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Abstract

Background: Information related to patient medication is crucial for health care; however, up to 80% of the information resides
solely in unstructured text. Manual extraction is difficult and time-consuming, and there is not a lot of research on natural language
processing extracting medical information from unstructured text from French corpora.

Objective: We aimed to develop a system to extract medication-related information from clinical text written in French.

Methods: We developed a hybrid system combining an expert rule–based system, contextual word embedding (embedding for
language model) trained on clinical notes, and a deep recurrent neural network (bidirectional long short term memory–conditional
random field). The task consisted of extracting drug mentions and their related information (eg, dosage, frequency, duration,
route, condition). We manually annotated 320 clinical notes from a French clinical data warehouse to train and evaluate the model.
We compared the performance of our approach to those of standard approaches: rule-based or machine learning only and classic
word embeddings. We evaluated the models using token-level recall, precision, and F-measure.

Results: The overall F-measure was 89.9% (precision 90.8; recall: 89.2) when combining expert rules and contextualized
embeddings, compared to 88.1% (precision 89.5; recall 87.2) without expert rules or contextualized embeddings. The F-measures
for each category were 95.3% for medication name, 64.4% for drug class mentions, 95.3% for dosage, 92.2% for frequency,
78.8% for duration, and 62.2% for condition of the intake.

Conclusions: Associating expert rules, deep contextualized embedding, and deep neural networks improved medication
information extraction. Our results revealed a synergy when associating expert knowledge and latent knowledge.

(JMIR Med Inform 2021;9(3):e17934) doi: 10.2196/17934
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Introduction

In 2017, medication consumption in France represented €37.8
billion (approximately US $45.5 billion) in spending and 16%
of the French health budget [1]. Adverse drug reactions are an
important public health problem, representing a major cause of
mortality (0.15% in France); one-third of admissions caused by
adverse drug reactions are preventable, associated with a poorly
reported drug history or rare adverse events [2,3].

Furthermore, electronic health records contain rich information
about drug history that would be valuable to the care of patients
(eg, to prevent interaction with another medication and to track
side effects), for epidemiology, or pharmaco-vigilance [4]. A
major hurdle in the use of electronic health records is the format
of the data. Up to 80% of relevant clinical information is present
solely in the form of unstructured text, which represents a major
barrier to the secondary use of this type of information [5,6].

To overcome this issue, natural language processing techniques
can be used to extract, normalize, and restructure drug-related
information from clinical texts [6,7] and increase the information
available for research and health care. Three approaches have
been described for this task: expert knowledge modeling,
machine learning, and hybrid methods (combining both).

The first approach relies on modeling expert knowledge using
dictionaries or rules (ie, expert rules) such as MedEx, MedXN,
or MedLEE based on lexicons or regular expressions [8-12].
Dictionary-based approaches allow for direct or approximate
matching of terms from a dictionary or terminology. These
approaches may offer poor results when the mentions used in
texts deviate from the terms in the dictionary. Rule-based
approaches allow for specific extractions but usually lack
sensitivity and do not perform well on new data sets. Rule-based
approaches also require domain experts to design and build the
rules and are particularly time-consuming. In addition, expertise
is rare and costly, which constitutes a severe bottleneck for the
use of this type of method.

The second approach, using machine learning, has been
developed in addition to expert approaches to extract medication
name, dosage, frequency, duration, mode, reason for the intake
and to detect adverse drug reactions [13,14]. Most systems
included a conditional random field or a support vector machine
for medication-related information extraction [15-18], 2 studies
introduced bidirectional long short-term memory associated
with conditional random field for named entity recognition and
medication information extraction [19,20], and another used a
semisupervised model [21].

For the 2018 N2C2 shared task on medication extraction in
electronic health records [22], several systems were proposed.
The data set used in the challenge consisted of 505 discharge
summaries extracted from the MIMIC-III database [23]. This
data set contained 16,225 drug mentions in the training set and
a total of 50,951 entity annotations again in the training set.
Among the best-performing algorithms, bidirectional long short
term memory and bidirectional long short term memory with
conditional random field architectures were popular [24-27].
Some systems combined attention mechanisms [28] or

convolutional neural networks [27]. Others combined classic
entity extraction systems such as cTakes with classifiers such
as support vector machines [29]. Ensemble approaches,
combining multiple classifiers were also proposed [24-26,30].

At the conjunction of machine learning and expert rules, hybrid
approaches can leverage the frugality of expert rules (in terms
of data needs) and the flexibility and generalizability of machine
learning. Examples include identifying medication heading
using a conditional random field for named entity identification
and a support vector machine to classify relations combined
with a rule-based context engine [31]; a conditional random
field and 2 bidirectional long short term memory–conditional
random field models to extract handcrafted features [25]; and
using expert rules and a knowledge base to enrich text, then
using a bidirectional long short term memory with attention to
perform the medication extraction in electronic health records
[28]. These approaches were designed for text written in English.
To the best of our knowledge, there are only a few studies
[32,33] on French corpora: Deleger et al [32] used a rule-based
system, and Lerner et al [33] developed a hybrid system that
associated expert rules using terminology and bidirectional
gated recurrent units with a conditional random field.

In recent years, the adoption of word embedding methods has
led to a significant increase in the level of performance
achievable by many natural language processing tasks [34].
Word embeddings use dense vector representation of the
vocabulary. Interestingly, word embeddings are computed using
large amounts of unannotated data (eg, Wikipedia). In static
word embeddings, a token is represented by a static numeric
vector. Recently, contextual word embedding methods have
appeared, such as embedding for language model [35].
Contextual word embeddings provide a varying representation
of the tokens with regard to the context in the text. Contextual
word embeddings lead to richer representations and help to
improve the performance in clinical concept extraction tasks
[36]; results further improve when semantic information is
incorporated [37].

In this work, we aimed to extract medication-related information
from clinical narratives written in French in a real-world setting
(ie, with documents directly extracted from a clinical data
warehouse). Once extracted, such information can be
restructured to be used for different purposes (eg, clinical
epidemiology, monitoring, pharmaco-epidemiology, adverse
drug reaction detection). Our purpose was two-fold: (1) We
aimed to develop a gold standard data set of annotated clinical
documents in French, along with an annotation guide, and (2)
we aimed to develop a hybrid approach combining an
association of knowledge base and expert rules, contextualized
word embeddings training on clinical text, and a deep learning
model based on bidirectional long short term
memory–conditional random field.
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Methods

Data

Source
We leveraged the clinical data warehouse of the Assistance
Publique–Hôpitaux de Paris (AP-HP), grouping data collected
from 39 hospitals to build a data set of 1 million documents
[38]. These clinical reports were medical prescriptions, discharge
reports, examinations, observation reports, and emergency visits
randomly selected from the clinical data warehouse.

Annotated Data Set
We created an annotated data set for training and evaluation.
We iteratively developed an annotation guide during the first
phase of annotation. A small portion of the extracted data set
(320 documents) was manually annotated by 3 medical doctors
using an annotation tool [39]. The annotations were converted
to the inside, outside, beginning (IOB) standard. Tokens that
refer to an entity were labeled B-entity_type for the first token
and then I-entity_type, tokens outside entities mention are

labeled O. We split the 320 annotated clinical notes in a training
set (n=216), a development set (n=24), and a test set (n=80).

Knowledge Base for Drug Names
We relied upon 2 French databases—Base de données publique
des medicaments (a publicly accessible, National drug
database)[40] and OpenMedic, a database from the national
medical insurance agency [41]. These 2 databases contain all
the drugs distributed in France during a given year. They were
mapped to the Anatomical Therapeutic Chemical classification
system. We extracted data from 2015 to 2019 and created a
curated and unified dictionary of drug mentions.

The corpus can be made available on the condition that a
research project is accepted by the scientific and ethics
committee of the AP-HP health data warehouse.

After preprocessing, the text was preannotated using a set of
expert handcrafted rules, then the texts were embedded using
contextual word embeddings trained on a large corpus of clinical
texts. The preannotations and the embedded texts were input
into a bidirectional long short term memory–conditional random
field to produce the final annotations (Figure 1; Figure 2).

Figure 1. General architecture of the model. BiLSTM: bidirectional long short term memory; CRF: conditional random field.
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Figure 2. Annotation process with automatic annotation and completion with manual annotation.

Task Definition
We aimed to identify medication-related information in clinical
documents in French. We were interested in drug names and a

set of attributes related to the drug mentions: dosage, frequency,
duration, route, and condition of administration. A detailed
description of the types of entities is provided in Table 1.

Table 1. Description of the task.

ExamplesDescriptionType

doliprane, paracetamol, augmentinDescriptions that denote any medication, active molecule, associ-
ation or protocol

Medication name

ß-Lactam, antibiotherapyDescriptions that denote any Anatomical Therapeutic Chemical
class or common therapy

Medication class

3 mg, 2 tabletsDose or concentration of medication in prescriptionDosage

3 per day, every morningFrequency of medication administrationFrequency

3 weeks, until the surgeryTime range for the administrationDuration

intravenous, per osMedication administration modeRoute

if pain, if infectionThe event which provokes the administrationCondition

Preprocessing
We preprocessed the input texts as described in Textbox 1.

Textbox 1. Text preprocessing.

Steps

• Removing acronym points and replacing decimal points by comma

• Removing break lines added during documents conversion to text

• Removing accents

• Replacing apostrophes by spaces

• Detecting sentence boundaries: remaining points or break lines without transitive verbs, preposition or coordinating conjunctions.

• Detecting word boundaries and tokenization: sequence of alphanumeric characters or a repetition of a unique nonalphanumeric characters

Rule-Based Module
The overall approach was organized as follows: we first
identified a drug mention or a drug-class mention with the
knowledge-based dictionary using exact matching. The choice
of exact matching for this step was driven by maximizing the

precision of the annotations in this preannotation step. Then,
using the identified mention as an anchor, we extended the
search to the attributes of this mention (ie, frequency, dosage,
duration, mode of administration, and condition of
administration) in the area surrounding the seed mention. The
attributes were detected using a set of handcrafted rules using
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regular expressions. Examples of the rules are described in Table
S1 of Multimedia Appendix 1. At this stage, the annotated
entities were identified by their position and length relative to
the beginning of the document. For the next steps, the
annotations were converted to the IOB standard. The output of
the rule-based system was used for preannotating the documents
before the manual annotation step to speed up the annotation
process of the gold standard data set and to serve as extra
features to the input of the deep-learning module.

Deep Learning Module

Overview
We designed an approach leveraging deep neural networks. We
tested 3 types of word embeddings—skip-gram [42], FastText
embeddings [43], and embedding for language model [35]—and
2 neural network architectures—bidirectional long short term
memory and bidirectional long short term memory–conditional
random field.

Embeddings
We evaluated the impact of the word embeddings on the
performance of the model. Our baseline was created using a
skip-gram embedding trained on the training set only. We also
considered FastText embedding (skip-gram model augmented
with sub–word information) trained on a corpus of 1 million
documents. Finally, we used embedding for language model
embeddings, trained on 100,000 clinical notes that were
contextualized embeddings computed through the internal states
of a large bidirectional language model. The embeddings were
kept fixed during model training.

Combination of the Rule-Based System Output
The output of the rule-based system was converted to the IOB
standard. Then, this information was added as features to the
input of the deep-learning module by concatenation with the
word-embedding vectors.

Models
We used a deep recurrent neural network composed of long
short-term memory units [44]. Specifically, we used
bidirectional long short term memory composed of 2
concatenated long short term memory layers—one reading the
input sequence forward, and another one reading the input
sequence backward—allowing the model to take advantage of
the context on the left and the right of a token when computing
the latent states. The final prediction layer was either a standard
dense layer with softmax or a conditional random field such as
that in [19].

Implementation and Optimization of Hyperparameters
We implemented all the models using Keras and Keras-contrib
[45] libraries using Python (version 3) with a TensorFlow

backend [46]. We trained our models for 50 epochs, using an
ADAM optimizer [47] with a learning rate of 0.001 and early
stopping with a patience of 8 epochs. We applied a decrease of
learning rate on plateau using a factor of 0.1. For models with
a final dense layer, we used categorical cross-entropy loss and
softmax activation. For the models with conditional random
field, we used marginal optimization and categorical
cross-entropy loss. We tuned (using Hyperas version 0.4) the
following hyperparameters using a random search with 15
iterations on the parameter space: batch size: 64, 128; long short
term memory size: 128, 256, 512; dropout before and after long
short term memory; and recurrent dropout: 0.0, 0.1, 0.2, 0.3,
0.5, 0.6, 0.7 (Table S2, Multimedia Appendix 1). All models
were trained using NVIDIA P40 GPUs (3840 CUDA cores, 24
GB of DDRAM).

Evaluation

Models
We compared the performance of the rule-based system only,
bidirectional long short term memory only, and rule-based
system plus bidirectional long short term memory (with and
without conditional random field). For bidirectional long short
term memory with and without conditional random field models,
we tested the impact of adding FastText embeddings or
embedding for language model embeddings.

Metrics
We considered an extracted token to be a true positive if it was
annotated with the correct category, a false positive if it was
falsely annotated with respect to the evaluated class, and a false
negative if it was not annotated or if it was annotated with an
incorrect class. We computed the precision, recall, and
F-measure to evaluate each model, microaveraging over all
entries (Multimedia Appendix 2)

We also used the slot error rate metric. A slot corresponded to
a mention of an entity (ie, a sequence of B and I tokens of the
same class), a deletion was a missing slot, an addition was a
slot that had been incorrectly added, a substitution or type error
was a class that had been replaced by another class, and a
frontier error was a token that had been added or removed at
the end or the start of the slot [48].

Results

Annotated Data Set
The labeled data set contained 320 clinical notes and 19,957
sentences with 173,796 words. Training, development, and test
sets included 216, 24, and 80 clinical notes with 13,737, 1373,
and 4847 sentences, respectively. Table 2 summarizes the
number of tokens and slots for each class in each data set.
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Table 2. Number of slots and tokens for each class per data set.

TestDevelopmentTrainLabel

SlotsTokensSlotsTokensSlotsTokens

39845014314612271385Medication name

76973038228309Medication class

311606621157611366Dosage

184468461426001604Frequency

3768132670161Duration

5569888595Route

28893961192Condition

Overall Comparison of the Models
Table 3 summarizes the results of the different models. Overall,
the best models were the hybrid models combining rule-based
system, text embedding with embedding for language model,
and bidirectional long short term memory (F-measure: 89.86).
It had the lowest slot error rate (0.19) with a minimal deletion
rate (0.05).

The bidirectional long short term memory with baseline
embedding had the worst results (F-measure: 73.93). Adding

FastText and embedding for language model trained on external
data sets increased the F-measure by 14.15 and 9.81 points
respectively. Combining rule-based system and bidirectional
long short term memory increased the F-measure by 14.1 points.

The rule-based system alone had the highest precision (94.67)
with the lowest insertion (0.03) and frontier (0.04) error rates.
It had the second-lowest type error rate (0.02) but one of the
highest deletion error rates (0.23). Adding bidirectional long
short term memory and embedding for language model to the
rule-based system increased the F-measure by 10.45 points.

Table 3. Overall medication component information predictions metrics by models.

Frontier
error rate

Type error
rate

Deletion
error rate

Insertion
error rate

Slot error
rate

RecallPrecisionF-measureModela

0.040.020.230.030.2972.2894.6779.41RBSb

0.150.070.250.090.4567.5783.8973.93BiLSTMc

0.090.030.080.070.2187.1789.4888.08BiLSTM + FTd

0.10.030.080.10.2487.3888.8188.03BiLSTM + ELMoe

0.090.030.130.080.2780.2488.4683.74BiLSTM + RBS

0.070.010.090.070.2185.5491.7388.18BiLSTM + FT + RBS

0.080.030.050.090.1989.1790.8389.86BiLSTM + ELMo + RBS

0.210.110.260.110.5365.5779.0470.12BiLSTM-CRFf

0.120.030.080.090.2586.4188.5887.16BiLSTM-CRF + FT

0.110.020.060.110.2389.4487.9588.66BiLSTM-CRF + ELMo

0.090.030.130.090.2780.7388.5684.16BiLSTM-CRF + RBS

0.090.020.080.080.2286.2589.7287.74BiLSTM-CRF + FT + RBS

0.090.020.060.080.2088.3190.489.3BiLSTM-CRF + ELMo + RBS

aModels are described according to their components; if neither ELMo nor FT is mentioned, then we used skip-gram embedding.
bRBS: rule-based system (ie, the outputs are added as extra features to the input of the deep learning module).
cBiLSTM: bidirectional long short term memory.
dFT: FastText embedding.
eELMo: embedding for language model.
fCRF: conditional random field.

Comparison by Type of Annotation
Table 4 summarizes the metrics of the different models by type
of entities. The rule-based system alone had the lowest

F-measure for every class due to a very low recall (medication
class: 7.22), but it had the highest precision for all classes with
the exception of medication name and duration. Associating
the rule-based system to a bidirectional long short term memory
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increased medication name, medication class, dosage, and
condition metrics (F-measures: 3.13, 3.12, 2.06, and 6.26,
respectively) but decreased the F-measure for frequency,

duration, and route (F-measures: –1, –3.38, and –2.66,
respectively).

Table 4. Medication information predictions metrics results by models.

BiLSTM + ELMo + RBSBiLSTM + ELMoRBSLabel

RecallPrecisionF-measureRecallPrecisionF-measureRecallPrecisionF-measure

95.3395.3395.3390.6793.7992.284.8996.4690.31Medication name

67.0161.964.3658.7666.2862.37.2287.513.33Medication class

95.0595.5295.2993.2391.1392.1784.9896.6290.43Dosage

91.4593.0492.2492.3193.392.876.2898.8986.13Frequency

76.4781.2578.7977.9486.8982.1748.5349.2548.89Duration

73.9171.8372.8678.2672.9775.5233.3385.1947.92Route

51.6977.9762.1650.5662.555.920.2210033.64Condition

aRBS: rule-based system
bBiLSTM: bidirectional long short term memory.
cELMo: embedding for language models.

Discussion

Principal Findings
Our system achieved state-of-the-art performance for the
task—an F-measure of 95.33 for medication names and an
F-measure of 95.29 for dosage detection. Interestingly, these
results were obtained using a data set representing only 10% of
the size of similar data sets (N2C2 2018 shared task [22]).
Combining expert knowledge (rule-based system) with a deep
learning system increased the global F-measure, increased
precision, increased recall, and decreased the slot error rate,
having the most significant impacts on medication name,
medication class, and dosage. While the rule-based system alone
achieved the best precision and the worst recall, its association
with the deep learning models helped to increase recall (for all
information except condition) and increase precision (only for
medication name, dosage, and condition of the intake). Adding
a deep learning system with the embedding for language model
on top of the rule-based system increased F-measures and recall
for all categories. Adding a conditional random field layer
increased the performance for the most frequent categories (ie,
medication name, dosage, frequency). For other entities (ie,
duration, route, condition), models with a conditional random
field layer did not improve results (Multimedia Appendix 1).
These results are consistent with those in the literature [18].

Technical Significance
It is interesting to note that leveraging the synergy between
expert knowledge and deep learning allowed us to achieve
performance comparable to state-of-the-art with only 10% of
the data. Infusing knowledge into deep neural networks will
probably be a key element in the future progress of the field.
The use of externally trained embeddings is a first step in this
direction given that they allow the incorporation of latent
knowledge from large corpora into the models. The impact of
contextualized embeddings proves that a more accurate
representation is even more important. We can expect improved

performance with more recent language representation
approaches such as BERT [49] or XLNET [50]; however, the
cost for fitting these types of models, in terms of computation,
time, and data, will be a challenge for languages other than
English, for which resources (ie, data) are less available.
Therefore, it will be valuable to leverage other types of
representations (such as ontologies) to infuse knowledge into
neural networks. A possible path could be through specific
embedding techniques such as Poincaré embeddings [51].

Our approach is highly versatile. It can be transposed to any
language, as long as writing expert rules is feasible. We used
regular expressions to this end, but any rule based can be used.
Our approach is also transposable to other information extraction
use cases (or even text classification).

Clinical Significance
The performance achieved by the system opens the way toward
a large-scale use in real-life settings. We are currently
developing an implementation to perform the medication
information extraction at the scale of our institution. The
versatility of the approach will enable its transposition to other
types of clinical entities and information.

Related Works
Compared with systems developed on the I2B2 2009 medication
data set, the performance of our system is competitive [31].
Regarding token metrics, we showed better performance
(medication name, dosage, frequencies, and duration token-level
F-measures: +5.03, +4.49, +4.54, +28.89, respectively).
However, a direct comparison is difficult given that the data
sets are different. First, we trained and evaluated our models
on a different corpus of French clinical notes. Also, because of
language differences, the annotation guidelines were not strictly
identical.

In our corpus, the vast majority of medication name slots
contained only one token (48.7% of the medication names in
the dictionary contain only one token), therefore, we can
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approximate a phrase-level F-measure using the token-level
F-measure for medication names to compare with those in recent
studies: Tao et al in 2018 reported a medication F-measure of
90.7 on the I2B2 corpus, and we achieved an F-measure of 95.3
[21]. However, regarding the mode of administration, our result
was lower (token-level F-measures: 72.9 vs 93.3).

In French-language clinical data sets, mode of administration
mentions are less structured and more variable than those in
English-language clinical text. Therefore, it is logical to see
lower results in this field, and our findings were consistent with
the findings from a previous study [32]. Moreover, we took the
condition of the intake, and not the reason for the intake, into
consideration (which is more specific), and we added a tag
regarding the class name; therefore, overall F-measures cannot
be compared. Compared with results from a study [33] using a
different French-language corpus that obtained a token-level
F-measure of 90.4, our system’s raw results were higher.
Comparisons should be made with caution because the corpus
used in [33], though in the same language, was from a different
source and contained only 147 documents.

The rule-based system offered the highest precision in most
classes. The combination of deep learning and rule-based system
could not maintain this high level of precision. One explanation
could be that the performance of the rule-based system on the
training set led the deep learning module to rely heavily on it.
But when the rule-based system failed to generalize on the
evaluation set, it caused a drop in accuracy in the hybrid system.
This issue could be overcome by forcing the machine learning
system to not exclusively rely on one source of information,
contextual embedding or rule-based system features, by adding
dropouts to the inputs.

Using a rule-based system associated with a deep learning model
had two major benefits: the synergy between the rules and the
machine learning increased the performance and the
preannotation of the documents with the rules decreased the
annotation time. Even if hybrid systems had already proved to
be efficient [16,21,31,33,52], combining expert knowledge

(rules) and latent knowledge (neural network), demonstrated a
synergistic effect by increasing the performance in all metrics.
It will be interesting to also evaluate approaches combining
rules and deep learning in a reverse manner—first using a
deep-learning model and refining the results using rules.

Limitations and Perspectives
We have several perspectives from which to continue this work.
First, we did not reproduce our study on a standard corpus such
as that of the I2B2 challenge. We would, therefore, have to
redevelop all the expert rules for this English corpus. Second,
the embedding for language model was trained on a set of
100,000 French clinical notes from a single hospital [53].
However, even with these limits, using the embedding for
language model proved to be efficient. We can anticipate even
better results with an embedding for language model trained on
a larger and more diverse corpus. Finally, our study focused on
recognizing medication information entities without extracting
the relationships among them. Tao et al [21] described a way
to model the relationships by predicting boundaries of utterances
that contain related medication entities. We plan to extend this
to all types of sentences in our corpus, independently of the
number of medications mentions. To this end, we will build a
multitask model to predict medication fields and relations. We
will also predict medication event markers such as start, stop,
increase, decrease, switch, or unique intake of medication.
Moreover, we could also predict meta-attribute markers that
would provide information on the experiencer (patient, family,
other), temporality (in the past, present, or for the future), and
certainty (eg, factual, suggested, hypothetical, conditional,
negated, or contraindicated [54]).

Conclusion
The combination of expert rules, deep contextualized embedding
(embedding for language model), and deep neural networks
improved medication information extraction. This association
achieved high performance on a heterogeneous corpus of
French-language clinical reports, despite the data set’s small
size.
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