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Abstract

Background: COVID-19 has overwhelmed health systems worldwide. It is important to identify severe cases as early as possible,
such that resources can be mobilized and treatment can be escalated.

Objective: This study aims to develop a machine learning approach for automated severity assessment of COVID-19 based on
clinical and imaging data.

Methods: Clinical data—including demographics, signs, symptoms, comorbidities, and blood test results—and chest computed
tomography scans of 346 patients from 2 hospitals in the Hubei Province, China, were used to develop machine learning models
for automated severity assessment in diagnosed COVID-19 cases. We compared the predictive power of the clinical and imaging
data from multiple machine learning models and further explored the use of four oversampling methods to address the imbalanced
classification issue. Features with the highest predictive power were identified using the Shapley Additive Explanations framework.

Results: Imaging features had the strongest impact on the model output, while a combination of clinical and imaging features
yielded the best performance overall. The identified predictive features were consistent with those reported previously. Although
oversampling yielded mixed results, it achieved the best model performance in our study. Logistic regression models differentiating
between mild and severe cases achieved the best performance for clinical features (area under the curve [AUC] 0.848; sensitivity
0.455; specificity 0.906), imaging features (AUC 0.926; sensitivity 0.818; specificity 0.901), and a combination of clinical and
imaging features (AUC 0.950; sensitivity 0.764; specificity 0.919). The synthetic minority oversampling method further improved
the performance of the model using combined features (AUC 0.960; sensitivity 0.845; specificity 0.929).
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Conclusions: Clinical and imaging features can be used for automated severity assessment of COVID-19 and can potentially
help triage patients with COVID-19 and prioritize care delivery to those at a higher risk of severe disease.

(JMIR Med Inform 2021;9(2):e24572) doi: 10.2196/24572
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Introduction

COVID-19 has overwhelmed health systems worldwide [1,2].
Considering the various complications associated with
COVID-19 [3-5], methods that help triage patients with
COVID-19 can help prioritize care delivery to individuals at a
high risk of severe or critical illness. COVID-19 severity can
be categorized as follows: mild, ordinary, severe, and critical
[6]. Severe and critical cases require intensive care and more
health care resources than mild and ordinary cases. A high rate
of false-positive severe or critical cases could overwhelm health
care resources (ie, beds in the intensive care unit). Moreover,
delays in identifying severe or critical cases would lead to
delayed treatment of patients at a higher risk of mortality.
Therefore, it is important to identify severe cases as early as
possible, such that resources can be mobilized and treatment
can be escalated.

Chest computed tomography (CT) scans provide important
diagnostic and prognostic information [7,8]; consequently, they
have been the focus of numerous recent studies using machine
learning techniques for COVID-19–related prediction tasks
[9-21]. Previous studies have focused on mortality predictions
[9], diagnosis (identifying COVID-19 cases and differentiating
them from other pulmonary diseases or no disease)
[10-15,19,22-25], and severity assessment and disease
progression [16-18,23]. Most current approaches have used
deep learning methods and imaging features from CT scans
[10-15,19,22-24] and X-ray imaging [18,20,21] with popular
architectures including ResNet [10,12,14,23], U-Net [11,17],
Inception [15,22], Darknet [20], and other convolutional neural
networks (NNs) [18,21,26,27]. Recent reviews provide more
details regarding these architectures [1,28-32].

Although automated assessment of chest CT scans to predict
COVID-19 severity is of great clinical importance, few studies
have focused on it [16-18,23]. Automated assessment of chest
CT scans can substantially reduce the image reading time for
radiologists, provide quantitative data that can be compared
across patients and time points, and can be clinically applicable
in disease detection and diagnosis, progression tracking, and
prognosis [8]. While CT scans are an important diagnostic tool,
previous studies reported that clinical data, such as symptoms,
comorbidities, and laboratory findings, differed between patients

with COVID-19 admitted to intensive care units and those who
were not [33], and these data help predict the mortality risk [9].
A previous study compared the imaging data and clinical data
of 81 patients with confirmed COVID-19 and suggested that
the combination of imaging features with clinical and laboratory
findings facilitated an early diagnosis of COVID-19 [34].

In this study, we used patient clinical data and imaging data to
predict disease severity among patients with COVID-19.
Considering this as a putative binary classification task, we
predicted whether a patient diagnosed with COVID-19 is likely
to have mild or severe disease. This study has 3 objectives. First,
we compared the predictive power of clinical and imaging data
for disease severity assessment by testing three machine learning
models: logistic regression (LR) [35], gradient boosted trees
(eg, XGBoost) [36], and NNs [37]. Second, since our cohort
data are highly imbalanced, with the majority of cases being of
mild/ordinary severity, we tested 4 oversampling methods to
address the imbalanced classification issue [38-41]. Third, we
interpreted the importance of features by using the Shapley
Additive Explanations (SHAP) framework and identified
features with the highest predictive power [42]. The predictive
models evaluated herein yielded high accuracy and identified
predictive imaging and clinical features consistent with those
reported previously.

Methods

Participants
This retrospective study was performed using data collected by
2 hospitals in the Hubei Province, China. The study cohort
consisted of patients with COVID-19 diagnosed through
RT–PCR analysis of nasopharyngeal swab samples. A total of
346 patients from 2 hospitals were retrospectively enrolled,
including 230 (66.5%) patients from Huang Shi Central Hospital
(HSCH) and 116 (33.5%) from Xiang Yang Central Hospital
(XYCH). These patients were admitted to hospital between
January 1 and February 23, 2020, and underwent chest CT upon
initial hospitalization. All participants provided written consent.
This study was approved by the institutional review board of
both hospitals (approval number LL-2020-032-02). Table 1
summarizes the demographic characteristics of the patients in
the 2 cohorts.
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Table 1. Demographic characteristics of the patients in the 2 cohorts (N=346).

VariablesCategory

TotalXYCHb (n=116)HSCHa (n=230)

COVID-19 severity, n (%)

8 (2.3)1 (0.9)7 (3.0)Mild

316 (91.3)104 (89.7)212 (92.2)Ordinary

13 (3.8)6 (5.2)7 (3.0)Severe

9 (2.6)5 (4.3)4 (1.7)Critical

48.5 (15.4)47.5 (17.2)49.0 (14.4)Age (years), mean (SD)

177:16957:59120:110Gender ratio (female to male)

aHSCH: Huang Shi Central Hospital.
bXYCH: Xiang Yang Central Hospital.

Imaging and Clinical Data
Chest CT scans of patients were collected upon initial
hospitalization and preprocessed using intensity normalization,
contrast limited adaptive histogram equalization, and gamma
adjustment, using the same preprocessing pipeline as in our
previous study [43]. We performed lung segmentation in the
chest CT images by using an established model
“R231CovidWeb” [44], which was pretrained using a large,
diverse data set of non–COVID-19 chest CT scans and further
fine-tuned with an additional COVID-19 data set [45]. CT slices

with <3 mm2 of lung tissue were excluded from the data sets
since they provide limited or no information about the lung.
Lung lesions were segmented using EfficientNetB7 U-Net [16],

which was also pretrained using a public COVID-19 data set
[45]. The model indicated four types of lesions: ground-glass
opacities, consolidations, pleural effusions, and other
abnormalities. The volume of each lesion type and the total
lesion volume were calculated from the segmentation maps as
the imaging features and were further normalized by the lung
volume. Figure 1 shows representative results of lung and lesion
segmentation of a mild case and a severe case, wherein the upper
row presents 3D models of the lung and lesions reconstructed
using 3D Slicer (v4.6.2) [46], and the lower row presents axial
chest CT slices with the lung and lesion (green: ground-glass
opacities, yellow: consolidation, and brown: pleural effusion)
boundaries overlaid on the CT slices.
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Figure 1. Representative chest computed tomography scans and the lung and lesion models of (A) a mild COVID-19 case and (B) a severe COVID-19
case.

Clinical data collected from the patients included demographic
characteristics, signs, symptoms, comorbidities, and the
following 18 laboratory findings: white blood cell count

(×109/L), neutrophil count (×109/L), lymphocyte count (×109/L),

hemoglobin (g/L), platelets (×109/L), prothrombin time (s),
activated partial thromboplastin time (s), D-dimer (nmol/L),
C-reactive protein (mg/L), albumin (g/L), alanine
aminotransferase (µkat/L), aspartate aminotransferase (µkat/L),
total bilirubin (µmol/L), potassium (mmol/L), sodium (mmol/L),
creatinine (µmol/L), creatine kinase (µkat/L), and lactate
dehydrogenase (µkat/L).

All features were either continuous or binary—all binary
features include signs, symptoms, and comorbidities. Continuous
features were standardized to be centered around 0 (SD 1).
Figure 2 shows the structure and dimensions of the features
used in this study. These features were grouped into four feature
sets: demographic characteristics and symptoms (a subset of
the available clinical features), clinical features (demographic
characteristics, signs and symptoms, and laboratory findings),
imaging features extracted from the chest CT scans through
deep learning methods, and a combination of clinical and
imaging features.

JMIR Med Inform 2021 | vol. 9 | iss. 2 | e24572 | p. 4http://medinform.jmir.org/2021/2/e24572/
(page number not for citation purposes)

Quiroz et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Structure and dimensions of the feature sets. COPD: chronic obstructive pulmonary disorder.

Severity Assessment Models
We trained and compared three models to predict case severity:
LR (with scikit-learn) [47], gradient boosted trees (XGBoost)
[36], and an NN (fast.ai) [48]. We used the HSCH data (230
samples) for training and validation using 5-fold repeated
stratified cross-validation. The XYCH data (116 samples) were
withheld for testing. We reported the results for the test set with
the area under the curve (AUC) and F1 scores averaged through
independent runs.

Hyperparameter exploration and tuning were performed using
the training/validation set. A random search was performed to
tune the hyperparameters of LR and XGBoost. For NN, we used
a 4-layer, fully connected architecture, with the first hidden
layer having 200 nodes and a second hidden layer of 100 nodes.
We determined the learning rate (0.01) using Learning Rate
Finder [49]. All other NN parameters were set to default values.
We explored a different number of nodes in the first and second
hidden layers, with 200×100 images yielding the best results in
the validation set. Of 346 patients, 167 (48%) had at least one
missing feature (5.7 on average, mostly for the laboratory
findings). Missing feature values were imputed with the mean
for each feature.

Oversampling
The majority of cases in our data set were of mild/ordinary
severity, with only a few cases of severe/critical severity. The
imbalance ratio for the entire data set was 0.07;
training/validation set, 0.05; and testing set, 0.10. We tested
four oversampling methods to increase the ratio of the minority
class: synthetic minority oversampling (SMOTE) [38], Adaptive

Synthetic sampling [39], geometric SMOTE [40], and a
conditional generative adversarial network (CTGAN) model
for tabular data [41]. For these methods, we oversampled the
training set, trained a model using the oversampled data, and
reported results on the same test set. We adjusted the resampling
ratio of all methods to 0.3 (thus setting the imbalance ratio to
0.3). Using CTGAN for oversampling, we fitted the CTGAN
model with the training set, performed sampling to generate
synthetic data, using only synthetic data for the minority class
(severe/critical), and this was repeated until the
minority-to-majority class ratio approached 0.3.

Results

Patient Characteristics
Table 2 summarizes the patients’characteristics. The differences
between the mild/ordinary and severe/critical groups were
assessed with the Mann-Whitney U test and Fisher exact test.
The median age of the entire cohort was 49 (IQR 38-59) years.
The median age of patients with mild/ordinary COVID-19 was
48.5 (IQR 37.0-57.3) years and that of patients with
severe/critical COVID-19 was 63.0 (IQR 52.5-69.5) years. We
observed significant differences between patients with
severe/critical COVID-19 and those with mild/normal
COVID-19 with respect to age (P<.001) and comorbidities
including cardiovascular disease (P=.002), hypertension
(P=.002), diabetes (P=.01), and cancer (P=.01). From among
all signs and symptoms, an increased respiration rate (P=.002)
and dyspnea (P<.001) were more common among patients with
severe/critical COVID-19 than among those with mild/ordinary
COVID-19.
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Table 2. Demographics and baseline characteristics of patients with confirmed COVID-19 (N=346). Symptoms including cardiovascular disease and
shortness of breath were more likely in cases of severe/critical COVID-19.

PatientsCharacteristics

P valueaSevere/criticalMild/ordinaryAll patients

N/Ab22324346Sample size, n

Demographic characteristics

<.00163.0 (52.5-69.5)48.5 (37.0-57.3)49.0 (38.0-59.0)Age (years), median (IQR)

.38Gender, n (%)

9 (41.0)168 (51.9)177 (51.2)Female

13 (59.0)156 (48.1)169 (48.8)Male

Comorbidities, n (%)

.0028 (36.0)32 (9.9)40 (11.6)Cardiovascular disease

.016 (27.0)28 (8.6)34 (9.8)Diabetes

.0029 (41.0)42 (13.0)51 (14.7)Hypertension

.152 (9.0)9 (2.8)11 (3.2)Chronic obstructive pulmonary dis-
ease

N/A0 (0)7 (2.2)7 (2.0)Chronic liver disease

.201 (5.0)3 (0.9)4 (1.2)Chronic kidney disease

.013 (14.0)5 (1.5)8 (2.3)Cancer

Signs, median (IQR)

.1138.1 (37.1-39)37.8 (37-38.3)37.8 (37-38.3)Body temperature

.1190 (80-101.8)85 (80-90)85 (80-90)Heart rate

.00221 (20-28)20 (20-21)20 (20-21)Breaths per minute

.07127 (120-146.5)120 (118.5-130.0)120 (119.5-130.0)Blood pressure high

.0879.5 (71-89)74 (69-80)74 (69-80)Blood pressure low

Symptoms, n (%)

.5919 (86.0)256 (79.0)275 (79.5)Fever

.2418 (82.0)220 (67.9)238 (68.8)Cough

.2510 (45.0)108 (33.3)118 (34.1)Fatigue

<.0019 (41.0)23 (7.1)32 (9.2)Dyspnea

.723 (14.0)35 (10.8)38 (11.0)Sore muscle

.473 (14.0)31 (9.6)34 (9.9)Headache

.173 (14.0)20 (6.2)23 (6.6)Diarrhea

.112 (9.0)7 (2.2)9 (2.6)Nausea

aP values were compared using mild/ordinary and severe/critical cases were obtained with Mann-Whitney U test and Fisher exact test. As no patient
in our cohort had a stomach ache, this feature was not factored into our model.
bN/A: not applicable.

Prediction of COVID-19 Severity at Baseline
Data from the HSCH (230 patients, 66.5%) were used for
training and validation, and data from the XYCH (116 patients,
33.5%) were used as the independent test set. We compared
model performance using four feature sets: demographic
characteristics and symptoms, clinical features, imaging features,
and a combination of clinical and imaging features (Figure 2).
The optimal classification threshold for the sensitivity,
specificity, and F1 score was identified using the Youden index

[50]. Table 3 shows the severity assessment performance of an
LR model, an XGBoost model, and a 4-layer fully connected
NN model. Overall, LR models outperformed the other
evaluated models, achieving the highest AUC, F1 score, and
sensitivity for all four feature sets. While imaging features
yielded substantially better results than clinical features, the
combination of clinical and imaging features benefited only the
LR model. Hence, the LR model displayed the best performance
(AUC 0.950; F1 score 0.604; sensitivity 0.764; specificity 0.919)
upon using the combination of clinical and imaging features.
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Table 3. Results of using different feature sets (values in italics indicate the best results).

SpecificitySensitivityF1 scoreArea under the curveFeature sets and model

Demographics + symptoms

0.8250.6270.3820.819LRa

0.9560.3180.3630.763XGBb

0.8800.4270.3320.730NNc

Clinical

0.9060.4550.3870.848LR

0.9620.2270.2860.787XGB

0.8810.3090.2370.647NN

Imaging

0.9010.8180.5930.926LR

0.8960.6360.4860.904XGB

0.9360.6000.5550.845NN

Clinical + imaging

0.9190.7640.6040.950LR

0.9650.4730.5200.904XGB

0.9070.4860.4130.782NN

aLR: logistic regression.
bXGB: XGBoost.
cNN: neural network.

Prediction at Baseline Severity With Oversampling
Since the cohort was highly imbalanced, with the majority of
cases being of mild/ordinary severity (imbalance ratio 0.07),
we applied four oversampling methods to increase the ratio of
severe/critical cases: SMOTE [38], Adaptive Synthetic sampling
[39], geometric SMOTE [40], and CTGAN [41]. Figure 3 shows
the differences in AUC values and F1 scores obtained through
oversampling, with negative values indicating a reduction in
AUC or F1 scores and positive values indicating the opposite

trend. Oversampling resulted in greater improvements in the
F1 score than in the AUC. The greatest improvement in the F1
score (0.09) was observed for the clinical features (clinical)
with XGBoost and SMOTE (XGB-smo); however, the AUC
decreased by 0.08 with the same method. Considering both
AUC and F1 scores simultaneously, the combination of clinical
and imaging features (clinical + imaging) benefited most from
oversampling. In particular, the AUC and F1 score for clinical
+ imaging features were increased by 0.01 and 0.06,
respectively, using LR with SMOTE (LR-smo).
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Figure 3. Differences in the (A) area under the curve values and (B) F1 scores with oversampling and without oversampling. Positive values (blue)
indicate oversampling resulting in higher values, negative values (red) indicating oversampling resulting in lower values. smo: synthetic minority
oversampling; ada: Adaptive Synthetic sampling; geo = geometric synthetic minority oversampling; gan: conditional generative adversarial network;
LR: logistic regression; NN: neural network; XGB: XGBoost.

Table 4 presents the best results of the evaluated models using
various feature sets after oversampling. Oversampling did not
improve the performance of the LR model for the demographic
characteristics + symptoms features, but SMOTE and geometric
SMOTE increased the F1 scores for clinical features and
imaging features, respectively. Notably, the performance of the

LR model (Table 3) was optimal for the combination of clinical
and imaging features, with improvements in the AUC (0.960
vs 0.950), F1 score (0.668 vs 0.604), sensitivity (0.845 vs 0.764),
and specificity (0.929 vs 0.919), after oversampling with
SMOTE.

Table 4. The best results obtained using different feature sets after oversampling (arrow indicates improved performance after oversampling).

ResultsFeature sets

SpecificitySensitivityF1Area under the curveModel

0.8250.6270.3820.819LRa,bDemographics + symptoms

0.9020.518 ↑0.421 ↑0.837LR – smocClinical

0.904 ↑0.8180.599 ↑0.926LR – geodImaging

0.929 ↑0.845 ↑0.668 ↑0.960 ↑LR – smoClinical + imaging

aLR: logistic regression.
bNo improvement after oversampling.
csmo: synthetic minority oversampling.
dgeo: geometric synthetic minority oversampling.

Model Interpretation
We used the SHAP framework [42] to interpret the output of
the best-performing LR model through SMOTE oversampling.
This framework helps determine the importance of a feature by
comparing model predictions with or without the feature.

Figure 4 shows a SHAP plot summarizing how the values of
each feature impact the model output of the LR model using all
features (clinical and imaging features), with features sorted in
descending order of importance. Figure 4A shows the feature
importance scores sorted by the average impact on the model

output, and Figure 4B shows the SHAP values of individual
features. Furthermore, 4 imaging features, including
consolidation volume (consolidation_val), total lesion volume
(lesion_vol), ground-glass volume (groundglass_vol), and
volume of other abnormalities (other_vol), are among the top
6 features, their high values increasing the likelihood of the
model to predict a severe/critical COVID-19 case. Low albumin
levels, high C-reactive protein levels, a high leukocyte count,
and low lactate dehydrogenase levels make the model more
likely to predict a critical/severe COVID-19 case. Moreover,
older age and male gender increased the likelihood of the model
to predict severe/critical COVID-19 cases.
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Figure 4. (A) Feature importance, evaluated using the mean SHAP (Shapely Addictive Explanations) values, in the logistic regression (LR) model
using all features. (B) SHAP plot for the LR model using all features. Each point represents a feature instance, and the color indicates the feature value
(red: high, blue: low). Negative SHAP values indicate feature instances contributing to a model output of a mild/ordinary COVID-19 case, whereas
positive SHAP values indicate features contributing to a model output of a severe/critical COVID-19 case.

Discussion

Principal Findings
In our cohort of patients with COVID-19, fever, cough, and
fatigue were the most common symptoms, consistent with
previous studies on COVID-19 [34]. The incidence of dyspnea
and an increased respiratory rate was significantly higher in
severe cases. Some symptoms such as sore muscle, headache,
diarrhea, and nausea were present in 9–38 (2.6%-11.0%) of
patients and did not differ significantly between mild and severe
cases. Patients with severe COVID-19 tended to be of older age
and had comorbidities (including cardiovascular disease,
diabetes, hypertension, and cancer), concurrent with previous
studies [1,3,5,34]. We observed no difference between males
and females in our cohort, although the model did rely on gender
for increasing the likelihood of predicting a severe/critical case.

A combination of clinical and imaging features yielded the best
performance. Imaging features had the strongest impact on
model output, with high values of consolidation volume, lesion
volume, ground-glass volume, and other volume increasing the
likelihood of the model to predict a severe case of COVID-19.
Ground-glass opacity is an important feature of COVID-19 [14].
The inclusion of clinical features further improved the accuracy
of severity assessment, with findings such as albumin levels,
C-reactive protein levels, thromboplastin time, white blood cell
counts, and lactate dehydrogenase levels being amongst the
most informative features, concurrent with a previous study that
also used laboratory findings to predict COVID-19–related
mortality [9]. Furthermore, C-reactive protein was associated
with a significant risk of critical illness in a study of 5279
patients with laboratory-confirmed COVID-19 [5]. Our model

also relied on symptoms and patient characteristics such as
gender, dyspnea, body temperature, diabetes, and respiratory
rate for differentiating between mild and severe cases. Clinical
features alone (demographics, signs, symptoms, and laboratory
results), resulted in low sensitivity. Therefore, dependence on
only clinical features poses the risk of predicting mild/ordinary
COVID-19 among patients at the risk of critical/severe illness.

Oversampling yielded mixed results, although it revealed the
best model performance in our study. The best model without
oversampling (ie, the LR model) also yielded remarkable
findings (AUC 0.950; F1 0.604; sensitivity 0.764; specificity
0.919), and SMOTE oversampling further improved the model
performance (AUC 0.960; F1 0.668; sensitivity 0.845;
specificity 0.929). Considering the propensity of health care
data to be imbalanced [51-54], our results suggest the need for
further analysis of oversampling methods for medical data sets.
Self-supervision [55,56] may also help improve the performance
of models using imbalanced medical data sets; in particular,
future studies should evaluate the impact of self-supervision on
tabular medical data.

Clinical Implications
The rapid spread of COVID-19 has overwhelmed health care
systems, necessitating methods for efficient disease severity
assessment. Our results indicate that clinical and imaging
features can facilitate automated severity assessment of
COVID-19. While our study would benefit from a larger data
set, our results are encouraging because we trained the models
with data from one hospital only and tested them using an
independent data set from another hospital, albeit with high
predictive accuracy.
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The proposed methods and models would be useful in several
clinical scenarios. First, the proposed models are fully automated
and can expedite the assessment process, saving time in reading
CT scans or evaluating patients through a scoring system. These
models can be useful in hospitals that are overwhelmed by a
high volume of patients during the outbreak by identifying
severe cases as early as possible, such that treatment can be
escalated. Our models, with low sensitivity and high specificity,
are best used in combination with a model with high sensitivity
and low specificity. A high-sensitivity model can identify
patients with severe COVID-19, and our model (with high
specificity) could identify false-positives; that is, patients with
mild COVID-19 who were wrongly identified as having severe
COVID-19.

Our models were developed and validated using 4 different
feature sets, providing the flexibility to accommodate patients
with different available data. For example, if a patient has
neither a chest CT scan nor a blood test, the model based on
demographics and symptoms can still achieve reasonably good
prediction performance (AUC 0.819; sensitivity 0.627;
specificity 0.825). Availability of the patients’ clinical and
imaging features can improve the model’s sensitivity and
specificity, with the potential to triage patients with COVID-19
(eg, prioritizing care for patients at a higher risk of mortality).

Limitations and Future Prospects
Our data set consisted of 346 patients with confirmed
COVID-19, with data on 230 (66.5%) patients from HSCH used
for training/validation and data on 116 (33.5%) patients from
XYCH used for testing. Our data set was highly imbalanced,
which could have made models overfit to the majority class. In
addition, only the baseline data for patients were used in this
study; therefore, we could not assess how early can COVID-19
progression be detected. We intend to further investigate the
longitudinal data and design computational models to predict
disease progression in our future studies.

While we explored various NN configurations, the results were
not comparable to those of LR, presumably owing to the limited
data set and the low dimensionality of the feature vectors. In
this study, we used a complex NN model (EfficientNetB7

U-Net) to extract the imaging features and tested various models
for classification using the combination of imaging features and
tabular clinical data. Such 2-stage processing may simplify the
classification task for these models, thereby reducing the need
for another NN model for classification owing to low
dimensionality of the features. Further exploration of NN
architectures for tabular data would likely improve the
performance of the NN model, especially if more data are
available.

During training and validation, the performance of the models
across cross-validation folds showed high variance owing to
the small number of positive cases in the validation fold. A
larger dataset would improve the reliability and robustness of
the models. The data also consisted of COVID-19 cases which
were confirmed through RT–PCR analysis of nasopharyngeal
swabs. As such, our model is limited to differentiating
severe/critical cases from mild/ordinary cases of COVID-19
and not for diagnosing COVID-19 or differentiating COVID-19
cases from those of other respiratory tract infections. Further
studies are required to determine the efficacy of the severity
assessments, including data from asymptomatic patients.

Using the Prediction Model Study Risk of Bias Assessment
Tool [57], our models are at a high risk of bias owing to a
potential bias in the participants domain (the cohort including
participants [mean age 48.5 years, SD 15.4 years] who were
admitted to hospitals) and the analysis domain (small sample
size and class imbalance). Our models are at a low risk of bias
in the predictor and outcome domains.

Conclusions
This study presents a novel method for severity assessment of
patients diagnosed with COVID-19. Our results indicate that
clinical and imaging features can be used for automated severity
assessment of COVID-19. While imaging features had the
strongest impact on the model’s performance, inclusion of
clinical features and oversampling yielded the best performance
in our study. The proposed method may potentially help triage
patients with COVID-19 and prioritize care for patients at a
higher risk of severe disease.
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