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Abstract

Background: Medical notes are a rich source of patient data; however, the nature of unstructured text has largely precluded
the use of these data for large retrospective analyses. Transforming clinical text into structured data can enable large-scale research
studies with electronic health records (EHR) data. Natural language processing (NLP) can be used for text information retrieval,
reducing the need for labor-intensive chart review. Here we present an application of NLP to large-scale analysis of medical
records at 2 large hospitals for patients hospitalized with COVID-19.

Objective: Our study goal was to develop an NLP pipeline to classify the discharge disposition (home, inpatient rehabilitation,
skilled nursing inpatient facility [SNIF], and death) of patients hospitalized with COVID-19 based on hospital discharge summary
notes.

Methods: Text mining and feature engineering were applied to unstructured text from hospital discharge summaries. The study
included patients with COVID-19 discharged from 2 hospitals in the Boston, Massachusetts area (Massachusetts General Hospital
and Brigham and Women’s Hospital) between March 10, 2020, and June 30, 2020. The data were divided into a training set
(70%) and hold-out test set (30%). Discharge summaries were represented as bags-of-words consisting of single words (unigrams),
bigrams, and trigrams. The number of features was reduced during training by excluding n-grams that occurred in fewer than
10% of discharge summaries, and further reduced using least absolute shrinkage and selection operator (LASSO) regularization
while training a multiclass logistic regression model. Model performance was evaluated using the hold-out test set.

Results: The study cohort included 1737 adult patients (median age 61 [SD 18] years; 55% men; 45% White and 16% Black;
14% nonsurvivors and 61% discharged home). The model selected 179 from a vocabulary of 1056 engineered features, consisting
of combinations of unigrams, bigrams, and trigrams. The top features contributing most to the classification by the model (for
each outcome) were the following: “appointments specialty,” “home health,” and “home care” (home); “intubate” and “ARDS”
(inpatient rehabilitation); “service” (SNIF); “brief assessment” and “covid” (death). The model achieved a micro-average area
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under the receiver operating characteristic curve value of 0.98 (95% CI 0.97-0.98) and average precision of 0.81 (95% CI 0.75-0.84)
in the testing set for prediction of discharge disposition.

Conclusions: A supervised learning–based NLP approach is able to classify the discharge disposition of patients hospitalized
with COVID-19. This approach has the potential to accelerate and increase the scale of research on patients’ discharge disposition
that is possible with EHR data.

(JMIR Med Inform 2021;9(2):e25457) doi: 10.2196/25457
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Introduction

The COVID-19 pandemic continues to present challenges for
health care systems around the world [1-8], with over 32.7
million COVID-19 cases confirmed and 991,000 deaths
worldwide as of September 27, 2020 [6]. The SARS-CoV-2
virus first appeared in Wuhan, China, in December 2019. The
first case in the United States was confirmed January 20, 2020
[9], followed by rapid spread [2]. By the end of April,
Massachusetts became the third hardest hit state, trailing New
York and New Jersey [10].

To prepare for a possible second wave in Massachusetts, we set
out to conduct a large-scale study of factors associated with
outcomes in hospitalized patients at 2 large academic Boston
hospitals. This effort required the significant task of reviewing
medical records for over 1000 patients. For structured parts of
the electronic health record (EHR), automated data extraction
is straightforward. However, some essential information is
exclusively or most reliably available only in semistructured or
unstructured narrative medical notes, including patient-reported
symptoms, examination findings, or social habits. Thus,
developing automated approaches to EHR information extraction
wherever possible is critical for more complete patient
phenotyping.

Natural language processing (NLP) deals with automated
analysis of unstructured text data. Recent advances in NLP
machine learning have empowered computers to do several
tasks such as machine translation, speech recognition, speech
synthesis, semantic understanding, and text summarization
[11,12]. NLP has the advantage of being much faster than human
chart review of medical records [13-16].

Here we present an automated approach, using NLP, to extract
a specific outcome from hospital discharge summaries: discharge
destination or “disposition” (ie, anticipated location or status
following discharge). Dispositions of interest included home,
inpatient rehabilitation center, skilled nursing inpatient facility
(SNIF), and death. Discharge disposition of patients with
COVID-19 from health care facilities is important due to the
high risk of transmission of the disease within nursing homes

and hospitals when patients are discharged to locations other
than home, and also because it represents an important measure
closely related to functional outcome and level of disability
following hospitalization, as well as overall costs of care.
Furthermore, this information has the potential to aid health
care facilities in resource planning to better prepare for the
incoming flow of patients. Although our model is tailored for
discharge disposition, the approach we developed is
generalizable to other outcomes available in discharge
summaries.

Methods

Study Overview
Data were extracted from the hospital electronic medical record
under a research protocol approved for a waiver of informed
consent by the Partners Healthcare Institutional Review Board.
Clinical data were retrospectively analyzed for all adult patients
who tested positive for SARS-CoV-2 infection between March
10 and June 30, 2020. A total of 1737 patients admitted to 2
major Boston hospitals, 1232 from Massachusetts General
Hospital (MGH) and 505 from Brigham and Women’s Hospital
(BWH), were included. Only patients with a physician discharge
summary and available known ground-truth discharge
disposition were included.

Data Collection and Processing

Overview
Data consisted of discharge summaries, which are unstructured
free-text notes written by physicians, and a ground-truth record
of discharge disposition, used to assess the accuracy of the NLP
results. The methodology for note preprocessing is shown in
Figure 1. The upper part of the figure provides an overview of
the text extraction for each field on the list of extraction fields
depicted in Table 1. The lower part of the figure shows the
methodology steps where the text extracted from all the fields
is processed for modeling. The data were randomly stratified
into train and test sets for modeling, which we address in the
Model Development section.
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Figure 1. Methodology steps for discharge summary notes preprocessing and modeling. The list of extraction field is depicted in Table 1.
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Table 1. Information captured from discharge summaries, grouped in fields, and respective search tokens used in the regular expression.

Search tokenField

“discharge,” “discharged,” “dispo,” “skilled nursing,” “snf”Discharge disposition

“diagnosis,” “diagnoses,” “problem,” “reason for admission,” “chief
complaint”

Diagnosis

“surgeries this admission”Surgeries

“treatments”Treatments

“tests”Tests

“allergies,” “allergic”Allergies

“diet,” “nutrition”Diet

“history”Medical history

“hospital course”Hospital course

“labs”Laboratory results

“activity,” “activities”Activity

“discharge exam,” “physical exam”Physical exam

“physical therapy”Physical therapy

“occupational therapy”Occupational therapy

“instructions”Discharge instructions

“follow up”Follow-up care

“discharge plan”Discharge plan

“additional orders”Additional orders

“code status”Code status

Document Preprocessing
Admission, discharge, and birth dates were removed from the
discharge summaries, as well as punctuation, special characters,
blank spaces, and numerical digits. Notes were then subjected
to lowercasing, tokenization, and correction using
lemmatization, a procedure for obtaining the root form of the
word, using vocabulary (dictionary importance of words) and
morphological (word structure and grammar relations) analysis.
WordNetLemmatizer from NLTK library in Python (Version
3.7; Python Software Foundation) was used with a
part-of-speech (POS) tag specified as a verb. Patients’ names,
addresses, health care facilities, and hospital unit names were
removed, as well as single letters. Abbreviation expansion and
spelling corrections were performed for a small list of frequently
used clinical words (Table S1 in Multimedia Appendix 1). A
list of commonly used and less informative stopwords was also
removed from the notes (Table S2 in Multimedia Appendix 1).

Processing of Specific Discharge Summary Fields
Discharge summaries at MGH and BWH are semistructured,
with a series of named fields containing specific types of mostly
free-text information (Table 1). We present an example of
discharge summary notes with protected health information
removed (Table S3 in Multimedia Appendix 1). Text fields
were identified based on information extracted from the notes
using regular expressions with search tokens (Table 1). The
function “str.extractall” from Python was used to extract a length
of 200 letters of text onwards from all instances where the search
token appeared.

Some notes contained a “discharge disposition” field used to
list the discharge disposition. We deleted this field to avoid an
overly “easy” solution, because this field is not universally
available, and because we wished to assess how well the
approach is able to perform when structured data is unavailable.
In a field where more than one extraction was performed (ie,
with more than one search token), the corresponding results
were joined, and duplicated words were removed. To illustrate
with an example, for the “Diet” field, using the regular
expressions with search tokens “diet” and “nutrition,” 200 letters
were captured for each search token, for a total of 400 letters.
Since there might be repeated information in the discharge
summary regarding diet and nutrition recommendations,
duplicated words were removed from the captured text. Where
no data was captured with the search tokens, an indication of
missingness was set with the name of the field and the suffix
“_missing.”

The texts extracted from all fields (depicted in Table 1) were
joined to create a reduced version of the discharge summary,
which was then subjected to tokenization, lemmatization, and
abbreviation expansion, as described in the Document
Preprocessing subsection. The vocabulary used for modeling
was created based on these reduced versions of the discharge
summaries contained in the training set. Documents were
represented as a binary bag-of-words (BoW; ie, an ordered series
of binary vectors indicating whether a given n-gram [word or
sequence of 2 or 3 words] is present in the document,
disregarding grammar and word order). The function
CountVectorizer was used with its default parameters from
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Python, except for the n-gram range, which was set as unigrams
(1 word), bigrams (2 consecutive words), and trigrams (3
consecutive words). As a first step to reduce dimensionality,
only features present in at least 10% of the reduced version of
the discharge summary notes were considered. Multiclass
logistic regression with the least absolute shrinkage and selection
operator (LASSO) [17] was used to further sparsify the model.

Outcome Measure
The multiclass outcome measure was discharge disposition,
composed of the classes: home, inpatient rehabilitation, SNIF,
and death. “Home” included “home or self-care,” “home-health
care services,” and patients who “left against medical advice.”
SNIF included “Skilled Nursing Facility” and “Custodial Care
Facility.”

Model Development
The training algorithm used the one-vs-rest scheme for
multiclassification, where a binary problem was fitted for each
class and the class weight was balanced. Logistic regression
[18] with LASSO regularization was used as the classification

model. The model estimator is depicted in equation 1 and
the LASSO regularization objective can be written as in equation

2. corresponds to the design input matrix and

corresponds to the vector of observations, where n is
the number of observations, in this case the number of discharge
summaries or number of patients, and p the number of features

in . The vector of regression coefficients is given by

 corresponds to the L1 norm of this coefficients
vector, and λ is the regularization parameter that controls the
amount of shrinkage. The regularization adds a penalty on the
weights to prevent overfitting [19]. The inverse of the
regularization strength C was varied for the values {0.005, 0.01,
0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.5, 1, 1.5, 2,
2.5, 3, 3.5, 4, 4.5, 5}.

Stratified random sampling was used to split the data set into a
training set (70%) and a hold-out test set (30%). A randomized
search was used for hyperparameter tuning during training with
100 iterations of 5-fold cross-validation. The solver was set to
“liblinear” and the “warm start” hyperparameter was varied
between true/false, where “true” corresponded to reusing the
solution of the previous call to fit as initialization, and “false”
corresponded to erasing the previous solution.

Performance Measures

The R2 coefficient of determination score was used in
cross-validation scoring to select the best model configuration
in the training data. The one standard error rule was used to
select the regularization parameter. The simplest model, whose

R2 mean score fell within 1 standard deviation of the maximum

R2, was selected.

To measure model performance on test data, the area under the
receiver operating characteristic curve (AUROC) was calculated.
The ROC curve is a function of recall (sensitivity) versus the
false positive rate (FPR; ie, 1–specificity; Table S1 in
Multimedia Appendix 1). The pair (Recallk, FPRk) is called an
operating point for this curve, where k is a threshold that is
varied to generate the ROC curve. The equations for these
metrics are presented in Table S4 in Multimedia Appendix 1.

The area under the precision-recall curve (AUPRC), which is
an important measure in the presence of class imbalance, was
also calculated. The pair (Recallk, Precisionk) is referred to as
an operating point for this curve. Average precision (AP; Table
S3 in Multimedia Appendix 1) summarizes this plot as the
weighted mean of precisions achieved at each threshold, with
the increase in recall from the previous threshold used as the
weight.

The F1-score (Table S4 in Multimedia Appendix 1) was also
assessed as another performance metric commonly reported for
data sets with imbalanced numbers across classes [20].

In total, 100 iterations of bootstrap random sampling with
replacement were performed to calculate 95% CIs for
performance metrics.

Results

Summary of Patient Population
From 1917 patients’ medical records, 1752 had a physician
discharge summary and a discharge disposition within the
categories of home, inpatient rehabilitation, SNIF, and death.
Only adults (aged ≥18 years) were included in the analysis,
leaving a study cohort of 1737 patients. The cohort was split
into train and test sets using stratified random sampling
according to outcome. Age in the train and test sets was
balanced, with a median of 62 and 60 years old, respectively
(Table 2). The majority of patients were White (n=774; median
44.6%) and Black or African American (n=285; median 16.4%).
Most were discharged home (n=1052; 60.6%). Among all
patients with COVID-19 in this sample, there were 243 (14.0%)
nonsurvivors.

JMIR Med Inform 2021 | vol. 9 | iss. 2 | e25457 | p. 5https://medinform.jmir.org/2021/2/e25457
(page number not for citation purposes)

Fernandes et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Baseline characteristics of the study patient population stratified by train and test sets.

Total (N=1737)Test set (n=522)Train set (n=1215)Characteristic

61.0 (18.2)60.0 (18.2)62.0 (18.2)Age (years), median (SD)

Gender, n (%)

789 (45.4)244 (46.7)545 (44.9)Female

948 (54.6)278 (53.3)670 (55.1)Male

Race, n (%)

774 (44.6)241 (46.2)533 (43.9)White

71 (4.1)19 (3.6)52 (4.2)Hispanic or Latino

285 (16.4)81 (15.5)204 (16.8)Black or African American

67 (3.9)21 (4.0)46 (3.8)Asian

44 (2.5)13 (2.5)31 (2.5)American Indian or Alaska Native

3 (0.2)1 (0.2)2 (0.2)Native Hawaiian or other Pacific Islander

493 (28.3)146 (28.0)347 (28.6)Unknowna

Institution, n (%)

1232 (70.9)351 (67.2)881 (72.5)Massachusetts General Hospital

505 (29.1)171 (32.8)334 (27.5)Brigham and Women’s Hospital

Discharge disposition, n (%)

1052 (60.6)316 (60.5)736 (60.6)Home

146 (8.4)44 (8.4)102 (8.4)Inpatient rehabilitation

296 (17.0)89 (17.1)207 (17.0)Skilled nursing inpatient facility

243 (14.0)73 (14.0)170 (14.0)Death

aUnknown includes “other,” “declined,” or “unavailable.”

The preprocessed data set for modeling was created based on
the notes extracted in all fields except the “discharge
disposition” and “code status” fields, as described in the
Processing of Specific Discharge Summary Fields subsection.
Before dimensionality reduction, where features present in at
least 10% of the reduced version of the discharge summary
notes were considered, there were a total of 15,182 tokens
(unigrams). After applying this dimensionality reduction step,
we were left with 477 tokens. With this set of tokens, 3497
combinations of n-grams were generated, leading to a total of
1056 features with duplicates removed. Thus, the total number
of candidate features in the training vocabulary was 1056,
including 460 unigrams, 329 bigrams, and 267 trigrams.

Modeling Results
The best model configuration parameters and performance
results in the hold-out test set are presented in Table 3 with 95%
CIs. The corresponding confusion matrices normalized by
precision and recall are presented in Figure 2. The performance
discriminated by discharge outcome is presented in Table 4.

Higher performance was obtained for the outcomes of home
discharge and death compared to inpatient rehabilitation and
SNIF discharge outcomes. The model presented higher recall
(0.95) and precision (1.0) for the death outcome. Home
disposition also presented high performance for these metrics.
For this model, 2 deceased patients were classified as discharged
home. In experiments, for models where we included the
discharge disposition field, extracted from the discharge
summary, all deceased patients were correctly classified. The
inpatient rehabilitation outcome presented the lowest recall
(0.61) and 12 patients with this outcome were incorrectly
classified by the model as discharged to SNIF. The outcome of
disposition to SNIF presented the lowest precision (0.68) overall
and 20 patients discharged home were incorrectly predicted as
discharged to SNIF. Compared to the initial set of features in
the training vocabulary, the final model contained approximately
83% fewer features, with a total of 179 features. The relative
importance of the top 30 model features is presented in Figure
3, where the importance for each feature consisted of the sum
of the absolute coefficients’ values across the outcomes.
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Figure 2. Confusion matrices for the best model evaluated in the hold-out test set normalized (A) by recall and (B) by precision. SNIF: skilled nursing
inpatient facility.

Table 3. Model performance in the hold-out test set and configuration parameters.

ParametersPrecisionaAverage precisionaF1 scoreaRecallaAccuracyaArea under the receiver
operating characteristic

curvea

Number of features
(unigrams, bigrams,
trigrams): 179 (95, 52,
32); C=0.09; warm
start: true

0.88 (0.85-0.90)0.81 (0.75-0.84)0.88 (0.85-0.90)0.88 (0.85-0.90)0.88 (0.85-0.90)0.98 (0.97-0.98)

aThe 95% CIs of bootstrapping results are in parentheses.
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Figure 3. Relative importance of top 30 features obtained with the model coefficients estimates for (A) the sum of the absolute coefficients values and
(B) the coefficients values discriminated by outcome. Coef: coefficient.
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Table 4. Model performance in the hold-out test set by discharge outcome.

PrecisionaAverage precisionaF1 scoreaRecallaAccuracyaArea under the re-
ceiver operating
characteristic

curvea

Outcome

0.94 (0.91-0.97)0.92 (0.88-0.94)0.93 (0.91-0.95)0.92 (0.89-0.95)0.92 (0.89-0.94)0.97 (0.95-0.98)Home

0.73 (0.58-0.86)0.48 (0.32-0.64)0.67 (0.53-0.78)0.61 (0.53-0.76)0.95 (0.93-0.97)0.95 (0.91-0.98)Rehab

0.68 (0.58-0.75)0.58 (0.46-0.66)0.74 (0.64-0.79)0.81 (0.72-0.88)0.90 (0.87-0.92)0.93 (0.88-0.96)Skilled nursing in-
patient facility

1.00 (1.00-1.00)0.95 (0.91-0.98)0.97 (0.95-0.99)0.95 (0.90-0.98)0.99 (0.99-1.00)1.00 (1.00-1.00)Death

aThe 95% CIs of bootstrapping results are in parentheses.

“Service” was the feature assigned the highest importance for
classification of the discharge outcomes. For inpatient
rehabilitation and SNIF dispositions, the coefficient values for
this feature are positive, which indicates that this term will most
likely appear in the preprocessed notes for both outcomes.
“Home care,” “healthcare home,” and “home health” were
assigned a positive coefficient value for home disposition.
“Service healthcare home” was also assigned high importance
for this outcome, suggesting that this feature is related to patients
discharged home with home health care services provided.
“Medicine” and “appointments specialty” were also important
for this outcome. “Rehab” had positive coefficients for both
inpatient rehabilitation and SNIF dispositions. “Intubate” and
“ARDS” (acute respiratory distress syndrome) are important
features for inpatient rehabilitation disposition. For death,
“discharge” and “activity tolerate” presented negative coefficient
values, indicating that these features are unlikely to appear in
discharge summaries of deceased patients. “Brief assessment”
and “brief” are assigned high coefficient values for this outcome.
“Covid” was assigned a positive coefficient value for predicting
death, while the term was given negative values for inpatient
rehabilitation and SNIF.

Training performance is depicted in Figure S1 in Multimedia

Appendix 2, with the curve corresponding to the R2 scores for
the different values of the inversed regularization strength. The
top 15 features and their relative importance obtained with
LASSO regularization are presented for each outcome (Figure
S2 in Multimedia Appendix 2). Blue bars correspond to features
with positive coefficient values and red bars to features with
negative coefficient values. The areas under the ROC and
Precision-Recall curves for the best model are also presented
(Figure S3 in Multimedia Appendix 2). We also assessed how
the model performance and the features selected as the most
important in the train set varied with the dimension of the train
set (Figure S4 in Multimedia Appendix 2). The hold-out test
set for model evaluation was fixed and the train set dimension
was varied from 10% to 100% of the original train set, with
1215 patients. We observed that the best performance was
achieved with a higher number of patients in the train set (ie,
the original train set of 100%). However, with 50% versus 100%
of the original train set, the model achieved good performance
for 1018 (versus 1056) vocabulary features (AUROC 0.97 versus
0.98 and AP 0.79 versus 0.81, respectively). We assessed the
common features between each train set and the original train
set (Figure S5 in Multimedia Appendix 2). Among the top 30

features, there were 10 common features between the 50% and
the original train sets. A higher number of common features
was found for the train set with 90% of the original train set,
with a total of 17 common features. Finally, we observed that
more than half of the features in the top 30 from the original
train set were selected as top 30 in at least two train sets (Figure
S6 in Multimedia Appendix 2).

Discussion

Principal Findings
In this study, a machine learning–based NLP pipeline was
developed to classify the discharge disposition of adult patients
hospitalized with COVID-19. The model achieved near-perfect
identification of patients with outcomes of home disposition or
death. For the intermediate outcomes of inpatient rehabilitation
or SNIF, performance was imperfect but also acceptable. Due
to this classification task being relatively easy, more complex
and time-consuming modeling approaches, such as recurrent
neural networks or bidirectional encoder representations from
transformers were not considered. We acknowledge that for
harder tasks, these approaches can improve performance. The
final method is automated, thus enabling large-scale rapid
processing of thousands of discharge summaries, a task that is
infeasible when relying on manual chart review.

Limitations
The present analysis was limited to a cohort of patients with
COVID-19, who may have specific medical symptoms related
to the disease. Therefore, as future work, it is proposed to extend
the model to other cohorts. Further, although results spanned 2
hospitals, they are located in the same geographic region
(Boston, Massachusetts). Thus, our cohort may not be
representative of other US and non-US populations. Moreover,
decision making for discharge disposition may vary for different
hospitals, according to the number of SNIFs or rehabilitation
centers in the geographic area, which may affect the
generalizability of the model. The models were developed with
textual information from discharge summaries, while the
addition of other clinical features (eg, physical or occupational
therapy reports, social work or case manager notes) was not
considered, which is a limitation of the study and can be pursued
in future work.
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Comparison With Prior Work
Extraction of information from clinical narratives is a growing
application of NLP in health care. NLP has been used to extract
information from hospital discharge notes about medical
conditions such as postsurgical sepsis [21], pneumonia [22], or
other potential medical problems [23], as well as to identify
critical illness [24,25], detect adverse events [26], predict risk
of rehospitalization [27], extract medication information [28],
and risk stratify patients [29]. To the best of our knowledge,
ours is the first work on classifying hospital discharge

disposition based on discharge summary notes using machine
learning and NLP.

Conclusions
This study shows that a supervised learning–based NLP
approach can be used to accurately classify the discharge
disposition of hospitalized patients with COVID-19 in an
automated fashion. This model, and the NLP approach used to
develop it, have the potential to accelerate and increase the scale
of research that is possible with EHR data.
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LASSO: least absolute shrinkage and selection operator
MGH: Massachusetts General Hospital
NLP: natural language processing
ROC: receiver operating characteristic
SNIF: skilled nursing inpatient facility
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