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Abstract

Background: Postoperative length of stay is a key indicator in the management of medical resources and an indirect predictor
of the incidence of surgical complications and the degree of recovery of the patient after cancer surgery. Recently, machine
learning has been used to predict complex medical outcomes, such as prolonged length of hospital stay, using extensive medical
information.

Objective: The objective of this study was to develop a prediction model for prolonged length of stay after cancer surgery using
a machine learning approach.

Methods: In our retrospective study, electronic health records (EHRs) from 42,751 patients who underwent primary surgery
for 17 types of cancer between January 1, 2000, and December 31, 2017, were sourced from a single cancer center. The EHRs
included numerous variables such as surgical factors, cancer factors, underlying diseases, functional laboratory assessments,
general assessments, medications, and social factors. To predict prolonged length of stay after cancer surgery, we employed
extreme gradient boosting classifier, multilayer perceptron, and logistic regression models. Prolonged postoperative length of
stay for cancer was defined as bed-days of the group of patients who accounted for the top 50% of the distribution of bed-days
by cancer type.

Results: In the prediction of prolonged length of stay after cancer surgery, extreme gradient boosting classifier models
demonstrated excellent performance for kidney and bladder cancer surgeries (area under the receiver operating characteristic
curve [AUC] >0.85). A moderate performance (AUC 0.70-0.85) was observed for stomach, breast, colon, thyroid, prostate, cervix
uteri, corpus uteri, and oral cancers. For stomach, breast, colon, thyroid, and lung cancers, with more than 4000 cases each, the
extreme gradient boosting classifier model showed slightly better performance than the logistic regression model, although the
logistic regression model also performed adequately. We identified risk variables for the prediction of prolonged postoperative
length of stay for each type of cancer, and the importance of the variables differed depending on the cancer type. After we added
operative time to the models trained on preoperative factors, the models generally outperformed the corresponding models using
only preoperative variables.

Conclusions: A machine learning approach using EHRs may improve the prediction of prolonged length of hospital stay after
primary cancer surgery. This algorithm may help to provide a more effective allocation of medical resources in cancer surgery.
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Introduction

Cancer is a major burden on public health worldwide [1], and
the amount of health care resources associated with its treatment
is constantly increasing [2]. The major strategies of cancer
treatment include surgery, chemotherapy, and radiation therapy,
with surgery being the most common treatment approach.
Compared with other cancer-related management strategies,
cancer surgery requires greater use of health care resources and,
consequently, greater medical costs [3]. Postoperative length
of stay (POLOS) in the hospital is one of the reasons for the
cost increase. As patients with cancer are discharged after full
recovery from surgery, POLOS is also an indirect indicator of
surgical recovery and postoperative complications in patients
with cancer. That is, a prolonged POLOS (PPOLOS) indicates
a delayed recovery after cancer surgery.

In previous literature, factors associated with PPOLOS have
been evaluated for several cancer surgeries [4-8], and risk factors
such as age, malnutrition, underlying diseases (including
diabetes, cardiovascular diseases, renal dysfunction, and
respiratory disease), and common blood count results (such as
neutrophil-lymphocyte ratio, albumin, and hemoglobin) have
been reported. However, the majority of studies have used a
small number of subjects and have not evaluated a wide variety
of clinical factors. Thus, there are many limitations to clinical
application of the results of those studies.

Currently, most medical institutions store electronic health
records (EHRs) and use them to improve the quality and
efficiency of hospitals [9,10]. Many recent studies using EHRs
have reported that machine learning–based models outperform
statistical models in predicting outcomes and adverse events
[11,12].

In this study, we assessed whether PPOLOS of patients with
cancer can be predicted with machine learning approaches using
EHR data and evaluated the effect of preoperative factors on
the prediction of PPOLOS for each type of cancer.

Methods

Data Source and Subjects
Our retrospective study was conducted using EHR data from
the Korea Cancer Big Data Platform (K-CBP), which was
constructed in the National Cancer Center, Goyang, Republic
of Korea. Details of the K-CBP have been described elsewhere
[13]. Briefly, the K-CBP is a multidatabase framework that
contains various medical information including clinical and
genomic data and medical images. In this study, de-identified

clinical data obtained from patients with cancer who visited the
National Cancer Center were used. We extracted data from the
K-CBP from 61,743 subjects with 19 cancer types who
underwent primary cancer surgery between January 1, 2000,
and December 31, 2017. The inclusion criteria for patients were
as follows: (1) age ≥18 years, (2) surgery performed with general
anesthesia, and (3) first instance of surgery for primary cancer.
We excluded subjects who had emergency cancer surgery,
cancer removal with local anesthesia, surgery for multiple
primary cancers, or missing or typo-filled records for surgery,
pathology, and hospitalization. Cancer types with fewer than
100 total cases were also excluded. Finally, we retrieved data
from 42,751 subjects with 17 cancer types, including lip, oral
cavity, and pharynx (oral; International Classification of
Diseases codes C00-C14); esophagus (C15); stomach (C16);
colon and rectum (colon; C18-C20); liver (C22); gallbladder
and biliary tract (gallbladder; C23 and C24); pancreas (C25);
larynx (C32); lung (C33 and C34); breast (C50); cervix uteri
(C53); corpus uteri (C54); ovary (C56); prostate (C61); kidney
(C64); bladder (C67); and thyroid (C73).

Variables from EHRs
We examined several variables from diverse categories within
EHRs, such as records of surgeries, blood tests, and medications,
as well as pathologic reports and nursing charts. We only used
medical data recorded within 6 months prior to surgery. For
data on underlying diseases, only preoperative evaluation data
were used. In the case of repeated data such as blood and
biochemical tests, only the data recorded just before surgery
was used in the analysis. For simplicity of interpretation, we
reorganized variables into five major categories as follows: (1)
surgical and cancer factors, (2) underlying diseases and
functional laboratory assessments, (3) general assessments, (4)
medications, and (5) social factors. Each major category
consisted of one to five subcategories. Details of variables are
described in Table 1. There were two types of missing values
in our variables: missing numeric values were replaced by the
middle value, and missing categorical values were replaced with
“value unknown.” We conducted the min-max normalization
for obtained whole variables. It should be noted that we basically
used preoperative variables for the prediction of PPOLOS.
However, tumor staging represented by T/N stage—based on
the TNM staging system of the American Joint Committee on
Cancer [14,15]—was extracted from pathologic reports because
of the lack of structured T/N stage information in preoperative
images. In addition, we obtained the operative time as a typical
intraoperative factor and analyzed its effect on the prediction
of PPOLOS.
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Table 1. Preoperative clinical variables.

VariablesMajor category and subcategory

Surgical and cancer factors

Surgery • Types of surgery
• Co-operations
• Surgeons

Cancer stage • T/N stages

Underlying diseases and functional laboratory assessments

Underlying diseases and related laboratory parameters • Liver diseases (history of liver disease, hepatitis viral tests, aspartate
aminotransferase, alanine aminotransferase, bilirubin, alkaline phos-
phatase, gamma-glutamyl transferase)

• Diabetes mellitus (history of diabetes, HbA1c
a, glucose, urine glucose)

• Renal disease (history of renal disease, BUNb, creatinine)
• Cardiac disease (history of cardiac disease)
• Hypertension (history of hypertension)
• Allergic disease (history of allergic disease)
• Tuberculosis (history of tuberculosis)
• Cancer (history of cancer)
• Mental disorder (history of mental disorder)

Cardiopulmonary functions • Pulmonary function (FVCc, FEV1
d)

• Cardiac function (EFe, E/Af, RVSPg)

Nutritional factors • Degree of appetite
• Albumin, globulin, A/Gh ratio, protein
• Cholesterol (total, LDLi, HDLj, triglyceride)
• Lymphocyte count

Inflammatory factors • hs-CRPk, ESRl, fibrinogen

Initial laboratory parameters • Blood count (except lymphocyte count)
• Electrolytes, chemistry tests
• Urinalysis
• Coagulation tests
• Hormone tests
• ABO blood type

General assessments

Demographic characteristics and anthropometric factors • Age
• Sex
• Height, weight, BMI
• Ambulation, ECOGm performance
• Type of admission
• History of previous operation
• Family history of diseases
• Degree of diseases insight

Vital signs • Blood pressure (systolic, diastolic)
• Body temperature
• Breath rate
• Pulse rate

Substance exposure • Alcohol
• Smoking
• Alternative therapy
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VariablesMajor category and subcategory

• Gastroenteric, cardiovascular, respiratory, neurologic, dermatologic,
and urinary symptoms

• Sleep and fatigue
• Mood
• Pain

Symptoms

Medications

• MedicationsDrugs

Social factors

• Marriage, child, cohabitationFamily

• Level of educationEducation

• Type of religionReligion

• Type of jobOccupation

aHbA1c: hemoglobin A1c.
bBUN: blood urea nitrogen.
cFVC: forced vital capacity.
dFEV1: forced expiratory volume in the first second of expiration.
eEF: ejection fraction.
fE/A: ratio of the early (E) to late (A) ventricular filling velocities.
gRVSP: right ventricular systolic pressure.
hA/G ratio: albumin to globulin ratio.
iLDL: low-density lipoprotein.
jHDL: high-density lipoprotein.
khs-CRP: high-sensitivity C-reactive protein.
lESR: erythrocyte sedimentation rate.
mECOG: Eastern Cooperative Oncology Group.

Definition of PPOLOS
In the literature, PPOLOS is defined in a variety of ways
[7,8,16,17]. This study focused on predicting which patients
with cancer will use a significant amount of hospital resources.
Therefore, the PPOLOS study group was defined as the subset
of patients who used 50% of the total ward after surgery.
Specifically, we calculated the total number of postoperative
bed-days by considering the respective length of stay between
surgery and discharge for patients with each type of cancer.
Next, we arranged the patients by POLOS from shortest to
longest. Then, we defined the long-term hospitalized patient
group, which occupied half of the total hospital bed-days, as
the PPOLOS group.

Models
To predict PPOLOS, we employed three models: (1) extreme
gradient boosting (XGB) classifier [18], (2) multilayer
perceptron (MLP) [19], and (3) logistic regression (LR). XGB
classifier is one of the most widely used machine learning
algorithms. It is a high-performance classifier based on gradient
boosting that trains decision trees in succession such that
residuals of earlier trees are corrected by later ones. MLP is a
type of feed-forward neural network in which all computation
is directed from the input layer to the output layer. The model

is built on the architecture of at least three layers, with one input
layer, variable hidden layers, and one output layer.
Backpropagation is used to find optimal layer weights for the
model [20]. LR is a commonly used classification algorithm to
assign observations to a discrete set of classes. Unlike the
majority of LR algorithms yielding continuous values, its outputs
are converted by the sigmoid function into probabilities mapped
to the classes. These models have been utilized in numerous
medical and clinical studies to analyze EHRs, vital signals, and
images, as well as to support medical decisions [21-24]. In our
study, the MLP model consisted of a self-dot attention layer
and two fully connected layers. We evaluated the performance
of the model using 5-fold cross-validation. In each fold, training
and test sets were divided in an 8:2 ratio.

Results

Ethics Statement
The research protocol was approved by the Institutional Review
Board of the National Cancer Center (IRB No. NCC2018-0113).
All data used in this retrospective study were de-identified.

Characteristics of the Subjects
Multimedia Appendix 1 shows the characteristics of each cancer
population. Stomach cancer surgery (n=8929) was the most
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common surgery in this study, followed by breast (n=8918),
colon (n=7449), thyroid (n=5071), lung (n=4455), and liver
(n=1342) cancer surgeries. The average age of the patients was
56.6 years, and women accounted for 55.75% (23,835/42,751)
of the total cancer cases. Oral (mean 22.2 days, SD 22.3 days,
median 16.9 days), esophageal (mean 22.1 days, SD 22.5 days,
median 15.8 days), gallbladder (mean 20.7 days, SD 14.8 days,
median 16.9 days), and pancreatic (mean 21.0 days, SD 15.1
days, median 16.9 days) cancers were associated with relatively
long POLOS, whereas thyroid (mean 3.3 days, SD 2.2 days,
median 3.0 days) and breast (mean 5.4 days, SD 6.5 days,
median 4.1 days) cancers were associated with relatively short
POLOS. The respective PPOLOS thresholds and proportions
of patients with PPOLOS for each cancer type were as follows:
stomach (10 days; 2481/8929, 27.80%), breast (6 days;
2354/8918, 26.40%), colon (11 days; 2143/7449, 28.77%),
thyroid (4 days; 781/5071, 15.40%), lung (12 days; 1195/4455,
26.28%), liver (15 days; 320/1342, 25.34%), prostate (9 days;
312/1054, 29.60%), ovary (18 days; 266/1016, 26.18%), kidney
(9 days; 162/767, 21.12%), esophageal (24 days; 184/761,
24.18%), cervix uteri (16 days; 150/706, 21.25%), corpus uteri
(12 days; 120/535, 22.43%), oral (27 days; 113/528, 21.40%),
gallbladder (25 days; 127/499, 25.45%), pancreatic (23 days;
99/365, 27.12%), bladder (11 days; 35/233, 15.02%), and larynx
(31 days; 24/123, 19.51%).

Prediction Performance
Multimedia Appendix 2 shows the performance of our models
in predicting PPOLOS with four metrics: accuracy, specificity,
sensitivity, and area under the receiver operating characteristic
curve (AUC). When evaluating the AUC metrics for our XGB
classifiers, the models performed excellently for kidney and
bladder cancers (AUC >0.85). A moderate performance (AUC
0.70-0.85) was observed for stomach (AUC 0.83), breast (AUC
0.83), colon (AUC 0.71), thyroid (AUC 0.79), prostate (AUC
0.78), cervix uteri (AUC 0.78), corpus uteri (AUC 0.79), and
oral (AUC 0.79) cancers. In contrast, the models had relatively
low performance for lung, liver, ovary, esophageal, gallbladder,
pancreatic, and larynx cancers (AUC <0.7).

Receiver operating characteristic (ROC) curves of major cancers
are shown in Figure 1. For cancers with fewer than 4000 cases,
we found that classification performance did not vary
significantly between the different models. However, for cancers
with more than 4000 cases (stomach, breast, colon, thyroid, and
lung cancers), the performance of XGB classifiers was superior
to that of the other models. For the metric of sensitivity, which
represents the prediction of cases with PPOLOS, MLP showed
better performance than the other methods.

Figure 1. Receiver operating characteristic (ROC) curves of all models for major cancers. For each subfigure, a legend shows the average area under
the ROCs with their standard deviations on 5-fold cross-validations for the models. Solid lines represent the plots of the average area under the ROCs,
covering the plots of all area under the ROCs by its shaded regions. MLPAtt: multilayer perceptron with attention mechanism; XGB: extreme gradient
boosting.

Risk Factors of PPOLOS
We identified the most important variables for each model by
examining the respective coefficient or attention score.

Multimedia Appendix 3 shows the top 10 important variables
from the models of the five cancers with the highest number of
patients (stomach, breast, colon, thyroid, and lung cancers).
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For each type of cancer, various risk factors were identified in
the three models. The top 10 risk factors identified in the five
cancers in the XGB classifier model were as follows:

• stomach cancer: albumin and globulin, urinary symptoms,
surgeries (total gastrectomy and laparoscopy-assisted distal
gastrectomy), forced expiratory volume in the first second
of expiration, absolute neutrophil count, zolpidem use, and
N stage;

• breast cancer: urinary symptoms, surgeries (modified radical
mastectomy and breast-conserving surgery), surgeon,
globulin, famotidine use, N stage, marriage, and
metoclopramide use;

• colon cancer: surgeon, co-operation, albumin, surgeries
(abdominoperineal resection and laparoscopic anterior
resection), urinary symptoms, marriage, N stage, and urine
white blood cell count;

• thyroid cancer: N stage, urinary symptoms, surgery (total
thyroidectomy), albumin and globulin, ejection fraction,
surgeon, drinking, and marriage; and

• lung cancer: albumin and globulin, sex, nonsmoker, absolute
neutrophil count, theophylline use, route of admission,
marriage, and hemoglobin.

No universal set of risk factors was present in subjects with
PPOLOS, as the importance of a given variable was dependent
on both the type of cancer and the model used.

Contribution of the Variable Group to the PPOLOS
Prediction
We plotted all variable scores derived from XGB classifier for
nine types of cancer with the largest subject populations in
Figure 2. In this figure, a bar represents the cumulative scores
in a major category divided into colors corresponding to
subcategories, with the sum of their cumulative scores equal to
1. We found that various variables contribute to the prediction
of PPOLOS, which are different for each type of cancer.

Figure 2. Variable scores derived from extreme gradient boosting (XGB) classifier for the top nine cancers of the patient population. Each subfigure
shows cumulative scores of all variables derived from XGB classifier for a single cancer, where each bar is segmented into subcategories by colors and
represents the cumulative score of a major category.

We note that variables in major category A (ie, surgical and
cancer factors) that occupy more than 20% of the total
proportion influence the prediction of PPOLOS for the top four
cancers of the patient population (ie, stomach, breast, colon,
and thyroid) more than for the other five cancers. Major category
B (ie, underlying diseases and functional laboratory assessments)
contains the most influential factors for all nine cancers.

Impact of the Operative Time
To evaluate the impact of intraoperative factors on the PPOLOS
prediction, we incorporated operative time, a representative
indicator of surgery quality, to the models trained on
preoperative factors. We evaluated changes in the classification
performance of PPOLOS in the model including the operative
time. The average AUC increased from 0.74 to 0.76 for all
models. Figure 3 shows the prediction performance of XGB
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classifiers. The yellow bar shows the AUC of the XGB classifier
trained with only preoperative variables and the blue bar shows
the AUC of the model trained with the operative time in addition
to preoperative variables. The model trained with preoperative

variables and operative time generally outperformed the models
trained without operative time. For bladder and larynx cancer,
adding operative time to the models had no benefit in predicting
PPOLOS.

Figure 3. Performance of the extreme gradient boosting (XGB) classifier model for the prediction of prolonged postoperative length of stay by cancer
type. The yellow bar indicates the model trained only using preoperative variables and the blue bar represents the model trained with operative time in
addition to preoperative variables. AUC: area under the receiver operating characteristic curve.

Discussion

Principal Findings
In cancer surgery, POLOS is both an important indicator for
hospital resource use and an indirect predictor of the incidence
of surgical complications and recovery of systemic conditions
[25,26]. To allocate resources related to cancer surgery properly
and predict the time required for recovery after surgery, an
evaluation of whether POLOS can be predicted using
preoperative data must be performed. Previous statistical studies
have focused on identifying risk factors of PPOLOS from among
the main variables. However, to develop an application that
works on EHRs, an engineering approach is needed. To predict
complex outcomes such as PPOLOS, data containing as many
variables as possible must be used and data processing must be
limited to the application in the medical field.

In the present study, we showed that PPOLOS could be partially
predicted using preoperative data from EHRs for various cancer
types. Acceptable predictive performance of PPOLOS (AUC
>0.8) was observed for stomach, breast, prostate, kidney, and
bladder cancers. For lung, liver, ovarian, esophageal, and
pancreatic cancers, the predictive performance of PPOLOS was
relatively low. During surgeries performed on patients with
stomach, breast, prostate, kidney, and bladder cancers, cancer
metastasis beyond the affected organ is relatively uncommon
and the extent of surgical removal is generally considered to be
uniform. In other words, in surgeries for these cancers, organ
removal is the most common surgical method, and patients with
cancer beyond the organ are often not candidates for surgery as
the initial treatment strategy. However, surgeries for lung, liver,
ovarian, esophageal, and pancreatic cancers are considered to
vary significantly in practice. We assume that the prediction of

recovery after surgery and PPOLOS may be possible for cancer
surgery with insignificant variations in the surgical methods or
with limited extent of the surgical field.

We identified the top-ranking variables associated with PPOLOS
for major cancers and confirmed that the following factors
correlated with PPOLOS: malnutrition (albumin and globulin),
cancer stage, type of surgery, pulmonary function, and BMI
[4-8]. Doxofylline and theophylline, which were used for
treatment of pulmonary diseases, were associated with PPOLOS
after stomach and lung cancer surgeries, respectively. Digestive
drugs (famotidine, metoclopramide, and others) and pain
medications (acetaminophen and tramadol) also correlated with
PPOLOS for various cancers. It could be interpreted that the
underlying conditions associated with the use of drugs correlate
with PPOLOS, but further research is needed to confirm that
the effects of certain drugs contribute to PPOLOS. We further
identified that social factors—including marriage, job, and
education—affect the hospital discharge time. In a previous
study [27], marital status was found to be a factor affecting
health care utilization among Medicare beneficiaries.

We categorized the factors that affect PPOLOS and visually
identified that there are differences in the relative weight of the
factors affecting PPOLOS by cancer types (Figure 2). The
effects of surgical factors were relatively high in surgeries for
stomach, breast, colon, and kidney cancers. The cancer stage
contributed the most to the determination of PPOLOS after
thyroid, breast, and ovarian cancer surgeries. For liver cancer,
underlying diseases and related laboratory parameters were a
major factor when determining PPOLOS. Nutritional factors
largely contributed to determining PPOLOS for stomach cancer.
Compared with other cancer surgeries, subjective symptoms
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were an important factor in predicting PPOLOS after breast and
thyroid cancer surgeries.

In this study, we aimed to predict the length of the hospital stay
after surgery. However, owing to various factors occurring
during surgery, it is difficult to determine POLOS. As it is
difficult to evaluate the events that occur during surgery using
quantitative data from EHRs, we analyzed the effect of operative
time. It was observed that the predictive performance of
PPOLOS increased markedly for colon, liver, ovarian, and
esophageal cancer surgeries. It is believed that a model that
predicts POLOS more effectively can be generated by
combining preoperative data with intraoperative data, such as
vital signs during anesthesia, loss of blood, and surgical
instruments used.

Predictive modeling using data from EHRs is expected to
improve the quality of health care and allocation of medical
resources. However, studies using conventional statistical
models have mainly focused on identifying risk factors for
length of stay in hospital. Statistical models have limitations in
processing numerous unrefined variables and in their application
to real-world data. In recent years, machine learning has been
used to develop predictive models [11,12]. In this study, XGB
classifier and MLP showed slightly better performance than the
LR model for surgeries of stomach, breast, colon, thyroid, and
lung cancers, which each had more than 4000 cases. Therefore,
we believe that machine learning models will be actively used

as tools for predicting complex outcomes such as POLOS in
the medical field.

One limitation of our study pertains to the fact that variables of
data derived from the EHRs of a single cancer center in the
Republic of Korea were used. Another limitation is that we used
typical methods such as XGB classifier, MLP, and LR. For
future study, we need to consider using multicenter EHR data
and other methods for analysis. Also, we analyzed data from
patients undergoing cancer surgery over a period of 18 years,
during which there were likely to have been changes in patient
characteristics, clinical practices (such as surgical methods),
and patient care after surgery. These temporal trends may have
confounded our models’ performance.

If our research results are advanced, we expect to be able to
create a model that predicts POLOS before surgery. Following
that, it may be possible to build an application into EHRs that
can automatically determine the patient’s surgery day by
considering the capacity of the ward.

Conclusions
In our retrospective study, we developed models that predict
PPOLOS in patients with cancer and analyzed variables
affecting PPOLOS. This approach could help to provide more
efficient allocation of medical resources in cancer surgery by
embedding machine learning models into the EHR system to
support decision making for hospital management.
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