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Abstract

Background: The clinical mitigation of intracranial hypertension due to traumatic brain injury requires timely knowledge of
intracranial pressure to avoid secondary injury or death. Noninvasive intracranial pressure (nICP) estimation that operates
sufficiently fast at multihour timescales and requires only common patient measurements is a desirable tool for clinical decision
support and improving traumatic brain injury patient outcomes. However, existing model-based nICP estimation methods may
be too slow or require data that are not easily obtained.

Objective: This work considers short- and real-time nICP estimation at multihour timescales based on arterial blood pressure
(ABP) to better inform the ongoing development of practical models with commonly available data.

Methods: We assess and analyze the effects of two distinct pathways of model development, either by increasing physiological
integration using a simple pressure estimation model, or by increasing physiological fidelity using a more complex model.
Comparison of the model approaches is performed using a set of quantitative model validation criteria over hour-scale times
applied to model nICP estimates in relation to observed ICP.

Results: The simple fully coupled estimation scheme based on windowed regression outperforms a more complex nICP model
with prescribed intracranial inflow when pulsatile ABP inflow conditions are provided. We also show that the simple estimation
data requirements can be reduced to 1-minute averaged ABP summary data under generic waveform representation.

Conclusions: Stronger performance of the simple bidirectional model indicates that feedback between the systemic vascular
network and nICP estimation scheme is crucial for modeling over long intervals. However, simple model reduction to ABP-only
dependence limits its utility in cases involving other brain injuries such as ischemic stroke and subarachnoid hemorrhage. Additional
methodologies and considerations needed to overcome these limitations are illustrated and discussed.

(JMIR Med Inform 2021;9(3):e23215) doi: 10.2196/23215
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Introduction

Background
Traumatic brain injury (TBI) is a major public health problem.
Intracranial hypertension (ICH) is common after TBI and can
cause secondary injury by decreasing local or global cerebral

perfusion [1,2]. Cerebral autoregulation governs cerebral blood
flow (CBF) by changing local artery diameter [3-5] and usually
provides autonomic control of intracranial pressure (ICP). The
capacity of this mechanism to adapt to pressure changes may
be exhausted by sufficiently acute or prolonged hypertension,
which can lead to insufficient perfusion following TBI. Impaired
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autoregulation also affects a patient’s response to drug therapies
to reduce ICP [6]. Therefore, clinical management of ICH after
brain injury is crucial for improving patient outcomes.

TBI is often accompanied by elevated systemic arterial blood
pressure (ABP) and loss of cranial volume due to cerebral
edema. The Monro-Kellie doctrine [7] postulates a constant
volume of intracranial (IC) parenchyma (functional brain tissue)
and fluids (blood and cerebrospinal fluid [CSF]), so changes in
net fluid yield changes in ICP. Consequently, ABP is the
primary external ICP driver under this hypothesis, together with
changes in volume and fluid [8]. Therefore, clinical protocols
seek to control ICP while maintaining cerebral perfusion
pressure (CPP, the difference between ABP and ICP) [9] or risk
cerebral hypoxia, which may result in death or permanent brain
injury.

Important changes in patient ICP occur at minute-to-hour
timescales, and clinicians need to know about them quickly.
Decisions regarding the escalation of care and intervention for
TBI patients are often driven by elevated ICP, typically defined
as exceeding 20 mm Hg (1 mm Hg=133.3 Pa approximately)
[10]. This underscores the need to monitor the ICP and identify
critical changes. An ideal form of clinical decision support
would predict ICP many minutes to a few hours in advance, as
seconds or minutes might not provide adequate warning for
timely intervention.

The Need for ICP Estimation
ICP is measured in situ via an external ventricular drain (gold
standard) or a fiberoptic intraparenchymal catheter. Both
modalities are invasive and may adversely affect patient
outcomes through the risks of infection and hemorrhage [11].
In some patients, the risks associated with monitoring are
outweighed by the benefits of ICP- and CPP-guided therapy,
but patient selection is critical. Alternatively, noninvasive
intracranial pressure (nICP) estimation is less risky and could
both inform patient selection and timing for monitor placement
(eg, early for those who are predicted to benefit). It may also
be paired with invasive ICP monitoring as a powerful clinical
decision support tool. Methods of nICP estimation generally
involve identifying relationships between ICP and proxies that
may be more easily observable in real time. These relationships
may be explored empirically or on the basis of explicit models
representing underlying physiology; a recent comprehensive
survey of nICP estimation modalities is available [12].

Data and Clinical Availability
Estimation of ICP using models and/or proxy data is highly
dependent on the availability of specific data, which limits its
use. For example, nICP may be statistically estimated from ABP
and concurrent measurements of CBF velocity or cerebral
oxygenation via empirical relationships [13,14] or physiological
models [15,16]. The collection of such data requires advanced
techniques such as transcranial Doppler sonography or
near-infrared spectroscopy, which are limited by the availability
of instruments and trained technicians. These data must also
typically undergo quality control, delaying their availability for
nICP estimation. Although nICP may be estimated using various

modalities, practical considerations such as clinical logistics
and data timeliness render their applications difficult.

TBI Modeling for Decision Support
An ideal model for clinical decision support of TBI management
is one that quickly provides nICP forecasts at multihour
timescales from commonly available data and includes IC (as
an adjective) process resolution. Such a model does not currently
exist. Fast methods based on machine learning and signal
processing [17-21] provide empirical nICP forecasts but rely
on an abundance of training and/or patient history data that may
not be widely available. Real-time models that empirically
approximate physiological relationships [15,16] are also fast,
but they still require uncommon data and do not provide IC
mechanism resolution useful for diagnosis or patient-specific
tuning. Mechanistic modeling approaches [22-24] emphasize
either broad systemic dynamics or short-time resolution of IC
processes and may be too coarse or slow for the purpose of
clinical nICP estimation.

Two recent models [15,16,23,24] have been cited extensively
in this document. The more anatomically representative model
of Ryu et al [23] estimates nICP from ABP without additional
data but emphasizes pulse-scale pressure signals rather than
hour-scale dynamics. The fast nICP estimation schemes of
Kashif et al [15] track ICP at suitable multihour timescales but
have stringent requirements for uncommon data, which limits
their applicability. Although contrapuntal to one another, both
models are foundational to this study, which focuses on the
limits and extension of these methodologies for long-time nICP
estimation from ABP.

Objectives of This Paper
The different methodologies of Kashif et al [15] and Ryu et al
[23] present two feasible options for nICP estimation: full
systemic integration of the former’s simple model with a
systemic hemodynamics model or unintegrated use of the more
complex model of the latter. This investigation considers which
model development strategy is a better initial step toward an
ideal nICP estimation tool in a clinical setting. We present the
advantages and disadvantages of each approach: to better inform
the development of a tool representative of the ideal model, and
to identify the input requirements for each model in relation to
clinically available data.

This study has three primary objectives. The first is to extend
the simplified nICP estimation framework [15,16] by using a
coupled arterial vasculature model to eliminate its dependence
on jointly measured CBF. The second is to evaluate the
ABP-only simulation of this model and the one developed by
Ryu et al [23] for nICP estimation over a duration of hours. The
third goal is to clarify the additional model machinery, such as
case-specific parameter estimation and inference, needed to
implement nICP estimation for complex, clinically important
situations. These goals aim to inform the development of a
practical tool capable of providing timely support in the clinical
decision-making process for TBI patients on a broader timescale
than those considered in the literature.

The remainder of this paper is organized as follows: the Methods
section presents the models and methods of investigation,
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describes the model experiments, and establishes the model
assessment criterion; the Results section presents the results of
the experiments and model comparison and discusses the
simulations of cases involving other brain injuries such as
ischemic stroke, which are poorly simulated without
optimization; and the Discussion section summarizes the
analysis and motivates ongoing work toward modeling nICP
estimation in a particular direction on the basis of the results
and implications.

Methods

Overview
The comparison of nICP estimation schemes involves three
essential parts: model configurations, aortic inflow data that
drive the system, and metrics used to compare models on the
basis of various aspects of performance, which are presented
in the following subsections.

Numerical nICP Estimation Frameworks

Model Components
The models considered here are algorithms that transform aortic
ABP data into nICP estimates using two components that may

be coupled or independent. The first component is a vascular
hemodynamics model that distributes ABP forcing through the
systemic arterial network (AN) to the anatomical Circle of Willis
(CoW), and is referred to as AN-CoW. The second component,
referred to as the intracranial model (ICM), estimates nICP
estimates using the outflow of the AN-CoW at the cranial
arteries. We evaluated ICMs that either considered the cerebral
perfusion system as a single compartment or as 6 interacting
compartments defined by flow distributions of the anterior,
middle, and posterior cerebral arteries. These compartments
correspond to unresolved cerebrovascular territories perfused
by the cerebral arteries [23], and these ICMs therefore differ in
anatomical fidelity. The considered model formulations are
differentiated by whether they interact unidirectionally or
bidirectionally with the AN and by the complexity of the ICM
component. The possible configurations are shown in Figure 1.
In the unidirectional configurations, the AN-CoW boundary
outflow at the middle cerebral artery (MCA) was prescribed to
the ICM as an inflow boundary condition. The AN-CoW
calculates this pressure and flow for the entire simulation, which
is then applied to the ICM. Bidirectional coupling of the
AN-CoW and ICM enforces interactive agreement of flow
volumes and pressures at the interface of the components
(enforced as conservation of current and voltage).

Figure 1. Conceptual overview of the relation among 4 models. The single-compartment model forced by prescribed hemodynamic time series (model
#1) is the baseline model for comparison. Model #2 bidirectionally integrates the lower arterial network with the single-component intracranial model.
In contrast, model #3 uses a more complex 6-compartment intracranial model with prescribed hemodynamic forcing. Model #4 represents of a
multicompartment intracranial model fully integrated with the systemic arteries.

Two directions for refining the base model are proposed as
possible steps toward achieving a preferred but demanding
model. Figure 1 shows the relationships of the models using
model #1 as the most basic form and models #2 and #3 as
parallel steps toward ideal model #4. Models #2 and #3 extend
model #1 either by a bidirectionally coupled interface between
the AN-CoW and ICM or by increasing the physiological
complexity of the ICM component, respectively. This
perspective also tests which choice yields the highest gain in

improvement over model #1 and the cost of implementing it.
Model #4 reflects the ultimate goal of a fully integrated
bidirectional model featuring an anatomically accurate ICM.
However, such a model is not presented here because of its
difficult implementation and impractical computational cost for
the simulation timescales considered. Bidirectional coupling is
difficult for multicompartment models because of the
codependency of the ICM state and the common pressure at
each CoW terminal interface. Solving the ICM state equations
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at each time step requires several iterations, and each iterate
requires recalculation of the entire upstream AN-CoW system

constrained by pressure equality among the interfaces. The
modeling framework used in this study is shown in Figure 2.

Figure 2. Diagram of model configurations 1–4. Schematic view of the various model configurations where green and pink boxes identify the AN and
Circle of Willis vascular components, respectively, and intracranial models at right. Purple and orange boxes in the AN identify represented anatomy
for reference. The vascular component is structured as in the source studies but uses 3-element electrical representations of each vessel, shown in the
dashed white box. The single-compartment intracranial model is shown in the upper tan box; below it is a conceptual illustration of the 6-compartment
model where red arrows indicate variable state components related to autoregulation and adaptive capacity. Unidirectional and bidirectional green
arrows indicate the type of coupling between vascular and intracranial model components to distinguish configurations #1-4. ACA: anterior cerebral
artery; ICP: intracranial pressure; MCA: middle cerebral artery; PCA: posterior cerebral artery.

Each model comprises two separate model components, which
are described below. The AN-CoW for resolving hemodynamics
outside the cerebral territories is presented in the
Hemodynamical Modeling of Subcranial Arteries subsection,
whereas the ICMs for estimating ICP are presented in the ICP
Model Components subsection.

Hemodynamical Modeling of Subcranial Arteries
Figure 2 depicts the AN-CoW model component, which
comprises a subcranial AN (green box) and CoW vessels (pink
box), as part of the modeling framework. As the spatial
resolution of vessels is unnecessary, AN-CoW is modeled by
a zero-dimensional framework of electrical analogs [25,26].
Each of the constituent 33 vessels was represented using a
3-element electrical analog (white inset box). This so-called
lumped parameter approach has several advantages, including
a relatively small number of patient-specific parameters.
Furthermore, conservation laws at vessel interfaces reduce at
each time step to algebraic systems rather than high-dimensional

nonlinear functional representations [27] when spatially
resolved.

Vascular network parameters total more than 100 but may be
approximated by physically consistent functions of vessel length
l and radius r [28]. A simple assumption of uniform dimensional
scaling among the AN vessels is also applied to 3-element
Windkessel boundaries and to the terminal resistances at CoW
outflows. As CoW and adjacent vessel radii are approximately
adult-sized by approximately 5 years of age [29], we did not
scale vessels within the CoW model component. This reduces
the large number of model parameters to only five effective
parameters describing the scaling factors (proportions) of the
base model values, which were adopted from a previous study
[23] and references therein. This nonlinear reparametrization
simplifies the AN-CoW component identification and is
effective within realistic ranges of parameter values, as shown
in Figure 3. Further details of the component definition,
parametrization, boundaries, and sensitivity analysis are
provided in Multimedia Appendix 1.
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Figure 3. Ranked sensitivities of arterial network scaling parameters. Normalized empirical estimates of sensitivity ranking, shown here for key signal
features (mean, variance, and maximum) of pressure (top row) and flow (bottom row) in the middle cerebral artery, summarize Monte Carlo experiments
using global structured random uniform variations of scaling parameters (vertical axis of each panel). Parameter variations in vessel length (θl) and
radius (θr) are most influential, whereas resistance scale (Rterm) and Windkessel scales (ωl, ωr) had relatively little impact on the solutions. The vessel
dimension parameters have considerable influence on intracranial model inflow signals and provide global control while reducing the number of
parameters needed to specify the hemodynamic model. MCA: middle cerebral artery.

ICP Model Components
The ICM component is responsible for estimating nICP from
the AN-CoW outflow to the cerebral arteries. The two ICM
configurations considered are a 6-compartment model [23,30]
and a single-compartment model [15,16], where each
compartment represents a vascular perfusion territory. In
addition to the number of represented cerebral perfusion
territories, the models differ in their estimation approaches. The
multicompartment model is more anatomically accurate and
explicitly resolves IC hemodynamics with communicating
arteries and autonomic pressure regulatory processes. In contrast,
the single-compartment approach computes ICP using
window-based statistical estimates of IC compliance and
pressure determined through regression of the ICM inflow
waveform properties. An overview of the multi- and
single-compartment ICMs is presented in the following
subsections.

Overview of the 6-Compartment Model
The complex model of Hu et al [30] and Ryu et al [23] presents
an anatomical layout of the main cerebral pathways and their
dependent mechanisms. Using six interacting territories, the
model includes IC pressure and perfusion dynamics coupled by
communicating arteries, dynamic autoregulation, and CSF
balance. The autoregulatory processes are modeled as internal
feedback mechanisms that regulate compartmental flow toward
target values by controlling vessel radii [31]. This autonomic

control influences the local pressure and flow balances between
compartments, leading to intercompartmental blood flow via
the communicating arteries. IC pressure and compliance are
nonlinearly codetermined by volume changes resulting from
autoregulation and net fluid change. The high degree of
physiological fidelity resolves the IC dynamics at timescales
inherited from ABP forcing. Furthermore, the 6-compartment
nonlinear nICP component calculated numerous potentially
clinically relevant diagnostic variables during the simulation.
Unlike the source model, our implementation (model #3) is
informed by the arterial inflow pressure and flow rate but does
not provide feedback on systemic hemodynamics. A
mathematical description, including a table of physiological
and model parameters, is provided in Multimedia Appendix 2.

Overview of the Single-Compartment Model
The single-compartment ICM of Kashif et al [15] is a simple
model that estimates ICP physiologically rather than
anatomically modeling it. Here, nICP is constructed from linear
regression estimates of bulk IC compliance (C) and resistance
(R) over a temporal window containing several cardiac cycles.
The algorithm estimates compliance C and resistance R by
identifying the statistical relationships within a lumped
parameter model representing IC physiology (details in
Multimedia Appendix 3). These estimates and local ICP are
related to MCA inflow and its applied pressure signal, from
which nICP is deduced algebraically under the assumption of
stationary parameter values.
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The estimation process of this ICM requires no physiological
parameters but requires algorithmic parameters that influence
model behavior. Two required model hyper-parameters control
the length of the temporal window over which each estimation
occurs and the time step of the parameter updates. The first is
limited by the stationarity assumption and determines the sample
size for the regressions, whereas the second controls the output
temporal resolution and coupling strength. Under bidirectional
coupling, our implementation defines nICP as the simulated
forecast based on the previous values of nICP and resistance R.
These latter quantities were fixed in unidirectional coupling
setups. Therefore, the length of the update time step affects the
temporal coarseness of the nICP estimate in each model and
defines the timescale of feedback between the ICM and upstream
vascular model in the bidirectional model. Single-compartment
model simulations use 1-minute windows and 1-minute updates,
unless otherwise specified.

Observational Data and Patient Selection
The CHARIS v1.0.0 collection (Charis hereafter [32]), publicly
available from PhysioNet [33], comprises 50 Hz joint radial
ABP and ICP time series of 13 patients. These data satisfy the
model requirements, including documentation of diagnosed IC
injuries, and suffice for model input and evaluation. Using radial
ABP data as aortic introduces biases against systolic pressure

more than diastolic [34,35], and these errors are consistent
among our experiments. Sophisticated transformations exist
[36] for reconstructing aortic pressure from radial ABP, but the
simple approach taken here avoids uncertainties associated with
additional algorithmic processing.

For model comparison, this study focuses on Charis patient #6,
a 20-year-old male with TBI, based on the simplicity of his
injury, cleanliness of joint ABP-ICP signal, and
representativeness of base parameters (eg, optimal scaling
parameters for the AN-CoW were approximately 1). In addition,
large-scale noise or corrupt signals are common in the records
of the patients (Multimedia Appendix 4); most of their ABP
and/or ICP data could not be used contiguously for 4- to 6-hour
periods without extensive and uncertain preprocessing of the
available data.

Figure 4 identifies the possible sampling frequencies for the
aortic model inflow. Models #1 and #2 have stricter aortic inflow
requirements than models #3 and #4, as their simpler ICMs
require ABP sample frequency in the rightmost portion of the
scale (<10 Hz) for waveform feature identification. For example,
previous studies [15,16] validated the regressive method of the
simple ICM using data sampled at 20-70 Hz and 125 Hz. Such
data are obtainable but are not commonly available and typically
require quality control.

Figure 4. Timescales of ABP inflow data. The complex models can run on data from any part of the sampling spectrum. Simple models require pulsatile
inflow from the rightmost portion of the scale (above about 10 Hz), which may not be typically available. The central scale is desirable for hour-scale
applications, as this resolution both qualitatively minimizes computational overhead and supports parameter stationarity assumed in the regressive
single-compartment models. The quaque 1-min data sampling frequency is indicated in red. The left-most scale offers strong smoothing and low noise
but fails to resolve pulsatile waveform and violates assumptions of the simple models. ABP: arterial blood pressure.

Lower-frequency ABP time series, which are more accessible
and cleaner, are assumed to comprise nonoverlapping 1-minute
(quaque 1-minute [q1m]) averages of systolic and diastolic
pressures and heart rate. A waveform model (defined by a
superposition of beta distribution probability density functions;
Multimedia Appendix 5) projects these discrete q1m data into

continuous time using patient-specific waveform parameters   ,
which are then sampled for convenience at 60 Hz. In relation
to Figure 4, this process maps q1m data (identified by the red
mark) into the scale usable by the simpler models to test the
robustness of their data requirements.
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Measures of Quality and Efficiency for Models
Each experiment was evaluated using three scores: rating error,
classification accuracy, and speed for simulations over time
interval [0,T] in N 1-minute intervals, which quantify the
desirable properties of the nICP estimates [37,38] for the

purposes of relative comparison. The symbol nICP* herein
indicates nICP debiased against the observed ICP during the
first hour of the simulation. The justification for this correction
is that skill scores evaluate the model’s ability to track variability
in recorded ICP data rather than estimate the absolute pressure.
It also accounts for some of the bias introduced through the
misuse of radial blood pressure as aortic inflow pressure. Each
evaluation is applied to an nICP estimate, the score of which is
then associated with the model that produces it.

The first score is the time-averaged standard error between the
ICP and the debiased model estimate:

This rates the ability of the model nICP to track the observed
ICP changes and quantifies the general inaccuracy of the model
nICP estimate in observed units. Scaling by the simulation
length allows comparison over different simulation lengths.

The second evaluation is the mean percentage of time that nICP
correctly agrees with the observed criticality (ICP>20 mm Hg)
during the total N-minute simulation. The measure of model
accuracy is defined as:

Although more qualitative than r1, classification accuracy may
be more relevant for clinical decision support as it quantifies
the coherence between the model and observed critical ICP
[39].

Finally, the third quantity is simply the ratio of the simulated
time interval to the elapsed clock time:

with r3>1 indicating a faster-than-real-time forward model
integration. The values of twall correspond to serial run times
using MATLAB R2020a with a 3.7 GHz Intel i5 central
processing unit. This final evaluation measures the practicality
of a model for providing timely clinical support as well as its
utility in other applications, such as nonlinear parameter
estimation or data assimilation methods that require extensive,
repeated model simulation.

The number of necessary parameters required for realistic
initialization and the input data fidelity were assessed in the
context of model utility, but they were not evaluated
quantitatively. Finally, all model simulations are initialized with
zero flow within the AN-CoW system common to the various
model configurations. A spin-up adjustment occurs in the first
2 to 3 minutes of simulation, and these errors are included in
the skill calculation with negligible impact on comparative
assessment.

Results

Comparative Assessment of Model Simulations
Assessment of nICP and model efficiency for the first hours of
patient #6 indicates that model #2 has a lower error than model
#1 and is more practical than model #3. Figure 5 shows the
observed ICP signal along with the estimates from models #1
to #3. Patient ICP was initially stable near 20 mm Hg for
approximately an hour and gradually increased to approximately
24 mm Hg during the final 2.5 hours. Temporary pressure drops
near 10, 75, 105, and 142 minutes likely reflect interventions
(eg, mannitol or hyperventilation treatments) [32]. The observed
ICP signal used in the model evaluation is shown in solid red.
This reference ICP is decreased by approximately 2.5 mm Hg
after 243.5 minutes to compensate for the sharp 5+ mm Hg
record discontinuity, which may be due to transducer
recalibration. The original unaltered 1-minute average ICP
observations (dashed light red) are shown for reference over
the interval 244 to 360 minutes.
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Figure 5. Observed and estimated noninvasive ICP for patient #6. Depicted are the observed (red) and estimated noninvasive ICP for Charis patient
#6 using models #1-3, with model #2 showing the best accuracy. The noninvasive ICP estimated by model #1 (magenta) requires less than 5 minutes
to run but has larger long-term errors. Model #2 (blue) takes approximately 45 minutes but produces a more accurate noninvasive ICP trend. Model #3
(green) estimates 1 hour of noninvasive ICP in approximately 6 hours of clock time; it requires variance inflation to obtain the curve shown. Model
biases over the first hour are approximately 6.5 mm Hg, excluding spin-up errors. The black inset illustrates model #3 pulse resolution during a 30-second
interval. Bidirectionality in model #2 has better low-frequency resolution and trend tracking than model #1, but makes it susceptible to feedback-driven
instability under noisy inflow data (models #1 and #2 near 180 minutes). ICP: intracranial pressure.

Model comparison is organized into three subtopics: qualitative
differences, quantitative differences, and observations about
resolvable timescales and fidelity.

Qualitative Differences Between nICP Series
Models #1 and #2 produce qualitatively different pressure
estimates, with the key difference being that model #2 follows
the multihour trend of increasing ICP. Model #1 tracks the
observations well for approximately 2 hours but fails to track
the subsequent ICP elevation, as its bias falls from −1.8 mm
Hg to nearly −3.2 mm Hg during 220 to 360 minutes. Model
#2 tracks this observed pressure rise, although there is a roughly
uniform bias of 1.02 mm Hg during this same period. One
concludes that feedback from bidirectional coupling improves
the estimation of low-frequency ICP signal components that
are crucial in applications spanning several hours. Note that the
observed 2 mm Hg pressure event (330-350 minutes) was
resolved by neither model. This feature may be the result of a
temporary change in patient posture, but no corresponding
change occurs in the aortic ABP inflow signal (Multimedia

Appendix 4, center left panel). This provides evidence that
changes in ICP that do not arise from aortic ABP dynamics may
not be resolved by simple ICMs.

The poorly identified parameters and long computation time
hindered the simulation of model #3 for longer than 1 hour. The
default ICM parameters [23] did not generate realistic ICP and
required alteration of venous capillary conductance (Gpv) and
reference pressure (Picn) to obtain the reported nICP estimate.
Small exploratory changes in parameter values often led to nICP
divergence, indicating a strong dynamical dependence on
parameters that must be inferred before useful simulation. The
reported solution also includes a mean variance inflation of
26.3, which compensates for uncalibrated parameters, although
the localized pulse amplitude (Figure 5, inset) is still too weak.
This modified nICP estimates the observed trend well, although
it lags behind the observations by approximately 4 minutes.
This apparent delay, such as the reduced variance at several
timescales, likely reflects poor representation by generic ICM
parameters in the absence of additional inference. Attempts to
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determine more accurate parameter values were limited by
model speed, which is approximately 6 times slower than real
time.

Quantitative Differences Between nICP Series
The qualitative advantages of the bidirectional simple model
over the unidirectional complex model are borne out by model
skills r1-r3, as shown in Table 1. Further classification metrics
for this case are given in Multimedia Appendix 6. Scores for
the commonly resolved first hour appear in parentheses to
account for differences in the simulation period. Bidirectional
coupling reduces the simple model error from approximately 5
mm Hg to approximately 3.5 mm Hg (an improvement of nearly
30%), whereas critical ICP is estimated more accurately by 9.3
percentage points (a 10.6% relative improvement). Over the

first hour, there was a slight increase in model #2 error due to
longer spin-up adjustment and a modest 6 percentage point
improvement in critical ICP detection. The complex
unidirectionally coupled model #3 shows less than 1%
improvement in critical ICP identification over the base model,
with mean error increasing to 3.83 mm Hg (a 57% increase
relative to model #1) mostly due to the approximately 4-minute
lag. Accounting for this delay reduces model #3 error to 2.75
mm Hg but also reduces accuracy to r2=0.84; this affects neither
skill ranking of model #2 over model #3. These results support
that the feedback mechanism improves low-frequency tracking,
which has little advantage over short timescales, and also
suggests that model #2 has a practical advantage over model
#3 in terms of error and accuracy.

Table 1. Model scores for principal comparison.a

Speed: r3 6 hour (first hour)Accuracy: r2 6 hour (first hour)Error: r1 6 hour (first hour)Model

116.129 b0.877 (0.92)5.01 (2.42)Model #1

7.3560.97 (0.98)3.53 (2.47)Model #2

(0.145)(0.883)(3.83)Model #3

aScores for simulations of Charis patient #6 during initial hours of data. Scores r1 and r2 rate the nICP errors and accuracy in identifying critical ICP,
respectively, whereas score r3 rates the speed of the nICP estimation process. Parenthesized entries are calculated using only the first simulated hour.
bItalic text indicates the best results for each score.

The most significant difference between models #2 and #3 for
practical nICP estimation is in the simulation speed (measured
by r3). Both models #1 and #2 operate considerably faster than
real time and are therefore suitable for an operational clinical
support system. Model #3, however, is an order of magnitude
slower than wall time under the same forcing and ill-suited for
multihour simulation under pulsatile forcing. The speed of model

#3 is limited by the calculation of many (O(103)) iterative
solutions to its nonlinear ICM per cardiac cycle, primarily during
systolic upswing. A previous study using this ICM [24] reported
that each cardiac cycle required 40 seconds within their highly
optimized numerical framework. As their implementation used
a one-dimensional AN-CoW, the speed of model #4 had a lower
bound of r3=0.0225.

Resolution Versus Speed Considerations
Models also differ in their ABP data requirements, and one must
consider the trade-off between the desired nICP temporal
resolution and model efficiency. The complex ICM is defined

by differential equations, so fine timescales inherited from
pulsatile inflow boundary conditions require extensive, inflexible
computation time to resolve the nICP pulse (black inset, Figure
5). The use of q1m mean ABP inflow increases model #3 speed
considerably to r3=1.15 (slightly faster than real time), and
analysis suggests this should not impair the resolution of
autoregulation effects, which manifest at timescales beyond 15
seconds. On the other hand, simple model hyper-parameters
(window length and parameter update interval) can be adjusted
to resolve higher-frequency nICP components with additional
computational time. Figure 6 illustrates a model #2 simulation
under raw ABP using a 30-second window and 1-second update
period (ie, 29 second overlap). Additional computational
overhead reduces speed (r3=0.25 approximately), but there is
considerable gain in nICP fidelity at high frequencies as well
as strongly reduced error (r1) and increased accuracy (r2). This
demonstrates the latent ability of model #2 to estimate
higher-frequency components of ICP from ABP without
additional ICM parameter inference, as in model #3.
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Figure 6. Strong local tracking of the ICP signal in model #2 at the expense of computational time. The mean noninvasive intracranial pressure estimates
over 30-second intervals (blue curve) using the output of model #2 (light blue) with raw arterial blood pressure strongly track the observed ICP (red

curve). The model simulation accurately reproduces local trends and O(10−2) Hz waves of the averaged observed ICP. This simulation calculated
resistance and compliance parameters at 1-second intervals using a 30-second moving window (ie, with a 29-second overlap). The corresponding mean
ICP estimates are plotted as solid curves for comparison with the observed ICP, with an inset showing the lack of subminute resolution. Although 4
times slower than real time, this simulation is roughly twice as fast as model #3 under pulsatile aortic inflow and requires no additional data or external
inference. ICP: intracranial pressure.

Simple Model Experiments With Low-Frequency
Inflow Data
Models can use commonly available ABP summary records
under appropriate representation without additional waveform
data. The use of models #1 and #2 is limited by pulse-resolving
ABP inflow, but this requirement may be weakened using
waveform transformation of q1m ABP summary time series of
phase pressures and heart rate (Multimedia Appendix 5). Figure
7 shows that the original nICP estimate of model #2 (blue
dashed) and one using q1m inflow (γ6, solid blue) are largely
indistinguishable, although smoother inflow data of the latter

avoids the instability around 175 minutes. The estimate from
q1m ABP has a 3% larger error (r1=3.7 mm Hg), although there
is no qualitative difference in clinical accuracy or speed
compared with the original estimate. Furthermore, the lack of
patient-specific waveform parameters has little effect on
simulated nICP in this model: all model scores are roughly
preserved in 2 additional runs (cyan and magenta) using
waveform parameters of Charis patients #8 and #9 (γ8 and γ9,
respectively), which differ in postsystole shape (inset). However,
model #2 nICP estimates based on q1m ABP without heart rate
data (not shown) were highly inaccurate due to errors in the
numerical calculation of the ICM inflow pressure derivative.
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Figure 7. Model #2 performance using quaque 1-min (q1m) summary arterial blood pressure (ABP) data for Charis patient #6. Various simulations
using q1m inflow data are compared with observed intracranial pressure (ICP; red curve) and noninvasive intracranial pressure (nICP) estimate based
on raw 50 Hz data (dashed blue). Also shown are estimates using minute-wise constant continuous representatives of q1m ABP data generated by correct
(blue) and incorrect (magenta and cyan) waveform parameters. The figure inset shows ABP waveform shapes for patients #6 (solid blue), #8 (cyan),
and #9 (magenta), respectively, which yield qualitatively indistinguishable nICP estimates in the main plot. This shows that q1m ABP is sufficient for
the aortic inflow and that patient-specific parametrization of ABP waveforms has little advantage in the simple model. ICP: intracranial pressure; Ps:
systolic pressure; Pd: diastolic pressure; ts: systolic upswing duration; tc: cardiac cycle time.

Summary of Assessments and Experiments

Strengths and Weaknesses of the Bidirectionally Coupled
Simple Model Approach
The model comparison suggests that bidirectional coupling
strengthens the resolution of low-frequency nICP trends, which
are crucial in multihour simulations, and improves the critical
nICP classification accuracy by approximately 10%. Temporal

estimation of O(10−2) Hz ICP features is possible with no
additional ICM parameter inference but requires additional
computation time. Bidirectional coupling makes the model more
prone to potential instabilities during spin-up and in the presence
of noisy ABP inflow data. Using waveform projections of q1m
summary ABP data as inflow data neither decreases nICP
estimate quality nor requires patient-specific waveform
parameterization, which both broadens applicability and
decreases inflow noise. The simple model framework is still
limited by its lack of internal process resolution and primarily
responds to temporal variations in applied aortic inflow, but the

fully coupled simple model approach is an order of magnitude
faster than the clock time. Therefore, it has sufficient
computational headroom to incorporate a more physiologically
complex ICM (eg, [40,41]) and is still faster than real time.

Strengths and Weaknesses of the Unidirectionally
Coupled Complex Model Approach
Increasing model complexity by resolving multiple
interconnected IC compartments and autoregulatory feedback
mechanisms offers physiological fidelity at the expense of strong
parameter dependence and lengthy calculation time. Poor
identifiability of dynamically balanced and representative ICM
parameters required ad hoc nICP adjustment to obtain realistic
results, but these were insufficient for multihour simulations.
Additional inferences and/or data are required for practical
applications. The nICP estimates, subject to additional posterior
modification, qualitatively matched the observed ICP and still
lacked realistic ICP pulse amplitude, as previously noted by
Wang et al [24]. Although this type of resolution has a high
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clinical diagnostic value [42-44], it is too computationally
expensive for simulations of multiple hours. The use of
nonpulsatile (eg, mean) ABP inflow increases computational
overhead significantly, but model utility is still precluded by
the need for ICM parameter estimation. Further exploration of
model #3 is needed to evaluate the clinical diagnostic value of
simulations driven by mean ABP over multihour periods.

Discussion

Summary
This study compared multicomponent modeling approaches to
nICP estimation using commonly available data over multihour
timescales to produce actionable clinical information. The
purpose was to better inform the direction of estimation
development by identifying the advantages, limits, and
additional requirements of the 2 options. The choices were to
integrate a simple ICM into a systemic hemodynamic model or
to unidirectionally couple a more complex ICM to the
hemodynamic model component. We assessed these methods
based on error (r1), clinical accuracy (r2), and speed (r3) of their
estimates as well as on their dependence on data and parameter
identification. The first key result is that the bidirectional
coupling of the simple model is sufficiently fast and potentially
accurate and can be implemented using commonly available
q1m ABP data without patient-specific waveforms. Specifically,
analysis of model performance during a slow ICH event revealed
that inclusion of bidirectional coupling improved the
low-frequency model resolution of ICP, improving estimation
quality while remaining an order of magnitude faster than real
time. The second main result is that the complex model approach
is too slow for use in the targeted applications. In particular,
model #3 required nearly 6 hours to perform a 1-hour simulation
along with ad hoc changes to both input parameters and output
solution, which can only be eliminated by parameter estimation
from additional input data at additional computation time.
Limited by publicly available data, the three model approaches
considered here represent practical implementations of existing
methods; therefore, this study is a comparison of existing models
implemented in a typical, sparse data environment.

The stronger-performing simple model approach may use ABP
summary data without patient specificity of the inflow waveform
and is able to resolve minute-scale nICP variations at additional
costs. Its ICM, originally designed to run on high-frequency
joint ABP-CBF samples, was coupled to a hemodynamic model
of upstream vasculature derived from the complex model to
establish ABP-only data dependence. Our experiments show
that simple model data dependence can be further reduced to
coarse clinical summary data of phase pressures and heart rate,
which is independent of the patient-specific postsystole
waveform shape. The use of q1m summary data also serves to
filter the aortic forcing, which is an important consideration
given that the bidirectional setup is more prone to feedback
instabilities originating from inflow noise. Furthermore,
summary ABPs are less noisy and therefore reduce spurious
feedback instabilities in fully coupled simple models (Figure 7
near 175 minutes).

Slow model speed and the need for ICM parameter identification
limit the utility of the complex model. The estimation of nICP
under model #3 is an order of magnitude slower than the clock
time under pulsatile aortic inflow and is only slightly faster than
real time under mean ABP. In both cases, strong parameter
dependence renders model initialization difficult, and nICP
estimates are inaccurate without posterior modification. Some
ICM parameters may not be stationary over multihour timescales
and may explain the difficulty in maintaining nondivergent
behavior beyond the first hour of simulation. The inference
necessary to identify these parameters results in additional
computational overhead, making near real-time estimation an
unrealistic expectation. However, these parameters provide
extremely useful diagnostic information and make complex
model estimations more suitable for retrospective analysis rather
than operational support.

The main results of this work are summarized below:

1. The inclusion of feedback between ICM and AN-CoW
components improves the tracking of higher-order trends
over multihour timescales. The bidirectionally coupled
single-compartment model #2 features a more accurate
resolution of low-frequency ICP components than the
unidirectionally coupled model at a lower computational
cost than model #3.

2. The nICP estimates using q1m ABP data projected onto
pulsatile waveforms are qualitatively similar to those
obtained using high-frequency APB data. However, q1m
summary data must include the heart rate in addition to
diastolic and systolic pressures. This result broadens the
applicability of simple models, as summary ABP data are
more commonly and promptly available in a clinical setting.

3. Patient-specific waveforms are not required to use q1m
ABP as simple model inflow data; the quality of nICP
depends neither numerically nor empirically on resolving
postsystole components of patient waveforms. Therefore,
simple models do not require supplemental
waveform-resolving data to use the q1m summary ABP.

4. Model #2 has a stronger potential for multihour applications
because it does not require any parameters, can be run using
commonly available data, and runs approximately seven
times faster than real time. This makes it a suitable base for
ongoing development, even if additional inference or control
is required for practical use.

5. The large number of parameters within the complex,
nonlinear ICM of model #3 experience difficult
identifiability, and poorly specified parameters lead to
divergent or unrealistic behavior. It cannot be adequately
configured from available data for stable, multihour
simulations and performs significantly slower than real
time. This model requires sophisticated inference because
its parameters, some of which may be nonstationary, need
to be accurately specified.

6. The temporal resolution of model #3 was inherited from
aortic inflow. With pulsatile inflow, nICP waveforms are
resolved and data-optimized results can be used to
characterize autoregulatory and adaptive capacity in
retrospective studies. Quasi-operational nICP estimation is
possible with a significant a priori investment of time for
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parameter estimation but only under nonpulsatile forcing
where the nICP pulse is not resolved.

Overcoming Model Limitations

Refinement and Assimilation
The presented models have inherent limitations that are not
fully realized, and a combination of parameter inference and/or
data assimilation together with model improvements are
necessary to meaningfully simulate clinically important
scenarios. The need for accurate parameters in model #3 is
evident, and the slow model speed retards this process. Although
the simple bidirectional model (#2) is a strong candidate to build
upon, it fails to accurately track the ICP trend and variability
of patients with IC hemorrhage or stroke. The presence of raw
ABP noise and large waveform variance may also play a
confounding role in this limitation. However, failure likely
results from omitting CBF data, which are independent of ABP,
as well as the lack of parameters and simplified mechanism in
the ICM that may not account for underlying IC physiological
changes. For example, models #1 and #2 do not parameterize
IC volume or impose upper bounds on IC compliance to reflect
the thresholds of cerebral autoregulatory processes or other
exhausted adaptability. Further limitations of all models include
inability to account for many important aspects crucial to the
clinical decision-making process, including patient age and
other diagnoses; injury mechanism; imaging findings; or
treatments such as sedation, neuromuscular blockade, osmolar
therapy, and ventilation strategy.

Overcoming model #2 limitations to estimate nICP for some
patients may require a more complex ICM or inclusion of
additional dynamically controlled parameters. Many patients
of clinical concern, like other Charis patients, have more
complicated injuries, and their observed ICP occupies different
dynamical regimes than those of patient #6 discussed above.
For example, a critical hypertensive period is evident for patient
#5, a 21-year-old female with TBI and identified subdural
hematoma, whose ICP increased from 21 mm Hg to 29 mm Hg
over a 47-minute period (Figure 8, red line) before gradually
subsiding. For this patient, the local variability of q1m ICP
relative to its 11-minute moving average is about 4 times larger
than that of patient #6 (Multimedia Appendix 4). This increased
variability is also present in the observed ABP serving as model
inflow and may confound both the accuracy and stability of the
model. The estimation here benefits from optimized scaling
parameters, but additional machinery is necessary to drive model
dynamics beyond its inherent ability to predict nICP from ABP.
For the example above, the model #2 solution (blue line), using
an optimized set of vascular parameters (θl, θr, ωl, ωr,
Rterm)=(0.8, 1.0, 0.84, 0.93, 1.0) fails to follow the observed
dynamics during the central ICH event and sequence of waves
leading up to it. Two possible directions for ongoing
research—increased fidelity and external parametric control—to
improve the performance within the modeling framework are
presented.
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Figure 8. The ICP record for Charis patient #5 during hours 30–34 is shown in light red with its minute-to-minute mean traced in dark red. The observed
signal includes stronger signal noise and high-frequency variability than that of patient #6. Slow wave pressure dynamics are observed, but they are
absent from the model #2 solution (blue curve), which fails to track the rise and peak of the 7 mm Hg intracranial hypertensive event observed over
100–180 min. The solution using external inflow control specified at 10-minute intervals (cyan curve, using 24 independent parameters) features greatly
improved trend tracking during these more dynamic regimes than the solution using parameters specified at 30-minute intervals (magenta curve, using
8 independent parameters). ICP: intracranial pressure.

Increased Sophistication
A simple model of increased complexity may account for
changes in ICP arising from IC mechanisms, widening the
applicability of the framework of model #2. To broaden the
scope of potentially modelable cases, other lumped parameter
ICMs that offer both increased physiological fidelity and low
computational overhead may be considered.

In particular, Ursino and Lodi [41] and Czosnyka and Pickard
[43] presented two simple models that offer increased IC process
resolution and relevant internal parametrization. Both are
directly representable within the electrical analog framework
electrical circuit forms [45] and account for elements of
autoregulation, varying volumes, and other pressure sources.
Either may easily fit bidirectionally within the existing
framework as alternate ICM components with sufficiently fast
algorithms for the predictive desire discussed above. These
models, specifically variations thereof, using the statistical
simplification of Kashif et al [15], are part of continuing
development within the general purview of this research.

Additional Parametrization
Another method of applying the existing simple model #2 to
complex cases involves augmented boundary control as a proxy
for unresolved processes within a statistical parameter estimation
scheme. Although patient-specific optimization is beyond the
scope of this study, additional experiments applying the model
to ABP-ICP time series of interest show that model #2 is
sufficiently robust to track ICP throughout these complex
regimes. This requires the addition of modulation of the
relationship between ABP inflow at the aorta and the ICM
inflow from the MCA using a low-frequency nonstationary gain
parameter G to vary ABP inflow: ABP(t) ← ABP(t)·(1+G(t)).
Figure 8 illustrates the potential of this approach by including
2 additional model #2 simulations using 8 and 24 equally spaced
control parameters that define G piecewise to linearly vary the
ABP inflow signal.

The simulation using eight additional parameters (cyan curve)
is more dynamic than the base model; it resolves a portion of
the central ICH event and decreases the mean error (r1) by more
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than 20% (from 8.75 mm Hg to 6.844 mm Hg) but misses its
onset and underestimates peak pressure by approximately 1.5
mm Hg. Using 24 additional parameters (magenta curve) further
improved this result, improving r1 by 36% (to 5.633 mm Hg)
and identifying the rising trend during the ICH onset as well as
its maximum pressure. Determining the values of gain G
involves placing the current ABP-to-nICP model into a data
assimilation system, which provides a meaningful way of
automatically constraining uncertainties due to inaccurate
parameters and unresolved physiology. Such systems require
extensive computational overhead, although some methods such
as empirical (ie, ensemble) Kalman-type methods maintain
operational estimation of faster-than-real-time models via
parallelization. Practical applications require estimation of the
parameters defining G, although they were specified a priori in
this illustration, but underscore the need for simple, fast models
to meet the goal of providing timely, relevant nICP estimation
over multihour timescales.

Forecast Potential for Clinical Support
Bidirectional model #2 provides a basis for analyzing latent
empirical relationships among patient signals and model
parameters, including trends and covariances, which may be
used to predict patient ICP changes. Such a system would greatly
benefit both clinical decision support and care-level logistics
by indicating possible changes in patient status with sufficient
lead time to adjust room, equipment, and staff. This may also
give practitioners advance warning with a timeframe for
planning treatments, permitting earlier and lower-risk
interventions to combat IC hypertension. Recent works [46-49]
include machine learning approaches to ABP prediction and
could be used in conjunction with the presented methods for
short-term prediction of nICP. The application of these
algorithms to low-sample-rate q1m ABP records has not been
reported in the literature.

The speed of model #2 indicates that it is a plausible candidate
for use within a statistical estimation and forecast scheme that
requires many forward model integrations. The accurately
identified parameters, together with acceptable simulation speed,
add the possibility of practical forecast capabilities based on
trends in diagnostically computed model parameters. For the
applications discussed in this work, distributional trends and
higher-order moments in ICM resistance and compliance may
be inferred from robustly optimized model #2 simulations of a
patient’s relevant history. This statistical information may then
be used to predict possible future ICP outcomes under current
ABP measurements or ABP forecasts, potentially providing
valuable and timely clinical decision support for caretakers and
facility management.

Conclusions and Ongoing Work
This study identified the distinct advantages and disadvantages
of the 2 paths within a modeling framework and clarified the
applicability of each. Although model #2 was more successfully
validated at multihour timescales, it required uninterpretable
control parameters (G) in more complex cases. In contrast, the
ICM of model #3 is highly parameter dependent and difficult
to identify from accessible data, even for simple cases. These
results ultimately motivate the development of a hybrid approach

that strategically combines simplifications of the mechanistically
resolved processes of model #3 with the speed advantages of
locally stationary parameters in model #2. The desire to have
an appropriate number of physiologically interpretable
parameters for data-optimized modeling contextualizes the
problem as one of mechanistic machine learning [50-52].

Our preliminary hypothesis of this work was that the high degree
of anatomical fidelity offered by the complex multicompartment
model would provide the most diagnostic information from
available data. It also had numerous model parameters that could
be inferred from patient data in the longer view of the research
program, which is to aid in patient-specific clinical support. We
pursued an implementation of model #4 using the
spatially-resolved vascular system and complex ICM [23], which
had recently been used within a data assimilation system [24].
Concern for speed motivated the elimination of the spatial
resolution of vessels within the hemodynamic model by adopting
the 0D electrical framework, but this approach could not be
easily bidirectionally coupled to the analytical ICM. It remained
unidirectionally coupled and became model #3. In contrast, the
simple model (#1, [15]) was easily integrated bidirectionally
into the AN-CoW system, becoming model #2, and this
eliminated its dependence on localized CBF data. This fully
incorporated model had better tracking of lower-frequency
trends in ICP and could resolve higher-frequency ICP waves
with additional computational cost, and importantly, it did not
require the additional parameter identification of the offline
complex ICM for simple cases. However, the lack of
sophistication and parametrization in models #1 and #2 is the
reason why external parameters for additional control are
required for more complex patient cases.

Although the need for additional inference is clear for the
application of models #2 and #3, there are substantive
differences in methodology and potential benefits. Namely,
simple model #2 is easily identified but is limited to applications
where a strong correlation between systemic ABP and ICP
response is present. This lack of internal parameters necessitates
the use of nonstationary external controls for application in
complex cases. Although these parameters may plausibly be
estimated via ensemble filtering, they are not interpretable, and
the necessary mapping between clinical data and the control
parameters is unknown and requires further development. In
contrast, model #3 has numerous highly interpretable and
diagnostically informative parameters that must be properly
inferred for meaningful simulations. These are likely estimable
from historic patient data using traditional methods (eg, MCMC
estimation or optimization), but the value of this investment
may be limited if parameters are dynamic and/or only nICP
estimation is sought. Given that the estimation of nICP, rather
than clinical interpretability, is the primary objective of this
project, the continued development of inference machinery for
model #2 is the best choice.

The long-term vision of this project remains the development
of a bidirectionally coupled model with anatomical fidelity (ie,
model #4) fast enough for pre-emptive diagnostic uses such as
nICP forecast and the identification of pathophysiology. One
path toward this goal is the hybridization of methodologies that
integrate an ICM of intermediate complexity under piecewise
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stationarity assumptions akin to those of simple models. Possible
ICMs include those mentioned previously and a simplified (eg,
linearized) counterpart of model #3. This should reduce the
computational burden of the complex model and allow it to be
more easily coupled interactively with the upstream vascular
component. Such a model would further benefit from highly

interpretable inference based on data available when
administering care, with the additional advantage of supporting
summary ABP inflow. A remaining question is whether a model
formulated in this way can be made fast enough to provide
timely and clinically actionable information.
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MCA: middle cerebral artery
nICP: noninvasive intracranial pressure
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