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Abstract

Background: Existing readmission reduction solutions tend to focus on complementing inpatient care with enhanced care
transition and postdischarge interventions. These solutions are initiated near or after discharge, when clinicians’ impact on inpatient
care is ending. Preventive intervention during hospitalization is an underexplored area that holds potential for reducing readmission
risk. However, it is challenging to predict readmission risk at the early stage of hospitalization because few data are available.

Objective: The objective of this study was to build an early prediction model of unplanned 30-day hospital readmission using
a large and diverse sample. We were also interested in identifying novel readmission risk factors and protective factors.

Methods: We extracted the medical records of 96,550 patients in 205 participating Cerner client hospitals across four US census
regions in 2016 from the Health Facts database. The model was built with index admission data that can become available within
24 hours and data from previous encounters up to 1 year before the index admission. The candidate models were evaluated for
performance, timeliness, and generalizability. Multivariate logistic regression analysis was used to identify readmission risk
factors and protective factors.

Results: We developed six candidate readmission models with different machine learning algorithms. The best performing
model of extreme gradient boosting (XGBoost) achieved an area under the receiver operating characteristic curve of 0.753 on
the development data set and 0.742 on the validation data set. By multivariate logistic regression analysis, we identified 14 risk
factors and 2 protective factors of readmission that have never been reported.

Conclusions: The performance of our model is better than that of the most widely used models in US health care settings. This
model can help clinicians identify readmission risk at the early stage of hospitalization so that they can pay extra attention during
the care process of high-risk patients. The 14 novel risk factors and 2 novel protective factors can aid understanding of the factors
associated with readmission.

(JMIR Med Inform 2021;9(3):e16306) doi: 10.2196/16306
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Introduction

Unplanned hospital readmission continues to attract much
attention due to its negative influence on patients’ quality of
life and substantial contribution to health care costs. During
July 2015 to June 2016, 15.2% of Medicare beneficiaries
experienced unplanned readmission within 30 days after
discharge [1]. It has been estimated that unplanned readmission
accounts for US $17.4 billion in Medicare expenditures annually
[2]. In an effort to improve health care quality and decrease
unplanned hospital readmission rates, the Affordable Care Act
[3] implemented the Hospital Readmission Reduction Program
(HRRP) [4] in 2012 to use unplanned 30-day hospital
readmission as a metric to financially penalize hospitals with
excessive readmission rates. The high associated cost and
penalties from the HRRP have intensified the efforts of the
entire health care industry to reduce unplanned hospital
readmissions.

Existing readmission reduction interventions, especially
transition interventions and postdischarge interventions, focus
on complementing inpatient care with enhanced services;
however, the planning, implementation, and monitoring of these
interventions can be resource-intensive [5]. In addition, no single
intervention or bundle of interventions were found to be reliable
in reducing readmissions, according to the review by Hansen
et al [6]. Another disadvantage is that these interventions do
not greatly impact the quality improvement of inpatient care
because they are mostly initiated near or after discharge, when
clinicians’ impact on inpatient care is ending. Preventive
intervention during hospitalization is an underexplored area that
holds potential for reducing readmission risk. It has been shown
that early interventions during inpatient hospitalization, such
as early discharge planning [7], can reduce readmissions.
However, it is impractical to deliver readmission-preventive
interventions to all patients because health care resources are
restricted. Predictive modeling is an efficient method to optimize
the allocation of valuable clinical resources by stratifying
patients’ readmission risk and targeting the delivery of
preventive interventions to patients at high risk [8]. Evidence
has shown that focusing interventions on high-risk patients can
reduce 30-day hospital readmission risk by 11%-28% [9-11].
However, the majority of reported hospital readmission
predictive models have limited value in real-world health care
settings because they require variables whose values only
become completely available at discharge [12]. For example,
the HOSPITAL score [13] and the LACE index [14] are the
most widely used readmission risk calculators in US healthcare
settings. They only work at the end of inpatient care because
they require variables that are not available in a timely fashion,
such as the length of stay and the results of some laboratory
tests before discharge. It is essential to perform early risk
assessments of high-risk patients to enable clinicians to deliver
timely preventive interventions at the early stage of
hospitalization [15].

Several 30-day hospital readmission early detection models
have been reported; however, their performance and design are
unsatisfactory. Wang et al [16] developed a real-time

readmission model using a time series of vital signs and discrete
features such as laboratory tests. However, this model was a
black box, and it was unclear how the clinical factors led to the
predictions. In health care applications, the interpretability of
a model is as important as its performance because the attributes
and the decision path must be medically rational. Horne et al
[17] developed a laboratory-based model specific to heart failure
patients. It can be used within 24 hours of admission; however,
the performance was poor, with areas under the receiver
operating characteristic curve (AUCs) [18] of 0.571 and 0.596
in female and male validation data sets. Cronin et al [19]
reported an early detection model based on the information
available at admission and medications used in index admission;
it showed a moderate performance in the validation data set,
with an AUC of 0.671. El Morr et al [20] created a modified
LACE index (LACE-rt) to support real-time prediction by
replacing the length of stay during the current admission in the
original LACE index with that of the previous admission within
the last 30 days. However, this model only showed fair
performance (AUC 0.632) [20]. Shadmi et al [21] developed
an early prediction model for emergency readmissions based
on data available before the index admission, and they achieved
an AUC of 0.69 in the validation data set. The same team further
modified the model by adding risk factors accrued during index
admissions; however, they obtained a similarly moderate AUC
(0.68) in the validation data set [22]. Amarasingham et al [23]
reported a real-time readmission model (AUC of 0.69 in the
validation data set) for patients with heart failure using clinical
and social factors available within 24 hours of admission.
However, their cohort size was too small, with only 1372 index
admissions.

The objective of this work was to build a predictive model for
early detection of unplanned 30-day hospital readmission using
a large and diverse sample. We were also interested in
identifying novel risk factors and protective factors of
readmission. We used machine learning methods to develop a
predictive model that can monitor readmission risk at the early
stage of hospitalization. Unlike most models, which focus only
on characteristics of index admissions, we included the detailed
medical history of previous encounters up to 1 year before index
admissions to construct a better readmission prediction model.

Methods

Study Design
This study was a retrospective analysis of electronic health
record (EHR) data. To ensure the readmission prediction model
can be accurate at the early stage of hospitalization, we only
used index admission attributes whose values can become
available in the EHR within 24 hours, including patient
demographics, laboratory test results, vital signs, and medication
orders. The patients’ data were enriched by the detailed history
of previous hospital encounters within one year before the
current inpatient stay, including the information of diagnoses,
procedures, laboratory test results, vital signs, medication orders,
and health care utilization. Figure 1 shows the types of variables
used for modeling.
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Figure 1. The variables used to develop the models.

Data Source
The data were extracted from Health Facts [24], an EHR
database curated by Cerner Corporation. This Health Insurance
Portability and Accountability Act (HIPAA)–compliant database
was collected from participating Cerner client hospitals and
from clinics with de-identified longitudinal records of diagnoses,
laboratory test results, surgeries, microbiology test results,
medications, medical events, and medical histories. The version
accessed by researchers at the University of Missouri contained
3.15 TB of encounter-level medical records extracted from 782
hospitals and clinics in the United States between 2000 and
2016.

Ethics
This retrospective data analysis study was not required to obtain
approval from the University of Missouri Institutional Review
Board because the data used in the study were already fully
deidentified by the data owner (Cerner Corporation).

Data Inclusion and Exclusion Criteria
The data inclusion and exclusion criteria were based on the
criteria used by the Centers for Medicare & Medicaid Services
(CMS) [25] with minor modifications. (1) We captured inpatient
encounters between January 1 and December 31, 2016, in acute
care hospitals with a length of stay longer than 24 hours. (2)
The gap between index admission discharge and readmission
was between 1 and 30 days (inclusive). (3) If a patient had more
than one inpatient visit within 30 days of discharge, only the
first visit was considered as readmission. (4) Patients were aged
older than 18 years at admission. (5) Patients were not
transferred to other acute care facilities and were alive at
discharge. (6) Patients were not readmitted for newborn status,
labor, accident, trauma, rehabilitation services, or other
scheduled care according to the CMS planned readmission
identification algorithm [25]. (7) In this work, we adopted the
concept of “hospital-wide all-cause readmission” used by CMS
[26] to study readmissions due to medical and health
care–related reasons. (8) Patients without readmissions had the
same requirements for their index admissions. (9) Each patient
had only one record.

Feature Engineering and Data Transformation
According to our previous literature review of readmission risk
factors [27], patients’ demographic and social factors as well
as their previous health care utilization were strong predictors
for readmission. In this work, we incorporated the patients’ age
at admission, sex, race, insurance payer, hospital census region,
census division, rurality, and health care utilization in the
previous year, including the number of inpatient visits,
outpatient visits, emergency department visits, and times the
patient left the hospital against medical advice. We only retained
records without any missing demographic information. We also
investigated the impact of the patients’ medical history within
the year before the index admission. We used counts to condense
longitudinal medical histories into structured data so that patients
with different medical histories could be represented in the same
feature space. Patients with a medical history had higher counts,
and patients without any medical history had counts of zero. In
this way, we were able to handle the missing value problem for
new patients. For example, if a patient had the same diagnosis
of heart failure in two separate encounters in the previous year,
this diagnosis would have a count of two. For laboratory tests
and vital signs, the latest results were checked and recorded if
they were abnormal. Suppose a patient’s systolic blood pressure
was taken twice in one encounter, and the result of the second
test was abnormal. In another encounter, it was taken three
times, and the latest result was normal. This patient would be
determined to have had one abnormal systolic blood pressure
result during the two encounters in the last year. For the index
admission, we only checked the medication record and the latest
results of laboratory tests and vital signs. Diagnosis codes were
mapped from the International Classification of Disease, Tenth
Revision, Clinical Modification (ICD-10-CM) [28] into the
Clinical Classifications Software (CCS) categories [29] because
the ICD codes were too granular for data mining purposes. For
the same reason, procedure codes were mapped from the
International Classification of Disease, Tenth Revision,
Procedure Coding System (ICD-10-PCS) [28], current
procedural terminology (CPT) [30], and Healthcare Common
Procedure Coding System (HCPCS) [31] codes into CCS
categories. Laboratory tests and vital signs were represented by
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their original names. We used generic names to represent
medication orders. Table 1 shows an explanation of these

features. After data transformation and feature engineering, the
final data set contained 432 variables.

Table 1. Feature representation and value types.

Data typeRepresentationType and category

Medical history in last year

CountCCSaDiagnosis

CountCCSProcedure

CountNameLaboratory test

CountNameVital sign

CountGeneric nameMedication

CountNameUtilization

Index admission

Discretized age, race, sex, payer, region, or ruralityNameDemographic

Ordered or notGeneric nameMedication

Latest result is abnormal or notNameLaboratory test

Latest result is abnormal or notNameVital sign

aCCS: Clinical Classifications Software.

Candidate Algorithms and Baseline Models
Interpretability is an important consideration for clinical
predictive models because it is crucial to ensure medical
rationality in the classification process. We selected six
candidate machine learning algorithms that can generate
probabilistic outputs, including logistic regression, naïve Bayes,
decision tree, random forest, gradient boosting tree, and artificial
neural networks. Logistic regression belongs to the family of
generalized linear models [32], and it predicts the log odds of
the positive class as a linear combination of variables weighted
by coefficients [33]. The association of a variable (factor) with
the response target can be measured by the odds ratio [34],
which is equal to the exponential of the coefficient of the
variable. An odds ratio >1 indicates that the presence of the
factor increases the odds of the outcome (eg, readmission).
Naïve Bayes is a probabilistic classification algorithm based on
the Bayes theorem [35] with the assumption that variables are
independent [36]. Classifications are achieved by assigning the
class label that can maximize the posterior probability given
the features of an instance. A naïve Bayes model can be
interpreted by taking the conditional probability of a variable
given a class, and a higher probability indicates a stronger
relationship with the class. Decision trees are a family of
tree-structured predictive algorithms that iteratively split the
data into disjoint subsets in a greedy manner [37]. Classifications
are made by walking the tree splits until arriving at a leaf node
(the class). Decision trees are self-explainable because each leaf
node is represented as an if-then rule, and the decision process
can be visualized. The contribution of a variable to the
classification can be measured using various methods, such as
information gain based on information theory and Gini
importance [38]. Random forests are ensemble learning
algorithms generated by bootstrap aggregation; the algorithm
repeatedly selects a random sample from the training data set

(with replacement) and builds a decision tree for the sample
[39]. When making predictions, the outputs from different
decision trees will be ensembled. Gradient boosting trees are
another type of tree ensemble algorithm; they build the model
in a stagewise fashion by iteratively generating new trees to
improve the previous weaker trees [40]. Predictions are made
by the weighted average of tree outcomes, with stronger trees
having higher weights. Random forests and gradient tree
boosting algorithms can be interpreted by measuring the Gini
importance of the variables. Artificial neural networks are an
interconnected group of computing units called artificial neurons
[41]. The artificial neurons are aggregated into layers and
connected by edges that have different weights to control the
signals transmitted between neurons. The signals in the final
output layer are used for prediction. The importance of each
feature can be measured by the increase in prediction error after
permuting the values of the feature.

We implemented the HOSPITAL score, LACE index, and
LACE-rt index to compare their performance with that of our
models. The HOSPITAL score has seven variables, including
hemoglobin level at discharge, discharge from an oncology
service, sodium level at discharge, any ICD procedures during
the hospital stay, the type of index admission, the number of
admissions 1 year before the index admission, and the length
of stay [13]. Each factor level has a weighted point, and the
maximum total score is 13 points. The LACE index has four
variables, including length of stay, acuity of admission, the
Charlson comorbidity index, and the number of emergency
department visits 6 months before the index admission [14]. Its
score ranges from 0 to 19 points. The LACE-rt index has the
same variable weights and the same maximum score as the
original LACE index [20]. The only difference is that it requires
the length of stay during the previous admission within last 30
days instead of the current admission.
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Model Training and Benchmark
Based on the inclusion and exclusion criteria, we identified
96,550 eligible patients. We randomly split the 96,550 records
into a development data set (91,550 records) and a validation
data set (5000 records). The readmission rate (11.7%) was
preserved in these two data sets. The development set was used
to derive and test the five candidate models in 10-fold
cross-validation. The validation set was used to assess if the
models can be generalized to unseen data. For the three baseline
models, we extracted the required variables from the encounters
in the validation set so that we could perform a fair comparison
of our candidate models and the baseline models.

Because accuracy is sensitive to class imbalance, it cannot be
used to evaluate readmission models (readmission rate <50%).
To measure the performance of the models, we used the AUC,
precision, recall, specificity, and F1 measure, which are less
sensitive to data imbalance. The AUC is the probability that a
model will rank a randomly chosen positive instance higher
than a randomly chosen negative instance. The AUC ranges
from 0.5 to 1.0, with 1.0 indicating that the model has perfect
discrimination ability and 0.5 indicating that it performs no
better than random guessing. Precision is the fraction of true
positives among all instances predicted to be positive. Recall
is the fraction of correctly identified positives in all positive
instances. Specificity is the fraction of correctly identified
negatives in all negative instances. The F1 measure is the
harmonic mean of precision and recall. The values of the
precision, recall, specificity, and F1 measure range from 0 to
1.0. A higher value indicates better performance.

Multivariate Logistic Regression Analysis
We performed multivariate logistic regression analysis [32] to
evaluate associations between the independent variables and
the patients’ readmission status. Features were selected by
backward elimination. We chose the significance level of .05
for the statistical tests.

Software
We used Weka [42] to build and evaluate the logistic regression,
naïve Bayes, decision tree, random forest, and gradient boosting
tree models. The extreme gradient boosting (XGBoost) model
and neural network models were developed in Python. The
hyperparameters of these models were optimized. We
implemented the HOSPITAL score, LACE index, and LACE-rt
index in Python. The multivariate logistic regression analysis
used the GLM package in R (R Project).

Results

Patient Demographics
From the 96,550 included patients, 11,294 experienced
unplanned 30-day hospital readmission. The readmission rate
(11.7%) is lower than the Medicare readmission rate (15.2%
[1]). One possible reason was that in contrast to Medicare
patients, who are normally older than 65 years, our study
population included younger and less vulnerable adult patients
(aged 18 to 64 years) as well as older adults (aged 65 years and
above). Table 2 shows the demographic information of patients
with and without readmissions. Most patients were White,
female, and between 65 and 79 years of age.

Table 2. Demographic information of the 96,550 patients included in the data set. The characteristics with the highest frequencies are indicated with
italic text.

Value, n (%)Characteristic

Readmission=noReadmission=yes

85,256 (88.3)11,294 (11.7)Total

Age (years)

13,242 (15.5)930 (8.2)18-34

12,541 (14.7)1525 (13.5)35-49

21,559 (25.3)3116 (27.6)50-64

22,634 (26.5)3380 (29.9)65-79*

15,280 (17.9)2343 (20.7)≥80

Sex

49,619 (58.2)5966 (52.8)Female

35,637 (41.8)5328 (47.2)Male

Race

16,248 (19.1)2612 (23.1)African American

61,685 (72.3)7750 (68.6)White

7323 (8.6)932 (8.3)Other

*Italicized text represents majority in the group.

JMIR Med Inform 2021 | vol. 9 | iss. 3 | e16306 | p. 5https://medinform.jmir.org/2021/3/e16306
(page number not for citation purposes)

Zhao et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Model Development and Selection
Table 3 shows the 10-fold cross-validation AUCs (mean and
standard deviation) of the six candidate models on the
development data set. Especially, the alternating decision tree

(ADTree) algorithm [43], the XGBoost [44] algorithm, and the
feedforward neural networks with three hidden layers (256
neurons, 512 neurons, and 256 neurons) had the best AUCs
within the decision tree, gradient boosting tree, and artificial
neural network families, respectively.

Table 3. 10-fold cross-validation AUCs of the candidate models on the development set.

10-fold cross-validation AUCa, mean (SD)Model

0.750 (0.005)Logistic regression

0.730 (0.006)Naïve Bayes

0.730 (0.010)Alternating decision tree

0.734 (0.006)Random forest

0.753 (0.007)XGBoostb

0.746 (0.004)Neural network

aAUC: area under the receiver operating characteristic curve.
bXGBoost: extreme gradient boosting.

We further compared the performance of the six candidate
models and the three baseline models (HOSPITAL score, LACE
index, and LACE-rt index) on the validation data set by
measuring the precision, recall, specificity, F1 measure, and
AUC (Table 4). Because of the imbalanced prevalence of
readmissions (eg, 11.7% in this study), it was infeasible to use
0.5 as the cutoff probability to dichotomize probabilistic outputs.
We chose cutoffs that could maximize the Youden index of
each model [45]. The optimal cutoffs of the three baseline
models are integers because they do not generate probabilities.
It can be seen that the random forest model has the best
specificity and precision, while the XGBoost model has the best
recall, F1 measure, and AUC. In the medical domain, recall is

a more important metric because false negatives are considered
more risky than false positives. Therefore, although the
XGBoost and logistic regression models had similar AUC on
development set (Table 3) and validation set, we chose XGBoost
as the final model. It can be seen that the XGBoost model is
better than the three baseline models in all performance metrics.
Features of the XGBoost model and their importance ranking
are shown in Multimedia Appendix 1. The optimized XGBoost
model has “gbtree” as the booster, “binary:logistic” as the
objective, a gamma of 0.4, a learning rate of 0.1, a maximum
depth of 3, a maximum delta step of 0, a minimum child weight
of 8, a reg_alpha parameter of 5, a reg_lambda parameter of 1,
a subsample of 0.7, and 240 estimators.

Table 4. Performance of the candidate models and baseline models on the validation set. The best-performing parameters are indicated in italic text.

AUCaF1 measureRecallPrecisionSpecificityOptimal cutoffModel

0.7410.7730.7290.8570.6420.157Logistic regression

0.7200.7400.6850.8550.6660.220Naïve Bayes

0.7320.7550.7050.8570.6620.298Alternating decision tree

0.7260.6800.6110.8620.7470.122Random forest

0.7430.7940.7590.8560.6110.175XGBoostb

0.7350.7370.6810.8580.6860.125Neural network

0.6880.7450.6940.8380.5644HOSPITAL score

0.6750.7790.7450.8300.46911LACE index

0.6680.7400.6880.8330.5427LACE-rt index

aAUC: area under the curve.
bXGBoost: extreme gradient boosting.

Risk Factors and Protective Factors of Readmission
To understand the statistical significance of the factors, we
performed multivariate logistic regression analysis on all the
data (96,550 records and 432 variables). By backward
elimination, we reduced the feature space to 83, as shown in

Multimedia Appendix 2. We reidentified 40 risk factors and
significant predictors reported in previous studies. In addition,
we discovered 14 risk factors and 2 protective factors that have
never been reported in the literature. These 16 novel factors
belong to 13 variables, and they are displayed in Table 5.
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Table 5. The 14 novel risk factors and 2 novel protective factors of readmission identified in the study.

Odds ratio (95% CI)P valueCoefficientRisks or protective factors

Medical history in last year

Diagnosis

1.476 (1.218-1.790)<.0010.3901 maintenance chemotherapy visit in the last year

Laboratory test result

1.247 (1.144-1.359)<.0010.2211 abnormal lymphocyte count test in the last year

1.257 (1.091-1.447).0010.228≥2 abnormal lymphocyte count tests in the last year

1.199 (1.056-1.362).0050.1821 abnormal monocyte count test in the last year

1.371 (1.178- 1.596<.0010.316≥2 abnormal monocyte percent tests in the last year

1.254 (1.107-1.420)<.0010.2261 abnormal serum calcium quantitative test in the last year

1.345 (1.122-1.612).0010.297≥2 abnormal serum calcium quantitative tests in the last year

Medication

1.073 (1.010-1.141).020.0711 albuterol ipratropium order in the last year

1.157 (1.052-1.272).0030.145≥2 albuterol ipratropium orders in the last year

0.884 (0.822-0.950).001–0.1231 cefazolin order in the last year

Index admission

Demographic information

1.441 (1.345-1.543)<.0010.365Index admission to hospital in Northeast census region

Medication

1.176 (1.113-1.243)<.0010.162Gabapentin ordered at index admission

1.111 (1.057-1.168)<.0010.105Ondansetron ordered at index admission

1.076 (1.017-1.139).010.073Polyethylene glycol 3350 ordered at index admission

0.863 (0.798-0.934)<.001–0.147Cefazolin ordered at index admission

Laboratory test result

1.151 (1.043-1.269).0050.140≥16 abnormal laboratory test results at index admission

Discussion

Novel Risk Factors and Protective Factors of
Readmission
The 14 novel risk factors and 2 novel protective factors of
readmission are related to medical history and index admission.
They belong to four categories: diagnosis, laboratory test results,
medications, and demographic information.

Patients with one CCS-level diagnosis of maintenance
chemotherapy in the previous year were found to be more likely
to be readmitted than patients without this diagnosis. This can
be explained by the linkage between chemotherapy and cancer,
which has been reported as a predictor of readmission [46,47].

A blood disorder or an abnormal amount of substance in the
blood can indicate certain diseases or side effects. Having an
increased number of abnormal test results indicates that the
patient is frailer and can be more prone to readmission.

Four medications were found to be positively linked to
readmission. These medications may have side effects that are
associated with readmission. Another interpretation is that
conditions treated by these medications may be related to

readmission. For example, albuterol ipratropium is a
combination of two bronchodilators, which are used in the
treatment of chronic obstructive pulmonary disease (COPD).
COPD has been reported as a risk factor of readmission [47].
It is interesting that the prescriptions of cefazolin in previous
encounters and at index admission were both negatively
associated with readmission. One possible explanation is that
cefazolin is an antibiotic that is used to treat infections caused
by bacteria. The use of cefazolin may reduce patients’ chance
of infection and reduce their readmission risk.

The Northeast census region was found to be more positively
associated with readmission than the Midwest census region.
One possible reason is that geolocation is associated with
socioeconomic status, which has been reported to be linked to
readmission [48].

Timeliness of Prediction
Most readmission predictive models are based on index
admission data. Many highly predictive variables of the index
admission, such as the length of stay, diagnosis codes, procedure
codes, and laboratory test results before discharge, are only
available near or after discharge. To achieve good predictive
performance, most studies include these variables in their
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models. As a result, these models can only be used near or after
discharge. They are useful for public reporting but not for
clinical decision support because they are not timely.

In this work, we used the data from index admission and
patients’ medical history up to 1 year before the index
admission. To ensure that the model could work at any time
during hospitalization, we only used index admissions data that
become available in the EHR within 24 hours during
hospitalization, such as medication orders and laboratory test
results. We used the detailed medical history from the patients’
previous encounters. Although some studies include medical
histories in their models, they only use high-level information
from previous encounters (eg, the number of inpatient stays in
the previous year) instead of detailed information such as
previous laboratory test results. By using the patients’ detailed
medical history, we were able to add more variables to the model
without sacrificing its timeliness. As a result, our model enables
point-of-care prediction and can be used to continuously monitor
the readmission risk during the entire episode of hospitalization.

Generalizability
In addition to the performance of the model, we considered its
generalizability. From the modeling point of view,
generalizability indicates if a model can achieve similar
performance on new data. In other words, the model should be
trained and built using a large and diverse training sample to
represent the whole population. Most existing readmission
prediction models were based on relatively homogenous (eg,
single-center studies) and small (eg, less than 20,000 patients)
samples. For example, the LACE index and the HOSPITAL
score were derived from only 4812 Canadian and 9212
American patients, respectively [13,14]. To ensure good
generalizability, we captured all eligible inpatient encounters
in 2016 from the Health Facts database, with 96,550 patients
discharged from 205 hospitals across the four US Census
regions. The best performing model (XGBoost) has a validation
AUC close to the mean 10-fold cross-validation AUC on the
development set (0.742 vs 0.753). This indicates that the model
has good generalizability.

Another consideration of generalizability is whether the model
can work on various types of patients. There is no consensus
on data inclusion criteria for readmission studies, and the study
outcomes span condition- or procedure-specific to all-cause
readmission predictive models [27]. The choice between these
two types of models has long been under debate. In two
systematic reviews [8,12] of 99 readmission predictive models
reported between 1985 and 2015, 77% of the models were
specialized for one patient subpopulation. The condition-specific

design limits the adaptability of the models to other patient
subpopulations and may overlook patients in some at-risk
minority groups if specific models are not available [49,50]. In
practice, it can be challenging for a hospital to maintain separate
readmission prediction models for different patient
subpopulations, and this situation will be further exacerbated
if patients have comorbidities [50]. All-cause models are
designed for broad patient populations without limiting
diagnoses or procedures. In this work, we were interested in
hospital-wide readmissions caused by medical and health
care–related reasons. Our model is not specific to any conditions
or procedures because we wanted to use it as an early screening
tool to assess all patients' risk.

Limitations
Although our model was designed to be nonspecific to patient
populations, it does not work for patients under 18 years of age.
This is because infant and pediatric readmissions were reported
to have different patterns from adult readmissions [12,51] and
could be influenced by parental factors [51,52]. The Health
Facts database is deidentified, and there is no information about
the patients’ families. Therefore, we removed patients aged
younger than 18 years from the data. In addition, the Health
Facts database only contains data collected from US health care
settings. For readmissions in other countries, where patient
demographics (eg, race) and medical interventions (eg,
medications) are different from those in the United States, our
model may not work well.

Another limitation was that the 14 novel risk factors and 2
protective factors were identified based on associations. Because
this work was a retrospective study on deidentified data, we
were not able to further investigate the relationship between our
findings and factors reported in other studies.

Conclusions
In this work, we developed an early prediction model for
unplanned 30-day hospital readmission. The model has better
performance (AUC of 0.753 on the development data set and
0.742 on the validation data set) and timeliness than established
readmission models such as the HOSPITAL score, LACE index,
and LACE-rt index. The model was derived and validated from
a large and diverse patient population (96,550 patients
discharged from 205 hospitals across four US census regions),
and it can be generalized in use for adult patients in the United
States. We identified 14 novel risk factors and 2 novel protective
factors of readmission that may shed light on the understanding
of the complex readmission problem. More studies or trials are
necessary to verify the relationship of these factors with
readmission in the future.
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