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Abstract

Background: Myocardial infarction (MI; location and extent of infarction) can be determined by late enhancement cardiac
magnetic resonance (CMR) imaging, which requires the injection of a potentially harmful gadolinium-based contrast agent
(GBCA). Alternatively, emerging research in the area of myocardial strain has shown potential to identify MI using strain values.

Objective: This study aims to identify the location of MI by developing an applied algorithmic method of circumferential strain
(CS) values, which are derived through a novel hierarchical template matching (HTM) method.

Methods: HTM-based CS H-spread from end-diastole to end-systole was used to develop an applied method. Grid-tagging
magnetic resonance imaging was used to calculate strain values in the left ventricular (LV) myocardium, followed by the 16-segment
American Heart Association model. The data set was used with k-fold cross-validation to estimate the percentage reduction of
H-spread among infarcted and noninfarcted LV segments. A total of 43 participants (38 MI and 5 healthy) who underwent CMR
imaging were retrospectively selected. Infarcted segments detected by using this method were validated by comparison with late
enhancement CMR, and the diagnostic performance of the applied algorithmic method was evaluated with a receiver operating
characteristic curve test.

Results: The H-spread of the CS was reduced in infarcted segments compared with noninfarcted segments of the LV. The
reductions were 30% in basal segments, 30% in midventricular segments, and 20% in apical LV segments. The diagnostic accuracy
of detection, using the reported method, was represented by area under the curve values, which were 0.85, 0.82, and 0.87 for
basal, midventricular, and apical slices, respectively, demonstrating good agreement with the late-gadolinium enhancement–based
detections.

Conclusions: The proposed applied algorithmic method has the potential to accurately identify the location of infarcted LV
segments without the administration of late-gadolinium enhancement. Such an approach adds the potential to safely identify MI,
potentially reduce patient scanning time, and extend the utility of CMR in patients who are contraindicated for the use of GBCA.
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Introduction

Background
Cardiovascular diseases (CVDs) account for 31% of global
deaths [1]. Among CVDs, myocardial infarction (MI) can result
from chronic progressive coronary atheromatous disease, with
subsequent plaque rupture and thrombosis. Depending on the
extent of infarction, there is potential for adverse myocardial
remodeling, and subsequently, heart failure [2]. If a patient has
MI, with either reduced left ventricular (LV) function or ongoing
chest pain, clinicians need to evaluate ischemia and myocardial
viability to determine whether there is a potential benefit to be
derived from revascularization with either coronary artery
bypass graft (CABG) or percutaneous coronary intervention
(PCI) [2]. Ischemia can be demonstrated using cardiac magnetic
resonance (CMR) imaging by assessing the first-pass perfusion,
following the use of a vasodilator stress agent such as adenosine
[3]. As a part of the myocardial viability test, it is crucial to
show the location and extent of the infarcted myocardium [3].

Clinical Practice and Literature Review
The current gold standard [3] for determining the location and
extent of infarcted myocardium is late gadolinium enhancement
(LGE), which acquires delayed CMR images following
gadolinium-based contrast agent (GBCA) administration. A
GBCA shows the infarcted myocardium with brighter image
intensity compared with a noninfarcted myocardium [3].
However, GBCA-administered LGE has the following
limitations: (1) the risk of nephrogenic systemic sclerosis in
patients with advanced renal impairment [4], (2) concerns of
gadolinium accumulation in tissues in normal renal patients [4],
and (3) prolonged scan time resulting in adverse situations, such
as panic attacks, especially in claustrophobic patients [5].
Therefore, a method that allows infarction detection, without
the need for GBCA administration, has the potential to reduce
patient scanning time and extend the use of CMR imaging in a
wider patient population.

Strain-based techniques, such as speckle tracking and
CMR-feature tracking (CMR-FT), have been previously reported
to identify infarction [6-8]. Strain-based techniques do not
require the use of GBCA. Hence, the aforementioned limitations
of LGE could be avoided. Speckle tracking has limited accuracy
[7] and CMR-FT is prone to endocardium and epicardium
definition because it only uses vessel boundaries and does not
include accurate details of structural deformation within the
myocardium as grid-tagging magnetic resonance imaging (MRI)
does [7]. The LV myocardium has a helical structure of muscles
and different mechanics throughout the myocardium [9].
Therefore, the proposed method uses a novel algorithmic
hierarchical template matching (HTM)–based diagnosis method
[10,11], which calculates myocardium strain values by
considering the details of structural deformation within the
myocardium for infarction detection. The HTM method provides
higher accuracy in calculating two-dimensional (2D) CMR

tagging LV strain when compared with the benchmark nonrigid
registration using the free-form deformation algorithm, which
has been reported to be the most accurate in comparison with
other state-of-the-art methods, including optical flow, harmonic
phase, and B-snake grid [12,13].

Aim of the Study
The aim of this study aims to develop an applied algorithmic
method to identify MI using HTM-based circumferential strain
(HTM-CS) values. The purpose of this work is to show the
performance of HTM-CS-based infarction detection with respect
to the gold-standard LGE-based detections.

Methods

Data Collection and Preparation
A data set of 38 patients with MI and 5 healthy volunteers was
collected from the CMR unit of the Royal Brompton and
Harefield National Health Service (NHS) Trust (RBHT) through
SB. Ethical approval for retrospective data collection was
obtained from the NHS (IRAS project ID: 211977).
Additionally, Biomedical and Scientific Research Ethics
Committee (BSREC) approval (REGO 2016–1865) was
obtained from the University of Warwick to process the
anonymized data.

All participants were selected retrospectively. Patients with an
MI identified on CMR imaging were determined from the
referral details and scan reports. The inclusion criteria were as
follows: (1) a patient with a known history of infarcted
myocardium, or (2) a patient referred for a clinically indicated
CMR imaging scan, on the basis of symptoms suggestive of
myocardial ischemia, with or without an elevation in serum
troponin levels and with a confirmed myocardial infarct on the
subsequent CMR imaging. Initially, 55 patients were screened
for the study. Among them, 38 patients with MI were included.
From the CMR referral details, these 38 patients with MI had
clinical conditions such as heavy chest pain, high troponin
findings, previous history of known infarction, or intervention
history of CABG or PCI. Patients with nonischemic
cardiomyopathy or normal findings without infarction were
excluded. The characteristic details of these 38 patients with
MI are summarized in Table 1. The included patients underwent
a standard departmental CMR using either a vasodilator stress
perfusion protocol or a viability protocol, both of which included
comprehensive late gadolinium enhancement imaging. All
participants with MI had anonymized images of LGE imaging
and grid-tagging MRI. The images were acquired with three
different 1.5T Siemens MRI scanners with ECG triggering.
LGE images were acquired with sequences that allowed normal
breathing of the patient and had infarcted myocardium with
high-intensity values due to postgadolinium enhancement.
Grid-tagging MRI was acquired with breath-holds, using a grid
structure of myocardial tagging lines with a spacing of 6 mm.
LGE images were not available for healthy participants.

JMIR Med Inform 2021 | vol. 9 | iss. 2 | e22164 | p. 2https://medinform.jmir.org/2021/2/e22164
(page number not for citation purposes)

Bhalodiya et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Characteristic details of the data set (N=43).

ValueParticipant types and characteristics

Patients with MIa (n=38, 88%)

Sex, n (%)

33 (87)Male

5 (13)Female

63.65 (13.31)Age (years), mean (SD)

1.74 (0.10)Height (m), mean (SD)

84.42 (19.79)Weight (kg), mean (SD)

1.32×1.32 to 1.75×1.75Pixel size (mm2)

Healthy participants (n=5, 12%)

Sex (male or female)

2 (40)Male

3 (60)Female

41.20 (14.38)Age (years), mean (SD)

1.68 (0.08)Height (m), mean (SD)

65.2 (13.04)Weight (kg), mean (SD)

1.48×1.48Pixel size (mm)

aMI: myocardial infarction.

In all the data subjects, images from 3 short-axis (SAX) planes
of the LV were processed: basal, midventricular, and apical
SAX planes of LV. Basal refers to the LV slice near the mitral
valve and before the beginning of the papillary muscle,
midventricular refers to the LV slice at the approximate middle
of papillary muscle length, and apical refers to the LV slice
towards the apex but above the apex. This definition is based
on the literature [14,15]. The MRI SAX plane covers many
anatomical details of the chest. Therefore, to efficiently process
data, the LV area of each image was cropped using ImageJ [16]
software. When cropping the images, we ensured that all images
for a participant were coregistered well with each other and had
the same image dimensions. The cropped images were processed
to have normalized (zero-mean unit-variance) intensity values.
The images were noise-free, that is, they did not contain imaging
artifacts or motion blur artifacts.

In patients with MI, the findings of LGE imaging were used as
a ground truth to differentiate between the infarcted and normal
(or healthy) myocardium when an area of hyperintensity was
present. LV segments were defined according to the American
Heart Association (AHA) [14]. In healthy participants, all LV
segments were considered healthy. The total number of infarcted
segments in 38 patients with MI was 109 (basal: 38,
midventricular: 44, apical: 27). The total number of healthy
segments was 579 (basal: 220, midventricular: 214, apical: 145),
which inlcuded 499 segments from patients with MI and 80
segments from healthy participants.

Model of Applied HTM Method
The flowchart of the model is shown in Figure 1.
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Figure 1. Flowchart of the proposed applied method to identify infarcted LV segments using circumferential strain values. Here, Hhealthy_same could
be Hhealthy_basal or Hhealthy_mid or Hhealthy_apical. HA: American Heart Association; CS: circumferential strain; EScalculated: median of calculated
circumferential strain values at the end-systolic frame; ESliterature: median of literature referred circumferential strain values at the end-systolic frame;
LV: left ventricular or left ventricle.

Step 1—Segmentation of LV Myocardium
The LV myocardium was manually segmented using ImageJ
[16] at the end-diastolic frames of the basal, midventricular,
and apical SAX planes. The segmentation was verified by a
clinical expert.

Step 2—Myocardial Image Registration
Myocardial image registration was performed using the HTM
[10] method to perform myocardial tracking and strain
calculation. As shown in Figure 2, HTM takes a stack of MRI
with segmented myocardium as inputs. The image textures in
all the images from end-diastole to end-systole were tracked
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using HTM. The tracking provided the position of each
myocardial point during a cardiac cycle. The tracking was
formulated by calculating a difference vector, V(x,y), between
the initial position, Pend – diastole (x1, y1), and current position,
Pcurrent – frame (x2, y2), of a myocardial point (Equation 1). The
displacement gradient at the end-systolic frame was calculated
using the spatial positions at end-diastole and end-systole
(Equation 2). ∇ V refers to the displacement gradient.

V (x, y) = Pend – diastole (x1, y1) – Pcurrent – frame (x2, y2)
(1)

Figure 2. (a) MRI scans of a cardiac cycle at three LV levels: Basal, Mid-ventricular, and Apical. (b) HTM method to calculate strain values at each
muscle point. V is mentioned in (Equation 2). (c) LV strain values, which are analyzed using the 16-segment AHA model. AHA: American heart
association; HTM: hierarchical template matching; LV: left ventricle.

Step 3—Myocardial Strain Calculation
Equation 3 and Equation 4 show the deformation gradient D
and myocardial strain (Green-Lagrange strain [17]) E, with
respect to the end-diastolic frame, respectively, where I is the
identity matrix.

D = (I – ∇ V)-1 (3)

E = 1/2 (DTD – I) (4)

Strain values at each myocardial point were calculated using a
local coordinate system [18]. Only CS was used for analysis,
as discussed in the Discussion section. The positive direction
of CS is in the short-axis plane and counterclockwise when
observed from the base. It is parallel to the surface of the
epicardium and perpendicular to the long axis of the LV.

Step 4—Classification of LV into 16-Segments
The LV myocardium was divided into 16 segments according
to the 16-segment AHA model [14]. The basal, midventricular,
and apical slices were divided into six, six, and four segments,
respectively. Thereafter, the CS in each segment was used during
Step 5 to separate healthy and infarcted segments.

Step 5—Detection of Infarcted Segments

Initial Detection Using End-Systolic HTM-CS

The median end-systolic strain in each of the AHA LV segments
was calculated as EScalculated = Med(CSend – systole). Here, a median
of strain values was used to avoid the influence of any large
outliers. Subsequently, the calculated median strain was
compared with the literature benchmark CS values (ESliterature)
for healthy segments of LV, as mentioned in the literature [18]
(Table 2). If the Med(CSend-systole) value was less than the
benchmark CS values of the healthy myocardium, the segment
was considered as a “potentially infarcted” segment (Figure 1).
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Table 2. End-systolic circumferential strain in healthy left ventricular myocardium from literature.

Inferior strain,
mean (SD)

Inferolateral strain,
mean (SD)

Anterolateral
strain, mean (SD)

Anterior strain,
mean (SD)

Inferoseptal strain,
mean (SD)

Anteroseptal strain,
mean (SD)

Left ventricular slice

−0.16 (0.03)−0.21 (0.03)−0.21 (0.03)−0.20 (0.03)−0.17 (0.03)−0.17 (0.03)Basal

−0.16 (0.05)−0.22 (0.03)−0.22 (0.03)−0.23 (0.04)−0.16 (0.03)−0.16 (0.03)Midventricular

−0.23 (0.04)−0.24 (0.04)−0.24 (0.04)−0.24 (0.06)−0.18 (0.03)−0.18 (0.03)Apical

Final Detection Using H-spread of HTM-CS

Infarcted myocardium does not contract or lengthen like healthy
muscles because of the presence of fibrosis [19]. This property
was quantified by the H-spread of the HTM-CS distribution.

H-Spread of the HTM-CS values in each AHA segment was
calculated by the union of median strain values in each frame
from end-diastole to end-systole. For example, the H-spread of
an infarcted segment (Figure 3; Equation 5) was calculated by

the union of values p1,p2,…,p8 (Figure 3). Similarly, the
H-spread of the healthy segment was calculated by the union
of values q1,q2,…,q8 (Figure 3). The MATLAB function iqr()
was used to calculate the H-spread [20].

where ES = end-systolic frame, ED = end-diastolic frame, and

Sfi = Med(CSend – systole) at the ith frame.

Figure 3. Representation of an infarcted and a healthy segment using circumferential strain. (a) End-systolic strain in a healthy segment (q8) and an
infarcted segment (p8). (b) pi and qi represent median strain values at the ith frame of a cardiac cycle. (c) Strain HSpread is calculated using (Equation
5).

After calculating the H-spread of “potentially infarcted”
segments, “Infarction Condition” was checked to decide
whether the “potentially infarcted” segment was actually an
infarcted segment; during this step, the H-spread values were
also calculated, as described in Equation 6.

Hinfarcted = HSpreadLV – segment

Hhealthy_basal = µbasal(HSpreadLV – segment)

Hhealthy_mid = µmid(HSpreadLV – segment)

Hhealthy_apical = µapical(HSpreadLV – segment)

Hhealthy_all = µbasal–mid–apical(HSpreadLV – segment)

Hhealthy = Hhealthy_basal OR Hhealthy_mid OR Hhealthy_apical

OR Hhealthy_all (6)

Infarction Condition

A potentially infarcted segment has at least α% reduced strain
H-spread compared to the mean H-spread of remaining LV
segments of the same LV slice. If all segments of a slice are
infarcted, then healthy segments of the whole LV are considered
instead of only considering the same slice.

α could be any value greater than 0 and less than 100. For
example, assume that segments 1 and 2 of a basal slice are
“potentially infarcted” segments. These segments will be
considered as actually infarcted if HSpreadLV – segment is at least
α% reduced compared with the mean H-spread of other
segments in the basal slice (Hhealthy_basal), which includes
segments 3, 4, 5, and 6. When all segments of a slice were
“potentially infarcted,” healthy segments of basal,
midventricular, and apical slices were used to calculate
(Hhealthy_all). For example, if segments 13, 14, 15, and 16 of an
apical slice were “potentially infarcted,” the healthy segments
of basal and midventricular slices were considered together
during H-spread comparison of the “Infarction Condition.”

In this work, the following values of α were considered
(Equation 7) to determine the most appropriate αcorrect value,
and it was assumed that the values within this range of α values
would not change the results considerably.

α = {10, 20, 30, …, 100} (7)

The detection accuracy using different α values is discussed in
the Results section. The α value corresponding to the highest
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accuracy was called αcorrect, which was then used to detect the
MI. Tests were performed using k-fold cross-validation [21,22].

K-Fold Cross-Validation for Model Training and
Testing
In each patient, infarcted segments (AHA segments) were
identified using LGE CMR imaging by a cardiothoracic
consultant and surgeon who had more than 10 years of
experience. These infarcted LV segments were used as the
ground truth to validate the proposed HTM-CS–based
predictions. Therefore, the validation hypothesis for the
statistical analysis was that the infarcted LV myocardial AHA
segments which were identified using HTM-CS would be the
same as the ground truth of LGE. This section explains k-fold
cross-validation [22] using the receiver operating characteristics
(ROC) curve test [23,24], which was used in this study to
validate the proposed method.

The area under the curve (AUC) of the true negative rate
(sensitivity) and the false-positive rate (1-specificity) were
calculated from ROC curve tests [23,24], as prediction
performance criteria, where AUC 1.0 is the highest accuracy
and AUC 0.5 is the lowest accuracy. ROC tests were performed
using the MATLAB function perfcurve() [25]. The ROC tests
had a 95% CI. Data were prepared by dividing each LV into 16
AHA segments, and the segments were arranged as per basal,
midventricular, and apical slices. The total number of basal
segments was 258 (258 = 43 × 6), the total number of
midventricular segments was 258 (258 = 43 × 6), and the total
number of apical segments was 172 (172 = 43 × 4). Each

segment was assigned a label, as infarcted or healthy, according
to the LGE ground truth. Then, HTM-CS H-spread reduction
was assigned to each “potentially infarcted” segment (healthy
segments were considered with 0% H-spread reduction).

During the k-fold tests, “Infarction Condition” was evaluated
using each α value of Equation 7. Each test assigned a score to
each segment as infarcted or healthy. For example, an evaluation
test with α=10 scored a potentially infarcted LV segment as
infarcted if it satisfied the “Infarction Condition;” otherwise,
it was scored as healthy. These scores and the ground truth
labels of each segment were given as input to the ROC test, as
mentioned previously. The α value was selected as αcorrect if
the corresponding ROC test had the highest AUC. This αcorrect

value was used with the test data set during the k-fold test to
calculate the final accuracy.

The training data set and test data set were split as per k-fold
cross-validation tests. Initially, k=5 and k=10 were considered,
as suggested in the literature [22]. After that, k-fold tests were
performed with k=10. When the experiments were performed
with the test data set using k=10, we noted that the results were
less realistic in the case of k=10. For example, for k=10 using
test data, the ROC tests had an AUC of 1.0 (ie, 100% accuracy)
in 3 tests (1 out of 10 in each of basal, midventricular, and apical
LV slices) and AUC of 0.5 (ie, 0% accuracy) in 1 test (1 out of
10 in apical slices). However, an AUC of 1.0 and 0.5 were not
found in the case of k=5. Therefore, we used k=5, and the k-fold
tests were repeated 10 times in each basal, midventricular, and
apical LV slice with a random selection of data. Figure 4 shows
the analysis with k=5.

Figure 4. Overall results of 10 k-fold cross-validation tests. Overall AUC values using each α are shown in (a) basal, (b) mid-ventricular, and (c) apical
slices. Red circles denote αcorrect corresponding to the maximum AUC for the respective slice. Examples of ROC test results for (d) basal, (e)
mid-ventricular, and (f) apical slices, respectively. AUC: area under the curve; ROC: receiver operating characteristic.

Using the test data set, true positives (infarcted segments
detected as infarcted), true negatives (noninfarcted segments

detected as noninfarcted), false positives (noninfarcted segments
detected as infarcted), and false negatives (infarcted segments
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detected as noninfarcted) were calculated. Additionally, the
sensitivity (true positive rate) and 1-specificity (false negative
rate) of the detection of infarcted segments are provided.

Results

Primary Analysis of the Model Using Training Data
To find αcorrect among α values, a training data set of k-fold
cross-validation test was used. Figure 4 presents the AUC values
in each ROC test for the basal, midventricular, and apical slices
using the training data set. αcorrect was selected from the ROC
test, corresponding to the maximum AUC. Accordingly,
αcorrect-basal, αcorrect-midventricular, and αcorrect-apical were found.
Figure 4 shows the maximum AUC at α=30, midventricular at
α=30, and apical at α=20. Therefore, αcorrect-basal=30,

αcorrect-midventricular=30, and αcorrect-apical=20. Further, k-fold
cross-validation tests were performed with test data and αcorrect

values.

Accuracy Analysis of HTM-CS-Based Model Using
Test Data
To analyze the performance of the HTM-CS-based method, the
test data set was used. Each -fold cross-validation test used a
random 5% sample as test data. αcorrect-basal=30,
αcorrect-midventricular=30, and αcorrect-apical=20 were considered with
“Infarction Condition” to predict each segment as healthy or
infarcted. The results are plotted in Figure 5. In Figure 5, the
results of the ROC tests were derived using the MATLAB
function perfcurve() [25]. The basal, midventricular, and apical
areas had AUC values of 0.85, 0.82, and 0.87, respectively.
Table 3 shows an example of a detection.

Figure 5. (a) Average of 10 k-fold cross-validation tests. Accuracy of detecting infarcted segments using the proposed method with αcorrect in basal,
mid-ventricular, and apical slices using test data from the k-fold cross-validation tests. (b) An example of an ROC test result using the test data. AUC:
area under the curve; ROC: receiver operating characteristic.

Table 3. Analysis of a myocardial infarction patient. Truth and Detected show the results of late gadolinium enhancement and the proposed method,
respectively.

DetectedTruthPatient number

Which segment?Infarcted?Which segment?Infarcted?

Patient number D9

1,2Yes1,2YesBasal

7,8,12Yes7,8YesMidventricular

13,14,15Yes13,14YesApical

“Truth” shows infarcted segments using LGE and “Detected”
shows infarcted segments using the proposed method. The best
case would be to have the same “Truth” and “Detected”
segments in all three slices. Table 4 summarizes the detections
in test patients.

The higher true-positive rate and the lower false-positive rate
together determine the best result. For detections in a patient
with MI, the best case should have true-positive rate=1 and

false-positive rate=0, and in a healthy participant, false-positive
rate=0 should be the best case.

Figure 6 shows an example of detecting infarcted LV segments
using the proposed algorithmic method compared with the LGE
method. As shown in the LGE images, the white area of the LV
myocardium (due to gadolinium deposition) highlights
infarction. In strain analysis, red color shows healthy LV
segments and white color shows infarcted LV segments. Some
of the segments are both red and white. All segments were
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characterized as healthy or infarcted by considering the H-spread
as mentioned in the “Infarction Condition” of the Methods

section.

Table 4. Results of detecting infarcted left ventricular segments.

1-Specificity (FPR)g = FP/(TN + FP)hSensitivity (TPR)f = TP/(TP + FN)FNeFPdTNcTPbInfarcted
segments

Total LVa

segments

Patient number

0.180.752293516D1i

0.070.511131216D2

0.20.503121116D3

0.06101141116D4

00.2500142216D5

0.07101123316D6

012095716D7

0.20.660286616D8

0100115516D9

0.25NaNk04120016H1j

0NaN00160016H2

aLV: left ventricular.
bTP: true positives.
cTN: true negatives.
dFP: false positives.
eFN: false negatives.
fTPR: true-positive rate (sensitivity).
gFPR: false-positive rate (1-specificity).
hThe higher sensitivity and the lower (1-specificity) together determines the best result (eg, D7, D9, and H2).
iD: diseased.
jH: healthy.
kNaN: not a number.
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Figure 6. (a) LGE showing infarcted segments in white; (b) proposed CS-based analysis showing infarcted and healthy LV segments in white and red,
respectively. CS: circumferential strain; HTM: hierarchical template matching; LGE: late gadolinium enhancement.

Discussion

Principal Findings
This paper elaborates an applied HTM-CS–based infarction
detection method, which does not require GBCA administration
for conventional late gadolinium CMR imaging. The results
demonstrated the promising accuracy of the proposed method,
which was compared with the gold-standard method of
infarction detection, that is, LGE.

Data Set
The data set used in this study is a grid-tagging short-axis MRI
because the scope of the article is to show that the CS-based
applied method can identify MI. This CS can be calculated using
grid-tagging CMR images, as reported in the literature [26].

Model of the Applied HTM Method
In the proposed algorithmic model, the HTM method is used
for myocardial tracking. HTM uses normalized cross-correlation
in a hierarchical manner to establish point correlations. In this
hierarchical matching process, as defined in the article [10], the
larger features of images (ie, templates) can correlate well with
larger areas of images; however, they are not efficient in
matching smaller areas of images. Therefore, HTM has also
used smaller image features (ie, segments, chunks, and windows
[10]) to correlate smaller areas of images and provide a dense
set of correlated points among images. This hierarchical
matching is ultimately helpful for myocardial tracking, which
is also effective in smaller areas of LV images.

We used CS because HTM uses grid-tagged CMR images in
an image texture tracking-based method, and a sequence of
grid-tagged CMR images can show better circumferential

movement compared with radial movement. A similar
observation is reported in the literature [26], with a potential
solution to merge cine CMR images with grid-tagged CMR
images to capture and use radial movement more efficiently.
However, the scope of this paper is limited to showing the
applicability of CS; therefore, we have used only CS.

In Step 5a, the benchmark strain values of Table 2 were obtained
from the literature [18]. Table 2 reported strain values for LV
septal and lateral areas without subdividing it into inferoseptal,
anteroseptal, inferolateral, and anterolateral segments. Therefore,
to be able to use literature-referred values, we used the same
strain values for both anterolateral and inferolateral segments,
and similarly, the same strain values for the anteroseptal and
inferoseptal segments.

During Step 5b, the “Infarction Condition” is evaluated, which
compares the strain H-spread among the segments of the same
LV slice, and in specific conditions, when all segments of an
LV slice are infarcted, the healthy segments of other slices are
used for H-spread comparison. The clarification is that, in all
43 participants, the overall mean of only healthy basal segments
(µ(Hhealthy_basal)), an overall mean of only midventricular healthy
segments (µ(Hhealthy_mid)), and an overall mean of only apical
healthy segments (µ(Hhealthy_apical)) were mean 0.0772 (SD
0.0372), 0.0862 (SD 0.0366), and 0.0992 (SD 0.0491),
respectively. Moreover, the mean H-spread of all healthy
segments from all slices together (µ(Hhealthy_all)) was 0.0851
(SD 0.0271). Here, we performed a paired-sample t-test, which
hypothesized that the distribution of differences between each
pair of Hhealthy_all and Hhealthy_apical (or Hhealthy_basal or Hhealthy_mid)
is a normal distribution with mean zero and unknown variance.
The test does not reject our hypothesis for P=.04. Therefore,
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we assumed that such differences among them will not change
the accuracy of the method considerably, and therefore, for
specific conditions when all segments of a slice are infarcted,
we have used Hhealthy_all during comparison, instead of using
only Hhealthy_basal or Hhealthy_mid or Hhealthy_apical.

In k-fold cross-validation, the results are derived using k=5
because k=10 has reported a high variance in the prediction
(some of the tests have 100% prediction accuracy and some of
them have approximately 50%). Therefore, k=5 was used for
consistent prediction, as suggested in the literature [22].

Validation Method
Validation was performed using LGE CMR images, which is
a clinical gold standard method for identifying infarction using
CMR imaging [3].

Accuracy of the Applied HTM Method
The infarcted myocardium does not shorten or lengthen the
healthy myocardium due to replacement fibrosis, and the average
shortening of healthy basal muscles in the circumferential
direction is 20% [18,27]. Moreover, due to nonuniform cardiac
LV mechanics, basal, midventricular, and apical slices have
different average end-systolic shortening of 18.5%, 19.25%,
and 22.25%, respectively [18]. Therefore, the proposed method
has analyzed detections separately in basal, midventricular, and
apical slices to find separate αcorrect-basal, αcorrect-midventricular, and
αcorrect-apical. αcorrect-basal=30 and αcorrect-midventricular=30 show that
the infarcted LV segments have at least 30% reduced strain
H-spread compared with the healthy LV segments in basal and
midventricular slices, respectively. Similarly, αcorrect-apical=20
shows that the infarcted LV segments in apical slices have at
least 20% reduced strain H-spread compared with healthy LV
segments. This difference is due to partially infarcted LV
segments. Figure 5 shows different accuracies at different LV
levels. Moreover, Table 4 shows that some of the infarcted
segments were detected as healthy (false negatives). A possible
reason is that the proposed method is fundamentally based on
image texture tracking and is sensitive to image quality. LV
slices suffer from texture fading due to breathing or blood flow,
and motion artifacts due to patient movement. Consequently,
the method could not track muscles, which cause an error in
strain calculation and ultimately result in incorrect detection.
Table 4 shows the results of randomly selected 9 patients with
MI and 2 healthy participants. Healthy volunteers do not have
infarcted segments. Therefore, true positive and false negative
detections were zero, and the true-positive rate was not a
number. However, there were false detections in healthy
participants, which resulted in a false-positive rate. False
positives were due to reduced CS values.

Clinical Impact
The proposed method could detect infarcted LV segments
without using GBCA, which can extend the utility of CMR in
conditions such as chronic kidney disease stage 4 or 5 patients

(glomerular filtration rate <30 ml/min/1.73 m2 [28]). These
patients have a contraindication to the use of GBCA due to the
risk of nephrogenic systemic fibrosis. Moreover, the concerns
of gadolinium accumulation in normal renal patients can be
avoided with the proposed method. The method could potentially
reduce scanning time, as it identifies infarction by postimage
analysis, and a patient is not required to be inside the scanner
for an additional LGE scan, which in most instances requires
at least 5 to 10 min extra scanning time following GBCA
administration. A study reported that patients who undergo MRI
often have claustrophobia, anxiety, and panic attacks
(approximately 13%) [5]. Therefore, an overall reduced scanning
time may help improve patient care. Moreover, GBCA usage
costs an additional €50 (US $61.39) to a patient [29]. Hence,
HTM-CS–based analysis could be more economical.

Future Work and Limitations
The proposed algorithmic method used three 2D slices and a
16-segment AHA model. However, the methodology could
adapt to a different number of segments. A higher number of
slices could be included after a rigorous literature review to
obtain generalized strain values. Hypokinetic segments could
be detected as infarcted using the proposed method. The
proposed method can locate infarcted LV segments, and further
investigations are required to determine the extent of infarction
(transmurality). A possible reason is the lower resolution of
grid-tagging MRI and faded endocardium and epicardium
borders. However, the method could be improved by combining
multiple CMR imaging modalities for higher accuracy. The
method is not fully automatic; therefore, evaluation at the
scanner is not possible at this stage. As the method is
semiautomatic and requires image cropping, manual
segmentation, and nonrigid image registration, the evaluation
time is subjective, such as 5 to 6 hours for a patient. Moreover,
images with artifacts due to breath-holding, blood flow, or
motion could affect the accuracy of our method.

Conclusions
In this paper, an applied method for detecting MI based on CS
analysis is proposed. The results are compared with the clinical
gold-standard (LGE) in detecting MI, and it is observed that
the proposed HTM-CS–based approach can provide accurate
detections. Moreover, the proposed method avoids the use of
GBCA, leading to reduced material cost and scanning time,
which may be of particular benefit in individuals with
claustrophobia.
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