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Abstract

Background: Natural Language Understanding enables automatic extraction of relevant information from clinical text data,
which are acquired every day in hospitals. In 2018, the language model Bidirectional Encoder Representations from Transformers
(BERT) was introduced, generating new state-of-the-art results on several downstream tasks. The National NLP Clinical Challenges
(n2c2) is an initiative that strives to tackle such downstream tasks on domain-specific clinical data. In this paper, we present the
results of our participation in the 2019 n2c2 and related work completed thereafter.

Objective: The objective of this study was to optimally leverage BERT for the task of assessing the semantic textual similarity
of clinical text data.

Methods: We used BERT as an initial baseline and analyzed the results, which we used as a starting point to develop 3 different
approaches where we (1) added additional, handcrafted sentence similarity features to the classifier token of BERT and combined
the results with more features in multiple regression estimators, (2) incorporated a built-in ensembling method, M-Heads, into
BERT by duplicating the regression head and applying an adapted training strategy to facilitate the focus of the heads on different
input patterns of the medical sentences, and (3) developed a graph-based similarity approach for medications, which allows
extrapolating similarities across known entities from the training set. The approaches were evaluated with the Pearson correlation
coefficient between the predicted scores and ground truth of the official training and test dataset.

Results: We improved the performance of BERT on the test dataset from a Pearson correlation coefficient of 0.859 to 0.883
using a combination of the M-Heads method and the graph-based similarity approach. We also show differences between the test
and training dataset and how the two datasets influenced the results.

Conclusions: We found that using a graph-based similarity approach has the potential to extrapolate domain specific knowledge
to unseen sentences. We observed that it is easily possible to obtain deceptive results from the test dataset, especially when the
distribution of the data samples is different between training and test datasets.

(JMIR Med Inform 2021;9(2):e22795) doi: 10.2196/22795
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Introduction

Every day, hospitals acquire large amounts of textual data which
contain valuable information for medical decision processes,
research projects, and many other medical applications [1].
However, the huge quantity of reports is unsuitable for manual
examination, and automatic access is hindered by the
unstructured nature of the data [2]. Natural Language
Understanding can help to tackle this problem by automatically
extracting relevant information from textual data [3,4]. In this
paper, we will focus on a subtask of Natural Language
Understanding called Semantic Textual Similarity, which
evolved within Natural Language Understanding as a dedicated
research question aiming to address tasks like question
answering, semantic information retrieval, and text
summarization [5-9].

In the clinical domain, Semantic Textual Similarity has the
potential to ease clinical decision processes (eg, by highlighting
crucial text snippets in a report), query databases for similar
reports, assess the quality of reports, or be used in question
answering applications [1]. Furthermore, clinical reports are
often of poor quality due to time limitations or due to the fact
that many text snippets are simply copy-pasted from other
reports [10,11]. This introduces low-quality data samples that
make it harder for Natural Language Understanding algorithms
to extract relevant information. In this context, Semantic Textual
Similarity can be a key processing step when dealing with
redundant text snippets [2].

State-of-the-art Natural Language Processing (NLP) methods
for assessing the Semantic Textual Similarity of nonclinical
data are developed and benchmarked based on the Semantic
Textual Similarity benchmark, which compromises the SemEval
Semantic Textual Similarity tasks from 2012 to 2017 [5] and
is part of the General Language Understanding Evaluation
dataset. In order to strengthen the development of Natural
Language Processing tools for clinical and biomedical text data,
which are often not publicly available, the team of the National
NLP Clinical Challenges (n2c2), formerly known as i2b2 NLP
Shared Tasks, has issued several tasks and organized challenges
since 2006. This paper reports our participation in track 1,
“n2c2/OHNLP Track on Clinical Semantic Textual Similarity,”
of the 2019 National NLP Clinical Challenges. We present the
3 submitted systems, a further best performing variation of the
different approaches, and a statistical analysis of the dataset.
The aim of the track in which we participated was to predict
the Semantic Textual Similarity between two clinical sentences.
A similar task was already tackled in the BioCreative/OHNLP
2018 ClinicalSTS track [3,4].

The winners of Track 1: ‘n2c2/OHNLP 2018 Track on Clinical
Semantic Textual Similarity’ [3] proposed 4 systems that
combined string, entity, and number similarity features with
deep learning features. In their best performing system, the
winners trained a ridge regression model based on the prediction

score of 8 independently trained models [3,12].  The second
best performing team proposed an approach using
Attention-Based Convolutional Neural Networks and
Bidirectional Long Short Term Memory networks [3].

In recent years, the general Natural Language Processing domain
made a huge step forward with the breakthrough of transfer
learning which allows leveraging semantic knowledge from
huge amounts of unlabeled text data. That is, a model can be
pretrained on enormous unlabeled text data with multiple
unsupervised tasks. The trained model captures a universal
language representation and can be effectively fine-tuned on
different downstream tasks. For example, the 2018 language
model, Bidirectional Encoder Representations from
Transformers (BERT), introduced a multilayer bidirectional
Transformer that is trained on a massive amount of text in two
unsupervised tasks: (1) next sentence prediction and (2) masked
word prediction. To use the model for further downstream tasks,
it is usually enough to add a linear layer on top of the pretrained
model to achieve state-of-the-art performance for the desired
downstream tasks [13]. Since the introduction of the
Transformer and BERT, new variations of the original models
perform even better by (1) introducing more pretraining tasks
[14-16], (2) employing multitask learning approaches [17], and
(3) combining the aforementioned approaches [18].

The application of pretrained models like BERT on clinical data
comes with the question if the model can handle domain-specific
nuances. One proposed approach to handling domain-specific
nuances is to use transfer learning to adapt the model to clinical
data [19-21]. Another approach is to incorporate already existing
methods. To investigate the extent to which BERT can handle
domain-specific nuances, we examined the performance of
BERT on subgroups of sentences and found that it performed
modestly with sentence types that were simply structured and
highly specific (eg, sentences which prescribe medications).
Based on these findings, we created 3 approaches with the aim
to address the diversity of clinical sentences present in the given
data.

To summarize our contributions (see Figure 1), we show that
the use of BERT on clinical data can be enriched by the
following:

• a simple modification of the BERT architecture by adding
additional similarity features and employing a built-in
ensembling method.

• a graph-based similarity approach for a subset of structured
sentences in which the knowledge of the training set is
extrapolated to unseen sentence pairs of the test set.

Additionally, we show that statistically analyzing the data
reveals differences between the training and test datasets. This
analysis made the process of interpreting the results easier.

The code to reproduce the results of this paper is available online
[22].
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Figure 1. Overview of our pipeline for the different approaches. Blue boxes denote feature sets (see Multimedia Appendix 3) or scores which are also
used as features, and the framed boxes denote processing steps. Bold scores correspond to our three submissions. [CLS] represents a classifier token
which is used by BERT for sentence level downstream tasks [13]. The medication graph works only on a subset of the data with input from the Voting
Regression. New scores are predicted and replaced with other scores only for this subset. BERT: Bidirectional Encoder Representations from Transformers.

Methods

Overview
Our methods were developed and tested on the data of the
ClinicalSTS shared task, which consists of a collection of
electronic health records from the Mayo Clinic’s dataset [4]. In
total, 2054 sentence pairs were independently annotated to their
degree of semantic textual similarity on a scale from 0 (not
similar at all) to 5 (completely similar) by two medical experts.
The focus of semantic textual similarity is whether two sentences
have similar meaning and content in contrast to, for example,
the number of words used in both sentences [3,4]. The created
annotations are a mixture of integer and noninteger values,
whereby the latter arise when averaging the result of multiple
annotations. The training set consists of 1642 sentence pairs
and the test set of 412. The performance of the different methods
is measured by the Pearson correlation coefficient which aims
to measure the linear correlation between the predicted similarity
scores and the annotated similarity scores. More detailed
information about the creation of the dataset, its properties, and
its evaluation can be found elsewhere [1,3,4].

We started by applying ClinicalBERT [23] to the dataset to
obtain a baseline. That is, we used the [CLS] token from the
last layer of the BERT model and fed its values to an additional
linear layer that consists of a single neuron performing the
similarity regression task. The whole network, including BERT
and the additional layer, were trained on the Mean Square Error.

We use the [CLS] token because it is designed for sentence
classification and regression tasks. During training of BERT,
[CLS] tokens are used for the next sentence prediction task. The
[CLS] token is part of every sentence pair and captures the
aggregated attention weights from each token of the sentence
pair [13]. Next, we analyzed the predictions of BERT to find
sentences with a high deviation from the ground truth. For this,
we extracted InferSent embeddings for each sentence pair, as
they are suited to cover the semantic representation of sentences
[24], clustered them via -means, and calculated the absolute
difference between the BERT scores and the ground truth for
the whole cluster. The cluster analysis is shown in Figure 2. To
make the comparison between the clusters easier, we show an
overview of the absolute score differences per cluster in Figure
3. From these visualizations, we see that cluster 3 has the highest
difference on average or, in other words, that BERT cannot
handle these sentences well. Looking at the sentences, we see
that this cluster is dominated by sentences which prescribe
medication, for example  “ondansetron [ZOFRAN] 4 mg tablet
1 tablet by mouth three times a day as needed” or “furosemide
[LASIX] 40 mg tablet 1 tablet by mouth two times a day.” This
weakness was essentially the motivation for our third approach
(medication graph) which focuses solely on the medication
sentence type.

In the following section, we describe the approaches shown in
our pipeline (Figure 1) in more detail. Information about the
preprocessing steps and further implementation details can be
found in Multimedia Appendix 1 and Multimedia Appendix 2.
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Figure 2. Clustering of the sentences to reveal BERT’s weaknesses. Each point represents a sentence pair from the training set, and the corresponding
absolute score difference is visualized as opacity, or, in other words, the more opaque a point is, the higher the deviation from the ground truth. The
points are the t-SNE projected InferSent embeddings of all sentence pairs. For each cluster, the average absolute deviation from the ground truth as well
as the distribution of the differences is shown in the legend. Best viewed in colour. BERT: Bidirectional Encoder Representations from Transformers.
t-SNE: t-distributed stochastic neighbor embedding.

Figure 3. Box plot showing the absolute score differences for each cluster emphasizing the opacity information from Figure 2. The number below the
bold cluster index is the cluster size. For each box plot, the following information is depicted: the box ranges from the lower to the upper quartiles with
the notch at the median position. The whiskers extend up to 1.5 times the interquartile range. Remaining points (outliers) are not shown. The white
square denotes the mean value.

Approaches

Approach 1: Enhancing BERT With Features Based on
Similarity Measures
The motivation behind this approach is to enhance BERT with
additional information that BERT might not be able to capture
in its model. On a token level, BERT uses a predefined tokenizer
based on a set of rules; however, it might be valuable to compare
arbitrary tokens based on character -grams. On a sentence-level,
BERT does have a classifier token, [CLS], to compare two
sentences. However, the [CLS] token was not designed to be a
sentence-embedding [25,26]. Therefore, comparing embeddings
like InferSent. which are specifically designed to represent the
semantic of a whole sentence, might add additional valuable
information to predict the similarity between two sentences.

In this approach, we used two kinds of similarity measures: (1)
token-based and (2) sentence embedding–based. For a
token-based similarity measure, -grams of characters are created
and then compared with each other. For example, Jaccard
Similarity compares the proportion between the intersection
and the union of -grams in two input sentences. For a sentence
embedding-based similarity measure, the embeddings of two
sentences are compared, for example by taking the cosine
similarity between the two embeddings of the two input
sentences. The similarity measures were inspired by Chen et al
[12].

We combined BERT with two feature sets of similarity measures
at two different positions in our pipeline (Figure 1). In a first
step named Enhanced BERT, we enhanced the [CLS] token of
BERT with similarity measures from the first feature set (Feature
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Set I) before feeding the concatenated vector to the final linear
regression layer. In a second step named Voting Regression,
we fed the predicted output scores from Enhanced BERT
together with a second feature set (Feature Set II) into several
estimators (see Multimedia Appendix 3) whose predicted output
scores were averaged with the help of a voting regressor [27].
Feature Sets I and II were created by successively trying out
different combinations of similarity features in order to gauge
the best performance. A breakdown of the two features sets can
be found in Multimedia Appendix 3.

Approach 2: M-Heads
Ensembling methods have been very popular in recent machine
learning challenges [28,29]. The general approach is to duplicate
a model or parts of a model, repeat the prediction for each
model, and aggregate the prediction results. The intuition is that
different models can focus on various aspects of the input data
(eg, different sentence types) so that they produce different
predictions. The aggregation over these predictions can help to
emphasize the group opinion over the dominance of a single
model, thereby mitigating the risk that a model just reacted to
noise in the input data [30].

We took up this point and decided to include a simple
ensembling method directly into the architecture of BERT. More
concretely, we duplicated the final linear layer (the head) which
receives the last [CLS] token from the BERT model and which
is responsible for calculating the regression (score prediction).
We initialized each head layer with different weights to allow
the different solutions per head. We employed a loss scaling
which enforces specialization of the different heads similar to
methods seen in other research [31,32]. A detailed description
of our M-Heads updated scheme during training and how we
performed predictions on new samples can be found in the
Multimedia Appendix 4.

Approach 3: Medication Graph
In this approach, we focused on a subset of the sentence pairs
which we named “medication sentences,” for example
“ibuprofen 150 mg tablet 2 tablets by mouth every 7 hours as
needed.” Further examples are listed in the discussion. These
sentences are fairly structured and can be compared by analyzing
individual entities. We used the MedEx-UIMA system [33,34]
to extract medication related fields from the sentences and
decided to use the entity’s active agent (“ibuprofen”), strength
(“150 mg”), dose (“2 tablets”), and frequency (“7”). We
considered the active agent as the major contributing factor in
terms of the similarity of medication sentences. Hence, we
modeled similarities between active agents that were then further
modified by the remaining entities to retrieve a similarity score
for each medication sentence pair.

Our general idea was to determine the property of similarity
between active agent pairs as compared to unknown active agent
pairs. That is, we assumed that the similarity of active agents
A and B as well as B and C also contained information about
the similarity between A and C. We generalized this process
by constructing a graph containing all active agents as nodes
with corresponding similarities assigned to the edges, using the
shortest path between arbitrary active agents as a foundation to

predict a similarity score which could then be further modified
by the remaining entities (ie, every entity except the active
agent).

In the following section, we describe how we delt with the
remaining entities, in which way we constructed the graph of
all active agents, and how we used this information to predict
similarity scores for new sentence pairs.

Feature Construction
Even though we considered the active agents as the central part
regarding sentence similarity, we still did not want to neglect
other influences and, hence, we constructed a set of additional
features per sentence pair, which reflect the similarity of
everything except the active agents. More concretely, we
constructed a set of similarity features Δk and compared the
entity value of the first sentence ek,1 with the entity value of the
second sentence ek,2. For nominally scaled entities, we calculated
Δk as

and for ratio-scaled entity types, we used the squared difference

For entities like “strength” (eg, “4 mg”), we first separated the
unit (“mg”) from the number (“4”), used the nominal approach
to compare the unit, and applied the squared difference equation
on the number part. This differentiation gives us k=1 , … , N
features per sentence in total (N=5 in our case, since we used
strength with amount and unit, and dose with amount and unit
as well as frequency).

Graph Construction
We used all medication sentences S = (a1, a2, s, Δ1, …, ΔN) from
the training set with the active agents a1 and a2 from the sentence
pair, the similarity score s, and the remaining entity features Δk.
We constructed our similarity graph G (V, E) by using the
possible active agents Ai as nodes V={A1, A2, …} and connected
all node pairs which occurred together in a sentence pair. More
precisely, we constructed an edge set E={( Ai, Aj, wij)(i,j) P with
the set of all possible active agent pairs and the edge weight

which models the modified similarity score wij between the
active agents. C denotes the set of all sentence pairs with the
same active agents, and λ represents weights for the entity
differences learned during the training process (see later text).
λ0 can be interpreted as a bias. The tahn(x) function limits the
change of the similarity score, s, and the final result is clipped
to stay in the valid range defined by smin = 0 and smax = 5.
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The intuition here is that the weights, wij, should model the
similarities between the active agents without factoring in the
remaining entities. However, the true similarity value is not
available as the similarity score, s, is also influenced by the
remaining entities. The idea is that the weighted sum between
the weights, wij, and the differences, Δk, allows us to alter the
similarity score, s, in a way so that wij models the true similarity
between the active agents. The outer sum, responsible for
averaging the items in the set C, is only necessary because it is
possible that multiple sentence pairs with the same active agents
exist.

Inference
The goal of the inference phase was to calculate a sentence
similarity score, s, between two active agents, Ai and Aj, based

on a similarity score,  , obtained from the graph and the
entity differences, Δk. This consisted of two steps: first, we
calculated the active agent similarity via the graph, and then we
altered this similarity to account for the remaining entity features
Δk.

Step 1: In its simplest form, the similarity between two active
agents is just the weight of the edge between the two

corresponding active agent nodes. For example, wij = .
However, this is only possible when the weight already occurs
in the training set and is not applicable in general, as G (V, E)
is not a complete graph, and it may be the case that an edge
between the two active agent nodes does not exist. As we still
wanted to make a prediction for these cases, we proposed to
find the shortest path between these two active agent nodes and
aggregate all edge weights along the way. This assumes a
transitive relationship between the nodes or, for example, when
there is a connection between A1 and A2 as well as A2 and A3,
we can still say something about the nonexisting connection
between A1 and A3. More concretely, we aggregate the

information along the shortest path

where pij(1), pij(2), …, pij(M) denote the indices of the nodes
on the shortest path between Ai and Aj. This equation resembles
the formula for calculating the resistance of parallel circuits

with the final resistance, Req, of the circuit and the resistances,
Ri, of the individual flows. We chose this formula because the
final resistance, Req, is always smaller than the individual
resistances, Ri. For instance, Req ≤ min (R1, R2, …)

[35]. In our case, this implies that the score obtained from
the graph is always lower than any of the scores along the
shortest path. This relies on our assumption that it is not possible
to restore dissimilarities; for example, if there is already a score
of 1 (low similarity) on an edge, we do not want to increase this
value further by adding more connections, as we already know
that at least two active agents are dissimilar.

Step 2: The weight, , is the prediction for the similarity of
an active agent pair. The final goal was to retrieve a prediction
score, s, for a sentence pair which is also influenced by the
remaining entity features, Δk. We accounted for this by altering
the predicted score again by

to retrieve a similarity, s, for the sentence pair.

Figure 4 shows an excerpt of the graph, which uses all the
sentence pairs in the training set. The shortest path between the
active agents “calcium” and “prednisone” is highlighted to
visualize the prediction steps. Detailed calculations are available
in the online version of the graph [36].

It may be possible that the sentences contain additional
information that we do not cover in our approach, such as
additional words, the relation between words, etc. For this
reason, we combined the similarity score, sg, from the graph
with the BERT scores, sb, in a Support Vector Regressor trained
on all sentences in the training set to retrieve a final prediction
score. We used Radial Basis Functions as kernel and optimized
the regularization parameter C as well as ε (ε-tube without
penalty) during the learning process of λk.
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Figure 4. Excerpt of the medication graph, which models similarities between active agent pairs. On the edges, the modified similarity score,
<inline-graphic xlink:href="medinform_v9i1e22795_fig10.png" mimetype="image" xlink:type="simple"/>, is shown. The full graph is available as an
online widget, which provides further information and shows the graph calculations between arbitrary active agent nodes.

Learning λk

The parameters λk are responsible for the transformation
between the active agent and sentence similarities as they reflect
the importance of each entity feature, which also includes
scaling differences. We did not manually craft these weights
but learned them in a random walk process instead. The general
idea was to randomly change the weights and see whether this
improved the graph performance and, only if it did, we kept the
change.

For a more stable evaluation, we split the training data into 10
folds, built a graph based on each training set, and evaluated
the graph performance based on the corresponding test set. For
evaluation, we calculated the mean squared error between the
prediction scores and the ground truth. We did not use the
Pearson correlation coefficient here because the correlation on
a subset may not be as helpful for the correlation on the
complete dataset as a measure which directly enforces a
closeness with the ground truth.

Let λ = (λ0, λ1, …, λN) denote the vector with the current value
of the weights (randomly initialized in the beginning) and let
MES(λ) denote the error when using these weights with the
predictions from all folds. Then, we randomly selected an index,
k, and altered the corresponding weight

λ'k = λk + Ν(0,1)

via a sample from a standard normal distribution so that we
obtained a new weight vector

λ’= (λ0, λ1, …, λ'k, …, λN)

which we evaluated again on the graphs from all folds, keeping
the change if

MES(λ’) < MES(λ)

We repeated this process in two iterations, alternating with the
process of hyperparameter tuning of the SVR model, until we
observed no further improvements. For each random walk
process, we applied 50 update steps. During development, we
found that this setting was already sufficient and that the
resulting weights tended to remain unchanged after these
updates. For the SVR model, we applied a grid search to find
values for the hyperparameters C and ε-tube. We used the final
weights to construct a new graph (based on all training data)
used to predict the similarity of new sentences.

Results

Dataset Evaluation
In order to help with the interpretation of our results in the next
section, we applied some basic statistical analysis on the training
and test set, which revealed some imbalances. On average, the
similarity score of the sentences in the training set
(approximately 2.79) was higher than in the test set
(approximately 1.76), whereas the standard deviation was
slightly higher in the test set (approximately 1.52) than in the
training set (approximately 1.39). This is also indicated by the
left histogram chart of Figure 5, which, for example, reveals
that sentence pairs with a score of approximately 1 are the most
prominent ones in the test set, whereas in the training set,
sentence pairs with a score of approximately 3 occur most often.
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Figure 5. Histogram of the label distribution and word lengths of the training and test set.

The right histogram chart of Figure 5 shows the distribution of
the number of words of the training and test data. On average,
the sentences in the test set tended to be shorter than in the
training set, with an average sentence length of approximately
26 words per sentence pair (SD of approximately 7 words) in
the former and approximately 42 words per sentence pair (SD
of approximately 26 words) in the latter.

Finally, we calculated InferSent embeddings of the sentences
in the training and test dataset and visualized them in a t-SNE
(t-distributed stochastic neighbor embedding) plot (Figure 6).
This shows that the sentence types occurring in the test dataset
represent only a subset of those occurring in the training dataset,
with many clusters of the training set being unoccupied by the
test set, such as the blue cluster in the bottom of Figure 6 without
sentences of the test set in the neighborhood.

Figure 6. t-SNE projected InferSent embeddings of the sentences in the training and test dataset. Different groups of points correspond to different
sentence types. For example, the group on the left upper side corresponds to the medication sentences. t-SNE: t-distributed stochastic neighbor embedding.

Evaluation Results
We evaluated all runs on 3 different sets. Firstly, we used the
training set with k = 150 folds to reduce the influence of noise
in the data, to increase the comparability of our models, and to
easily employ another ensembling technique for the test set.
We wanted to measure the correlation of the training set and
not of one of the folds to get comparable results. For this, we
concatenated the predictions from each fold together and then
calculated the Pearson correlation coefficient only once based
on all scores. That is, we did not calculate a Pearson correlation

coefficient for each fold, but rather collected the scores from
all folds first. The consequence of this approach is that we
cannot provide information about the variance, because only
one Pearson correlation coefficient value is available.

Secondly, for the evaluation of the test set, we employed an
additional ensembling technique by using the model for each
fold to calculate a prediction for a sentence pair and then
averaged all predictions.

Table 1 gives an overview of our results for the different datasets
and approaches. Our best result with a Pearson correlation
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coefficient of 0.883 was achieved by combining enhanced BERT
with M-Heads and the medication graph. For comparison, the

winner of track 1 from IBM Research reached a Pearson
correlation coefficient of 0.901 in their best submission [4].

Table 1. Summarization of the different approaches and their results. Training and test Pearson correlation coefficient scores are rounded to 3 decimal
places.

Test setTraining setApproach

Approach 0: baseline

0.8590.850ClinicalBERT 

Approach 1: voting regression

0.8590.851Enhanced BERT 

0.849a0.860Voting Regression 

Approach 2: M-Heads

0.876a,b0.853Enhanced BERT with M-Heads 

0.883c0.853Enhanced BERT with M-Heads + Med. Graph 

Approach 3: medication graph

0.862a0.862Voting Regression + Med. Graph 

aOur submissions.
bWe submitted a score of 0.869 for this setting because we were able to use only 10 k-folds due to a shortage of time.
cOur best result of the test set.

Discussion

Our 3 approaches performed differently on the two datasets. In
the following sections, we discuss the results in more detail and
give our thoughts.

Approach 1: Voting Regression
Evaluating the pure ClinicalBERT model, we see that the
Pearson correlation coefficient is slightly higher for the test set
as compared to the training set. The Enhanced BERT
architecture led to an almost neglectable improvement on the
training set and, in the test set, to no improvement at all. This
indicates that, in this case, the additional features do not provide
more information than what is already contained in the [CLS]
token from the last hidden layer of BERT.

The Voting Regression approach showed an improvement of
the Pearson correlation coefficient of the training set; however,
for the test set, the performance decreased. These results might
be traced back to overfitting of the training set. However, the
decrease in the test set might also be explained by the
imbalances between the training and test set.

Approach 2: M-Heads
Adding M = 4 heads to BERT increased the Pearson correlation
coefficient of both the training and test set as compared to
ClinicalBERT. Especially for the test set, this indicates that the
combination of the different heads improves BERT’s
performance.

Approach 3: Medication Graph
Replacing the scores of the sentence subset which prescribes
medications (cluster 3) with the medication graph scores led,
in both cases (approaches 1 and 2), to an improvement for the

test set. For the training set, however, we saw only marginal
improvements, such as 0.860 to 0.862 from approach 1 to
approach 3. This might be due to the Pearson correlation
coefficient metric. In our experiments, we also evaluated our
approaches with the Mean Squared Error between the
predictions and the ground truth only on the subset of medication
sentences. Without applying the medication graph (approach
1), we obtained a Mean Squared Error of 0.70, and with the
medication graph (approach 3) a Mean Squared Error of 0.58.
Combining the M-Heads approach with the medication graph
yielded our best results for the test set, which indicates that
BERT does have problems handling this domain-specific
knowledge and therefore cannot cope well with these specific
types of sentences.

Why did the medication graph perform better for the test set
than for the training set? First, we observe that the test set
contained more low-ranked sentences (see Figure 5); in
particular, the medication sentences had lower scores. For the
training set, the mean and standard deviation of the scores was
2.03 and 1.05, respectively, whereas the scores for the test set
had only a mean and standard deviation of 1.10 and 0.50,
respectively. We also noticed that the medication graph tended
to dampen the prediction or, in other words, it led to lower
scores. For example, the mean prediction score was 2.58 before
and 1.78 after score replacement of the 94 medication sentences
in the test set (see Table 2), which shows some example
sentences of how the medication graph altered the scores). This
could be due to two reasons: (1) the scores on the edges in the
graph tended to be low (1.87 on average), and (2) the weight
combination enforced low scores when there was at least one
edge with a low score, which could explain why the medication
graph achieved better predictions. This effect is facilitated by
the fact that the training dataset contained only 147 out of 1642
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(8.95%) of sentences that prescribed medication, whereas the test set contained 94 out of 412 (22.82 %) medication sentences.

Table 2. Comparison of the Pearson correlation coefficient scores predicted by the Voting Regression (approach 1, A1) and the medication graph
(approach 3, A3) via randomly selected example sentences. T denotes the ground truth score for the corresponding sentence pair. This table shows only
the relevant entities from the original example sentences.

SetA3A1TSentence bSentence a

Training1.701.683.0Amoxicillin, 500 mg, 2 capsules, three times a
day

Ondansetron, 4 mg, 1 tablet, three times a day

Training1.682.020.5Aleve, 220 mg, 1 tablet, two times a dayProzac, 20 mg, 3 capsules, one time daily

Training1.701.591.5Ibuprofen, 600 mg, 1 tablet, four times a dayHydrochlorothiazide, 25 mg, one-half tablet, every
morning

Test1.682.741.5Acetaminophen, 500 mg, 2 tablets, three times a
day

Aleve, 220 mg, 1 tablet, two times a day

Test1.692.291.0Naproxen, 500 mg, 1 tablet, two times a dayLisinopril, 10 mg, 2 tablets, one time daily

Conclusions
To tackle the problem of semantic textual similarity of medical
data, we developed 3 different approaches. We proposed to add
additional features to BERT and to weigh different regression
models based on the BERT result and other features. Moreover,
we proposed the application of M-Heads and an attempt to
automatically extrapolate medical knowledge from the training
data. We observed that the success of the different methods

strongly depended on the underlying dataset. In future work, it
might be interesting to evaluate the methods on different and
bigger datasets from other domains. The medication graph could
be a powerful method with the possibility to be applied to other
domains where it is necessary to extrapolate information from
known entities and where it is not possible to calculate this
information directly. It may also be used to model other concepts
which exist in the medical domain, such as ontologies.
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