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Abstract

Background: Monitoring critically ill patients in intensive care units (ICUs) in real time is vitally important. Although scoring
systems are most often used in risk prediction of mortality, they are usually not highly precise, and the clinical data are often
simply weighted. This method is inefficient and time-consuming in the clinical setting.

Objective: The objective of this study was to integrate all medical data and noninvasively predict the real-time mortality of
ICU patients using a gradient boosting method. Specifically, our goal was to predict mortality using a noninvasive method to
minimize the discomfort to patients.

Methods: In this study, we established five models to predict mortality in real time based on different features. According to
the monitoring, laboratory, and scoring data, we constructed the feature engineering. The five real-time mortality prediction
models were RMM (based on monitoring features), RMA (based on monitoring features and the Acute Physiology and Chronic
Health Evaluation [APACHE]), RMS (based on monitoring features and Sequential Organ Failure Assessment [SOFA]), RMML
(based on monitoring and laboratory features), and RM (based on all monitoring, laboratory, and scoring features). All models
were built using LightGBM and tested with XGBoost. We then compared the performance of all models, with particular focus
on the noninvasive method, the RMM model.

Results: After extensive experiments, the area under the curve of the RMM model was 0.8264, which was superior to that of
the RMA and RMS models. Therefore, predicting mortality using the noninvasive method was both efficient and practical, as it
eliminated the need for extra physical interventions on patients, such as the drawing of blood. In addition, we explored the top
nine features relevant to real-time mortality prediction: invasive mean blood pressure, heart rate, invasive systolic blood pressure,
oxygen concentration, oxygen saturation, balance of input and output, total input, invasive diastolic blood pressure, and noninvasive
mean blood pressure. These nine features should be given more focus in routine clinical practice.

Conclusions: The results of this study may be helpful in real-time mortality prediction in patients in the ICU, especially the
noninvasive method. It is efficient and favorable to patients, which offers a strong practical significance.
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Introduction

Patients in intensive care units (ICUs) are usually suffering from
the most severe and complicated diseases. Thus, they require
more intensive care and hospital resources [1]. Research shows
that the cost of ICUs accounts for 22% of total hospital costs
[2]. The cost of doctors and nurses in the ICU is also a massive
burden. Therefore, hospitals usually use scoring systems to help
assess patients’ risks and then place more efforts on improving
the patient care and management. Scoring systems such as the
Acute Physiology and Chronic Health Evaluation (APACHE)
[3] systems II, III, and IV; the Simplified Acute Physiology
Score II (SAPS II) [4]; and the Sequential Organ Failure
Assessment (SOFA) score [5] are commonly used to estimate
the illness severity of patients in the ICU [6,7]. However, the
scoring systems cannot reflect the condition of patients in real
time, and clinical staff must spend plenty of time calculating
the scores to make decisions. Further, the scores alone are
insufficient for the needs of the clinical staff. Johnson and Mark
[8] found that the gradient boosting method outperformed the
scoring systems on predicting mortality, which provided
inspiration for our study.

Meanwhile, the severity and mortality of ICU patients can be
specifically assessed in real time using machine learning
methods. This would allow doctors and nurses to prepare
lifesaving interventions ahead of time and provide families with
more time to make decisions [9]. Hence, precisely predicting
the mortality of ICU patients is significant. Machine learning
technology has significantly changed lives in many aspects in
recent years, even in the health care field [10,11]. Usually, the
shortest time period for predicting mortality is 24 h [12,13],
which is not sufficient for the ICU staff to obtain the real-time
condition of patients. Kim et al [14] presented a deep learning
method to predict the mortality of patients 6 h to 60 h prior to
death, where the time period was a little longer than the real
time. With regard to machine learning techniques, the ensemble
and neural network models demonstrate better performance in
predicting mortality [2]. Brand et al [15] proposed a deep
learning method to predict mortality based only on heart rate,
respiratory rate, and blood pressure, which had an accuracy of
76.3%, but its performance was not as good as that of other

methods. Besides, the neural network model cannot interpret
the gap between the input and the output. Further, it is vulnerable
to attack when the training set is inadvertently being modified
[16].

In this study, we established a real-time mortality prediction
model based on clinical data where we explored a noninvasive
method to predict mortality by only monitoring features.
Because frequent laboratory examination can cause physical
trauma to patients whose bodies are already weak, using a model
that can show general performance and is noninvasive is
clinically meaningful.

Methods

Data Sources
We used the ICU data from Peking Union Medical College
Hospital from 2013 to 2018. A total of 13,649 patients were
investigated in our experiments with the privacy information
filtered out. We mined features from three types of data:
real-time monitoring, laboratory, and scoring data. The main
features from the monitoring data are listed in Multimedia
Appendix 1.

Prediction Model
In this study, we constructed the real-time mortality prediction
model based on the clinical data. The data of the patients in the
ICU were updated all the time, and the model could predict
each patient’s mortality once the data were updated; the model
could predict the mortality after 2 h at any time if the data were
not updated during the 2 h period. Therefore, it is a real-time
prediction model. The modeling process involved three steps,
which are shown in Figure 1. First, we constructed and cleaned
the sample data according to the clinical data. Second, after
dividing the data into training and test sets, we normalized all
types of data as features. Third, we used the LightGBM method
to train the data and optimized the model by adjusting the
parameters. LightGBM and XGBoost are both gradient boosting
decision tree methods, and LightGBM has good performance
and high training efficiency [17]. In this paper, we also
compared the performance of the LightGBM and XGBoost
methods.
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Figure 1. Modeling process, including sample construction and cleaning, feature engineering, model training, and optimization. AUC: area under the
curve; ICU: intensive care unit.

Sample Construction
Usually, patients in ICUs are weak and at high risk. Therefore,
focusing on the real-time condition of an ICU patient by the
clinical staff is meaningful. In this research, we predicted the
mortality of a patient after 2 h based on the clinical data.

Figure 2 shows how we constructed the data by the hour. One
record of a patient was captured in each hour, and each patient
may have a sample sequence based on the timeline. As a result,
there might be several samples for one patient. For example,

patient A had been admitted to the ICU twice, and patients B
and C had each been admitted to the ICU once. There were 2
samples for patient A. During patient A’s second stay in the
ICU, the third box contained a cross, representing a status of
“died after 2 h,” so he/she died 2 h after he/she was admitted
into the ICU because one box meant one sample in 1 h. The
data of patients A and B were the training data, and the data of
patients C and D were the validation data. Samples of patients
E, F, G, and H were the test data set. Then, the samples were
constructed according to the process shown in Figure 2. For the
13,649 patients, we constructed 1,172,652 samples in all.

Figure 2. Feature engineering process. Each square represents a 1 h record in the intensive care unit (ie, one sample). The symbols in the squares
indicate the status of the patient.
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Feature Engineering
Feature engineering is the key process in machine learning. The
modeling performance depends on the feature engineering
quality to a large extent.

In this study, two data types existed: numerical and categorical
data from the monitoring, laboratory, and scoring data. For the
numerical data, we directly considered the numerical value as
the feature, such as the heart rate and temperature. The
categorical data included gender and positive or negative status.
We used the LabelEncoder method [18] to normalize these
categorical data. LabelEncoder is a method that converts text
data into multinumeric values. It can convert two-class and
multiclass features. For example, the positive and negative states
were represented by 0 and 1, respectively. We left the missing
value blank to ensure the authenticity of the data.

Model Training
In this research, we needed to predict the real-time condition
of a patient 2 h after each moment. Actually, this process was
a binary classification problem (ie, life or death). LightGBM is
a gradient boosting method that is superior in dealing with the
binary classification problem and has high efficiency and
performance, especially in dealing with structured data. The
1,172,652 samples were randomly divided into three parts.
One-third of the samples was set as the training set, one-third
was set as the validation set, and the rest was set as the test set.

The area under the curve (AUC) was used to evaluate the
model’s performance.

Based on different features, we constructed five real-time
mortality prediction models:

• RMM: based on monitoring features;
• RMA: based on monitoring features and APACHE;
• RMS: based on monitoring features and SOFA;
• RMML: based on monitoring and laboratory features; and
• RM: based on all monitoring, laboratory, and scoring

features.

Results

In presenting the results of our study, we will focus on the results
of the models in the test set. Figure 3 shows the distributions
and proportions of patients in the ICU in the data set. Figure
3A shows that male patients in the ICU outnumbered female
patients irrespective of whether they were transferred out or
died. Figure 3B shows that more than 12,510 patients were
transferred into the ICU only once, and 898 patients stayed in
the ICU twice. Patients between the ages of 50 and 80 years
accounted for 8700 of the total number of patients, as shown in
Figure 3C. In addition, patients between the ages of 60 and 70
years represented the largest group, accounting for one-quarter
of the total number of patients. Figure 3D shows the length of
stay of patients in the ICU in a single visit; we can observe that
most patients stayed in the ICU for fewer than 5 days.

Figure 3. Distribution of the data set. (A) Proportion of patients that were transferred out of the intensive care unit (ICU) or died, according to gender.
(B) Distribution of the number of times patients transferred into the ICU. (C) Age group distribution of ICU patients. (D) Length of stay of patients in
the ICU.

First, we evaluated the influence of the scoring systems through
extensive experiments; the results are shown in Figures 4 and
5. Figure 4 shows that the RMM model outperformed the RMA
and RMS models. Overall, all three models showed an upward

trend with the increase in tree number and became stable after
the tree number reached 200. The RMS model demonstrated
better performance than the RMA model. Therefore, the SOFA
scoring system was more valuable than the APACHE scoring
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system in predicting mortality. Compared with the RMA and
RMS models, the RMM model was superior and demonstrated

the best performance (AUC 0.8264) when the tree number was
299.

Figure 4. Performance of the RMM, RMA, and RMS models with parameter variation. Each point on the line represents one experiment. AUC: area
under the curve.

Figure 5 shows the results of the experiments that we conducted
on the RMML, RMM, and RM models to compare their
performance in terms of the monitoring, laboratory, and scoring
features. The RMML model exhibited the best performance
based on the monitoring and laboratory features than the other

two models. When the tree number was 234, RMML obtained
the best AUC (0.8476). In the RM model, monitoring,
laboratory, and all scoring features were considered. The RM
model exhibited worse performance than the RMM model.

Figure 5. Performance of the RMML, RMM, and RM models with parameter variation. Each point on the line represents one experiment. AUC: area
under the curve.

In addition, we repeated the experiments above using XGBoost.
The AUCs of XGBoost were relatively lower than those of
LightGBM, as shown in Table 1. The best performance with
XGBoost was 0.8452 on the RMML model and 0.8154 on the

RMM model. As well, we showed the RMML and RMM models
using LightGBM and XGBoost on the validation set, and the
results are shown in Table 1. Therefore, LightGBM
outperformed XGBoost in these experiments.
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Table 1. Performance of the RMML and RMM models using LightGBM and XGBoost.

Area under the curve

Validation setTest setModel and method

RMML

0.84830.8476LightGBM

0.84660.8452XGBoost

RMM

0.82690.8264LightGBM

0.81670.8154XGBoost

Because the RMML model demonstrated the best performance,
we analyzed the relevant features that predicted mortality in
that model. Figure 6 shows the top nine features relevant to the
mortality prediction. The “gain” of the feature splitting implies
the importance of the feature in the model, which was computed
during the model training. Thus, the bigger the gains of the
feature, the more important the feature was in the model. It was
shown that invasive mean blood pressure was the most important
feature related to mortality prediction. Among the top nine

features, heart rate, invasive systolic blood pressure, oxygen
concentration, oxygen saturation, balance of input and output,
total input, invasive diastolic blood pressure, and noninvasive
mean blood pressure were all vital sign features in the
monitoring. “Balance of input and output” was the difference
between input and output data, while “total input” was the input
data only. They all demonstrated a relatively strong correlation
with the mortality prediction.

Figure 6. Top nine features relevant to mortality prediction. The horizontal bar represents the gain of each feature in the model; a bigger gain means
more relevance and importance in the mortality prediction.

In addition, we exploited the variation in each of the top nine
features with time during the last 64 h before a patient died.
Figure 7 shows that all nine features showed an obvious trend
with the time variation. “Oxygen concentration” and “balance
of input and output” exhibited an upward trend during the final
64 h before the patient died. The other seven features all

decreased with time during the final 64 h before the patient died.
For example, invasive diastolic blood pressure exhibited a
downward trend and sharply declined in the last 5 h. Similarly,
the top eight features all rapidly changed in the last 5 h. The
“noninvasive mean blood pressure” exhibited dithering but an
overall decreasing trend.
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Figure 7. Variation in the top nine features relevant to mortality prediction with time. The abscissa represents 64 h before the patients died, and the
ordinate represents the value of the feature.

Discussion

In this paper, we used clinical data to predict the real-time
mortality of ICU patients. Several models were established
based on different features. Extensive experiments showed that
the models that used the machine learning method were superior
to the scoring systems. More importantly, they can be employed
to predict real-time mortality in a noninvasive manner.

Constant care of ICU patients is necessary against their
life-threatening conditions. Intensive care is based on more
financial support and more professional hospital staff [19,20].
The US health care spending was approximately 17% of the
gross domestic product (GDP) in 2011 and may reach 26% of
the GDP by 2035 [21]. In addition to the cost, the mortality rate
in ICUs cannot be ignored. Studies show that ICUs have the
highest mortality rate of all hospital units (16.2% [22] and 22.4%
[23]). Therefore, helping predict patient mortality in ICUs is
significant, as it could save time for nurses and doctors by more
efficiently measuring the risk of ICU patients. It would be better
if there was less trauma to patients in the clinical process.

Commonly, hospital staff use scoring systems to help predict
the severity status of ICU patients. Most of these scoring systems
calculate the scores based on the worst values during the first
24 h after ICU admission [24]. The SAPS score only uses the
data in the first hour after ICU admission, which are more robust
because the missing data have a lesser effect on specificity [25].
Saleh et al [24] compared APACHE II and III, SAPS II, and

SOFA and showed that APACHE II and III demonstrated better
performance than the others. However, Yap et al [26] verified
that the National Early Warning Score demonstrated the best
performance for predicting the severity status of patients with
emphysematous pyelonephritis patients. Tan et al [27] explored
the ability of the scoring systems to predict sepsis mortality in
the short term (less than 30 days in the hospital) and long term
(more than 30 days). They discovered that the sensitivity and
specificity were similar in both factors, whereas geographical
region had a significant effect on the short-term mortality
prediction. Therefore, the scoring systems can show different
performance on different diseases and under different situations
[28,29]. In addition, Nielsen et al [30] compared the APACHE
II and SAPS II with the aggregation of the APACHE II and
SAPS II, and the aggregation of APACHE II and SAPS II
outperformed each single model. Similarly, Fei et al [31]
presented the use of the fibrin degradation product level and
APACHE II scores in parallel to improve the prediction
performance.

Machine learning technologies have been increasingly used in
the health care field because of their excellent performance
[20,32]. Further, machine learning models have been confirmed
to perform better in predicting the severity status of ICU patients
than the scoring systems. Henry et al [33] proposed a supervised
learning model to predict the risk of patients getting septic
shock, and machine learning was found to have higher
sensitivity and specificity than the scoring systems. An ensemble
machine learning model was investigated by Pirracchio et al

JMIR Med Inform 2021 | vol. 9 | iss. 3 | e23888 | p. 7https://medinform.jmir.org/2021/3/e23888
(page number not for citation purposes)

Jiang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


[2], and the results showed better performance for the machine
learning model than for the common scoring systems. In recent
years, many studies have focused on using the neural network
model to predict mortality [34,35]. Most of the experiments
demonstrated that the neural network model outperformed the
other models. Norrie [36] innovatively proposed a prespecified
library of models and established an optimum model. However,
the neural network model is difficult to explain in terms of the
black box principle [32,37], which is not clear for high recursion
[38]. Using the inherently interpretable models is vital and
important in health care because decisions in health care involve
high stakes [39]. Awad et al [20] demonstrated that the decision
tree model is interpretable and better than the neural network
model in predicting mortality. Similarly, Blanco-Justicia et al
[40] used a depth-limited decision tree model to avoid the black
box problem. In reality, the gradient boosting methods usually
perform better than the deep learning method on structured data,
especially on a small data set.

The limitation of this study is that the data were obtained from
one hospital only. The structure and quality of data may vary
in different hospitals. In the future, we would try to improve
our model based on multicenter data.

In the present study, we constructed the real-time mortality
prediction model based on the monitoring, laboratory, and
scoring data. Compared with the RMM, RMA, RMS, and RM
models, the RMML model demonstrated the best performance.
Moreover, we found that the invasive mean blood pressure,
heart rate, and invasive systolic blood pressure were the top
three features relevant to the mortality prediction. In addition,
the RMM model performed better than the RMA and RMS
models. Therefore, noninvasively predicting real-time mortality
would be meaningful. Not only can the results of our research
provide support for decision making by clinical staff, but our
method is also better for patients because the real-time mortality
prediction is noninvasive.
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