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Abstract

Background: Pressure injury (PI) is a common and preventable problem, yet it is a challenge for at least two reasons. First, the
nurse shortage is a worldwide phenomenon. Second, the majority of nurses have insufficient PI-related knowledge. Machine
learning (ML) technologies can contribute to lessening the burden on medical staff by improving the prognosis and diagnostic
accuracy of PI. To the best of our knowledge, there is no existing systematic review that evaluates how the current ML technologies
are being used in PI management.

Objective: The objective of this review was to synthesize and evaluate the literature regarding the use of ML technologies in
PI management, and identify their strengths and weaknesses, as well as to identify improvement opportunities for future research
and practice.

Methods: We conducted an extensive search on PubMed, EMBASE, Web of Science, Cumulative Index to Nursing and Allied
Health Literature (CINAHL), Cochrane Library, China National Knowledge Infrastructure (CNKI), the Wanfang database, the
VIP database, and the China Biomedical Literature Database (CBM) to identify relevant articles. Searches were performed in
June 2020. Two independent investigators conducted study selection, data extraction, and quality appraisal. Risk of bias was
assessed using the Prediction model Risk Of Bias ASsessment Tool (PROBAST).

Results: A total of 32 articles met the inclusion criteria. Twelve of those articles (38%) reported using ML technologies to
develop predictive models to identify risk factors, 11 (34%) reported using them in posture detection and recognition, and 9 (28%)
reported using them in image analysis for tissue classification and measurement of PI wounds. These articles presented various
algorithms and measured outcomes. The overall risk of bias was judged as high.

Conclusions: There is an array of emerging ML technologies being used in PI management, and their results in the laboratory
show great promise. Future research should apply these technologies on a large scale with clinical data to further verify and
improve their effectiveness, as well as to improve the methodological quality.

(JMIR Med Inform 2021;9(3):e25704) doi: 10.2196/25704
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Introduction

Pressure injury (PI) is a significant indicator of the quality of
care and a substantial burden on the public health system and
the economy [1,2]. PI is a common but potentially preventable
problem; however, current PI management is far from
satisfactory. PI incidence and prevalence in the intensive care
unit (ICU) were reported to be 10.0% to 25.9% and 16.9% to
23.8%, respectively [3]. The prevalence of PI in acute care
settings ranged from 6% to 18.5% [4] and the hospital-acquired
PI prevalence was 8.5% [5]. As for long-term care facilities,
the PI prevalence was 27% in Italy [6] and 9.6% in Japan [7].
The overall prevalence of PI in the United States decreased from
13.5% in 2006 to 9.3% in 2015 [8]. Also, 95% of PIs are
avoidable [9]. Nurses are primarily responsible for preventing
PIs [10]. Several surveys have revealed that the majority of
nurses, internationally, have insufficient knowledge of PI
[11-14]. Besides, the global nursing shortage is a well-known
fact [15]. Also, the most universally used PI risk assessment
tool—the Braden scale—is subjective and inaccurate [16]. In a
nutshell, medical practitioners need better PI management tools.

Artificial intelligence (AI) has been exerting a positive impact
on daily living [17]. Moreover, machine learning (ML) is a way
to achieve AI. Over the past two decades, ML has progressed
from a laboratory curiosity to practical tools commonly applied
in the medical field [18,19]. ML will continue to contribute to
improving prognosis and diagnostic accuracies, even potentially
taking on some of the work of medical practitioners’ [20,21].

While researchers have developed various novel methods for
PI management [22], there is no systematic review to our
knowledge that evaluates current ML technologies used in PI
management.

The objective of this paper was to synthesize and evaluate the
nascent literature on the use of ML technologies in PI
management, noting the strengths and weaknesses of the studies,
and identify improvement opportunities for future research and
practice.

Methods

Protocol
This review is reported according to the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
statement [23].

Search Strategy
We conducted a systematic search of nine health science
databases: PubMed, EMBASE, Web of Science, Cumulative
Index to Nursing and Allied Health Literature (CINAHL),
Cochrane Library, China National Knowledge Infrastructure
(CNKI), the Wanfang database, the VIP database, and the China
Biomedical Literature Database (CBM). We used Medical
Subject Headings (MeSH) terms, Emtree terms, subject
headings, and free text associated with the concepts of ML and
PI. Searches were performed in June 2020. We also undertook
a manual search of the reference list of all potentially eligible
studies. Textbox 1 shows the search strategy that was used.

Textbox 1. Search strategy and search terms used.

• #1 pressure ulcer* OR pressure injur* OR pressure sore* OR pressure damage OR decubitus ulcer* OR decubitus sore* OR bedsore* OR bed
sore*

AND

• #2 artificial intelligence OR machine learning OR neural network* OR support vector machine OR natural language processing OR Naive Bayes
OR bayesian learning OR support vector* OR random forest* OR boosting OR deep learning OR machine intelligence OR computational
intelligence OR computer reasoning

Inclusion and Exclusion Criteria
This review included studies that met the following criteria: (1)
used a method related to ML technologies (including support
vector machine, k-nearest neighbor [KNN], decision tree [DT],
convolutional neural network, Bayesian network model, and
logistic regression) in PI management, and (2) was published
in English or Chinese. We excluded studies that met any of the
following criteria: (1) review papers, opinion papers, editorials,
discussion papers, dissertations, or conference abstracts; (2)
papers on PI education; (3) papers about PI in animals; (4)
papers lacking an outcome; and (5) papers without explicit
algorithms.

Study Selection Methods
Two independent investigators screened titles and abstracts
using the eligibility criteria. They then obtained full-text versions

of all potential articles and scrutinized the full texts
independently. Any discrepancies about study inclusion were
resolved through discussion or by referral to a third investigator.

Data Extraction
Data were extracted from all identified studies using a
predefined format. Variables included the first author, year of
publication, country, aim, subject, algorithm used, study
outcomes, performance of the algorithm, and findings. One
investigator extracted the information into a standard data
extraction sheet and a second investigator cross-checked the
entries. Any disagreements were resolved via discussion.

Quality Appraisal
The methodological quality of the included studies was assessed
independently by two investigators using the Prediction model
Risk Of Bias ASsessment Tool (PROBAST) [24].
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Disagreements were resolved by discussion. The PROBAST
was designed to assess the risk of bias and applicability of
diagnostic and prognostic prediction model studies, and it
includes 20 signaling questions to judge the risk of bias from
four domains (participants, predictors, outcome, and analysis).
The risk of bias is judged as low, high, or unclear. If one domain
is found to have a high risk of bias, the overall risk of bias is
judged as high. Similarly, if one domain is assessed as unclear,
the overall risk of bias is judged as unclear even if all other
domains are assessed to have a low risk of bias.

Results

Study Process
Our initial search retrieved 2207 published articles, of which
269 were duplicates. After screening titles and abstracts, the
full texts of 48 articles were obtained and assessed for potential
eligibility. Of those 48 articles, 16 did not fulfill the inclusion
criteria. The reasons for studies being ineligible were as follows:
(1) lacking a clear algorithm (n=5); (2) lacking a result (n=4);
(3) review studies (n=4); (4) studies in pigs (n=2); and (5) study
on PI education (n=1). Finally, a total of 32 studies were eligible
for our research (see Figure 1).

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram of the inclusion process. PI: pressure injury.

Characteristics of Included Studies
The articles that were included in our analysis were published
between 2007 and 2020 and were undertaken in the United
States [25-35], China [36-44], Spain [45-50], Japan [51,52],
Italy [53,54], Korea [55], and Greece [56]. According to the
applied area of the included studies, we divided the articles into

three components: predictive model (12 studies), posture
recognition (11 studies), and image analysis (9 studies). The
characteristics of the included studies are presented in
Multimedia Appendix 1.

Figure 2 shows the roles of the three components in the PI
management process:
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• Predictive model: when a patient is admitted into the
hospital, a nurse needs to perform PI-related
assessments—skin assessment and risk assessment. The
predictive model is used to identify related risk factors.

• Posture recognition: when a patient is determined to be at
risk, according to PI guidelines, proper measures such as
repositioning, nutrition, support surfaces, and skin care

need to be taken to prevent PI. The posture recognition can
be used in the repositioning to help nurses to detect and
classify the patient’s position and movement.

• Image analysis: when a PI occurs, it is necessary to do
wound assessment prior to treating the wounds. The image
analysis can help to classify the wound tissue and measure
the wound size.

Figure 2. The roles of machine learning technologies used in pressure injury (PI) management.

The performance indicators of ML algorithms include
sensitivity, specificity, precision, accuracy, F score, positive
predictive value, negative predictive value, geometric mean,
false-positive rate, run time, and so on. Multimedia Appendix
2 shows the detailed results of the included studies.

Predictive Model
Twelve studies explored PI risk factors by data mining from
the electronic health records (EHRs) of patients. The patients
included in the studies were from a variety of settings: ICU (3
studies); operating room (2 studies); long-term care facilities
(1 study); acute care hospital (1 study); orthopedic department
(1 study); oncology department (1 study); end-of-life care (1
study); medical-surgical, critical care, and step-down units (1
study); and with mobility-related disabilities (1 study). The
number of EHRs ranged from 147 to 125,213. The identified
risk factors were different due to diverse input variables. In the
majority of included studies, the PI percentage (the number of
patients with PI/the number of total patients) of the data sets
analyzed was imbalanced, and the minimum was 0.6%
(51/8286). The accuracy ranged from 63.0% to 90.0%, the
sensitivity ranged from 47.8% to 84.8%, and the specificity
ranged from 70.3% to 94.7%. The DT algorithm was a typical
data mining approach.

Posture Recognition
Eleven studies were concerned with posture identification by
analyzing the pressure distribution of the body to achieve a
robust assessment. Regarding the subjects of posture recognition,
one study focused on wheelchair users [38], while the others
looked at bed bound patients. The number of sensors was
between 4 and 8192, and the number of subjects ranged from
2 to 58. Of the 11 studies, 10 studies detected and classified
different postures or movements of a person and one study
classified the bed inclination [31]. The common postures
detected were supine, right lateral, and left lateral.

All articles reported on accuracy, which ranged from 49.1% to
100%. The difference in run times among different algorithms
was quite large, from 0.04 seconds to 320.34 seconds. No
articles reported on specificity. The sensitivity ranged from
62.0% to 100%, and the precision ranged from 65.0% to 100%.
All eight studies applied the KNN algorithm in the processing
of pressure sensor data.

Image Analysis
Nine studies conducted PI wounds’ tissue segmentation and
measurement using ML algorithms. We included studies that
only analyzed PI images and excluded those involving the
wound images of diabetes foot ulcers or venous leg ulcers. The
number of digital images ranged from 14 to 193. Three articles
were written by Veredas et al [46,48,49] using the same 113
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color images to achieve tissue classification. Because different
algorithms were used, we considered these three articles as
independent research. Furthermore, the number of tissue
segmentations ranged from 3 to 6. The most common PI wound
tissue classifications were granulation, slough, and necrosis.
One study developed an image processing algorithm that
automatically measured the PI size [30]. The accuracy ranged
from 78.3% to 92.0%, the sensitivity ranged from 61.7% to
99.9%, and the specificity ranged from 93.9% to 99.8%.
Convolutional neural network algorithms, as deep learning

architectures, were often used in medical image analysis in
recent years.

Risk of Bias
The PROBAST was used to assess the risk of bias of the
predictive model studies from four domains (participants,
predictors, outcome, and analysis). However, the PROBAST
was not suitable for the posture recognition and image analysis
studies; to the best of our knowledge, there is still no appropriate
tool to assess these engineering articles. The overall risk of bias
of all of the predictive model studies was judged as high, and
there was no low risk in the analysis domain (Figure 3).

Figure 3. Risk of bias assessment for the predictive model studies.

Discussion

Principal Findings
Our systematic review provided a broad overview of the ML
technologies applied to PI management. After study selection,
we were able to categorize these technologies into three
components: predictive model, posture recognition, and image
analysis. We discuss these different components in detail below.

Component 1: Predictive Model
The predictive model studies were all retrospective studies that
analyzed the EHRs of patients to develop a prediction model
via data mining techniques. The objective of the predictive
model was to (1) identify the PI risk factors so that nurses could
take customized preventive measures to arrest the PI
progression, or (2) compare different algorithm performances
and interpretability in constructing a predictive model. Even
though the data sets were often imbalanced, Setoguchi et al [51]
suggested that an alternating DT algorithm could effectively
analyze highly imbalanced data. Shi et al [57] identified 22
empirically derived predictive models for PI risk using
traditional statistical techniques. Compared with the previous
predictive models, these advanced models can use the
information available in EHRs rather than require investigators

to input information into a questionnaire, and they can handle
a large volume of various data at a faster velocity. Relative to
the 2019 international guideline [1], we found a gap between
the ML models and the empirical models. The risk factors
mentioned in the guideline are mainly patient characteristics
(eg, older age, spinal cord injuries, diabetes, incontinence,
impaired sensory perception, etc) and treatment plan (eg,
duration of surgery, anesthesia, use of vasopressors, etc). By
employing ML models using data from patients’ EHRs, Moon
and Lee [55] found that the total hospital cost was associated
with PIs, which had not been revealed by the guideline.
However, it must be noted that these ML-based predictive
models were lacking external validation. The results we got
from one database had not been validated in temporal or spatial
difference. Clearly, providing external validation for these
models should be a focus of future research.

Component 2: Posture Recognition
PIs (also called bedsores) are common among bedridden older
patients. However, the subjects in the included research studies
were all healthy adults of different weights rather than patients
at high risk for PIs. The research to test the ML technologies’
performance was all conducted in the laboratory. In other words,
these technologies are still in the development phase and have
not transitioned from bench to bedside. The current research
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focused simply on posture detection, and the majority of
repositioning recommendations from the 2019 international
guideline were based on expert opinion. Future research should
combine posture recognition with the predictive model to
develop the most effective repositioning schedules. For example,
it is generally acknowledged that patients should be repositioned
or mobilized every 2 hours. For a high-risk patient, it may be
better to reposition every hour, while a low-risk patient may
need to be repositioned every 3 hours. When it is time to change
the patient’s position, the related alarm will alert the nurse to
help the patient to reposition, thus lightening the clinical nurse’s
workload.

Component 3: Image Analysis
It is worth mentioning that 6 of 9 (67%) studies were conducted
in Spain. All three articles of Veredas et al (45,47,48) analyzed
113 digital images of PI of patients with home-care assistance,
and we can assume that these were the same subjects; however,
it is quite interesting to note that the images in the article
published in 2010 were taken with a Canon digital camera,
while the images in the 2015 article were taken with a Sony
digital camera. In the real world, PI wounds are always irregular
in shape, and it is inaccurate and unreliable to measure the size
of the PI wound by multiplying length and width [58]. The
computer-aided measurement system can offer an objective and
efficient result. Using a photo of the PI wound, it is convenient
and possible to analyze the characteristics of the lesion by the
size and color of the ulcer, which helps clinicians monitor the
developing and healing process of PI. Note that these subjects
of image analysis are visible wounds, which are always stage
IV—the severest PIs. Certainly, we do not want to see the most
terrible situation happen, and thus future research is needed to
optimize technologies so that we can assess PIs in their early
stage via microclimate (eg, moisture, temperature, etc), not just
via images. The current research is focused on classifying the
wound tissue, and it is necessary to combine the percentage of
the different tissue with the grading of PI to define the severity
of PI. It is better to rely on objective indicators than to rely on
human experience.

Future Research
PI management should be a holistic process, but the current
research in these three components is separate. We’ll use the
case of a patient admitted to hospital to illustrate. First,
according to the predictive model, we rated the patient as low
risk. The repositioning schedule was implemented as the low
risk required. Unfortunately, the patient developed PI, so we
needed to assess the PI wound. The ML technologies on the
predictive model and posture recognition need feedback from
the PI wound image analysis to improve their performance.

However, the research in these three components was conducted
in different populations in different locations at different times.
This point should be explored in future research.

The results on the risk of bias, surprisingly, were far from
satisfactory. Similar to the research of Nagendran et al [59], the
analysis domain was the major deficiency. More attention needs
to be paid to the methodological quality of predictive model
studies. The participants in posture recognition studies were
healthy volunteers and the subjects in image analysis studies
were images, so we could not judge these types of articles as
medical research. There is a growing literature on
interdisciplinary research such as in the fields of engineering
and medicine. It is essential to develop a tool to assess the
methodological quality of the relevant articles.

In summary, ML technologies furnish new alternatives to PI
management. Given the global shortage of professional nurses
and PI-related knowledge deficit, ML technologies will
significantly reduce the burden on frontline clinicians and help
to improve the quality of care, as Obermeyer and Emanuel [20]
pointed out in 2016. However, because the current technologies
only cover three components of PI management, there is a
marked lack of novel technologies to assess potentially healthy
skin, to achieve better skin care, to manage nutrition status, and
to create intelligent support surfaces. Besides, IBM has
discovered that its powerful technology is no match for the
messy reality of today’s health care system [60]. There is still
a long way to go to integrate ML technologies into clinical care
practices.

It is important to acknowledge some limitations. First, we only
include articles published in English and Chinese. It will be
better to include other language research for representing the
current evidence. Second, due to the various aims and outcomes
of the included studies, the quantitative synthesis has not been
performed to obtain a direct result. Third, the aim of our review
was to survey the current status of ML algorithms applied in PI
management, so the eligibility criteria were defined broadly.
After study selection, we found the related research can be
divided into three components. We have no specific criteria for
one component. Hence, under the guidance of our findings,
future research can define detailed eligibility criteria.

Conclusions
The study results from various laboratory settings show an array
of ML technologies with potential uses in PI management.
Future research should apply these technologies on a large scale
with clinical data to verify their effectiveness, enhance their
performance, and improve methodological quality.
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