event rate and therefore may require a different
alert threshold. A calibration curve depicting PICTURE and
EDI score quantiles against calculated risk is used to
demonstrate the deviation of PICTURE and EDI scores from
an estimated probability. Several simulated PICTURE alarm
thresholds are then examined, calculated by aligning them to
the EDI threshold suggested in Singh et al [11] via sensitivity,
specificity, PPV, and negative predictive value (NPV). The
performance at these thresholds simulates when and how often
a clinician would receive alerts. Data from an example patient
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is also highlighted to demonstrate how these alert thresholds
and Shapley values may interact to provide actionable insights
to clinicians.

Results

Validation of PICTURE Performance in a
Non-COVID-19 Cohort
The ability of the PICTURE model to accurately predict the
composite target was first assessed using the 33,472 encounters
in the holdout test set from 2019. To provide a baseline for
comparison, NEWS scores were calculated alongside each

PICTURE prediction output. The observation-level and
encounter-level AUROC and AUPRC are presented with 95%
CIs in Table 2. The observation-level event rate can be
interpreted as the fraction of individual observations during
which an adverse event occurred within 24 hours, while the
encounter-level event rate refers to the proportion of hospital
encounters experiencing such an event. The difference in
AUROC between PICTURE and NEWS was 0.068 (95% CI
0.058-0.078; P<.001) on the observation level and 0.064 (95%
CI 0.055-0.073; P<.001) on the encounter level. The difference
in AUPRC was similarly significant, at 0.041 (95% CI
0.031-0.050; P<.001) and 0.141 (95% CI 0.120-0.162; P<.001)
on the observation and encounter levels, respectively.

Table 2. Evaluation of PICTURE (performance in a non–COVID-19 cohort).

Event rate (%)P value (AUROC)AUPRCd (95% CI)P valuec (AUROC)AUROCa (95% CIb)Granularity and analytic

1.01<.001<.001Observation

0.099 (0.085-0.110)0.821 (0.810-0.832)PICTUREe

0.058 (0.049-0.064)0.753 (0.741-0.765)NEWSf,g

3.99<.001<.001Encounter (n=33,472)

0.326 (0.301-0.351)0.846 (0.834-0.858)PICTURE

0.185 (0.165-0.203)0.782 (0.768-0.795)NEWS

aAUROC: area under the receiver operating characteristic curve.
b95% CIs were calculated using a block bootstrap with 1000 replicates. In the case of the observation level, this bootstrap was blocked on the encounter
level.
cP values are calculated using the bootstrap method outlined in the section Performance Measures.
dAUPRC: area under the precision-recall curve.
ePICTURE: Predicting Intensive Care Transfers and Other Unforeseen Events.
fNEWS: National Early Warning Score.
gNEWS is used as a baseline for comparison.

Comparison of PICTURE to EDI in a Non–COVID-19
Cohort
PICTURE was then compared to the EDI model on
non–COVID-19 patients in the same holdout test set from 2019.
Due to limitations in available EDI scores, the number of
encounters was restricted to 21,740. These time-matched scores
were again evaluated using AUROC and AUPRC on the
observation and encounter levels (Table 3). Panels A and B in

Figure 3 display the associated receiver operating characteristic
(ROC) and precision-recall (PR) curves for the observation-level
performance. The difference in AUROC and AUPRC between
PICTURE and the EDI reached significance on both the
observation level (AUROC 0.056, 95% CI 0.044-0.068; P<.001;
AUPRC 0.033, 95% CI 0.021-0.045; P<.001) and the encounter
level (AUROC 0.056, 95% CI 0.046-0.065; P<.001; AUPRC
0.094, 95% CI 0.069-0.119; P<.001). NEWS results were
similarly significant and are included in Table 3 for comparison.
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Table 3. Comparison of PICTURE and the EDI in a non–COVID-19 cohort.

Event rate (%)P value (AUPRC)AUPRCc (95% CI)P value (AUROC)bAUROCa (95% CI)Granularity and analytic

0.77Observation

0.115 (0.096-0.130)0.819 (0.805-0.834)PICTUREd •• vs EDI: <.001vs EDIe: <.001
• vs NEWS: <.001• vs NEWSf: <.001

0.081 (0.066-0.094)0.763 (0.746-0.781)EDI •• vs NEWS: <.001vs NEWS: .01

0.062 (0.051-0.072)0.745 (0.729-0.761)NEWS •• N/AN/Ag

4.21Encounter (n=21,740)

0.368 (0.335-0.400)0.859 (0.846-0.873)PICTURE •• vs EDI: <.001vs EDI: <.001
•• vs NEWS: <.001vs NEWS: <.001

0.274 (0.244-0.301)0.803 (0.788-0.821)EDI •• vs NEWS: <.001vs NEWS: .15

0.229 (0.204-0.254)0.797 (0.781-0.814)NEWS •• N/AN/A

aAUROC: area under the receiver operating characteristic curve.
bP values reflect the difference in AUROC or AUPRC.
cAUPRC: area under the precision-recall curve.
dPICTURE: Predicting Intensive Care Transfers and Other Unforeseen Events.
eEDI: Epic Deterioration Index.
fNEWS: National Early Warning Score.
gN/A: not applicable.

Figure 3. Comparison of PICTURE and the EDI. Panel A: receiver operating characteristic (ROC) curves for PICTURE, EDI, and NEWS models in
the non–COVID-19 cohort. PICTURE area under the curve (AUC): 0.819; EDI AUC: 0.763; NEWS AUC: 0.745. Panel B: Precision-recall (PR) curves
for the two models in the non–COVID-19 cohort. PICTURE AUC: 0.115; EDI AUC: 0.081; NEWS AUC: 0.062. Panel C: ROC curves for PICTURE,
EDI, and NEWS models in the COVID-19 cohort. PICTURE AUC: 0.849; EDI AUC: 0.803; NEWS AUC: 0.746. Panel D: PR curves for the two
models. PICTURE AUC: 0.173; EDI AUC: 0.131; NEWS AUC: 0.098 in the COVID-19 cohort. All curves represent observation-level analysis. EDI:
Epic Deterioration Index; FPR: false-positive rate; NEWS: National Early Warning Score; PICTURE: Predicting Intensive Care Transfers and Other
Unforeseen Events; TPR: true-positive rate.
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In addition to classification performance, lead time represents
another critical component of a predictive analytics’ utility.
Lead time refers to the amount of time between the alert and
the actual event, and it determines how much time clinicians
have to act on the model’s recommendations. We assessed the
model’s relative performance at different lead times in a
threshold-independent manner by excluding data occurring 0.5

hours, 1 hour, 2 hours, 6 hours, 12 hours, and 24 hours before
an adverse event and calculating encounter-level performance
(Table 4). In our cohort, PICTURE’s AUROC and AUPRC
were significantly higher (P<.001) than the EDI model even
when considering predictions made 24 hours or more before
the actual event.

Table 4. Lead time analysis in non–COVID-19 cohort.a

Sample size, nEvent rate (%)AUPRCc (95% CI)AUROCb (95% CI)Lead time (hours)

EDIPICTUREEDIePICTUREd

21,6364.210.274 (0.244-
0.302)

0.368 (0.336-
0.400)

0.803 (0.787-
0.820)

0.859 (0.846-
0.873)

0.5

21,6364.180.254 (0.227-
0.280)

0.346 (0.315-
0.379)

0.795 (0.778-
0.811)

0.850 (0.835-
0.864)

1

21,6224.140.238 (0.210-
0.265)

0.321 (0.292-
0.352)

0.784 (0.767-
0.802)

0.838 (0.823-
0.853)

2

21,5723.920.210 (0.184-
0.237)

0.280 (0.249-
0.310)

0.768 (0.750-
0.787)

0.825 (0.810-
0.840)

6

21,5153.670.183 (0.159-
0.207)

0.247 (0.215-
0.275)

0.767 (0.749-
0.786)

0.817 (0.801-
0.832)

12

21,4193.240.144 (0.121-
0.164)

0.205 (0.172-
0.230)

0.759 (0.740-
0.779)

0.808 (0.790-
0.826)

24

aThe performance of the two models (encounter level) at various lead times were assessed by evaluating the maximum prediction score prior to x hours
before the given event, with x ranging in progressively greater intervals from 0.5 to 24. On this cohort of non–COVID-19 patients, PICTURE consistently
outperformed the EDI. At each level of censoring, the P value when comparing PICTURE to the EDI was <.001.
bAUROC: area under the receiver operating characteristic curve.
cAUPRC: area under the precision-recall curve.
dPICTURE: Predicting Intensive Care Transfers and Other Unforeseen Events.
eEDI: Epic Deterioration Index.

Comparison of PICTURE to EDI in Patients With
COVID-19
When applied to patients testing positive for COVID-19,
PICTURE performed similarly well. PICTURE scores were
again aligned to EDI scores using the process outlined in the
section Comparison of PICTURE and EDI. This resulted in the
inclusion of 607 encounters. Table 5 presents AUROC and
AUPRC values for PICTURE and the EDI on both the
observation and encounter levels with 95% CIs and includes
NEWS scores for comparison. Panels C and D in Figure 3
display the associated ROC and PR curves. The difference in
AUROC and AUPRC between PICTURE and the EDI reached
statistical significance (α=5%) on the observation level
(AUROC 0.046, 95% CI 0.021-0.069; P<.001; AUPRC 0.043,
95% CI 0.006-0.071; P=.002) and the encounter level (AUROC
0.093, 95% CI 0.066-0.118; P<.001; AUPRC 0.155, 95% CI
0.089-0.204; P<.001). Of note, the EDI results at the observation

level (AUROC 0.803, 95% CI 0.771-0.838) were similar to
those described in a previous validation (AUROC 0.76, 95%
CI 0.68-0.84), although with a smaller confidence interval due
to a larger sample size [11]. The differences in AUROC and
AUPRC between PICTURE and NEWS also reached
significance (α=5%) in patients with COVID-19, both on the
observation level (AUROC 0.104, 95% CI 0.075-0.129; P<.001;
AUPRC 0.076, 95% CI 0.033-0.105; P<.001) and the encounter
level (AUROC 0.122, 95% CI 0.090-0.154; P<.001; AUPRC
0.224, 95% CI 0.151-0.290; P<.001).

As with the non–COVID-19 cohort, a similar lead time analysis
was then performed to assess the performance of PICTURE and
EDI when making predictions further in advance. Thresholds
were again set at 0.5 hours, 1 hour, 2 hours, 6 hours, 12 hours,
and 24 hours before the event, and observations occurring after
this cutoff were excluded. In our cohort, PICTURE again
outperformed the EDI even when making predictions 24 hours
in advance (Table 6).
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Table 5. Comparison of PICTURE and the EDI in patients testing positive for COVID-19.

Event rate (%)P value (AUPRC)AUPRCb (95% CI)P value (AUROC)AUROCa (95% CI)Granularity and analytic

3.20Observation

0.173 (0.116-0.211)0.849 (0.820-0.878)PICTUREc •• vs EDI: .002vs EDId: <.001
• vs NEWS: <.001• vs NEWSe: <.001

0.131 (0.087-0.163)0.803 (0.772-0.838)EDI •• vs NEWS: .002vs NEWS: <.001

0.098 (0.066-0.122)0.746 (0.708-0.783)NEWS •• N/AN/Af

20.6Encounter (n=607)

0.665 (0.590-0.743)0.895 (0.868-0.928)PICTURE •• vs EDI: <.001vs EDI: <.001
•• vs NEWS: <.001vs NEWS: <.001

0.510 (0.438-0.588)0.802 (0.762-0.848)EDI •• vs NEWS: .02vs NEWS: .05

0.441 (0.364-0.510)0.773 (0.732-0.818)NEWS •• N/AN/A

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.
cPICTURE: Predicting Intensive Care Transfers and Other Unforeseen Events.
dEDI: Epic Deterioration Index.
eNEWS: National Early Warning Score.
fN/A: not applicable.

Table 6. Lead time analysis in COVID-19 cohort.a

Sample size, nEvent rate (%)AUPRCc (95% CI)AUROCb (95% CI)Lead time (hours)

EDIPICTUREEDIePICTUREd

60720.60.510 (0.436-0.587)0.665 (0.586-0.739)0.802 (0.761-0.842)0.895 (0.867-0.926)0.5

60620.50.491 (0.418-0.570)0.631 (0.553-0.710)0.793 (0.753-0.836)0.887 (0.860-0.918)1

60320.10.478 (0.400-0.555)0.598 (0.518-0.675)0.794 (0.754-0.833)0.870 (0.840-0.901)2

59719.30.435 (0.354-0.517)0.552 (0.474-0.639)0.769 (0.729-0.813)0.847 (0.813-0.885)6

58717.90.403 (0.333-0.480)0.497 (0.411-0.577)0.752 (0.708-0.798)0.821 (0.783-0.863)12

57416.00.370 (0.289-0.459)0.443f (0.344-0.529)0.740 (0.690-796)0.808 (0.767-0.856)24

aThe performance of the two models (encounter level) at various lead times were again assessed by evaluating the maximum prediction score prior to
x hours before the given event, with x ranging in progressively greater intervals from 0.5 to 24. On this cohort of non–COVID-19 patients, PICTURE
consistently outperformed the EDI. At each level of censoring, the P value when comparing PICTURE to the EDI was <.001 unless otherwise marked.
bAUROC: area under the receiver operating characteristic curve.
cAUPRC: area under the precision-recall curve.
dPICTURE: Predicting Intensive Care Transfers and Other Unforeseen Events.
eEDI: Epic Deterioration Index.
fP=.001.

Explanations of Predictions
To provide clinicians with a description of factors influencing
a given PICTURE score, we used Shapley values computed at
each observation. Figure 4 depicts an aggregated summary of
the 20 most influential features in the 2019 test set (panel A)
and in the COVID-19 set (panel B). Positive Shapley values
indicate that the variable pushed the PICTURE score toward a
positive decision (ie, predicting an adverse event). Although
many of the feature rankings appear similar between the 2019

and COVID-19 cohorts, we noted that respiratory variables such
as respiratory rate, oxygen support, and SpO2 played a more
pronounced role in predicting adverse events in COVID-19
positive patients than in non–COVID-19 patients. Multimedia
Appendix 1 Figure S1 [22]. provides expanded detail on several
of the variables (eg, respiratory rate and temperature) whose
Shapley values do not appear to monotonically increase with
their magnitude. One point of note is that the amount of oxygen
support played a significant role in both cohorts. Although the
EDI does not use the amount of oxygen support as a continuous

JMIR Med Inform 2021 | vol. 9 | iss. 4 |e25066 | p.315https://medinform.jmir.org/2021/4/e25066
(page number not for citation purposes)

Cummings et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


variable, it does have a feature termed “oxygen requirement”
[11]. To demonstrate that the observed improvement of
PICTURE over the EDI is not driven solely by this additional
information, oxygen support was binarized and the PICTURE
model retrained. Although performance did decrease, indicating
that the inclusion of oxygen support as a continuous variable is

useful in predicting deterioration, PICTURE still outperformed
the EDI on both the non–COVID-19 (difference in AUROC
0.057, AUPRC 0.082) and COVID-19 (difference in AUROC
0.035, AUPRC 0.050) cohorts. Thus, oxygen support alone does
not account for the difference between PICTURE and EDI
performance.

Figure 4. Shapley summary plots. Panel A depicts an aggregated summary plot of the Shapley values from the 2019 test set, while panel B corresponds
to COVID-19 positive patients. The 20 most influential features are ranked from top to bottom, and the distribution of Shapley values across all predictions
are plotted. The magnitude of the Shapley value is displayed on the horizontal axis, while the value of the feature itself is represented by color. For
example, a large amount of oxygen support over 24 hours (red) in panel A was associated with a highly positive influence on the model, while low to
no oxygen support (blue) pushed the model back toward 0. BUN: blood urea nitrogen; GCS: Glasgow Coma Scale; INR: international normalized ratio;
SHAP: Shapley; WBC: white blood cells.

Calibration and Alert Thresholds
Both PICTURE and the EDI return scores indicate a patient’s
risk of deterioration; however, neither score is calibrated as a
probability. Therefore, alert thresholds may provide a convenient
mechanism to decide whether or not to alert a clinician that their
patient is at increased risk. A previous study assessing the use
of the EDI in patients with COVID-19 found that an EDI score
of 64.8 or greater to be an actionable threshold to identify
patients at increased risk [11]. As PICTURE scores lie on a
different scale than the EDI, calibration is required to simulate
PICTURE alert thresholds.

Figure 5 depicts the distribution of PICTURE and EDI scores
and a calibration curve comparing quantiles of PICTURE and

EDI with observed risk. In this figure, EDI scores are rescaled
from 0-100 to 0-1, while raw PICTURE scores are presented
alongside a transformed score using a monotonically increasing
function (logit transform) and scaled to the range 0-1. Based
on this curve, the EDI appears to overestimate risk, while
PICTURE may underestimate risk. However, neither metric is
intended to reflect a probability. To more closely approximate
a probability, techniques such as Platt scaling or isotonic
regression may improve calibration in the future. Multimedia
Appendix 1 Figure S2 illustrates the distribution of scores
separated by positive and negative outcomes, and indicates that
the PICTURE score may provide more separation between
patients, something that the EDI has previously been
demonstrated to struggle with [11].
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Figure 5. Distribution of scores and calibration curve. Panel A presents a KDE of the distribution of PICTURE and EDI scores. In addition to raw
PICTURE scores, logit-transformed scores are also included. Panel B depicts quantiles of PICTURE and EDI scores (0.1, 0.2, 0.3,...0.9) against observed
risk. Neither PICTURE nor the EDI are calibrated as probabilities, and as such, the use of set alarm thresholds may be useful to help alert clinicians
when their patient is at an increased risk. EDI: Epic Deterioration Index; KDE: kernel density estimate; PICTURE: Predicting Intensive Care Transfers
and Other Unforeseen Events.

To simulate when a clinician might receive an alert from the
PICTURE system, four thresholds were selected, aligned based
on the observed sensitivity, specificity, PPV, and NPV of the
EDI score using the 64.8 value posed by Singh et al [11]. As
an example, the aligned by sensitivity threshold listed in Table
7 was derived by determining the PICTURE threshold that had
a sensitivity of 0.448, matching that of the EDI. Each of these
thresholds, and their performances measured via F1 score, are
compared to the EDI and are included in Table 7. The workup

to detection ratio is calculated as 1 / PPV and indicates the
number of false alerts a clinician might receive for each true
positive [6]. For PICTURE, the workup to detection ratio ranged
from 1.46 to 1.52 on the encounter level depending on the
threshold used, compared to the EDI’s 1.71. The median time
between alert and adverse event according to each threshold is
also displayed. Confusion matrices describing the performance
of the model at each threshold are included in Multimedia
Appendix 1 (Table S3).
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Table 7. Alert thresholds and median lead time.a

Lead timef (h:min), median
(IQR)

F1 scoreeWDRdNPVcPPVbSpecificitySensitivityThreshold
value

Threshold
source

Score

32:26 (4:37-66:08)0.5071.710.8650.5830.9170.44864.8Singh et al
[11]

EDIg

PICTUREh

40:14 (7:51-67:50)0.5411.460.8690.6830.946N/Ai0.165Align by
sensitivity

40:04 (7:44-91:00)0.6361.520.9020.658N/A0.6160.097Align by
specificity

54:10 (29:26-115:50)0.668N/A0.940N/A0.8510.7920.048Align by
PPV

41:40 (7:31-68:30)0.5271.48N/A0.6750.9460.4320.173Align by
NPV

aSensitivity, specificity, PPV, and NPV were calculated for the EDI at a threshold of 64.8 as suggested in Singh et al [11] and based off encounter-level
performance. PICTURE thresholds were then aligned to match these statistics. The WDR is also calculated as 1 / PPV and represents the number of
false alarms received for each true positive. This value is important in limiting alert fatigue for clinicians and indicates that PICTURE may yield as
much as 17% fewer false alarms for each true positive.
bPPV: positive predictive value.
cNPV: negative predicative value.
dWDR: workup to detection ratio.
eF1 scores were calculated as the harmonic mean between PPV and sensitivity.
fLead times were determined using the intersection of true positives between PICTURE and the EDI, and were calculated as the time between a patient
first crossing the threshold and their first deterioration event.
gEDI: Epic Deterioration Index.
hPICTURE: Predicting Intensive Care Transfers and Other Unforeseen Events.
iN/A: not applicable.

Discussion

Validation of PICTURE Performance in
Non–COVID-19 Cohort
PICTURE makes a prediction at every observation for the
features included. A natural starting point for the assessment
of PICTURE’s performance is at this level of granularity. Using
the general structure outlined in Gillies et al [13], we updated
the PICTURE model to reflect the target outcomes of death,
ICU transfer or accommodation, and mechanical ventilation
within 24 hours. This updated model was tested on data from
33,472 encounters in 2019 to ensure its performance
(observation-level AUROC 0.821) was reasonably consistent
with that described in Gillies et al [13]. It was also compared
to the NEWS scores at simultaneous time points and was found
to have significantly outperformed NEWS (AUROC 0.753).
These results confirm the findings in Gillies et al [13] using
2019 data instead of 2018 data. They also provide a baseline of
comparison as we move to predictions made at uniform intervals
instead of every observation.

Comparison of PICTURE to EDI in a Non–COVID-19
Cohort
The EDI does not make predictions at every feature observation;
instead, it makes predictions every 15 minutes. To provide a
direct comparison to the EDI, we subset the PICTURE scores
and time-matched them to the EDI scores as described in the
section Performance Measures. PICTURE significantly

outperformed the EDI on this cohort of non–COVID-19 patients,
with an observation-level AUROC of 0.819 compared to the
EDI’s AUROC of 0.763. This performance gap extended out
over multiple lead times, and even when restricted to data
collected 24 hours or more before the adverse event, PICTURE’s
performance remained high with an AUROC of 0.808, while
the EDI’s AUROC dropped to 0.759. These results suggest that
using PICTURE, instead of the EDI, at the University of
Michigan hospital will lead to less false alarms. PICTURE
maintained the performance improvement even as the models
were forced to make predictions with longer times before the
adverse event.

Comparison of PICTURE to EDI in Patients With
COVID-19
As the EDI has increasingly been investigated as a feasible
metric to gauge deterioration risk in patients with COVID-19
[11], we sought to apply our own deterioration model,
PICTURE, to a cohort of patients with COVID-19. Although
both models were trained and validated in non–COVID-19
general ward patients, their performance on our cohort of
patients with COVID-19 was reasonably consistent with their
respective results on our non–COVID-19 cohort. Even with a
lower sample size (n=607 encounters), PICTURE significantly
(P=.002) outperformed the EDI with an observation-level
AUROC of 0.849 compared to the EDI’s AUROC of 0.803.
PICTURE’s lead was again maintained 24 hours or more before
the adverse event, with an AUROC of 0.808 versus the EDI’s
AUROC of 0.740. These results suggest that using PICTURE
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instead of the EDI for patients with COVID-19 will lead to less
alarm fatigue.

One important point of discussion is the considerably higher
rate of deterioration observed in patients with COVID-19 (20.6%
vs 4.21% of encounters). This is likely due to a combination of
the severity of the virus when compared to a general ward
population and the aggressive treatment regimen endorsed by
clinicians facing a disease that, during the early phases of the
pandemic, represented many unknowns. Therefore, the threshold
selection presented in the section Calibration and Alert
Thresholds may differ between COVID-19 and general ward
patients. The performance of the PICTURE analytic (as
measured by AUROC) increased slightly (though with
overlapping 95% CIs) when applied to patients with COVID-19
versus the general test set, indicating that patients with
COVID-19 may represent a slightly easier classification task.
This is supported by the fact that the EDI also performed better
on the COVID-19 cohort when measured by observation-level
AUROC (0.763 vs 0.803), though this increase was not sustained
in the encounter-level results (AUROC 0.803 vs 0.802).

Explanations of Predictions
One key feature of the PICTURE model is its use of Shapley
values to help explain individual predictions to clinicians. These
explanations help add interpretability to the model, allowing
clinicians to evaluate individual model scores and identify
potential next steps, follow-up tests, or treatment plans. Figure
4 depicts an aggregated summary of Shapley values across all
observations in both the COVID-19 and non–COVID-19
cohorts. In non–COVID-19 patients, a high degree of oxygen
support, high blood urea nitrogen (BUN), very high or very low
respiratory rate, low SpO2, and low GCS were the top five
features most associated with high risk scores by the model.
The COVID-19 cohort yielded the same top five features but
reordered such that respiratory parameters (respiratory rate,
oxygen support, and SpO2) ranked above BUN and GCS. Of
note, temperature was one of the few features that changed
direction between the two cohorts. In non–COVID-19 patients,
a high temperature was associated with low to moderate risk,
whereas high temperatures in patients with COVID-19 tended
to indicate those with the highest risk scores. The aggregate
feature explanations are, in general, similar between the two
cohorts and are largely consistent with clinician intuition.

However, these few key differences may reflect some of the
unique challenges faced when caring for patients with
COVID-19.

Calibration and Alert Thresholds
Simulated alert thresholds were calculated based on the derived
sensitivity, specificity, PPV, and NPV of the EDI threshold
posited by Singh et al [11]. For each of the four thresholds,
PICTURE outperformed the EDI according to the other four
metrics as demonstrated in Table 7. For example, when the
PICTURE alert threshold was adjusted such that its sensitivity
matched the EDI’s (0.448); the specificity (0.946), PPV (0.683),
and NPV (0.869) were all higher than the EDI’s (0.917, 0.583,
and 0.865, respectively). Additionally, PICTURE’s workup to
detection ratio ranged from 1.46 to 1.52 on the encounter level
depending on the threshold used, compared to the EDI’s 1.71.
This indicates that PICTURE may generate up to 17% fewer
false positives for each true positive encounter.

Case Study Example
As a demonstration of the potential utility of PICTURE, an
individual hospital encounter was selected, and the trajectories
of PICTURE and the EDI are visualized in Figure 6. The EDI
score threshold of 64.8, suggested by Singh et al [11], and the
sensitivity-aligned and PPV-aligned PICTURE thresholds are
also depicted. Note that the PICTURE score remains low until
approximately 12.5 hours before the adverse event (in this case,
transfer to an ICU level of care), where it crosses the
PPV-aligned threshold. Approximately 11 hours before the
event, the PICTURE score peaks at a value of 0.235 and exceeds
the sensitivity-aligned threshold of 0.165. After the initial peak,
the PICTURE score then remains elevated, staying above the
PPV-aligned threshold of 0.048 until the patient is transferred.
In contrast, the EDI score never exceeded its alert threshold,
and it dropped when the PICTURE score increased.

To simulate what a clinician receiving an alert from PICTURE
might encounter, the Shapley values explaining the PICTURE
predictions at both alert thresholds are recorded in Table 8. Note
that these explanations are dominated by respiratory features,
though heart rate and temperature are also present. Although
these features may seem obvious in predicting the need for ICU
care, it is worth highlighting that the EDI did not identify this
patient as being at risk.
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Figure 6. Sample trajectory of one patient. Panel A depicts the PICTURE predictions over 27 hours before the patient is eventually transferred to an
ICU level of care (green bar). Two possible alert thresholds are noted: one (red: 0.165) based on the EDI’s sensitivity at a threshold of 64.8 (as suggested
by Singh et al [11]), while the other (yellow: 0.048) is based on the EDI’s PPV at this threshold. Note that PICTURE peaks above the sensitivity-based
threshold approximately 11 hours in advance of the ICU transfer and then remains elevated over the PPV threshold until the transfer occurs. * and †
represent the first time points that PICTURE crossed each threshold, referenced in Table 7. Panel B demonstrates the EDI over the same time range,
with the threshold of 64.8 suggested by Singh et al [11]. The EDI did not identify this patient as being at risk. EDI: Epic Deterioration Index; ICU:
intensive care unit; PICTURE: Predicting Intensive Care Transfers and Other Unforeseen Events; PPV: positive predictive value.

Table 8. Sample Predicting Intensive Care Transfers and Other Unforeseen Events explanations.

Shapley scoreMedian (IQR)bValueRank and feature namea

Shapley values after PPV c threshold (t – 12.75 h)

1.062.0 (0.0-3.0)7 L/min1. Oxygen supplementation (rolling 24 h max)

0.9392.0 (90.0-94.0)85%2. SpO2
d (rolling 24 h min)

0.7620.0 (18.0-20.0)26 bpm3. Respiratory rate

0.3236.9 (36.8-37.2)39.1 ˚C4. Temperature

0.136.0 (5.6-6.4)5.75. Protein level

Shapley values after sensitivity threshold (t – 11 h)

1.932.0 (0.0-3.0)35 L/min1. Oxygen supplementation (rolling 24 h max)

1.0992.0 (90.0-94.0)85%2. SpO2 (rolling 24 h min)

0.7320.0 (18.0-20.0)24 bpm3. Respiratory rate

0.7183.0 (74.0-92.0)124 bpm4. Heart ratee

0.3236.9 (36.8-37.2)39.1˚C5. Temperature

aThe top 5 features corresponding to Predicting Intensive Care Transfers and Other Unforeseen Events predictions as it crosses the PPV-aligned threshold
and the sensitivity-aligned threshold as noted in Figure 6. These predictions represent two possible locations where a clinician could receive an alert
that their patient is deteriorating. Such information could be shared alongside the prediction score to provide better clinical utility to health care providers.
Note that oxygenation (supplemental oxygen, SpO2, and respiratory rate) and temperature play a dominant role in both cases.
bThe median and IQR are included for comparison, and are calculated using the COVID-19 data set.
cPPV: positive predictive value.
dSpO2: oxygen saturation as measured by pulse oximetry.
eHeart rate represented the primary difference between these two time points. When the Predicting Intensive Care Transfers and Other Unforeseen
Events score first exceeded the PPV threshold 12.5 hours before the intensive care unit transfer, the heart rate remained at 65 bpm and was not among
the top features as measured by Shapley. At 11 hours before the event, when the Predicting Intensive Care Transfers and Other Unforeseen Events score
was at its highest, the heart rate had jumped to 124 bpm and was the fourth-most influential feature as measured by Shapley values.
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Limitations
This analysis is limited to a single academic medical center,
and its generalizability to other health care systems will require
future study. Our sample of patients with COVID-19 was also
limited in size, limiting our power to detect differences between
PICTURE and the EDI. Lastly, the thresholds presented in the
section Calibration and Alert Thresholds may be different from
those used in the general population due to the increased event
rate. The thresholds may also require future tuning to suit the
needs of individual units.

Conclusion
The PICTURE early warning system accurately predicts adverse
patient outcomes including ICU transfer, mechanical ventilation,
and death at Michigan Medicine. The ability to consistently

anticipate these events may be especially valuable when
considering a potential impending second wave of COVID-19
infections. The EDI is a widespread deterioration model, which
has recently been assessed in a COVID-19 population. Both
PICTURE and the EDI were trained using approximately
130,000 non–COVID-19 encounters for general deterioration
and thus are not overfit to the COVID-19 population [11,12].
Using a head-to-head comparison, we demonstrated that
PICTURE has higher performance than the EDI at a statistically
significant level (α=5%) for both COVID-19 positive and
non–COVID-19 patients. In addition, PICTURE was capable
of accurately predicting adverse events as far as 24 hours before
the event occurred. Lastly, PICTURE has the ability to explain
individual predictions to clinicians by displaying those variables
that most influenced its prediction using Shapley values.
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Abstract

Background: Accurate and timely diagnosis and effective prognosis of the disease is important to provide the best possible
care for patients with COVID-19 and reduce the burden on the health care system. Machine learning methods can play a vital
role in the diagnosis of COVID-19 by processing chest x-ray images.

Objective: The aim of this study is to summarize information on the use of intelligent models for the diagnosis and prognosis
of COVID-19 to help with early and timely diagnosis, minimize prolonged diagnosis, and improve overall health care.

Methods: A systematic search of databases, including PubMed, Web of Science, IEEE, ProQuest, Scopus, bioRxiv, and medRxiv,
was performed for COVID-19–related studies published up to May 24, 2020. This study was performed in accordance with the
PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. All original research articles
describing the application of image processing for the prediction and diagnosis of COVID-19 were considered in the analysis.
Two reviewers independently assessed the published papers to determine eligibility for inclusion in the analysis. Risk of bias was
evaluated using the Prediction Model Risk of Bias Assessment Tool.

Results: Of the 629 articles retrieved, 44 articles were included. We identified 4 prognosis models for calculating prediction of
disease severity and estimation of confinement time for individual patients, and 40 diagnostic models for detecting COVID-19
from normal or other pneumonias. Most included studies used deep learning methods based on convolutional neural networks,
which have been widely used as a classification algorithm. The most frequently reported predictors of prognosis in patients with
COVID-19 included age, computed tomography data, gender, comorbidities, symptoms, and laboratory findings. Deep convolutional
neural networks obtained better results compared with non–neural network–based methods. Moreover, all of the models were
found to be at high risk of bias due to the lack of information about the study population, intended groups, and inappropriate
reporting.

Conclusions: Machine learning models used for the diagnosis and prognosis of COVID-19 showed excellent discriminative
performance. However, these models were at high risk of bias, because of various reasons such as inadequate information about
study participants, randomization process, and the lack of external validation, which may have resulted in the optimistic reporting
of these models. Hence, our findings do not recommend any of the current models to be used in practice for the diagnosis and
prognosis of COVID-19.

(JMIR Med Inform 2021;9(4):e25181)   doi:10.2196/25181
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Introduction

Since the COVID-19 outbreak was first reported in December
2019 in Wuhan, China, the number of people infected worldwide
has exceeded 33 million (as of September 28, 2020) [1]. The
World Health Organization declared COVID-19 as a global
health emergency that requires international cooperation [2,3].
Despite many efforts to control the spread of the disease, many
countries are facing a crisis of intensive care [4,5]. In order to
reduce the burden on the health care system and provide the
best possible care for patients, accurate and timely diagnosis
and effective prognosis of COVID-19 is important and
necessary. Moreover, early diagnosis of the disease helps health
care providers prevent delays in providing the best possible
treatment.

The diagnostic method currently used for COVID-19 is a
positive result of a nucleic acid test such as real-time reverse
transcription–polymerase chain reaction (RT-PCR) or
next-generation sequencing [6]. Despite the advantages of this
method, the number of false-negative test results due to unstable
specimen processing is relatively high in clinical practice, which
makes COVID-19 diagnosis difficult [7,8]. Moreover, laboratory
testing for COVID-19 requires a rigorous platform, which is
not assembled in all hospitals. Thus, COVID-19 testing may
involve transfer of clinical specimens, which may delay
diagnosis for days. Computed tomography (CT) plays a
fundamental role in the diagnosis of disease progression, because
of its excellent diagnostic accuracy and clinical outcomes [9].
For instance, lung CT images can be used to detect characteristic
abnormalities associated with COVID-19 [10,11]. Characteristic
imaging manifestations of COVID-19, such as ground-glass
opacities, bilateral involvement, and peripheral distribution,
have been described in various studies [12,13]. Consolidation,
cavitation, and interlobular septal thickening imaging features
have also been reported in some patients with COVID-19
[14,15].

Machine learning techniques have achieved considerable success
in the field of medical imaging and image analysis owing to the
use of deep learning technologies that allow for improved feature
extraction [16,17]. Machine learning is a popular method of
data analytics that uses different learning algorithms to teach
computers to learn from data for performing related tasks. It is
principally based on the learning methods and can be divided
into three groups, namely, supervised (classification, regression,
and ensembling), unsupervised (association, clustering, and
dimensionality reduction), and reinforcement learning, with
each category consisting of various methods for specific aims,
such as instance-based algorithm, regression analysis,
regularization, and classifiers for particular aims. Numerous
studies have suggested the use of machine learning techniques
in the diagnosis of diseases. For example, some studies have
used deep learning techniques to diagnose and differentiate
between bacterial and viral pneumonia using pediatric chest

radiographic images [18,19]. Considerable effort has also been
invested in diagnosing various chest CT imaging features that
are characteristic of different diseases [20,21]. Various models
ranging from rule-based systems to advanced machine learning
models (deep learning) have been published in the context of
the diagnosis and prognosis of COVID-19, which have
substantially contributed to the field of health care by aiding
the diagnosis and treatment of this disease and helped saved
lives [22].

The objective of this systematic review was to identify
publications in the existing literature that have used image
processing methods based on CT images for the diagnosis and
prognosis of COVID-19. We believe that this review would aid
clinical practice by informing future research and development
about improved diagnostic and treatment techniques for patients
with COVID-19.

Methods

Information Source and Search Strategy
We conducted a systematic search of the databases, including
PubMed, Web of Science, IEEE, ProQuest, Scopus, bioRxiv,
and medRxiv, for articles published up to May 24, 2020. The
study was performed according to the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-analyses)
guidelines [23]. We used two groups of keywords for searching
these databases—keywords related to the novel coronavirus and
those related to machine learning and image processing.

Inclusion and Exclusion Criteria
All studies that applied image processing techniques for the
prediction and diagnosis of COVID-19 were considered. We
included original research articles regardless of the language of
publication. We excluded editorials, commentaries, letters,
books, presentations, conference papers, and papers without
full text or those with insufficient information. To prevent
duplication in data collection, we also excluded all types of
review articles.

Study Selection
The selection process was initiated by removing duplicated
articles. Thereafter, two reviewers worked independently to
screen the titles and abstracts of the selected articles against the
eligibility criteria. We further excluded articles that did not
apply image processing for the prediction and diagnosis of
COVID-19. The detailed process regarding the selection of
articles is presented in Figure 1. After the initial screening, the
same authors independently reviewed the full text of the relevant
articles. Any disagreements were resolved through mutual
discussion. During the screening of the articles, the reviewers
documented the reasons for the exclusion of each article. We
used a free web and mobile application platform (Rayyan, Qatar
Computing Research Institute) for the screening of articles [24].
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Figure 1. Study identification and selection process.

Data Extraction and Synthesis
A standard data extraction form based on the Critical Appraisal
and Data Extraction for Systematic Reviews of Prediction
Modeling Studies (CHARMS) checklist was used by five
reviewers [25]. A data extraction form was used to extract
specific details about each article. This form consisted of
information on imaging modality, database, scope, setting, data
source and outcome, sample size (including training, validation,
and testing), machine learning technique, performance,
validation type, risk of bias (Multimedia Appendix 1). We
investigated several forms of validation, for example, external
(ie, evaluation in an independent database) and internal
validation (ie, bootstrap validation, cross validation, random
training test splits, and temporal splits).

Risk of Bias Assessment
The risk of bias was assessed using the Prediction Model Risk
of Bias Assessment Tool (PROBAST) [26].

Results

Overview
We retrieved 623 relevant studies through database searches.
Six studies were identified from the reference lists of the
selected publications. After title and abstract screening, 82
articles were selected for full-text assessment, which led to the
exclusion of 38 articles due to various reasons.

In total, 44 studies were included in this systematic review
(Figure 1). All included studies documented that patients’ CT
and chest x-ray (CXR) images were processed for segmentation
and classification tasks to enable the diagnosis and prognosis
of COVID-19. These studies described a total of 89 deep
learning and machine learning models applied for COVID-19
screening of CT and CXR images (Table 1).
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Table 1. Deep learning architecture and parameters.

Batch sizeLearning rateOptimizerNetwork architectureStudy

———aU-Net[27]

641e-4SGDbEfficient Net B4+2 FC [29][28]

———ResNet-50-2D [31][30]

———CPMc-Nets [33][32]

321e-5—U-Net (segmentation)[34]

321e-5—ResNet 152 (classification)[34]

———U-Net[35]

640.01SGDAlexNet, GoogLeNet, and ResNet-18 + GANd[36]

—0.01SGDAlexNet, VGG-16, VGG-19, SqueezeNet, GoogLeNet, MobileNet-
V2, ResNet-18, ResNet-50, ResNet-101, and Xception

[37]

32Optimize beside L2
regularization and
momentum

Adam50×5 layers + 8FCe + 1 global average pooling + softmax

5 layers = (2 Conv + 3MP)

[38]

150.001AdamVGG-19[39]

321e-5AdamDenseNet-201 + Inception_resnet_V2 + Inception_V3 + Mo-
bilenet_V2 + ResNet-50 + VGG16 + VGG19 +

[40]

40.01SGD2D (U-net + DRUNET + FCNf + SegNet + DeepLabv3)[41]

80.001Adam3D (ResNet-18)[41]

41e-5RmspropCNNg network base on the modification of ResNet-50 architecture[42]

———DenseNet like structure [44][43]

—0.001AdamModel A, 22 layers[45]

—0.001AdamModel B, 28 layers[45]

—0.001AdamModel C, 29 layers[45]

———TB detection DLh model[46]

641e-5SGDMobileNetV2, SqueezeNet[47]

—3e-3AdamDarknet-19[48]

———2D (ResNet-50)[49]

———3D (U-Net)[49]

160.001AdamResNet-18[50]

———MobileNetV2[51]

32—SGDDenseNet[52]

160.001AdamGAN + VGG16[53]

—1e-4AdamU-Net[54]

21e-4AdamFC-DenseNet-103[55]

161e-5AdamResNet-18[55]

321e-5AdamDeCoVNet[56]

—1e-4Momentum3D-ResNet (prediction)[57]

—1e-4Momentum3D-UNet (segmentation)[57]

641e-4AdamConvNet [59][58]

161e-4AdamINF-Net[60]

161e-10SGDFCN8s[60]

———UNet++ [62][61]
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Batch sizeLearning rateOptimizerNetwork architectureStudy

—1e-4AdamFCN-8s, U-Net, V-Net, and 3D U-Net++[63]

———VB-Net[64]

———VB-Net[65]

———M-Inception (6Conv + 3MP + inception + softmax + 2FC)[66]

———VNET_IR_RPN [68][67]

———DRE-NET (ResNet-50 as the backbone)[69]

11e-5AdamU-Net as segmentation[70]

11e-5AdamDeconvNet as prediction[70]

———MLPi + LSTMj (single layer) + FC + softmax[71]

———U-Net[72]

aNot available.
bSGD: stochastic gradient descent.
cCPM: cross partial multiview networks.
dGAN: generative adversarial network.
eFC: fully connected layer.
fFCN: fully convolutional network.
gCNN: convolutional neural network.
hDL: deep learning.
iMLP: multilayer perceptron.
jLSTM: long short-term memory.

Dataset
Distribution of the 44 collected datasets showed that 12 (27%)
studies used data on patients with COVID-19 from China; 3
(7%) studies used data on patients from China and USA
[27,28,30]; 1 (2%) study used data on patients from China and
Japan [32]; 1 (2%) study used data from China, USA, and
Switzerland [34]; and 1 (2%) study used data from Italy [73],
the Netherlands [35], and Canada [36]. Moreover, 11 (25%)
studies were based on international data. Finally, the datasets
used in 25 (56%) studies are publicly available, whereas those
used in the rest of the studies (19/44, 43%) are nonpublic. The
duration of follow-up was unclear for most studies. Only 2 (4%)
studies reported follow-up time; the first one reported a
follow-up of more than 5 days [28] and the other reported a
follow-up of 3-6 days [37].

We categorized the reviewed studies (N=44) into three broad
categories: (1) the CT scan category comprised 28 (63%) studies
in which the models used chest CT images for abnormality
analysis and COVID-19 diagnosis; (2) the x-ray category
consisted of 14 (32%) studies in which the models use patients’
CXR images; and (3) the hybrid category consisted of 3 (7%)
studies in which the models use a combination of CT, CXR,
lung ultrasound, and other information such as the patient’s age
and medical history.

Machine Learning Methods
Several machine learning techniques have been used for
COVID-19 detection, prediction, and diagnosis. For the
classification algorithms, the dataset is divided into training and
test datasets. The model was developed using the training
dataset, following which the validation of the training model

was accomplished using the test dataset. For the segmentation
algorithm, most studies used deep learning methods based on
convolutional neural networks (CNNs) that have been used
widely as a classification algorithm. In all, 40 studies used
diagnostic models, whereas 4 studies used prognostic models
for patients who had received a COVID-19 diagnosis
[41,43,71,72]. Table 1 illustrates the deep learning architectures
and hyperparameters used in the included studies using deep
learning methods. In this table, the three most important
parameters such as optimizer method, learning rate, and
mini-batch size were considered. In the case of the optimizing
algorithm Adam and RMSProp, all reported learning rates are
initial values except in one study [29] that used a constant
learning rate value.

Diagnostic Models to Detect COVID-19 in Patients
With Suspected Infection
For better categorization among the various machine learning
methods used in the studies analyzed, we classified the models
into two groups: CNN-based models (n=31) and other machine
learning algorithms (n=8). Among these, 31 studies used 61
CNN-based algorithms, which were further subdivided as
follows: U-Net (n=10), ResNet (n=11), SqueezeNet (n=3),
MobileNet (n=4), multiple types of VGG networks (n=4),
GoogLeNet (n=2), and others (n=4). A total of 8 studies used
26 other machine learning methods, of which support vector
machine (SVM) was the most commonly used algorithm as a
classifier (n=5) [32,73-76], followed by random forest (n=1)
[65,76], logistic regression (n=1) [34], and other machine
learning algorithms (n=3). In addition, 1 study [77] used a
multi-objective, differential, evolution-based algorithm to
automatically build CNN. In addition, 4 models were developed
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and externally validated in the same study (in an independent
dataset, excluding random training test splits and temporal splits)
[28,30,46,55].

Prognostic Models for Patients With a COVID-19
Diagnosis
We identified 4 prognostic models for patients who had received
a COVID-19 diagnosis. One of these models used a CNN-based
model to estimate mortality risk in patients with suspected or
confirmed COVID-19 and externally validate using another
dataset [43]. Two models aimed to predict disease progression
to a severe or critical state, and one of these two models used
five CNN-based algorithms [41]. The fourth prognostic model
used an LSTM network and compared it with other traditional
methods such as principal component analysis, linear
discriminant analysis, SVM, and multilayer perceptron [71].
Furthermore, 1 study [72] aimed to develop a random forest

algorithm and a logistic regression model to predict the length
of hospital stay (greater than 10 days) and estimated C indices
of 0.92 and 0.96, respectively. The other studies did not report
the C index. Figure 2 shows the bar graph for all methods used
in the included studies.

In our analysis, we found that almost all studies had problems
with the lack of sufficient data. To address this problem, some
studies used data augmentation to synthesize new data, some
others attempted to use a combination of different datasets or
different kinds of data in their study, and other studies tried to
take advantages of non–neural network–based methods such as
k-nearest neighbor, SVM, and feature extraction methods. In
general, studies that used deep CNNs produced better results
than those using non–neural network–based methods. Moreover,
18 studies used K-fold cross-validation, whereas 19 of them
used random training test split as a validation method.

Figure 2. Number of deep learning and other machine learning methods used in the reviewed studies. CNN: convolutional neural network.

Risk of Bias
According to the PROBAST assessment tool [26], all included
studies were at a high risk of bias, which suggests that their
predictive performance when used in practice is probably lower
than that reported. Most of the studies were at high risk in the
participant domain due to the lack of information about patients
and intervention groups. Moreover, almost all studies obtained
a high index in the analysis domain, which shows that most of
the deep learning models did not have interpretability and that
the results were probably lower than those obtained using real
datasets.

As shown in Table 2, 15 of the 44 (34%) studies had a high risk
of bias for the participant domain, which indicates that these
articles did not contain adequate information about the enrolled

study participants and intervention groups. In addition, any
imbalances in the datasets could cause problems in the
randomization process (eg, imbalances between the number of
images of normal cases and COVID-19 or other pneumonia
cases), leading the study to a risk of bias. Unclear reporting on
the inclusion of participants prohibited a risk of bias assessment
in 15 (34%) studies. On the other hand, 19 (43%) studies had
a high risk of bias due to the predictor domain; this may be
attributed to the high false-negative ratio of COVID-19
diagnostic tests (eg, RT-PCR) due to which CT and x-ray images
may be wrongly classified as COVID-19, thus leading to
inaccurate learning of the models and missing outcome data to
predicting processes. In addition, an unclear index was reported
in 13 (30%) articles, implying that these articles did not provide
specific information about the missing outcome data.
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Table 2. Risk of bias assessment (using Prediction Model Risk of Bias Assessment Tool) based on four domains conducted for all studies included in
the review.

Overall risk of
bias

DomainStudy

AnalysisOutcomePredictorsParticipants

HighUnclearHighLowUnclear[27]

HighHighHighHighHigh[28]

HighHighHighUnclearUnclear[30]

HighHighHighHighUnclear[32]

HighHighUnclearUnclearHigh[34]

HighHighUnclearUnclearUnclear[73]

HighHighHighHighHigh[35]

HighUnclearLowHighHigh[36]

UnclearUnclearUnclearLowLow[37]

HighHighLowHighUnclear[38]

UnclearHighUnclearUnclearHigh[39]

HighHighLowLowUnclear[40]

HighHighLowLowLow[41]

HighUnclearLowHighSome concern[42]

HighHighHighHighHigh[76]

HighUnclearHighLowUnclear[43]

HighHighLowHighHigh[45]

HighHighHighHighHigh[46]

HighHighUnclearHighUnclear[75]

UnclearUnclearUnclearLowUnclear[74]

HighUnclearHighLowUnclear[47]

HighHighUnclearLowUnclear[48]

HighHighLowUnclearLow[49]

HighHighHighHighUnclear[77]

HighHighHighHighLow[50]

HighHighHighHighUnclear[51]

HighHighHighHighHigh[52]

HighHighLowHighHigh[53]

HighHighHighHighHigh[54]

HighHighLowHighHigh[55]

HighHighUnclearLowLow[56]

HighHighHighLowUnclear[57]

HighHighHighHighHigh[58]

HighHighHighHighHigh[60]

HighHighLowUnclearHigh[61]

HighHighHighUnclearHigh[63]

HighHighHighUnclearUnclear[64]

HighHighLowUnclearHigh[65]

HighHighLowUnclearHigh[66]

HighHighHighUnclearHigh[67]
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Overall risk of
bias

DomainStudy

AnalysisOutcomePredictorsParticipants

HighHighLowUnclearUnclear[69]

HighHighHighUnclearUnclear[70]

HighHighUnclearUnclearLow[71]

HighLowLowUnclearUnclear[72]

Published research articles often do not provide clear
information about the preprocessing steps, such as cropping of
images. Furthermore, due to the complexity of the machine
learning algorithms used to process images into predictors, it
is challenging to fully apply the PROBAST predictors. Most
models were at high risk of bias in the outcome domain because
most of the studies used inappropriate measurement, or there
was no reason that the measurement or ascertainment of the
outcome differed among intervention groups. Finally, none of
the models were identified to be at low risk of bias in the
analysis domain. Although many datasets have been made
available to researchers in recent months to diagnose COVID-
19, there remains a lack of training data, which increases the
risk of overfitting. Five models were developed and externally
validated in the same study (in an independent dataset, excluding
random training test splits and temporal splits).

Metrics
For a more comprehensive review, we classified machine
learning–based COVID-19 diagnostic techniques into three
major categories based on the imaging modality used in the
study. In the following sections, we discuss each category in
detail.

CT Scan Category
all machine learning methods that were classified in the CT
category used CT scan images in their analyses. Since CT scan
data have a 3D nature, two approaches were generally followed.
The first is a slice-based approach in which each slice of a CT
scan image is analyzed independently; then, at the stage of
decision-making, voting is used to decide whether the CT scan
image belongs to COVID-19–positive class or
COVID-19–negative class. In the second approach, all slices
of a CT scan were used as a 3D-like set and used in a 3D CNN
[45,57]. The investigations showed that methods utilizing a
slice-based approach have a better performance in terms of
COVID-19 diagnosis.

For example, Pu et al [45] proposed three 3D CNN models to
classify pneumonia and COVID-19 cases by using CT scans.
They analyzed 498 CT scans of patients with COVID-19 and
497 CT scans of patients with pneumonia in their experiments.
Thus, 256 slices of each CT scan were used as input to the
models. Although the results showed that the model with a
higher number of layers had the best performance with an area
under the curve (AUC) of 0.7, their model could not distinguish
between pneumonia and COVID-19 well enough.

Among the methods utilizing a slice-based approach, the
proposed method by Ardakani

et al [37] reported the best performance with an accuracy of
0.99 and a sensitivity of 1.0. They trained 10 different
well-known CNNs by using 1020 slices of 108 CT scans to
distinguish COVID-19 from other pneumonias and normal
cases. ResNet-101 demonstrated the best sensitivity and was
reported as an efficient model for COVID-19 diagnosis by using
CT images. Although ResNet-101 had the best sensitivity, it
had the weakest results in terms of specificity as compared to
Xception and ResNet-50 models, which implies that ResNet-101
might be involved in overfitting.

Some other studies [28,41,56] also reported an accuracy higher
than 0.96. The common factor in these approaches was the high
level of augmentation used. For instance, Zhang et al [41] used
4695 CT slices that was increased to more than 600,000 slices
by using augmentation techniques. Owing to the significance
of the number of available images in the training of deep CNN
models, some studies attempted to use non–CNN-based methods
such as feature extraction, thresholding, and
transformation-based methods.

As an example, Fang et al [74] used a radiometric feature
extraction technique for all slices of available CT scans
(including CT scans of 46 COVID-19–positive and 26 other
pneumonia cases); the extracted features were used to train an
SVM classifier for further classification. In the test phase, their
method achieved an AUC of 0.76. Because other measurements
such as accuracy and sensitivity were not reported [74], high
risk of bias is very probable.

Due to the difference in color and texture of healthy and infected
regions in the lung images, some researchers tried to exploit
texture information in their studies. For example, El Asnaoui
et al [40] used different feature descriptors such as local binary
pattern, gray level co-occurrence matrix, and discrete wavelet
transform to analyze local features in images. Finally, in the
decision-making stage, an SVM classifier was used to determine
whether an input image belongs to the COVID-19 class or not.
The results show that this method could achieve a sensitivity
of 0.93 and a specificity of 1.0.

X-ray Category
Although a CT scan generates high-quality images with more
details than an x-ray image, some studies have attempted to use
x-ray images to investigate the probability of COVID-19
diagnosis. Among the studies we reviewed, 14 studies used
CXR images in their analyses. Yi et al [46] proposed a
hypothesis that a deep CNN model trained on a similar dataset
can be useful in COVID-19 diagnosis. They trained a ResNet
model for pulmonary tuberculosis (TB) detection by using CXR
images from the NIH Chest X-ray dataset [78], which did not
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have any information of TB, yet the trained model achieved a
high performance with regard to TB detection. The same
approach had been used for COVID-19 diagnosis, and the x-ray
images of 88 COVID-19–positive patients were inputted into
the trained model. The results showed that the model could
correctly classify 78 of the 88 (89%) input x-ray images and
that it misclassified 10 input x-ray images. Although the reported
results are satisfactory, they did not consider
COVID-19–negative inputs and did not measure the
false-positive rates of the proposed methods.

A continuously growing dataset has been provided by a group
of researchers at the University of Montreal [79], which includes
annotated CXR images of patients with COVID-19. Several
studies [39,40,47,48,51,55] have used this dataset in their
analyses. For instance, Han et al [55] proposed a DenseNet
model with a relatively small number of parameters and used
a combination of x-ray images from various datasets, including
the COVID Chest X-Ray dataset (180 COVID-19–positive
images), JSRT (20 normal images), NLM (73 normal and 57
tuberculosis images), and CoronaHack (98 normal and 54
pneumonia images), for the training and testing phases. The
trained model achieved an accuracy of 0.88 and a precision of
0.83.

Another study [27] utilized images from a pneumonia dataset,
including 22,000 CXR images, to train a U-Net model to
compute the probability of pneumonia using x-ray images at
the pixel level. By integrating the probability values of pixels
as a single image, a class activation map is obtained that can be
used to show which region in the input image has the most
relevance to pneumonia. After model training, they fed 10 CXR
images from 5 patients that were captured on several consecutive
days. They reported that their model could detect localized areas
of pneumonia with increasing likelihood as the subtle airspace
opacities increased over time. However, no technical information
and measurements were described.

Some other studies [35,48,55] also used a class activation map
to not only classify each image into COVID-19–positive and
COVID-19–negative classes but also to localize suspected areas
in CXR images.

Hybrid Category
Given that most of the included articles mentioned data shortage
as a major problem in developing an efficient COVID-19
diagnosis model, some studies tried to exploit two or more types
of data in their analyses. For instance, in the study by Wang et
al [43], at the first stage, a CNN model was trained on 4106 CT
slices with epidermal growth factor receptor data. In the second
stage, 709 COVID-19–positive images from patients from
Wuhan city were used to retrain the model. Finally, 458 images
from four different cities in China were used as test images, and
the model achieved an accuracy of 0.85 and a sensitivity of
0.80.

In the study by Mei et al [50], clinical data such as patient’s
age, gender, symptoms, and laboratory findings were used in
addition to CT scans of 905 patients with suspected COVID-19
from 13 provinces in China. A modified ResNet model was
proposed by the authors to accept clinical data alongside the

CT scan slice images. The results showed that their proposed
model achieved an accuracy equivalent to a senior chest
radiologist with an AUC of 0.86. Although their dataset is not
publicly available, the trained models are available for others
to download.

Discussion

Principal Findings
In this study, we reviewed 44 studies related to the diagnosis
and prognosis of COVID-19 that used advanced machine
learning techniques based on clinical images to diagnose
COVID-19 or COVID-19–related pneumonia, or to assist with
the segmentation of lung images by using chest CT and x-ray
images with their proposed machine learning methods. The
predictive performance measures showed a high to almost
perfect ability to detect COVID-19. Overall, 24 different
methods, such as deep CNNs, local feature descriptors, and
decision trees, were used in the reviewed studies; however,
some of them used similar models with a different setup or
configuration.

Due to the complexity of the clinical images used and the need
to obtain the best results for an early diagnosis of COVID-19,
most of the reviewed articles (36/44, 82%) had based their
learning algorithm on neural networks and deep learning as
proven, powerful learning methods. However, deep CNNs,
which are developed in principle to work with images, require
sufficient amount of data for fine-tuning the network parameters.

Given that the COVID-19 outbreak was in the early stage at the
time of this review and that there was a lack of proper data
available, most of these CNN-based studies were endangered
by overfitting, which causes a high risk of bias. Nevertheless,
some of the studies used previously available data of chest CT
or x-ray images to compensate with data shortage and to enrich
the training data. For instance, Ucar and Korkmaz [38] used 66
COVID-19–positive lung x-ray images, which were not
sufficient to train a CNN. To overcome this problem, they added
these images to the images of a publicly available pneumonia
dataset called Chest X-Ray Images (Pneumonia) [80], which
was used to obtain access to a larger number of images for
network training. Although the pneumonia dataset does not
provide any information about COVID-19, it can enhance the
model performance to better distinguish between healthy and
unhealthy lungs. Another approach used for compensating the
lack of data was to utilize data augmentation techniques such
as image mirroring and blending. Although most of the reviewed
studies used simple augmentation methods, some used more
complicated techniques. For example, in the study by Ucar and
Korkmaz [38], a generative adversarial network was trained to
synthesize new images from the limited 307 images available
that were not considered enough for network training.

This systematic review is in its early stage, and we will continue
to update our findings and evaluation to provide new information
to health care professionals and decision makers as more
international studies are conducted over time.
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Study Limitations
With the rapid publication of COVID-19 prediction models in
the medical image processing domain in the recent past, this
systematic review cannot be considered as an up-to-date list of
all the current prediction models.

Conclusions
Different models have been proposed for the diagnosis and
prognosis of COVID-19, demonstrating varying levels of
discriminative performance. The results show that deep CNNs
dedicated a larger number of models than non–neural
network–based methods; moreover, deep networks achieved

better results than other machine learning models. However,
the rapid spread of COVID-19 and the lack of data for machine
learning approaches and training may have increased the
likelihood of overfitting and vague reporting. Furthermore, the
lack of adequate information about patients and study
participants likely led to the high risk of bias, which made the
results seem optimistic. Therefore, the performance of these
models is misleading, and we do not recommend their practical
use. Future studies aimed at using deep neural networks for
diagnosing COVID-19 should address aspects of appropriate
model performance by using a larger training dataset with no
imbalance and complete information about patients and
intervention groups.
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CT: computed tomography
CXR: chest x-ray
GAN: generative adversarial network
PROBAST: Prediction Model Risk of Bias Assessment Tool
RT-PCR: reverse transcription–polymerase chain reaction
SVM: support vector machine
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Abstract

Background: The COVID-19 outbreak has spread rapidly and hospitals are overwhelmed with COVID-19 patients. While
analysis of nasal and throat swabs from patients is the main way to detect COVID-19, analyzing chest images could offer an
alternative method to hospitals, where health care personnel and testing kits are scarce. Deep learning (DL), in particular, has
shown impressive levels of performance when analyzing medical images, including those related to COVID-19 pneumonia.

Objective: The goal of this study was to perform a systematic review with a meta-analysis of relevant studies to quantify the
performance of DL algorithms in the automatic stratification of COVID-19 patients using chest images.

Methods: A search strategy for use in PubMed, Scopus, Google Scholar, and Web of Science was developed, where we searched
for articles published between January 1 and April 25, 2020. We used the key terms “COVID-19,” or “coronavirus,” or
“SARS-CoV-2,” or “novel corona,” or “2019-ncov,” and “deep learning,” or “artificial intelligence,” or “automatic detection.”
Two authors independently extracted data on study characteristics, methods, risk of bias, and outcomes. Any disagreement between
them was resolved by consensus.

Results: A total of 16 studies were included in the meta-analysis, which included 5896 chest images from COVID-19 patients.
The pooled sensitivity and specificity of the DL models in detecting COVID-19 were 0.95 (95% CI 0.94-0.95) and 0.96 (95%
CI 0.96-0.97), respectively, with an area under the receiver operating characteristic curve of 0.98. The positive likelihood, negative
likelihood, and diagnostic odds ratio were 19.02 (95% CI 12.83-28.19), 0.06 (95% CI 0.04-0.10), and 368.07 (95% CI
162.30-834.75), respectively. The pooled sensitivity and specificity for distinguishing other types of pneumonia from COVID-19
were 0.93 (95% CI 0.92-0.94) and 0.95 (95% CI 0.94-0.95), respectively. The performance of radiologists in detecting COVID-19
was lower than that of the DL models; however, the performance of junior radiologists was improved when they used DL-based
prediction tools.

Conclusions: Our study findings show that DL models have immense potential in accurately stratifying COVID-19 patients
and in correctly differentiating them from patients with other types of pneumonia and normal patients. Implementation of DL-based
tools can assist radiologists in correctly and quickly detecting COVID-19 and, consequently, in combating the COVID-19
pandemic.
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Introduction

COVID-19 is a serious global infectious disease and is spreading
at an unprecedented level worldwide [1,2]. The World Health
Organization declared this infectious disease a public health
emergency of international concern and then declared it a
pandemic. SARS-CoV-2 is even more contagious than
SARS-CoV or Middle East respiratory syndrome coronavirus
and is sometimes undetected due to people having asymptomatic
or mild symptoms [3,4]. Earlier detection paired with aggressive
public health steps, such as social distancing and isolation of
suspected or sick patients, can help tackle the crisis [5].
Presently, reverse transcription–polymerase chain reaction
(RT-PCR), gene sequencing, and analysis of blood specimens
are considered the gold standard methods for detecting
COVID-19; however, the performance of these methods (∼73%
sensitivity for nasal swabs and ∼61% for throat swabs) is not
satisfactory [6,7]. Since hospitals are overwhelmed by
COVID-19 patients, those with severe acute respiratory illness
are given priority over others with mild symptoms. Therefore,
a large number of undiagnosed patients may lead to a serious
risk of cross-infection.

Chest radiography imaging (eg, x-ray and computed tomography
[CT] scan) is often used as an effective tool for the quick
diagnosis of pneumonia [8,9]. The CT scan images of
COVID-19 patients show multilobar involvement and peripheral
airspace, mostly ground-glass opacities [10,11]. Moreover,
asymmetric patchy or diffuse airspace opacities have also been
reported in patients with SARS-CoV-2 infection [12]. These
changes in CT scan images can be easily interpreted by a trained
or experienced radiologist. Automatic classification of
COVID-19 patients, however, has huge benefits, such as
increasing efficiency, wide coverage, reducing barriers to access,
and improving patient outcomes. Several studies demonstrated
the application of deep learning (DL) techniques to identify and
detect novel COVID-19 using radiography images [13,14].

Herein, we report the results of a comprehensive systematic
review of DL algorithm studies that investigated the
performance of DL algorithms for COVID-19 classification
from chest radiography imaging. Our main objective was to
quantify the performance of DL methods for COVID-19
classification, which might encourage health care policy makers
to implement DL-based automated tools in the real-world
clinical setting. DL-based automated tools can help reduce
radiologists’ workload, as DL can help maintain diagnostic
radiology support in real time and with increased sensitivity.

Methods

Experimental Approach
The PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) guidelines, which are based on

the Cochrane Handbook for Systematic Reviews of
Interventions, were used to conduct this study [15].

Literature Search
We searched electronic databases, such as PubMed, Scopus,
Google Scholar, and Web of Science, for articles published
between January 1 and April 25, 2020. We developed a search
strategy using combinations of the following Medical Subject
Headings: “COVID-19,” or “coronavirus,” or “SARS-CoV-2,”
or “novel corona,” or “2019-ncov,” and “deep learning,” or
“artificial intelligence,” or “automatic detection.” Reference
lists of the retrieved articles and relevant reviews were also
checked for additional eligible articles.

Eligibility Criteria
During the first screening, two authors (MMI and TNP) assessed
the title and abstract of each article and excluded irrelevant
articles. To include eligible articles, those two authors examined
the full text of the articles and evaluated whether they fulfilled
the inclusion criteria of this study. Disagreement during this
selection process was resolved by consensus or, if necessary,
the main investigator (YCL) was consulted. We included articles
if they met the following criteria: (1) were published in English,
(2) were published in a peer-reviewed journal, (3) assessed
performance of a DL model to detect COVID-19, and (4)
provided a clear description of the methodology and the total
number of images. We excluded studies if they were published
in preprint repositories or if they were published in the form of
a review or a letter to the editor.

Data Extraction and Synthesis
Two authors (MMI and TNP) independently screened all titles
and abstracts of retrieved articles. The most relevant studies
were selected based on the predefined selection criteria. Any
disagreement during the screening process was resolved by
discussion with the other authors; unsettled issues were settled
by discussion with the study supervisor (YCL). The two authors
who conducted the first screening cross-checked studies for
duplication by comparing author names, publication dates, and
journal names. They excluded all duplicate studies. Afterward,
they collected data from the selected studies, such as author
name, publication year, location, model description, total number
of images, total number of COVID-19 cases and images,
imaging modality, total number of patients, sensitivity,
specificity, accuracy, area under the receiver operating
characteristic curve (AUROC), and database.

Risk of Bias Assessment
The Quality Assessment of Diagnostic Accuracy Studies-2
(QUADAS-2) tool was used to assess the quality of the selected
studies [16]. The QUADAS-2 scale comprises four domains:
patient selection, index test, reference standard, and flow and
timing. The first three domains are used to evaluate the risk of
bias in terms of concerns regarding applicability. The overall
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risk of bias was categorized into three groups: low, high, and
unclear risk of bias.

Statistical Analysis
Meta-DiSc, version 1.4, was used to calculate the evaluation
metrics of the DL model. The software was also used to (1)
perform statistical pooling from each study and (2) assess the
homogeneity with a variety of statistics, including chi-square

and I2. The sensitivity and specificity with 95% CIs in
distinguishing between COVID-19 patients, patients with other
types of pneumonia, and normal patients were calculated. The
pooled receiver operating characteristic (ROC) curve was plotted
and the area under the curve (AUC) was calculated with 95%
CIs based on the DerSimonian-Laird random effects model
method. The diagnostic odds ratio (DOR) was calculated by the
Moses constant of the linear model. Diagnostic tests where the
DOR is constant, regardless of the diagnostic threshold, have
symmetrical curves around the sensitivity-specificity line. In
these situations, it is possible to combine DORs using the
DerSimonian-Laird method to estimate the overall DOR and,
hence, to determine the best-fitting ROC curve [17]. The
mathematical equation is given below:

When the DOR changes with the diagnostic threshold, the ROC
curve is asymmetrical. To fit the DOR variation based on a
different threshold, the Moses-Shapiro-Littenberg method was
used. It consists of observing the relationship by fitting the
straight line:

D = a + bS        (2)

where D is the log of DOR and S is a measure of threshold given
by the following:

Estimates of parameters a and b and their standard errors and
covariance were obtained by the ordinary or weighted least
squares method using the NAG Library for C (The Numerical
Algorithms Group).

The ROC curve is the AUC that summarized the diagnostic
performance as a single number: an AUC close to 1 is
considered a perfect curve and an AUC close to 0.5 is considered
poor [18]. The AUC is computed by numeric integration of the
curve equation by the trapezoidal method [19]. The Q* index
is defined by the point where sensitivity and specificity are
equal, which is the point closest to the ideal top-left corner of
the ROC curve space. It was calculated by the following:

Moreover, the standard error of the AUROC was calculated by
following equation:

The standard error of Q* was calculated by following equation:

Results

Selection Criteria
Figure 1 shows the process of identifying relevant DL studies.
A total of 562 studies were retrieved by searching electronic
databases and by reviewing their reference lists. We excluded
435 duplicate studies and an additional 104 studies that did not
fulfill the selection criteria. We reviewed 23 full-text studies
and further excluded 7 studies because of the reasons shown in
Figure 1. Finally, we included 16 studies in the meta-analysis
[13,14,20-33].
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram for study selection.

Characteristics of Included Studies
Among the 16 DL-based COVID-19 detection studies, we
identified 5896 digital images for COVID-19 patients and
645,825 images for non-COVID-19 patients, including those
with other types of viral pneumonia and normal patients.
Included studies used DL algorithms, such as convolutional

neural networks, MobileNetV2, and COVNet, for stratifying
COVID-19 patients with higher accuracy. The range of accuracy
for detecting COVID-19 correctly was 76.00 to 99.51. A total
of 8 studies used CT images and 8 studies used x-ray images.
The characteristics of the included studies in the meta-analysis
are shown in Table 1 [13,14,20-33].
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Table 1. Characteristics of the studies included in the meta-analysis.

AccuracySpecificitySensitivityCOVID-19
images, n

Images, nMethodModalityAuthor

99.1896.4698.662241428MobileNetV2X-rayApostolopoulos and
Mpesiana [14]

—a92.2098.20219618Convolutional neural network
(CNN)

Computed tomogra-
phy (CT)

Butt et al [13]

96.7899.4297.364633905MobileNetV2X-rayApostolopoulos et al [21]

—95.0090.001274356COVNetCTLi et al [25]

98.3099.13—1536b4608bCNNX-rayUcar and Korkmaz [29]

98.0895.3095.131081186CNN and DarkNetX-rayOzturk et al [26]

96.0096.0095.005211186EfficientNetCTBai et al [24]

92.4991.1394.93—617,775DeepLabv3CTZhang at al [33]

—96.0692.112316087Inception ResNet V2X-rayEl Asnaoui and Chawki
[20]

99.5199.021005101020ResNet-101CTArdakani et al [22]

93.0194.7791.45413852CNNCTPathak et al [27]

76.0061.5081.10368495ResNet50CTWu et al [32]

100100100295458SqueezeNetX-rayToğaçar et al [28]

95.0097.0090.004031124ACGANcX-rayWaheed at al [30]

99.0098.6099.302841251XceptionX-rayKhan et al [23]

78.3276.6680.391025372DenseNetCTWang et al [31]

80.1281.1679.35925372DenseNetCTWang et al [31]

aNot reported.
bAugmented images.
cACGAN: auxiliary classifier generative adversarial network.

Model Performance
Based on the 16 studies, the performance of the DL algorithms
for detecting COVID-19 was determined and is summarized in
Table 2 [22,24,33]. The pooled sensitivity and specificity of the
DL methods for detecting COVID-19 was 0.95 (95% CI
0.94-0.95) and 0.96 (95% CI 0.96-0.97), respectively, with a
summary ROC (SROC) of 0.98 (Figure 2). The pooled
sensitivity and specificity are shown in Figure 3.

DL methods were able to correctly distinguish other types of
pneumonia from COVID-19 with an SROC of 0.98 (sensitivity:

0.93, 95% CI 0.92-0.94; specificity: 0.95, 95% CI 0.94-0.95).
The positive likelihood, negative likelihood, and DOR were
22.45 (95% CI 12.86-39.19), 0.06 (95% CI 0.03-0.13), and
461.81 (95% CI 134.96-1580.24), respectively. Moreover, the
DL model showed good performance for correctly stratifying
normal patients, with an SROC of 0.99 (sensitivity: 0.95, 95%
CI 0.94-0.96; specificity: 0.98, 95% CI 0.97-0.98). The positive
likelihood, negative likelihood, and DOR were 47.47 (95% CI
20.70-108.86), 0.04 (95% CI 0.02-0.08), and 1524.81 (95% CI
625.29-3718.34), respectively.
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Table 2. Performance comparison between deep learning models and radiologists.

AccuracyAUROCaNegative likelihood
ratio (95% CI)

Positive likelihood
ratio (95% CI)

Specificity
(95% CI)

Sensitivity
(95% CI)

Data sets, nClass and method

COVID-19

—b0.980.06 (0.04-0.10)19.02 (12.83-
28.19)

0.96 (0.96-
0.97)

0.95 (0.94-
0.95)

17Deep learning model

Radiologists (Bai et al [24])

0.85———0.88 (0.78-
0.94)

0.79 (0.64-
0.89)

6Total

————0.88 (0.83-
0.92)

0.80 (0.72-
0.87)

3Juniorc

————0.87 (0.82-
0.91)

0.78 (0.70-
0.85)

3Seniord

————0.93 (0.89-
0.96)

0.88 (0.81-
0.93)

—Junior + AIe

————0.89 (0.84-
0.93)

0.88 (0.81-
0.93)

—Senior + AI

Radiologists (Zhang et al [33])

————0.90 (0.86-
0.94)

0.75 (0.65-
0.84)

8Total

0.82———0.89 (0.81-
0.94)

0.65 (0.48-
0.79)

4Junior

0.90———0.91 (0.85-
0.96)

0.85 (0.70-
0.94)

4Senior

0.90———0.94 (0.88-
0.97)

0.80 (0.64-
0.90)

—Junior + AI

————0.83 (0.74-
0.89)

0.89 (0.81-
0.94)

1Radiologist (Ardakani et al
[22]; senior)

—0.980.06 (0.03-0.13)22.45 (12.86-
39.19)

0.95 (0.94-
0.95)

0.93 (0.92-
0.94)

7Other types of pneumonia: deep
learning model

—0.990.04 (0.02-0.08)47.47 (20.70-
108.86)

0.98 (0.97-
0.98)

0.95 (0.94-
0.96)

6Normal: deep learning model

aAUROC: area under the receiver operating characteristic curve.
bNot reported.
cJunior radiologists have 5 to 15 years of experience.
dSenior radiologists have 15 to 25 years of experience.
eAI: artificial intelligence.

Figure 2. Performance of the deep learning model for detecting COVID-19.
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Figure 3. Summary receiver operating characteristic (SROC) curve of the deep learning method. AUC: area under the curve; Q*: this index is defined
by the point where sensitivity and specificity are equal.

Performance of Radiologists

Overview
A total of 3 studies compared the performance of DL models
with radiologists [22,24,33]. Zhang et al [33] included 8
radiologists with 5 to 25 years of experience; they were
categorized into two groups: junior radiologists had 5 to 15
years of experience and senior radiologists had 15 to 25 years
of experience. Bai et al [24] compared DL model performance
with 6 radiologists; 3 of them had 10 years of experience (ie,
junior) and 3 had 20 years of experience (ie, senior). Finally,
Ardakani et al [22] compared the performance of DL models
with 1 senior radiologist, who had 15 years of experience. The
performance of 15 radiologists in detecting COVID-19 was
evaluated; the pooled sensitivity and specificity for detecting
COVID-19 ranged from 0.75 to 0.89 and from 0.83 to 0.90,
respectively. With the assistance of DL-based artificial
intelligence (AI) tools, the performance of the junior radiologists
improved: sensitivity improved by 0.08 to 0.15 and specificity
improved by 0.05.

Sensitivity Analysis
A total of 8 studies evaluated the performance of DL algorithms
for detecting COVID-19 using x-ray photographs. The pooled
sensitivity and specificity of DL algorithms for detecting
COVID-19 were 0.96 (95% CI 0.95-0.97) and 0.97 (95% CI
0.97-0.98), respectively, with an SROC of 0.99. Moreover, 8
studies assessed the performance of DL algorithms for
classifying COVID-19 using CT images. The pooled sensitivity
and specificity were 0.94 (95% CI 0.94-0.95) and 0.95 (95%
CI 0.95-0.96), respectively, with an SROC of 0.96 (see Figures
S1-S12 in Multimedia Appendix 1).

Risk of Bias and Applicability
In this meta-analysis, we also assessed heterogeneous findings
that originated from included studies based on the QUADAS-2
tool (see Table 3 [13,14,20-33]). The risk of bias for patient
selection was unclear for 16 studies. All studies had an unclear
risk of bias for flow and timing and for the index test. Moreover,
all studies had a high risk of bias for the reference standard. In
the case of applicability, all studies had a low risk of bias for
patient selection. However, the risk of index test and the
applicability concern for the reference standard were uncertain.
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Table 3. Quality Assessment of Diagnostic Accuracy Studies-2 for included studies.

Applicability concernsRisk of bias (high, low, or unclear)Study

Reference
standard

Index testPatient se-
lection

Flow and
timing

Reference stan-
dard

Index testPatient selec-
tion

UnclearUnclearLowUnclearHighUnclearHighApostolopoulos and Mpesiana [14]

UnclearUnclearLowUnclearHighUnclearHighButt et al [13]

UnclearUnclearLowUnclearHighUnclearHighApostolopoulos et al [21]

UnclearUnclearLowUnclearHighUnclearHighLi et al [25]

UnclearUnclearLowUnclearHighUnclearHighUcar and Korkmaz [29]

UnclearUnclearLowUnclearHighUnclearHighOzturk et al [26]

UnclearUnclearLowUnclearHighUnclearHighBai et al [24]

UnclearUnclearLowUnclearHighUnclearHighZhang at al [33]

UnclearUnclearLowUnclearHighUnclearHighEl Asnaoui and Chawki [20]

UnclearUnclearLowUnclearHighUnclearHighArdakani et al [22]

UnclearUnclearLowUnclearHighUnclearHighPathak et al [27]

UnclearUnclearLowUnclearHighUnclearHighWu et al [32]

UnclearUnclearLowUnclearHighUnclearHighToğaçar et al [28]

UnclearUnclearLowUnclearHighUnclearHighWaheed at al [30]

UnclearUnclearLowUnclearHighUnclearHighKhan et al [23]

UnclearUnclearLowUnclearHighUnclearHighWang et al [31]

Discussion

Principal Findings
In this study, we evaluated the performance of the DL model
regarding detection of COVID-19 automatically using chest
images to assist with proper diagnosis and prognosis. The
findings of our study showed that the DL model achieved high
sensitivity and specificity (95% and 96%, respectively) when
detecting COVID-19. The pooled SROC value of both
COVID-19 and other types of pneumonia was 98%. The
performance of the DL model was comparable to that of
experienced radiologists, whose clinical experience was at least
10 years, and the model could improve the performance of junior
radiologists.

Clinical Implications
The rate of COVID-19 cases has been mounting day by day;
therefore, it is important to quickly and accurately diagnose
patients so that we may combat this pandemic. However,
screening an increased number of chest images is challenging
for the radiologists, and the number of trained radiologists is
not sufficient, especially in underdeveloped and developing
countries [34]. The recent success of DL applications in imaging
analysis of CT scans, as well as x-ray imaging in automatic
segmentation and classification in the radiology domain, has
encouraged health care providers and researchers to exploit the
advancement of deep neural networks in other applications [35].
DL models have been trained to assist radiologists in achieving
higher interrater reliability during their years of experience in
clinical practice.

Since the start of the COVID-19 pandemic, efforts have been
made by AI researchers and AI modelers to help radiologists
in the rapid diagnosis of COVID-19 in order to combat the
COVID-19 pandemic [33,36]. Developing an accurate,
automated AI COVID-19 detection tool is deemed as essential
in reducing unnecessary waiting times, shortening screening
and examination times, and improving performance. Moreover,
such a tool could help to reduce radiologists’ workloads and
allow them to respond to emergency situations rapidly and in
a cost-effective manner [25]. RT-PCR is considered the gold
standard detection method; however, findings of our study
showed that chest CT could be used as a reliable and rapid
approach for screening of COVID-19. Our findings also showed
that the DL model was able to discriminate COVID-19 from
other types of pneumonia with high a sensitivity and specificity,
which is a challenging task for radiologists [32].

Strengths and Limitations
Our study has several strengths. First, this is the first
meta-analysis that evaluated the performance of a DL model to
classify COVID-19 patients. Second, we considered only
peer-reviewed articles to be included in our study because
articles that are not peer reviewed might contain bias. Third,
we compared the performance of the DL model with that of
senior and junior radiologists, which would be helpful for policy
makers in considering an automated classification system in
real-world clinical settings in order to speed up routine
examination.

However, our study also has some limitations that need to be
addressed. First, only 16 studies were used to evaluate the
performance of the model; inclusion of more studies may have
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provided more specific findings. Second, some studies included
similar data sets, which may have created some bias, but the
researchers in those studies had optimized algorithms to improve
performance. Third, two different kinds of digital photographs
(ie, CT scan and x-ray) were used to develop and evaluate the
performance of the DL model in classifying COVID-19;
however, the performance of the DL model was almost the same
in both cases. Finally, none of the studies included external
validation; therefore, model performance could vary if those
models were implemented in other clinical settings.

Future Perspective
The primary objectives of prediction models are the quick
screening of COVID-19 patients and to help physicians make
appropriate decisions. Misdiagnosis could have a destructive
effect on society, as COVID-19 could spread from infected
people to healthy people. Therefore, it is important to select a
target population among which this automated tool could serve
a clinical need; it is also important to select a representative
data set on which the model could be trained, developed, and
validated internally and externally. All the studies included in
this meta-analysis had a high risk of bias for patient selection
and reference standards. Moreover, generalizability was lacking
in the newly developed classification models. Models without
proper evidence and with a lack of external validation are not
appropriate for clinical practice because they might cause more
harm than good. Since the number of cases is mounting each
day and COVID-19 is spreading to all continents, it is therefore
important to develop a model to assist in the quick and efficient
screening of patients during the COVID-19 pandemic. This
could encourage clinicians and policy makers to prematurely
implement prediction models without sufficient documentation
and validation. All studies showed promising discrimination in
their training, testing, and validation cohorts, but future studies
should focus on external validation and comparing their findings
to other data sets. Interpretability of DL systems is more
important to a health care professional than to an AI expert.
Proper interpretation and explanation of algorithms will more

likely be acceptable to physicians. More clinical research is
needed to determine the tangible benefits for patients in terms
of the high performance of the model. High sensitivity and
specificity do not necessarily represent clinical efficacy, and
the higher value of the AUROC is not always the best metric
to exhibit clinical applicability. All papers should follow
standard guidelines and they should present positive and
negative predictive values in order to be able to make a fair
comparison. Although all of the included studies used a
significant amount of data to compare model performance to
that of the radiologists, they used only retrospective data to train
the models, which might result in worse performance in
real-world clinical settings, as data complexity is different.
Therefore, prospective evaluation is needed in future studies
before considering implementation in clinical settings. AI
models always consist of potential flaws, including the
inapplicability of new data, reliability, and bias. Generalization
of the model is important for presenting the real performance
because the rate of sensitivity and specificity varied across the
studies (0.79 to 1.00 and 0.62 to 1.00, respectively). A higher
number of false negatives will make the situation worse and
will waste health care resources.

Conclusions
Our study showed that the DL model had immense potential to
distinguish COVID-19 patients, with high sensitivity and
specificity, from patients with other types of pneumonia and
normal patients. DL-based tools could assist radiologists in the
fast screening of COVID-19 and in classifying potential
high-risk patients, which could have clinical significance for
the early management of patients and could optimize medical
resources. A higher number of false negatives could have a
devastating effect on society; therefore, it is crucial to test the
performance of models with other, unknown data sets.
Retrospective evaluation and reliable interpretation are
warranted to consider the application of AI models in real-world
clinical settings.
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Abstract

Background: In 2020, COVID-19 has claimed more than 300,000 deaths in the United States alone. Although nonpharmaceutical
interventions were implemented by federal and state governments in the United States, these efforts have failed to contain the
virus. Following the Food and Drug Administration's approval of two COVID-19 vaccines, however, the hope for the return to
normalcy has been renewed. This hope rests on an unprecedented nationwide vaccine campaign, which faces many logistical
challenges and is also contingent on several factors whose values are currently unknown.

Objective: We study the effectiveness of a nationwide vaccine campaign in response to different vaccine efficacies, the
willingness of the population to be vaccinated, and the daily vaccine capacity under two different federal plans. To characterize
the possible outcomes most accurately, we also account for the interactions between nonpharmaceutical interventions and vaccines
through 6 scenarios that capture a range of possible impacts from nonpharmaceutical interventions.

Methods: We used large-scale, cloud-based, agent-based simulations by implementing the vaccination campaign using COVASIM,
an open-source agent-based model for COVID-19 that has been used in several peer-reviewed studies and accounts for individual
heterogeneity and a multiplicity of contact networks. Several modifications to the parameters and simulation logic were made to
better align the model with current evidence. We chose 6 nonpharmaceutical intervention scenarios and applied the vaccination
intervention following both the plan proposed by Operation Warp Speed (former Trump administration) and the plan of one
million vaccines per day, proposed by the Biden administration. We accounted for unknowns in vaccine efficacies and levels of
population compliance by varying both parameters. For each experiment, the cumulative infection growth was fitted to a logistic
growth model, and the carrying capacities and the growth rates were recorded.

Results: For both vaccination plans and all nonpharmaceutical intervention scenarios, the presence of the vaccine intervention
considerably lowers the total number of infections when life returns to normal, even when the population compliance to vaccines
is as low as 20%. We noted an unintended consequence; given the vaccine availability estimates under both federal plans and the
focus on vaccinating individuals by age categories, a significant reduction in nonpharmaceutical interventions results in a
counterintuitive situation in which higher vaccine compliance then leads to more total infections.

Conclusions: Although potent, vaccines alone cannot effectively end the pandemic given the current availability estimates and
the adopted vaccination strategy. Nonpharmaceutical interventions need to continue and be enforced to ensure high compliance
so that the rate of immunity established by vaccination outpaces that induced by infections.

(JMIR Med Inform 2021;9(4):e27419)   doi:10.2196/27419
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Introduction

The Centers for Disease Control and Prevention (CDC)
forecasted that 300,000 deaths would be attributable to
COVID-19 by the end of the year. Reality defied expectations,
as COVID-19 was directly responsible for approximately
350,000 deaths in the United States out of 20 million reported
cases (for forecasts and total case numbers, see [1]), which may
only represent one out of seven actual cases based on CDC
estimates for September 2020 [2]. Despite popular comparison
with the flu, the ongoing COVID-19 epidemic has thus already
claimed five times as many lives than the worst year for the flu,
whose recent yearly death tolls range from a low of 16,000 to
a high of 68,000 [3]. To contextualize the impact of COVID-19,
we noted that the US life expectancy decreased by more than a
year, which is ten times worse than the decline from the opioid
epidemic [4]. In another comparison, 2020 is the largest
single-year increase in mortality in the United States since 1918,
which had both a flu pandemic and a war. This reflects both
direct and indirect consequences of COVID-19, such as
disrupting in-person treatments [5] and supply networks, with
effects as far ranging as an increase in drug overdose [6]. To
complement measures of short-term effects such as deaths or
number of cases, we also noted the long-term impacts captured
by the outpatient journey. Common symptoms often persist
over a month (eg, fatigue, cough, headache, sore throat, or loss
of smell) [7-9], and less frequent ones can be severe since
COVID-19 involves many organs. Effects can involve the
cardiovascular system in up to 20%-30% of patients who are
hospitalized [10,11] (eg, cardiac injury, vascular dysfunction,
or thrombosis), result in kidney injury [10] or pulmonary
abnormalities [12], or lead to a deterioration in cognition due
to cerebral microstructural changes [13]. Based on similar
infections, such effects can be long: for instance, inflammation
of the heart caused by viral infections (eg, myocarditis) can
have a recovery period spanning months to years.

Interventions in 2020 were strictly nonpharmaceutical, as
vaccines were being developed and tested. Such intervention
strategies have included preventative care (eg, social distancing,
handwashing, and face masks), lockdowns (eg, travel
restrictions, school closures, and remote work), and logistics
associated with testing (eg, contact tracing and quarantine)
[14,15]. The range of nonpharmaceutical interventions adopted
at various times across countries can be seen in further details
through the CoronaNet project [16] or the collection of essays
“mobilizing policy (in)capacity to fight COVID-19” published
in mid-2020 [17]. In early 2021, two vaccines were deployed
(Pfizer-BioNTech and Moderna) with plans for up to three
additional vaccines (AstraZeneca, Janssen, and Novavax) [18].
With the availability of vaccines comes the key question: when
will life return to normal in the United States? The implicit
expectation is to see a return to normalcy thanks to the vaccine,
rather than due to a high number of cases with its accompanying
death toll.

In a highly publicized interview, Dr Anthony Fauci, director of
the National Institute of Allergy and Infectious Diseases,
estimated a return to normal by fall, if the vaccination campaign
is successful [19]. Getting a precise estimate of when life will

return to normal is a challenge, as it depends on numerous
interrelated factors: potential behavioral changes affecting
nonpharmaceutical approaches (eg, lesser compliance to mask
wearing and social distancing), participation in the vaccination
campaign, logistics associated with vaccination (ie, who can
get vaccinated and when), and mutations leading to new strains
with different biological properties (eg, higher infectivity) or
unknown vaccine responses. In this paper, we use large-scale
simulations to identify when there will be an inflection point in
the dynamics of the disease and the level of cases that will be
obtained.

Simulations have been used since the early days of the
COVID-19 pandemic. Classic compartmental epidemiological
models  were  fi rs t  produced (eg,  many
susceptible-exposed-infected-removed models [20-23]), with a
focus on estimating broad trends and key epidemiological
quantities such as the expected number of new cases generated
by each infected individual (ie, the basic reproduction number
R0). Such compartmental models provide limited support to
study the effect of interventions, for instance by lowering the
contact rate to represent the impact of social distancing. A
research shift in the second part of 2020 resulted in the growing
use of agent-based models (ABMs) to support the analysis of
interventions by explicitly modeling each individual and their
interactions among each other or with the environment. This
shift to individual-level models was underpinned by the evidence
of heterogeneity in risk factors (eg, older age, hypertension,
respiratory disease, and cardiovascular disease [24,25]) and
behaviors (eg, noncompliance with social distancing orders)
based on personal beliefs and values [26,27]. There is also
spatial variation in socio-ecological vulnerability to COVID-19
[28], with rural counties being at higher risk (due to eg, older
population with more underlying conditions and lower access
to resources) [29,30] and hence experiencing higher mortality
rates [31]. Finally, there is a documented heterogeneity in
transmission based on contact tracing data [32], which stresses
the need to use realistic networks when modeling the spread of
COVID-19 [33]. Considering this growing evidence base, our
study relies on an ABM, which accounts for individual
heterogeneity (eg, in age), explicitly embeds them in a network
to model their contacts, and simultaneously considers different
network types (eg, community and work) to account for various
settings.

By adding vaccines to a previously validated ABM of
COVID-19, we are able to assess how the number and timing
of cases depends on key factors such as the population’s interest
in vaccines and the efficacy of vaccines. Our specific
contributions are twofold:

1. We extend the validated COVASIM model with a detailed
process of vaccination, accounting for vaccine efficacy,
interest in vaccination, and fluctuations in vaccination
capacity. Our process models the need for two doses and
the possibility of being infected until the second dose is
administered.

2. We examine vaccination interventions under two hypotheses
for the number of doses available and considering
concurrent nonpharmaceutical interventions.
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The remainder of this paper is structured as follows. In our
methods, we briefly cover the rationale for choosing COVASIM
and how we adapted the model to account for the latest
epidemiological evidence. We then explain which
nonpharmaceutical interventions are simulated, in line with our
previous work [34]. Most importantly, we detail the novel
extension of vaccines into COVASIM and our examination of
the trends in cumulative infections using a logistic growth
model. The following section presents and analyzes our results.
Our final section discusses our main findings and provides an
exhaustive list of limitations due to the ongoing nature of the
pandemic and challenges in vaccination.

Methods

Overview
COVASIM was developed under leadership of the Institute for
Disease Modeling and released in May 2020 by Kerr and
colleagues [35]. It is one of several open-source ABMs, together
with OpenABM-Covid19 [36] or COMOKIT [37]. The model

captures the transition from susceptible to infected followed by
a split between asymptomatic individuals and various degrees
of symptoms, resulting either in recovery or death (Figure 1).
The model was created to support interventions offered at the
time, which did not include vaccination. We thus modified the
model to account for our current understanding of viral dynamics
and the use of vaccines over two doses (Figure 1). When
instantiating the model to the US population, we used a
resolution of 1:500 (ie, each simulated agent accounts for 500
US inhabitants). Given our resolution and target population
size, our application exceeded half a million agents and can thus
be described as a “large-scale COVID-19 simulation” [38]. Our
simulations started on January 1, 2020, using CDC data for the
number of infected, recovered, and immunized individuals to
date (see subsection Initializing the Model). We then simulate
for 6 months, that is, 180 time ticks based on a temporal
resolution of 1 day per simulation step (ie, tick). To cope with
the computational challenges created by a large-scale stochastic
model, a philanthropic grant supports us in performing
cloud-based simulations via the Microsoft Azure (Microsoft
Corporation) platform.

Figure 1. Overview of our modified COVASIM model containing the state diagram and specification of all transitions, including key procedures for
vaccination and infection.

The COVASIM Model: Rationale for Selection and
Evidence-Based Updates
Apart from being open source, there are two reasons that we
selected COVASIM. First, it captures heterogeneity within
individuals (eg, assigns an age and uses age-specific disease

outcomes) and transmission patterns by placing agents within
synthetic networks corresponding to a multiplicity of contexts:
work (based on employment rates), school (based on
enrollment), home (based on household size), and the general
community. However, these high-resolution age-specific contact
patterns are not unique to COVASIM. For example, the
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OpenABM-Covid19 [36] also embeds agents in age-stratified
occupation networks (encompassing work and school),
household networks, and a general random network. COMOKIT
[37] similarly uses the Gen* toolkit from the same team to
redistribute populations from census units down to exact
buildings such as the nearest school. Thus, the second rationale
for choosing this platform is that it has been used in the most
peer-reviewed modeling studies to date [39,40], hence providing

an additional layer of scrutiny and confidence in the correctness
of the model (ie, validation) and its implementation (ie,
verification). As detailed in our recent study [34], changes in
the evidence base have required alteration in the model to keep
it valid. Consequently, we modified three COVASIM parameters
to account for the current biological and epidemiological
evidence on COVID-19 (Table 1).

Table 1. Adjusted parameters based on reports in the United States.

Rationale for modificationModified valueInitial valueCOVASIM construct

The combined distribution of the incubation
period did not match the latest evidence.
The adjustment aligns it with the evidence.

Lognormal(4.1, 4.8)Lognormal(4.6, 4.8)Incubation: delay from infection to viral
shedding

Same as aboveLognormal(1, 1.8)Lognormal(1,1)Incubation: delay from viral shedding to
onset of symptoms

Although reports vary, Dr Fauci stated that
40% of the US cases were asymptomatic.

0.60.7Proportion of symptomatic cases

Selection and Representation of Concurrent
Nonpharmaceutical Interventions
In addition to support for heterogeneity, COVASIM implements
several nonpharmaceutical interventions. Although our focus
is on vaccines, such interventions may be continuing in parallel
with the vaccination campaign; hence, we have to take them
into account when forecasting case counts. Interventions can
be organized into three broad categories: preventative care (eg,
social distancing and face masks), lockdown (eg, stay-at-home
orders such as remote work or school closures), or testing-related
(eg, testing itself, then quarantining and contact tracing)
[14,41,42]. In line with our previous work on nonpharmaceutical
interventions, we considered all 6 specific interventions.
Although all 6 are natively supported by the COVASIM
platform, we changed testing delays from their default value
(constant) to a distribution (based on a survey across all 50 US
states) [43], thus accounting for the variability observed in
practice.

Since our focus is on vaccines, our search space is primarily
devoted to quantifying the effect of vaccine-related variables
(ie, efficacy, compliance, and capacity). As every
nonpharmaceutical intervention could lead to several variables
(eg, compliance with face masks or efficacy of face masks),
considering all variables for every such intervention in addition
to vaccine-related variables would lead to an impractical search
space. We thus leveraged the systematic assessment of our
previous study [34], which simulated all combinations of
nonpharmaceutical interventions at two different levels of
strength (ie, a binary factorial design of experiments). We
analyzed results from this broad search to select 5 scenarios
(Table 2) that resulted in five different levels of infection count
after 6 months, in the absence of any vaccine (Figure 2). In other
words, to circumvent the unwieldy notion of simulating all
aspects of vaccines and nonpharmaceutical interventions, we
selected 5 scenarios that produce linear to logistic growths in
cumulative infections, thereby conducting a parameter sweep
across possible growth behaviors. We supplemented these 5
scenarios with an extreme no intervention scenario, which
provides an upper bound on the number of cases.

JMIR Med Inform 2021 | vol. 9 | iss. 4 |e27419 | p.353https://medinform.jmir.org/2021/4/e27419
(page number not for citation purposes)

Li & GiabbanelliJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Scenarios depicting concurrent nonpharmaceutical interventions, chosen for their ability to create five markedly different outcomes together
with a nonintervention case.

ScenarioFeatures

6 (do nothing)54321

AllCommunityCommunityCommunityWork, schoolWork, schoolNetworks impacted

100N/AN/AN/Aa9570Contact in work and school (as
a function of default; %)

100907070N/AN/AContact in community (as a
function of default; %)

No testing600,0001,110,000600,000600,0001,110,000Daily testsb

No testingYesYesNoYesNoA positive test leads to quaran-
tine. Is a second test required
to end quarantine?

No testing0.550.55111Test sensitivity

No tracing0.20.2110.2Ratio of contacts that can be
traced

No tracing77770After how many days will con-
tact tracing results arrive (ie,
contact tracing delay)?

No tracingNoYesNoNoYesStarting contact tracing if one
has just been tested and ex-
posed (one infected peer)

aN/A: not applicable.
bThese numbers reflect the total daily capacity at the scale of the US population. As our simulation uses a scale of 1:500, the capacity in the model is
scaled down accordingly.

Figure 2. Number of new infections during the simulation (ie, cumulative cases) under five scenarios (each based on a combination of interventions),
which were selected for their ability to represent different trends in the number of cases over time, without a vaccine.

Given that we made minor changes to the biology (incubation
and proportion of symptomatic cases) and consider several
ongoing intervention scenarios, it is necessary to confirm the
validity of the model established using earlier data in previously
published studies. Consequently, we ran the modified

COVASIM model based on data observed until September 3,
2020, and compared the simulated results with observations
until the end of year. Similar trends and orders of magnitude
were observed (Figure 3), thus providing qualitative validation.
Note that the 5 scenarios chosen (Table 2) bound the growth of
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COVID-19 in the United States such that we are
comprehensively examining possible trends going forward

instead of limiting ourselves to the single trend that fit best on
previous data.

Figure 3. Comparison of changes in cumulative infections between a COVASIM simulation and reality from September 3, 2020, to the end of 2020.
The simulation included a reduction on work and school contacts (set to 95% of their capacity), 600,000 daily and highly sensitive tests, quarantining
upon testing, immediate tracing to identify all contacts, and a presumptive approach.

Extending COVASIM With Pharmaceutical
Interventions: A Two-step Vaccination
As detailed in our discussion, there is substantial uncertainty
and frequent changes regarding the number of vaccines that
may be administered monthly. We thus considered two vaccine
availability scenarios, both proposed by federal governments.
The first scenario from the former Trump administration, named
Operation Warp Speed, stated that vaccines will be available
in tiered amounts (20 million in December, 30 million in
January, and 50 million every month thereafter). The second
scenario from the Biden administration, known as the 100-day
goal, proposes that there will be 1 million vaccines every day
[44], thus covering 50 million Americans. Although there are
other scenarios, they vary from state to state (eg, the governor
of New Jersey aspires to vaccinate 70% of the adult population
within 6 months [45]) and are subject to frequent revisions.
Given the countrywide nature of our simulation, we relied on
federal plans while detailing challenges (see also the Discussion
section).

In setting the monthly capacity, we noticed the necessity to
adjust the schedule of the Operation Warp Speed plan, since
the initial aim of 20 million people immunized by the end of
December 2020 only resulted in 3 million doses administered.

In other words, it would be incorrect to model the monthly
capacity of Operation Warp Speed as announced since there is
evidence that its initial objective was unmet, due to a variety
of logistical challenges. Consequently, we shifted the
expectations of the Operation Warp Speed plan by 1 month,
such that the capacity for January now corresponds to the initial
expectations for December (20 million) and so forth.

At the same time as either vaccination schedule is active, we
also have the 6 scenarios listed in the previous sections. As
these scenarios include a no-intervention case, we are able to
study the interaction between nonpharmaceutical interventions
and vaccines. In total, this gives 12 distinct situations. In
addition, we also varied two essential parameters regarding
vaccines: the percentage of the population that seeks vaccination
(which we refer to as vaccine compliance from hereon) and the
efficacy of the vaccine. Varying these two parameters across
12 situations in a large-scale ABM results in substantial
computing needs. These are challenging to parallelize, as the
run time of each experiment is not the same. Therefore, we took
advantage of the massive parallelism enabled by the cloud
computing platform Azure to accelerate computation. Using
this platform, we varied vaccine compliance and vaccine
efficacy between the bounds listed in Table 3.

Table 3. Vaccine parameters used in the study. Intermediate values in the interval bounded by the low and high values are automatically explored.

High value (%)Low value (%)Parameters

6020Vaccine compliance

9988Vaccine efficacy
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Regarding our approach to vaccine efficacy, we noted that
individuals can be infected after their first dose, as has been
documented on thousands of cases [46]. We thus used the
probability of 52% (observed in clinical trials [47]) to obtain
early protection by the vaccine, and otherwise, an individual
may still be infected in the waiting period leading to the second
dose. After the second dose is applied, we needed to ensure that
the agent meets the vaccine efficacy set by our parameters. That
is, the probability of obtaining immunity after the second dose
was set such that the probability of immunity from the two doses
matches the vaccine efficacy.

Although we did not track which of the two approved mRNA
COVID-19 vaccines (Pfizer-BioNTech or Moderna) were
administered, we varied vaccine efficacy to account for a margin
of uncertainty regarding their respective performances. Since
the vaccine capacity is either planned to increase (Operation
Warp Speed) or be at a high constant rate, a simulated agent
given one dose will always be able to come back to get the
second dose on time. Should an agent be contaminated or die
before the second dose, it is then released for administration to
another agent.

We also varied the percentage of the population who seeks
vaccination. As noted in a recent study, this percentage has
varied among studies: 10.8% did not intend to be vaccinated
when asked in April 2020, but this number jumped to 31.1%
by May, and an August poll found that only a minority would
want to be vaccinated [48]. In addition to changes in the
sociopolitical climate and public discourse surrounding
vaccination, there will also be changes since “many receptive
participants preferred to wait until others have taken the vaccine”
[49]. Seeing positive vaccination outcomes in others may in
part address the fear of serious side effects, which is a recurring
concern for individuals who may not intend to participate in
vaccination [50]. Given past variations and changes in the future,
we handled uncertainty through a parameter sweep in vaccine
compliance.

Initializing the Model
A simulation model is composed of an initialization (setting
characteristics of agents for t=0) and rules governing its update,
thereby producing data for analysis. The previous subsections
covered the rationale for the inclusion of agents’ characteristics
and the design of the rules, while the next subsection focuses
on the analysis. This subsection thus briefly covers our approach
to initialization such that our results could be independently
replicated by other modeling teams.

Our initial time tick t=0 corresponds to January 1, 2020. We
thus needed to set the number of agents who have been infected,
recovered, or immunized (due to the rollout of vaccines in
December) by that time. A COVID-19 case remains infectious
within a time window of 2 weeks, after which there is either
recovery or complications. From December 18-31, there was a
total of 3,311,345 active cases. To appropriately initialize our
simulation, we needed to further track when an individual was
infected. Incorrectly setting them to be all infected on December
18 would result in nobody being infected when the simulation
starts on January 1. At the other extreme, assuming that they
were all infected on December 31 would lead to an overestimate
of disease spread into 2021. We thus seeded the timing of each
infection by using the daily distribution from CDC data between
December 18-31 (Table 4). All numbers were divided by 500
since our agent resolution is 1 agent for 500 real-world US
inhabitants (1:500). The number of individuals who acquired
immunity via recovery was set to the total case count observed
by December 17. Individuals who died from COVID-19 are
grouped together with recovered ones (ie, we did not subtract
them from the count) since our simulations track the number
of new infections; dead individuals do not alter these results as
they can neither be infected nor infect others. The total number
of individuals immunized from vaccination was set to 2 million
(ie, 4000 agents).
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Table 4. Timing of the infection in the 2 weeks preceding the start of our simulation, such that our agents can be initialized at the appropriate state of
their infection.

Individuals infected, nSpecific day of the infection

236,063December 18, 2020

202,050December 19, 2020

198,129December 20, 2020

184,632December 21, 2020

196,516December 22, 2020

229,746December 23, 2020

193,277December 24, 2020

139,152December 25, 2020

179,707December 26, 2020

146,593December 27, 2020

177,814December 28, 2020

201,428December 29, 2020

230,982December 30, 2020

229,634December 31, 2020

Analyzing the Progression of Cumulative Infections
Through a Logistic Growth Model
To quantify the spread of the disease, we fitted the progression
of cumulative infection to a logistic growth model, which is a
simple yet effective model describing resource-limited growths
in natural processes and has been used on several occasions for
COVID-19 [51-53]. Let the cumulative infection be P = P(t),
then the logistic model stipulates that P is the solution of the
differential equation:

where is the time derivative of P, r is the growth rate

(proportional to the maximum value attained by ), and K is
the carrying capacity. As our simulations produce the complete

time series for P, we can estimate using finite differences,
thereby extracting parameters r and K through a linear regression
as equation 1 suggests. In the regression, the independent and

dependent variables are P and / P, respectively. In addition,
we measured the goodness of fit as that of the linear regression.
Since the simulation is stochastic, multiple replications are
needed for each configuration to obtain an average behavior.
We used the CI method [54] to perform enough replications so
that for every time step t, the 95% CI of P at time t falls within
5% of the average. Therefore, we performed the fitting for each
individual run and computed the average r and K across all runs.

Although we report the carrying capacity K in Multimedia
Appendices 1 and 2, the interpretation of this variable can be
difficult for a broader audience. The growth rate r is
proportional to the maximum fraction of the carrying capacity
K that is infected on the worst day. In other words, it is an

indication of how fast the disease spreads at its peak, based on
another variable. For ease of interpretation, we focused on the
adjusted growth rate whose unit is directly in number of
individuals. The adjusted growth rate reported in this paper is
obtained as:

For instance, an adjusted value of 200,000 means that at most
200,000 individuals will be infected on the worst day.

As the early steps of the simulation witness a shift from a
vaccine-naïve population to one that gradually builds
vaccine-based immunity, early trends differ from the longer
ones that are the focus of this study. This is a typical situation
in modeling, whereby estimating the long run performance
measures requires to first run the model for a certain amount of
time (known as the warm-up period) [55]. We empirically
determined that a warm-up period of 20 days was sufficient to
start the curve fitting; that is, we created the time series for P
starting from t≥20. As evidenced by Figure 4, this warm-up
period results in very good fit for the logistic model under both
federal plans. This approach also generalizes better, since the
reported r and K can accurately characterize the spread of the
disease for most time periods instead of being skewed by the
first few days.

An essential aspect of a return to normalcy is about the
conditions under which that is achieved. If the disease is left
uncontrolled, and simplifying the matter of variants, we would
still return to normalcy within 6 months because a large share
of the population would already have been infected and either
recovered or died (Figure 5). The goal is thus not only to
eventually achieve stability in the number of cases but to achieve
it at a minimal level (Figure 5; bottom blue curve).
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Figure 4. Distributions of the average goodness of fit R2 for each vaccination plan, demonstrating the validity of fitting logistic growth models from
t≥20.

Figure 5. Number of new infections during the simulation (ie, cumulative cases) under Operation Warp Speed with vaccine compliance of 0.6, vaccine
efficacy of 0.99, scenario 1 for nonpharmaceutical interventions (“controlled” case: blue), and scenario 6 consisting of no interventions (“uncontrolled”
case: orange).

Simulation Management in Azure
To efficiently orchestrate simulations over the Microsoft Azure
cloud computing platform, we used a distributed scheme shown
in Figure 6. The setup starts by creating a manager, which uses
queues to organize the two types of work that need to be
performed.

1. Given a configuration (eg, which scenario, compliance
level, and vaccine efficacy), they need to determine how
many replications are necessary for a tight CI of 95%. These
tasks are tracked in the timing queue.

2. Given a configuration and set number of replications,
perform the computations to produce the results. These
tasks are tracked in the job queue.

Available workers contact the manager, who will assign work
(Figure 6a) by prioritizing the job queue and then the timing
queue. For example, if a worker notifies the manager that it is
available and there is a simulation run to perform in the job
queue, then the manager will hand that one run to the worker
(Figure 6b). If a worker is available and all queued simulations
have been performed, then the manager will task the worker
with identifying how many simulations are necessary for the
next configuration (Figure 6c), which will refill the job queue.
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Figure 6. Our simulation management architecture to leverage parallelism on Microsoft Azure.

Results

The carrying capacities and growth rates as functions of vaccine
compliance and efficacies for each vaccination plan are provided
in Multimedia Appendices 1-4. In this paper, we focused on the
adjusted growth rate in Figures 7 and 8 for the two federal plans,
6 scenarios (including 5 nonpharmaceutical interventions), and
by varying vaccine efficacy and compliance. This allowed us
to examine the synergistic effects of nonpharmaceutical
interventions with vaccines while comprehensively accounting
for key unknowns.

In comparing the two federal plans, the Biden plan showed more
potency at controlling the infection across all intervention
scenarios than the plan created under the previous
administration. We noted that even if a small fraction of the
population seeks vaccines, and even if vaccines are less effective
than announced, the vaccination campaign can reduce the total
number of infections. Note that increasing the efficacies of
vaccines results in lower infections for all scenarios and vaccine
plans. This agrees with expectations since, in our simulations,
agents are not revaccinated upon having no immune response.
Therefore, holding all else equal, increasing the vaccine efficacy
accelerates the growth of the immune population, thereby
reaching herd immunity more quickly. In contrast, the
dependence on compliance is much less intuitive and even leads
to unintended consequences.

Typically, we assumed that higher vaccine compliance will lead
to lower overall infections, since the proportion of the immune
population is upper bounded by the compliance. However, in
both vaccination plans, only scenarios 1 and 2 yielded such
results. For the rest of the scenarios (3-6), the dependence on
vaccine compliance is apparently reversed, with some hinting
toward a nonmonotonic relationship (scenario 4 of the Biden
plan and scenario 5 of the federal plan, for example). The reason
behind this puzzling behavior is a combination of three factors:

(1) vaccines are strictly administered in decreasing order of age;
(2) older adults are going neither to work nor to school, hence
they have fewer social ties than other age groups, which reduces
their impact on preventing the spread of infections once
immunized; and (3) relative to the growth of infections in the
scenarios in which the anomaly happen, the vaccine availabilities
are too low.

If we assume that an increase in vaccine compliance at the
population-level is approximately uniform across age categories,
then a rising vaccine compliance means that more older adults
will seek vaccines. If they are also given priority for vaccines,
then an increase in vaccine compliance will lead to more doses
being used by older adults, hence more time to provide access
to younger age groups. In short, under a vaccination strategy
that focuses on older individuals, an increase in vaccine
compliance will increase the delay before the more connected
and younger age groups can be vaccinated. During this time,
the virus can continue to spread among the younger population,
particularly because the scenarios with counterintuitive results
(3-6) are among the least restrictive in terms of
nonpharmaceutical interventions and older adults have a lower
contribution to the spread of infections due to their more limited
social ties. Therefore, although the older adult population will
be better protected, the longer delay for the rest of the population
means that by the time they are eligible for vaccinations, the
infection has already spread, leading to overall higher infections.

This argument is most vividly illustrated by our animations in
Multimedia Appendices 3 and 4, in which the distributions of
the infected and immune population are plotted at each time
step. These animations showcase the no-intervention scenario
(scenario 6) and Operation Warp Speed for the monthly
vaccination capacity. Apart from the compliance, every other
parameter including the random seed is fixed to be the same.
Particular attention should be paid to the spread of infection
among the older adult agents (ie, 65 years and older), as it most
directly corroborates the aforementioned reasoning.
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Figure 7. Adjusted growth rate (number of infected individuals on the worst day) as functions of vaccine compliance and efficacy under the Biden
vaccination plan.
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Figure 8. Adjusted growth rate (number of infected individuals on the worst day) as functions of vaccine compliance and efficacy under the Trump
vaccination plan.

Discussion

Principal Results
The incoming CDC director predicted half a million deaths by
mid-February 2021 [56], thus stressing the urgency of
vaccination. However, vaccination is an unprecedented and
complex endeavor whose success depends on many other
variables such as vaccine compliance, vaccine efficacy, and the

ongoing presence of nonpharmaceutical interventions. In line
with expectations, our large-scale agent-based simulations
showed that vaccination can reduce the total number of
infections across all possible scenarios. The capacity pledged
under the new Biden plan (one million doses a day) would have
a greater impact than the plan of the previous administration
(Operation Warp Speed) when accounting for its initial delays.
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Two key findings of our study are as follows. First, we
demonstrated the necessity to maintain nonpharmaceutical
interventions over the next 6 months. As interventions are
relaxed (from scenario 1 offering the most control to scenario
6 offering no control), there is an increase in case count such
that a return to normalcy is not achieved through vaccination
but rather through a very high number of infected individuals.
Second, there is an unexpected interplay between vaccination
strategies, nonpharmaceutical interventions, and vaccination
availabilities. As nonpharmaceutical interventions lose
momentum (scenarios 3 and above), an increase in vaccine
compliance leads to an unexpected increase in infections due
in part on the low availability of vaccines and the priority on
vaccinating older adults. More so than the observation that
tighter nonpharmaceutical interventions result in the slower
spread of infections, this result further delineates the necessity
of preparing the population to continuing nonpharmaceutical
interventions even as the vaccination progresses.

Limitations
There are three main limitations to our current understanding
of the COVID-19 pandemic and the vaccination campaign that
affect how our simulations account for (1) the number of
vaccines that can be administered each month, (2) biological
aspects, and (3) healthy or asymptomatic carriers.

First, an unprecedented vaccine campaign comes with logistical
challenges and uncertainty given the complex array of factors
involved. As a result, fewer than the expected number of doses
may be administered: federal officials aimed at giving the first
dose to 20 million people during December 2020, but various
delays resulted in fewer than 3 million people receiving a first
dose [57]. It was recently reported that “federal officials say
they do not fully understand the cause of the delays” [57] and
that the administration “pledged to immediately distribute
millions of COVID-19 vaccine doses from a stockpile that the
U.S. health secretary has since acknowledged does not exist”
[58]. This situation has resulted in views that “much of the
narrative earlier this year regarding Warp Speed’s preparation
appears to be a sham” [59], reinforced by reports that the Biden
administration found no vaccine distribution plan upon taking
over from their predecessors [60]. Some of the factors causing
a delay are known: there can be shipping delays or delays in
administering doses due to a lack of hospital staff members, as
they are already caring for individuals infected with COVID-19.
Other factors may be more surprising, such as the intentional
destruction of vaccine doses by hospital staff [61]. As any
simulation model is necessarily a simplification, we did not
include factors whose value would be entirely unknown (eg,
what will be the shipment delay?) or whose existence is
anecdotal given the total number of doses (eg, intentional
destruction or storage errors). We were limited in our ability to
use real-world numbers on how many individuals received the
vaccine, as this data is captured at the state level, and several
states’ reporting systems have experienced errors [62]. Although
there are efforts at centralizing data (eg, national news outlets
aggregate data across states [63]), the level and nature of errors
differ across states, which is a challenge to estimate overall
model uncertainty.

We have thus followed the federal plan for the number of
individuals who can get vaccinated each month. Out of all the
doses that are planned, fewer may be distributed and an even
lower number may ultimately be administered. Our simulations
are thus likely representing an upper bound on the number of
vaccines administered, leading to more optimistic results than
in reality. The gap is particularly pronounced in December 2020
and may remain significant in January 2021, but early logistical
issues and delays should be gradually addressed, such that the
gap between federal expectations and actual implementation
narrows over time.

Second, all biological aspects of the virus are based on the
strains that dominated throughout 2020. Epidemiological studies
from these strains have informed parameters such as
transmissibility, incubation period, the proportion of
asymptomatic carriers, the severity of symptoms and hence the
course of the disease, and the efficacy of treatments or vaccines.
The existence of different strains is well established, as
phylogenies have shown seven distinct lineages [64,65], but
there has not yet been a documented need to ascribe different
parameter values (ie, different viral behaviors) to each strain.
There are two possible reasons. First, there are relatively few
mutations and thus a limited chance of a drastically different
outcome naturally occurring: the virus is “considered a
slowly-evolving virus as it possesses an inherent proofreading
mechanism to repair the mismatches during its replication” [65].
Second, there has been little selective pressure on the virus, as
it was spreading through a population that had never been
exposed to an antigen (ie, immunologically naïve). Both
arguments are now changing.

A new strain from the lineage B.1.1.7, named Variant of
Concern 202012/01 (denoted VOC-202012/01), emerged with
an unusually large number of 23 changes in its genomes
(including mutations and deletions) [66]. Some of the biological
changes make it easier for the virus to attach to its targets and
enter cells, which is captured through epidemiological indicators
as increased transmissibility [67,68]. This is relevant for our
study, as this more contagious COVID-19 strain has been
spreading in the United States and may dominate by March
2020 [69]. To date, there is no peer-reviewed evidence of an
impact on disease severity or vaccine efficacy over a large
population sample, but the function for some of the mutated
parts remains unknown (hence the possibility of an impact on
severity), and early studies over 20 volunteers suggest that
antibodies from vaccines are only one-third as effective on some
variants [70]. In addition, vaccination means that the virus is
no longer spreading through an immunologically naïve
population, thus creating selective pressure for functional
mutations that can help the virus adapt. Our simulation results
are thus optimistic as they use a lower transmissibility than
provided by the new strain, and we did not worsen any of the
other parameters to account for possible selective pressure.

Third, our model considers that individuals who were
successfully immunized can act as a buffer in the spread of the
epidemic. Reality may be more nuanced, as viral transmission
from a vaccinated host to an unvaccinated one may be possible.
At the time of writing (March 2021), we do not yet have
conclusive findings about this possibility. As trials continue,
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we may find that immunized individuals should be treated in a
model as healthy carriers for a period. We also noted that the
immunity conferred by the vaccine appears to have a different
response than the immunity acquired by recovering from a
natural infection. That is, a vaccine promotes the production of
antibodies in the blood, but a natural immunity may lead to
developing antibodies in the mucosal regions [71], which are
the first site of infection (in the nose and mouth). From a
modeling viewpoint, the two immunities may thus have to be
treated differently in the future.

Finally, we note that our model is built specifically for the
United States. It would not be accurate when transposed to
another country with minimal changes (eg, only reducing the
population size). For example, stark differences in vaccine
rollout strategies exist between the United Kingdom and the
United States, which would affect our simulations. In the United
States, two doses of the same vaccine are normally administered,
as the CDC stated that “mRNA COVID-19 vaccines
are not interchangeable with each other or with other COVID-19
vaccine products” [72]. However, new guidance from the United
Kingdom allows a mix-and-match vaccine regimen in which
the second dose may be from a different vaccine in exceptional
circumstances (eg, if the vaccine from the first dose is not
available upon the patient’s return), even though clinical trials
for mixed regimens are only due to be conducted at a later,
unspecified time [73]. Another difference is that the United
Kingdom front-loads the vaccine by delivering as many first
doses as possible, which thus no longer guarantees that a patient
can receive the corresponding second dose upon return (hence
raising the need for a mix-and-match) and potentially delays
the delay before a second dose up to 12 weeks [73]. In contrast,
the United States is against delaying the second dose [74], thus
our model operates on the assumption that a patient can
complete treatment on time.

Related Works: The Scale of Agent-Based Models for
COVID-19
Our simulation of half a million agents qualifies as large-scale
in the context of COVID-19 ABMs. In another context, the scale
may be different as the computational costs of the simulation
or historical practices in a research community may differ. For
example, in HIV research, simulations have used half a million
cells for about 20 years on personal computers, so a large-scale
may be a more appropriate qualifier for simulations with billion
cells [75,76]. As noted by Gumel and colleagues [77] in their
extensive discussion on modeling methods for COVID-19,

ABMs “are computationally-intensive”; thus, we may expect a
smaller simulated population than in compartmental models or
meta-population models, given the same hardware and
simulation time.

Many ABMs for COVID-19 are in the scale of several hundred
agents [78-83] to tens of thousands of agents [37,84,85]. Fewer
studies have over 100,000 agents [86], and only a paucity of
studies has a number of agents that is about equal (eg, the model
of Hoertel and colleagues [87] used 500,000 agents) or greater
than (eg, one million agents in a February 2021 simulation of
Bogota) in this study [38,87,88]. Due to this distribution of
agent population across studies, the qualifier of large is applied
as we get to the scale of 500,000 or more agents [38]. It should
not be interpreted to suggest that this is the largest population
size achieved to date. Indeed, a few high-profile studies have
modeled their target populations with such a fine resolution that
the simulation may qualify as a digital twin. For example, Chang
et al [89] used over 24 million agents by adding a COVID-19
component (AMTraC-19) to an existing model and running it
over 4264 compute cores.

Although a justification for the scale is a recommended best
practice in ABM for artificial societies [90], such a justification
is not always present in published studies. The studies that have
justified their choice of scale have often done it based on the
size of the target population (eg, single city or campus) or
implicitly invoked the notion of a computational burden when
downscaling. Explicit mentions of computational costs have
been made by the developers of frameworks, such as Comokit,
who stated that 10-20,000 agents could be simulated on one
laptop within 10 minutes [37].

Conclusions
A desirable return to normalcy would be achieved via
immunization rather than through a very high number of infected
cases and their natural immunity. Our extended ABM shows
that vaccines are not sufficient to return to normalcy while
avoiding a high number of cases. Nonpharmaceutical
interventions are necessary and require a high level of
compliance to ensure that immunity from vaccination outpaces
the immunity from infections. Although our findings account
for different vaccination capabilities, compliance levels, and
vaccine efficacy, they are nonetheless based on a simulation
model, which is necessarily a simplification of reality.
Simplifications here include the logistics of vaccine
dissemination, variants, and the presence of healthy carriers
(vaccinated) and asymptomatic cases (not vaccinated).
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Abstract

Background: Obesity and overweight are a serious health problem worldwide with multiple and connected causes. Simultaneously,
chatbots are becoming increasingly popular as a way to interact with users in mobile health apps.

Objective: This study reports the user-centered design and feasibility study of a chatbot to collect linked data to support the
study of individual and social overweight and obesity causes in populations.

Methods: We first studied the users’ needs and gathered users’ graphical preferences through an open survey on 52 wireframes
designed by 150 design students; it also included questions about sociodemographics, diet and activity habits, the need for
overweight and obesity apps, and desired functionality. We also interviewed an expert panel. We then designed and developed
a chatbot. Finally, we conducted a pilot study to test feasibility.

Results: We collected 452 answers to the survey and interviewed 4 specialists. Based on this research, we developed a Telegram
chatbot named Wakamola structured in six sections: personal, diet, physical activity, social network, user's status score, and
project information. We defined a user's status score as a normalized sum (0-100) of scores about diet (frequency of eating 50
foods), physical activity, BMI, and social network. We performed a pilot to evaluate the chatbot implementation among 85 healthy
volunteers. Of 74 participants who completed all sections, we found 8 underweight people (11%), 5 overweight people (7%),

and no obesity cases. The mean BMI was 21.4 kg/m2 (normal weight). The most consumed foods were olive oil, milk and
derivatives, cereals, vegetables, and fruits. People walked 10 minutes on 5.8 days per week, slept 7.02 hours per day, and were
sitting 30.57 hours per week. Moreover, we were able to create a social network with 74 users, 178 relations, and 12 communities.

Conclusions: The Telegram chatbot Wakamola is a feasible tool to collect data from a population about sociodemographics,
diet patterns, physical activity, BMI, and specific diseases. Besides, the chatbot allows the connection of users in a social network
to study overweight and obesity causes from both individual and social perspectives.

(JMIR Med Inform 2021;9(4):e17503)   doi:10.2196/17503
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Introduction

The percentage of overweight people has not stopped increasing
worldwide since the 1980s [1]. In the United States, more than
two-thirds of adults and nearly one-third of children and youth
are overweight or obese [2]. According to the World Health
Organization, in Europe, more than 50% of the population is
overweight, and 20% is obese [3].

Obesity is a complex problem with individual, socioeconomic,
and environmental factors [4]. From a social perspective, Fowler
and Christakis conducted a study about the spread of obesity in
a large social network over 32 years (Framingham Heart Study)
[5] and found evidence of the “contagion” of obesity among
people in close social circles. Indeed, the relevant finding in the
study suggests that ties between friends have an even more
significant effect on a person's risk of obesity than genes. A
person's chances of becoming obese increased by 57% if he or
she had a friend who became obese in a given interval.
Moreover, for a wide variety of conditions and networks, Bahr
et al [6] showed that individuals with similar BMIs would cluster
together into groups.

Furthermore, chatbots, also referred to as conversational user
interfaces, are gradually being adopted in mobile health
(mHealth) apps [7] and serve to assess the long-term user
experience [8]. A chatbot is a conversation platform that
interacts with users via a chatting interface. Since its use can
be facilitated by linkages with the major social network service
messengers (eg, WhatsApp, Telegram), general users can easily
access and receive various health services [9]. Laranjo et al [7]
provide an overview of research related to conversational user
interfaces in health care.

Previous studies suggest that chatbots may have the potential
to contribute to obesity and overweight prevention and
management [10]. In 2017, Kowatsch et al [11] designed a
text-based health care chatbot to effectively support patients
and health professionals in therapeutic settings beyond on-site
consultations and applied to childhood obesity control. In 2018,
Huang et al [12] developed a chatbot integrated in the
SWITCHes app, where the chatbot helps monitor users’ health;
users also talk to the chatbot and get information in a real-time
manner or take a bot’s advice, including diet and exercise plans,
in the context of healthy recommendation. In 2018, Holmes et
al [10] described the design and development of a chatbot
(WeightMentor), a self-help motivational tool for weight loss
maintenance. In 2019, Stephens et al [13] implemented a
behavioral coaching chatbot (Tess) to help support teens in a
weight management program. However, chatbots can be useful
not only in obesity control, monitoring, and promotion of healthy
habits, as mentioned in these studies, but also as effective tools
to collect data in large populations to study obesity causes and
lead prevention. So far, face-to-face or online questionnaires
are widely used to collect data directly from people about their
weight, diet, and physical activity habits [14-17]. However,
recent studies indicate that chatbots may be more attractive to

users than classic questionnaires because people associate them
with entertainment, social, and relational factors [8,18]. In
addition, users have curiosity about what they view as a novel
phenomenon [19].

Moreover, chatbots also enable the development of gamification
strategies that can have a positive impact on health and
wellbeing [20,21], already widely applied to online surveys
[22]. Hamari defines gamification as “a process of enhancing
services with (motivational) affordances in order to invoke
gameful experiences and further behavioral outcomes” [23].
Concerning game mechanics, feedback and socialization aspects
are recurrently employed to gamify eHealth. Social features,
rewards, and progress tracking are powerful mechanics for
producing positive effects on users [24]. Focusing on
gamification strategies applied in chatbots, chatbots are able to
implement mobile app stickiness strategies to improve user
engagement, such as gaming, dexterity, responsiveness and
feedback after coming in contact with the app, ease of figuring
out how to operate the app, forums, multimedia display, and
emotional engagement [25,26]. Siutila [27] identified tracking
options in popular chatbots [28-30]: a system of points,
leaderboards, achievements/badges, levels, story/theme, clear
goals, feedback, rewards, progress, and challenge.

This study reports the user-centered design and feasibility study
of a chatbot to collect linked data about diet, physical activity,
weight, obesity risk, living area, and social network, to support
research regarding individuals and social causes of obesity and
overweight. Here, we describe the user-centered approach
applied in the design and development of the chatbot. We also
present a pilot study to test the chatbot’s feasibility. 

Methods

Ethics
Ethical approval was obtained for this study from the Ethical
Committee of the Universitat Politècnica de València (UPV;
Ethical Code: P7_12_11_2018).

Users’ Needs Investigation
Applying a user-centered approach, we started the design of the
chatbot by collecting potential users’ expectations and
preferences. We briefly expose the three parts into which we
split the information collection: (1) a survey about interests and
expectations, (2) an analysis of graphical preferences, and (3)
a specialist panel’s advice on the medical content. Further details
of each of these parts can be found in Multimedia Appendix 1
[5,6,18,20,21,23-69].

First, a survey was designed including questions about
sociodemographic data, self-perception of overweight, diet and
physical activity, favorite colors for the app’s purpose, the
potential utility of the app, future use of the app, type of
preferred diffusion, and desired functionalities. The survey
included 13 questions in total.
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Second, to investigate user preferences regarding the graphical
features of the interface, wireframes were designed by design
students and included in the survey to be scored on a 1 to 5
scale. Wireframes were designed following these general
specifications: the appearance of the app breaks with the stigma
of obesity and overweight and motivates its use; the app
promotes a healthy lifestyle; the elements to be designed for
each alternative were the chatbot’s name, launch icon, splash,
and main menu screen with preliminary options such as user’s
personal data, calculating risk, and suggesting healthy activities.
To design the wireframes, students reviewed mHealth apps in
the obesity and overweight field. No limitations were specified
for the graphical or aesthetic features. To define the chatbot’s
colors, we completed the survey questions with research about
current evidence regarding colors and their effects on people’s
feelings [31,32].

Third, we also formed an expert panel composed of 1 nutritionist
and 3 clinicians, all of whom were endocrine specialists. After
a project introduction, we addressed the panel with three
research questions: (1) what data would be relevant for study
of obesity and overweight, according to current knowledge, (2)

if there are validated questionnaires to get these data, and (3)
how obesity and overweight risk of a user could be assessed.

Chatbot’s Design and Development
Based on the users’ survey and expert criteria involved in the
study, we decided to include six sections in the chatbot:
Personal, Diet, physical activity habits (Activity), social network
(Wakanet), status (Wakastatus), and project information (About
Wakamola) (Figure 1; Multimedia Appendix 2). “Personal,”
“Diet,” and “Activity” were interactive surveys based on
standardized questionnaires, whereas “social network”
implemented a sharing mechanism based on a sticky strategy.
More importantly, we defined a novel user status assessment
named Wakastatus. It was a gamified version of an obesity risk
assessment based on diet, physical activity, and neighborhood
(relationships) status to give feedback and motivation to the
user. Moreover, the word “risk” was changed to “status” to
provide a positive message for the user’s obesity and overweight
assessment. Further information about gamification elements
in Wakamola are available in Table 1 and Multimedia Appendix
1.

Figure 1. Screenshot of Wakamola’s main menu and diet section.
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Table 1. Gamification strategies implemented in Wakamola.

Implementation in WakamolaGamification strategy

System of points (scores); goals • Wakamola scores on a scale of 0 to 100 (the higher the better, goal 100)
• Global status score (Wakastatus)
• Diet score (Wakalimentation)
• Activity score (Activity)
• BMI score (WakaBMI)
• Social network score (Wakasocial)

Wakamola’s social networkSocialization

Feedback to the user • Self-assessment of overweight and obesity risk: Wakamola’s scores, BMI category, and level of
obesity risk

• User’s network graphical representation, BMI/Wakastatus shown inside nodes, colors based on
BMI/Wakastatus category

Emotional engagement • Personification of the chatbot through the Wakamola character
• Introduction of humanlike cues in Wakamola chatbot to increase users’ emotional connection [18]

(eyes, mouth, expressions of effort and happiness)
• Use of emoji added to the Wakamola’s text messages to create a more realistic and friendly conver-

sation [35]

The Personal section includes 16 questions about weight, height,
gender, age, level of education, marital status, how many people
are at home, main activity (ie, study or work), zip code, sleep
hours, and cigarette consumption. In addition, the chatbot asks
if the user has ever received a diagnosis or is taking medication
for hypertension, diabetes, high cholesterol, or cardiovascular
disease. The clinicians defined these questions for further
analysis regarding overweight and obesity factors.

Questions in the Diet section were adapted from the “Short
questionnaire on frequency of dietary intake” [33]. In total, 51
questions regarding food types (items) and consumption
frequencies are included. Diet question responses (items) were
scored based on the “Spanish diet quality according to the
healthy eating index,” with items’ scores from 1 to 10 (the
higher the score of the item, the less healthy its consumption)
[70] (Tables S1 and S2 in Multimedia Appendix 1).

In the Activity section with 7 questions, the short form of the
International Physical Activity Questionnaire (IPAQ) has been
applied to define the chatbot’s questions and scoring. This IPAQ
version is recommended, especially when the object of
investigation is population monitoring [71].

The Wakanet section has been developed to share the Wakamola
chatbot between contacts, following a sticky strategy. This is
how the users’ social networks and subnetworks are created to
further analysis about how their social relations and habits could
influence or be influenced from an overweight and obesity
perspective. This section first shows a message with the user’s
total contacts, broken down by house, family, friends, and work
contacts. Four different invitations are then created as chatbot
messages to be shared with the target group of contacts: (1)
people the user lives with (home), (2) friends, (3) family, and
(4) work contacts. This section implements the community
gamification strategy in the chatbot.

The Wakastatus section shows a normalized score calculated
from previous data collected in the personal, diet, activity, and
social network sections and normalized between 0 and 100; the

higher the better. The Diet score is the sum of scores for each
food and its consumption frequency; this score is also
normalized between 0 and 100. The Activity score is calculated
according to the short form of the IPAQ [71]. This result is
normalized between 0 to 100 to present the final Activity score.

Additionally, we calculate the BMI score (WakaBMI) from the
Personal section (weight and height), obtaining 100 points for

normal weight (18.5-24.9 kg/m2), 75 points for overweight

(25-29.9 kg/m2) or underweight (<18.5 kg/m2), 50 points for

obesity class 1 (30-34.9 kg/m2), 25 points for obesity class 2

(35-39.9 kg/m2), or 0 points for extreme obesity class 3 (≥40

kg/m2) [72].

Finally, the social network score (Wakanet) is calculated based
on the user number of contacts and the mean Wakastatus values
of them.

Moreover, Wakamola is a multilanguage chatbot, including
Spanish, English, and Catalan, allowing other languages to be
easily included to the chatbot by adding corresponding dialogue
file translation. The Wakamola chatbot is available in open
access [73] under a Creative Commons license.

Focusing on the technical implementation, the chatbot engine
of Wakamola is implemented as a Telegram bot using Python
3 [34]. Further technical details can be found in Multimedia
Appendix 1.

Usability Evaluation
As part of the chatbot’s user-centered development, a usability
evaluation was carried out. The usability test focused on the
process and the information user’s understanding. The usability
test was designed as a face-to-face, assisted session. As a
requirement to perform the test, it was mandatory to have a
smartphone with Telegram installed on it. First, to characterize
the sample, participants answered questions about gender, age,
Telegram experience, messaging system used, and previous
knowledge and experience regarding bots. Participants were
then asked to perform a set of 6 specific tasks with the chatbot.
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Finally, the participants in the study responded to the System
Usability Scale (SUS) questionnaire [36]. Further details about
the usability evaluation can be found in Multimedia Appendix
1.

Pilot Study
To test the feasibility of the chatbot, we conducted a pilot study
with 85 university students (volunteers) recruited face to face.
Participants were asked to complete all of the chatbot’s questions
from the Personal, Diet, and Activity sections and to share the
chatbot between them to build the social network. From the
collected data, we obtained basic statistics from
sociodemographic data, Wakamola scores, and BMI. Finally,
we developed a free-access online tool [74] to perform the social
network analysis by visualizing the network. The network
visualization highlighted the users’ BMI and Wakastatus and
showed communities obtained based on Louvain algorithm [75].

Results

In this section, we show results from the users’ needs research
survey and expert panel and from the usability test. We then
show outcomes from the pilot study.

Users’ Needs Investigation Results
Participants in the survey were recruited by email invitation
from the Vice-Rector for Social Responsibility to the UPV’s
university community (students, academy, and staff). The
invitation included a brief description of the study and a link to
the questionnaire. All participants who completed the
questionnaire were included in the study. In total, 452 adults
(197 males, 43.6%, and 255 females, 56.4%) participated in the
survey for 11 days (Tables S3 and S4 in Multimedia Appendix
1). The sample was representative of the male and female
composition of the university community and of a wide age
range (from 18 to older than 65 years); likewise, it includes
people from different lifestyles.

A high number of participants thought they were overweight
(176/452, 38.9%). The perception of overweight increased with
age. Most of them indicated having healthy dietary habits,
including more women than men, at all ages. However, only
half of the participants had regular physical activity. Moreover,
almost half of them (217/452, 48.0%) thought that with their
current habits, they might have problems of overweight in the
future; this was seen more frequently in women than in men.
Young adults had the highest percentage of self-perception of
future overweight with current habits for both men and women.
Most of the participants (325/452, 71.9%) would use the chatbot
for obesity risk assessment and recommended it (406/452,
89.8%), mostly by talking about it, followed by through the
medical centers and in their social networks. In addition, most
participants believed that it would help to prevent obesity. They
would prefer functionality regarding physical activity and diet
recommendations, as well as about obesity risk assessment.
Participants preferred colors in the field of obesity and
overweight were, in order from highest to lowest, green, blue,
and white. Participant’s graphical preferences were based on

colors, simplicity, and figures. As well, quite a few of them
would like a character associated with the app (“Wireframes
results” and Figure S2 in Multimedia Appendix 1).

From the expert panel interviews, we identified the personal,
diet, and physical activity questions, as well as the status
assessment method (Wakastatus), already described in the
chatbot’s design and functionality section.

Usability Test Results
Participants were volunteer students recruited face to face in
the Design School. In total, 61 students (young adults, mean
age 20.5 years) participated in the usability test. All participants
used a smartphone with Telegram previously installed on it. All
participants were able to start Wakamola in Telegram without
help, although most of them were not regular users of this
messaging system. As a result, most users, when asked, would
prefer that Wakamola be a separate app that could be installed
on their mobile phone without Telegram. Most participants were
able to understand all questions in the Personal, Diet, and
Activity sections; however, they considered the Diet section to
contain too many questions (23/61, 38%), while the number of
questions was acceptable in other sections.

According to the SUS questionnaire [36], about half of the
participants indicated acceptable usability. Further information
about usability results is in Multimedia Appendix 1.

Pilot Study Results
We carried out a pilot study with 85 university students recruited
face to face. We filtered participants that completed all sections,
74 people in total (54 female, 20 male), for the data analysis.
The mean age was 20.7 years, and the mean weight was 62.65
kg (SD 10.21). There were no participants with obesity-related
diseases such as hypertension, diabetes, high cholesterol, or
cardiovascular disease. The participants were from 55 different
living areas according to their zip codes, most of them near the
university area.

The percentage of people with overweight was 6.8% (5/74
people), while the percentage of people with underweight was
higher at 10.8% (8/74 people). No obesity cases were detected
in the sample.

The mean BMI was 21.4 (SD 2.41), which corresponds with
normal weight. The mean Wakastatus was 78.3 (SD 10.67) on
a scale of 1 to 100, mean Diet score was 63.6 (SD 4.67), mean
Activity score was 65.3 (SD 32.91), and mean social network
score was 26.6 (SD 13.12).

The most consumed types of food were olive oil, milk and
derivatives, cereals, vegetables, and fruits. The less consumed
types of food were seafood, butter, French fries, and sweetmeats.
The consumption of alcohol and soft drinks was also low (Table
2).

Participants practiced physical activity regularly during the
week. They spent a mean of 30.57 hours per week sitting and
7.02 hours per day resting. Table 3 shows the sample physical
activity, sitting, and sleep hour habits in a week.
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Table 2. Types of foods consumed weekly.

Units per week, meanFood type

0.54Seafood

0.62Soft drinks with sugar

0.67Butter

0.78Alcohol drinks

1.18French fries

1.22Sweetmeats

1.64Blue fish

2.04Rice

2.04Legumes

2.07White fish

2.13Sausage

2.27Meats

2.36Other oils

2.43Cheeses

2.65Nuts

2.83Fruits

3.17Vegetables

3.17Cereals and derivatives

4.43Milk and derivatives

12.72Olive oil

Table 3. Physical activity and sleep hours in mean values per week.

Values, meanActivity

2.34Vigorous physical activities (times per week)

33.97Vigorous physical activities (minutes)

5.11Moderate physical activities (times per week)

35.76Moderate physical activities (minutes)

5.80Walked at least 10 continuous minutes (days per week)

34.26Walking time (minutes)

30.57Sitting (hours per week)

7.02Sleep (hours per day)

We applied the online tool [74] to interpret collected data and
showed it as a network graph with 74 users and 178 relations,
including 5 users without relations and 12 social groups
(communities) (Figure 2). Focusing on the 8 communities with
more than one member, 3 of them (38%) had members with
overweight, and 6 had members with underweight (75%). All
individuals without connections were normal weight. The
biggest community had 12 members; it was also the community

with the highest percentage of overweight members, with 3
cases (25%).

Figure 2 shows users as nodes colored and labeled according
to their BMI value: blue (underweight, <18.5), green (normal
weight, 18.50-24.9), yellow (overweight, ≥25), or red (obesity,
≥30). The Wakastatus option allows it to be shown in the nodes.
In Figure 2, a user has been selected and highlighted in a
community; a table shows the BMIs and scores of his or her
relations and contacts.
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Figure 2. Target population network and communities representation, with nodes of the same community linked with dark gray edges and a user
selected. BMI is shown inside nodes, and colors are based on BMI: blue (underweight, <18.5), green (normal weight, 18.50-24.9), yellow (overweight,
≥25), red (obesity, ≥30). BMI: body mass index.

Discussion

Summary of Findings
We have translated standard questionnaires, traditionally used
to collect data about sociodemographics, diet, and physical
activity, to a novelty Telegram’s chatbot [73]. As well, we have
defined a new user-friendly score to assess the user’s obesity
risk based on his or her diet, physical activity, BMI, and social
contacts’ lifestyles. Gamification principles have guided the
design of the chatbot to help create a positive user experience.
Moreover, we have confirmed that people are concerned about
their weight and that they consider mHealth apps to be likely
to help obesity prevention, as they are interested in using them.
In a pilot study deployed in the academic community, we have
been able to create a social network to study social factors
influencing obesity. The researchers can access an online tool
to graphically show the social network to aid data interpretation.

Survey Findings
From the survey about users’ needs, we realized a need
regarding overweight and obesity apps. This result could be
linked with registered participants’ worry about their
overweight, as 176 out of 452 (38.9%) indicated self-perception
of being overweight, and 217 (48.0%) indicated that they could
become overweight in the future with their current habits.
Moreover, 325 out of 452 (71.9%) participants would use an
app to know their obesity risk. As well, 406 out of 452 (89.8%)
of them would recommend it. Furthermore, the number of survey
responders (452 people) could be an indicator reflecting the
concern about overweight and obesity in the university
community involved in this study.

Weight management apps represent a popular area of mHealth
today [37]. However, there is a need for trustable overweight

and obesity apps; most of the commercial mobile apps for
weight loss and management lack important evidence-based
features, do not involve health care experts in their development
process, and have not undergone rigorous scientific testing [38].
Wakamola’s chatbot could contribute to cover this need because
it involves experts, is based on scientific evidence, and has been
subjected to an exhaustive testing process.

Regarding the 52 wireframes scored, we finally selected one
based on a character (Wakamola). This selection allowed us to
implement personification, the attribution of a personal nature
or human characteristics [76] to the chatbot. Personification has
a positive effect on the user experience [39]. The introduction
of humanlike cues in a chatbot increase users’ emotional
connection [18]. As well, previous studies suggest a significant
effect of anthropomorphic design features (human
characteristics) on perceived usefulness, with a strength 4 times
the size of the effect of functional chatbot features [40].

The Chatbot as a Feasible Tool to Collect Data
We here propose a chatbot as a novel tool to collect data
associated with overweight and obesity. Chatbots could help to
collect data in a longitudinal and long-term way [8] that would
be difficult and time-consuming with traditional methods, such
as standardized questionnaires [77]. Several studies state that
a feature that can engage users in completing questionnaires is
their presentation through a chatbot [8,18]. Users are more likely
to answer questions through a chatbot than in a questionnaire
or interview because they connect them with entertainment and
novelty, and they are curious about them [19]. Moreover, there
is previous research about the application of chatbots to collect
data associated with obesity and overweight [10-13].
Furthermore, the use of chatbots has also extended to other
health fields such as oncology [78].
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We collected data in a pilot study with 85 people. Analyzing
the data obtained from the pilot, we found a percentage of people
with overweight of 7% (5/74), while the percentage of people
with underweight was higher (8/74, 11%); no obesity cases
were detected in the sample. The presence of underweight cases
could be explained by the higher representation of women in
the sample (54/74, 73%), previous studies indicates that women
were more likely to be underweight than men [79].

The most consumed types of food were olive oil, milk and
derivatives, cereals, vegetables, and fruits, all of which are types
of foods associated with the Mediterranean diet [41]. However,
other dietary habits with restricted consumption in the
Mediterranean Pyramid [41], such as consumption of butter,
French fries, sweetmeats, alcohol, and soft drinks, were low
[41]. Moreover, most of the participants practiced regular
physical activity (Table 1) and slept for a mean of 7 hours,
which is a good rest time in adults [80]. These results could
explain the participants’ mean BMI of 21.4 (SD 2.41), which
corresponds to normal weight.

We applied the developed online tool [74] to interpret collected
data and showed it as a network graph with 74 nodes and 178
relations, including 5 nodes without relations, and 12
communities based on the Louvain algorithm [75] (Figure 2).
The biggest community had 12 members; it was also the
community with the highest percentage of overweight members
(3 cases out of 74, 25%). Further research would need to study
if there is an overweight “contagion” effect in this community
[5] or if individuals with similar BMIs are clustering together
into this group [6].

This approach and further development of the tool would support
the study of overweight and obesity causes, not only from the
point of view of the habits of people, but also from the
perspective of the influence of their relationships and
socioeconomic environment. We recall that previous studies
have used social network analysis to study the overweight and
obesity problem [81,82] (Multimedia Appendix 1, “Social
networks influence in the development of Obesity and
Overweight”). It should be noted that the relationships created
in the chatbot also specify if it is a relation with a person from
home, a family member, a friend, or a coworker, so further
research should approach the influence of these subnetworks
on the population under study regarding overweight and obesity.

Chatbots to Assess Lifestyle
In Wakamola, diet is scored based on the type and frequency
of foods, and physical activity habits are also scored; these are
relevant parameters to control body weight [2]. The user’s
weight and height are also collected to calculate their BMI,
which is a widely applied fat mass indicator parameter. Users
are informed about their BMI, which is a value unknown to
most people, and warned if it is over the recommended values
for a normal weight.

Moreover, users get a global score of their status according to
input data (Wakastatus), although this score needs further study,
for example, regarding the correlation of BMI with defined
Wakastatus, diet, activity, and social scores, as well as with
other overweight and obesity indicators.

Lessons Learned About the Wakamola Chatbot Design
People are curious about what chatbots are and how they work
as a recent technology, which is reflected by the interest in
Wakamola in the media after its launch [83]. Based on our
experience, people are more likely to use a chatbot in a
messaging platform they already use than to install another app
in their phones or visit a website. However, after the first
approach to the chatbot, people expect more feedback to engage
the app. The obesity risk assessment alone is not enough; people
ask for recommendations about diet and physical activity
(general and personalized), tracking (diet, physical activity,
calories consumed), community, sharing progress, positive
messages, information about nutrition and healthy habits,
success stories, syncing with activity bracelets, and rewards for
improving, among others (Table S4 in Multimedia Appendix
1).

The use of a character with personalization helps users to
empathize with it and promote the app’s use. Based on our
experience with Wakamola so far, we know that people want
to meet Wakamola after seeing the character image. However,
after starting the chatbot, people expect more feedback to
become regular users; most of the users use it one time. Thus,
the chatbot needs additional effort to improve engagement to
enable long-term control studies.

The usability and acceptance problems detected were mainly
related to the dependency on the Telegram platform (“Usability
test results” in Multimedia Appendix 1). Participants that were
not Telegram users before using Wakamola needed help to share
it. Moreover, they were unlikely to use it by their own initiative.
The decision to develop the chatbot in a third-party platform
has advantages, such as speeding up the development and
removing the requirement for regular users to install a new app
to use the chatbot, saving storage space in their phones.
However, this dependency reduces the acceptance of the app
for people unfamiliar with the platform because they think that
the effort required is higher than installing only an independent
app. Moreover, this dependency slows down the expansion of
the app and therefore the creation of the network to support the
study of social causes of obesity. Thus, we consider that the
chatbot Wakamola needs to be multiplatform and an independent
online chatbot to reach the maximum number of potential users.
As well, the sharing procedure requires an in-depth study to
achieve stickiness and usability. Furthermore, the perception
of trust is fundamental for acceptance and to extend the use of
the chatbot. People would open an invitation to a chatbot only
if it includes information about the app objectives and comes
from a reliable source.

Moreover, the number of chatbot messages needs to be limited
to avoid user fatigue and abandonment. Thus, the Wakamola
Diet section in particular needs to be shortened.

From the data collection perspective, the Wakamola chatbot
enables the definition of different instances, which could be
useful to perform parallel pilot studies in target populations.
Two new pilot studies are in process, involving 1500 people so
far [84,85].
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Conclusions
The Wakamola chatbot provides a tool to collect linked data
about users’sociodemographics, overweight- and obesity-related
diseases, diet and physical activity habits, BMI, social network,
and environment. All these data could aid the study of
overweight and obesity in a target population. Moreover, the
social network created with the chatbot allows the study of
overweight and obesity from a social approach; an online tool
has been developed to support it. As well, the chatbot is an end
user tool for self-assessment of overweight and obesity risk.
Results indicate that this new chatbot meets the needs of both
end users and experts, although usability and feedback should
keep improving. Moreover, its user-centered design would
contribute to the chatbot’s usability and acceptance in real
scenarios.

However, we are aware of the limitations of this preliminary
study. The cohort in the pilot study might not be representative

due to selection bias. We plan to apply Wakamola in wide
populations in a real context to analyze the data and social
network. Moreover, we intend to study the feasibility of the
chatbot to help overweight and obesity screening and
interventions.

Further studies will focus on Wakamola’s usability
improvement, collecting data in large populations for social
network analysis, the chatbot’s messaging multiplatform
compatibility, the study of gamification perception and its effects
on the user, and chatbots’ performance in comparison to
traditional graphical user interfaces in applications in the field
of obesity and overweight.

In addition, a Wakastatus score validation is required to clarify
its perception by users and its feasibility to assess users’obesity
risks.
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