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Abstract

Background: Scientists are developing new computational methods and prediction models to better clinically understand
COVID-19 prevalence, treatment efficacy, and patient outcomes. These efforts could be improved by leveraging documented
COVID-19–related symptoms, findings, and disorders from clinical text sources in an electronic health record. Word embeddings
can identify terms related to these clinical concepts from both the biomedical and nonbiomedical domains, and are being shared
with the open-source community at large. However, it’s unclear how useful openly available word embeddings are for developing
lexicons for COVID-19–related concepts.

Objective: Given an initial lexicon of COVID-19–related terms, this study aims to characterize the returned terms by similarity
across various open-source word embeddings and determine common semantic and syntactic patterns between the COVID-19
queried terms and returned terms specific to the word embedding source.

Methods: We compared seven openly available word embedding sources. Using a series of COVID-19–related terms for
associated symptoms, findings, and disorders, we conducted an interannotator agreement study to determine how accurately the
most similar returned terms could be classified according to semantic types by three annotators. We conducted a qualitative study
of COVID-19 queried terms and their returned terms to detect informative patterns for constructing lexicons. We demonstrated
the utility of applying such learned synonyms to discharge summaries by reporting the proportion of patients identified by concept
among three patient cohorts: pneumonia (n=6410), acute respiratory distress syndrome (n=8647), and COVID-19 (n=2397).

Results: We observed high pairwise interannotator agreement (Cohen kappa) for symptoms (0.86-0.99), findings (0.93-0.99),
and disorders (0.93-0.99). Word embedding sources generated based on characters tend to return more synonyms (mean count
of 7.2 synonyms) compared to token-based embedding sources (mean counts range from 2.0 to 3.4). Word embedding sources
queried using a qualifier term (eg, dry cough or muscle pain) more often returned qualifiers of the similar semantic type (eg,
“dry” returns consistency qualifiers like “wet” and “runny”) compared to a single term (eg, cough or pain) queries. A higher
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proportion of patients had documented fever (0.61-0.84), cough (0.41-0.55), shortness of breath (0.40-0.59), and hypoxia (0.51-0.56)
retrieved than other clinical features. Terms for dry cough returned a higher proportion of patients with COVID-19 (0.07) than
the pneumonia (0.05) and acute respiratory distress syndrome (0.03) populations.

Conclusions: Word embeddings are valuable technology for learning related terms, including synonyms. When leveraging
openly available word embedding sources, choices made for the construction of the word embeddings can significantly influence
the words learned.

(JMIR Med Inform 2021;9(2):e21679) doi: 10.2196/21679
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Introduction

Background
COVID-19 has become a pandemic that is felt throughout the
world. Scientists are developing new methods for determining
infection rates, disease burden, treatment efficacy, and patient
outcomes [1]. Our ability to detect and phenotype patients with
COVID-19 and controls for clinical and translational studies
requires clinical symptomatology, radiological imaging,
laboratory tests, and associated disorders derived from electronic
health record data [2]. Much of this information can be locked
within the electronic health record clinical notes [3]. To
accurately characterize each patient’s COVID-19 profile for
study, we must develop natural language processing systems
to reliably extract COVID-19–related information. One of the
first steps to extracting this information is developing lexicons
with adequate coverage for all synonyms describing each
COVID-19 concept. In the clinical domain, lexicons have been
developed using several techniques: standardized vocabularies
[4], lexico-syntactic patterns [5], term expansion [6], and
distributional semantics [7]. Moreover, word embedding
technologies have become increasingly popular for identifying
semantically and syntactically-related terms within vector spaces
by assessing the distributional hypothesis that “words that share
a common, relative vector space will often also share a common,
semantic relatedness” [7].

Word Embeddings
Word embeddings represent a word in a vector space while
preserving its contextualized usage. Word embeddings have
been leveraged to learn synonyms to develop lexicons [8]. These
vectors are commonly learned by training algorithms like
Word2Vec [9], FastText [10], and global vectors for word
representation (GloVe) [11] on large corpora, including
domain-independent texts (eg, internet web pages like Wikipedia
and CommonCrawl, and social media like Twitter and Reddit)
and domain-dependent texts (eg, clinical notes like the Medical
Information Mart for Intensive Care III [MIMIC III] database
notes [12] and biomedical research articles like PubMed). These
domain-dependent embeddings may capture richer biomedical
information than domain-independent embeddings (eg, standard
GloVe embeddings) and are becoming increasingly available to
the community at large. For example, BioASQ released their
embeddings trained using the Word2Vec algorithm on 11
million biomedical abstracts from PubMed [13]. Pyysalo et al

[14] trained embeddings using Word2Vec on a combination of
PubMed and PubMed Central articles along with Wikipedia to
combine open domain and biomedical knowledge (biomedical
natural language processing [BioNLP] corpus). Zhang et al
[15] (BioWordVec corpus) and Flamholz et al [16]
(ClinicalEmbeddings corpus) also leveraged PubMed and
PubMed Central articles in addition to clinical notes from the
MIMIC III to train embeddings using the FastText, GloVe, and
Word2Vec algorithms [12].

Word Embedding Evaluations
Systematic evaluations of word embeddings can be broadly
classified into two categories, intrinsic and extrinsic evaluations.
Intrinsic evaluations typically evaluate these word embeddings
against human annotations by measuring the similarity or
relationship between the queried and returned word pairs.
Pakhomov et al [17,18] and Pedersen et al [19] have developed
data sets containing pairs of biomedical terms along with their
degree of relatedness as rated by human annotators.
Furthermore, Pakhomov et al [17] and Hliaoutakis [20] have
annotated pairs of medical terms for their semantic similarity.
One intrinsic evaluation for validating these human annotations
entails computing the Spearman coefficient between word pairs.
Others have intrinsically evaluated word embeddings by
clustering biomedical terms from the Unified Medical Language
System and Ranker [21], and assessing the cluster quality using
metrics like the Davies-Bouldin index and the Dunn index.
Word embeddings have advanced the state of the art for many
intrinsic natural language processing subtasks (ie, reading
comprehension [22], natural language inference [23], text
summarization [24], vocabulary development [8], and document
classification [25]). An extrinsic or summative evaluation of
clinical word embeddings can involve evaluating the
performance of machine learning models by using word
embeddings to complete a biomedical research task or clinical
operation such as patient phenotyping [26,27], patient fall
prediction [25], and patient hospital readmission prediction [28].

COVID-19 and Word Embeddings
In recent years, there has been extensive work to leverage
biomedical and clinical texts for developing clinical word
embeddings to create concept lexicons [29]. For example,
clinical word embeddings have been trained to identify drugs
[30], substance abuse terms [8], and anatomical locations [16].
More recently, word embeddings have been used to understand
the COVID-19 pandemic. For example, Schild et al [31] trained
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word2vec models for learning terms related to “virus” (“corona,”
“covid,” “wuflu,” “coronovirus,” “coronavirus”) for
understanding the emergence of sinophobic behavior on web
communities like Twitter and 4chan’s /pol/ facing COVID-19
outbreaks. Klein et al [32] applied pretrained Bidirectional
Encoder Representations from Transformers to identify Twitter
users with probable or possible COVID-19 infection using their
self-reported Twitter messages and temporal-spatial information.
However, to our knowledge, there has been no intrinsic
evaluation of openly available word embeddings to identify
COVID-19 terms related to symptoms, findings, and disorder
concepts for encoding clinical notes.

Our long-term goal is to develop a COVID-19 information
extraction system to support a variety of purposes, including
clinical and translational research, observational studies, clinical
trials, public health monitoring, and hospital capacity
monitoring. Our short-term goal is to conduct an intrinsic
evaluation to qualitatively analyze and compare various openly
available word embedding sources by categorizing the most
similar words returned for symptoms, findings, and disorders

related to COVID-19, and to identify common patterns between
returned terms and their associated COVID-19 query terms to
better understand which of these word embedding sources and
their configurations could support synonym discovery. An
additional short term goal is to conduct an extrinsic evaluation
to apply these terms and their learned synonyms to the discharge
summaries of patients with pneumonia, acute respiratory distress
syndrome (ARDS), and COVID-19, and report the proportion
of patients identified, with terms representing each concept for
each disorder cohort.

Methods

In this University of Pennsylvania Institute Review
Board–approved study (#831895, #843620), we conducted a
literature review of open-source word embeddings. We
identified 7 publicly available sources and characterized each
resource according to the training source, unit of processing,
context window embedding technology, preprocessing,
embedding technology used, returned units, embedding size,
and vocabulary size (Table 1).
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Table 1. Description of word embedding sources used.

Vocab
size

Embedding
size

Returned
unit (1-3
ngrams)

Embedding
technology
(gensim, Fast-

Text, GloVea,

BERTb, EL-
MO, etc)

Preprocess
(reduce case,
remove stop
words, term
types)

Context
window

UnitTraining
source

Author and
source

Name

~4 bil-
lion to-
kens

2001 ngramword2VecMixed case,
no stop words,
skip-grams

5TokenPubMed/

PMC articles

Pyysalo et al
2013 [14,33]

BioNLPc Lab
PubMed +

PMCd W2V

~5.4 bil-
lion to-
kens

2001 ngramword2VecMixed case,
no stop words,
skip-grams

5TokenWikipedia,
PubMed/

PMC articles

Pyysalo et al
2013 [14,33]

BioNLP Lab-
Wiki +
PubMed +
PMC W2V

~1.7 bil-
lion to-
kens

2001 ngramword2VecLowercase, no
stop words,
continuous
bag of words

5TokenPubMed ab-
stracts

Tsatsaronis et
al 2015
[13,34]

BioASQ

~300k
tokens

3001-3 ngramsword2VecLowercase, in-
clude stop
words, skip-
grams

7TokenPubMed/

PMC/

MIMIC IIIe

Flamholz et al
2019 [16,35]

Clinical Em-
beddings
W2V300

~2.3 bil-
lion to-
kens

2001-3 ngramsFastTextlowercase, in-
clude stop
words

5CharacterPubMed +

MeSHf
Zhang et al
2019 [15,36]

BioWordVec
Extrinsic

~2.3
million
tokens

2001-3 ngramsFastTextLowercase, in-
clude stop
words

20CharacterPubMed +
MeSH

Zhang et al
2019 [15,36]

BioWordVec
Intrinsic

~2.1 bil-
lion to-
kens

3001 ngramGloVeMixed case10TokenCommon
Crawl

Pennington et
al 2014 [11]

Standard
GloVe Embed-
dings

aGloVe: global vectors for word representation.
bBERT: Bidirectional Encoder Representations from Transformers.
cBioNLP: biomedical natural language processing.
dPMC: PubMed Central.
eMIMIC III: Medical Information Mart for Intensive Care III.
fMeSH: Medical Subject Headings.

Constructing the Reference Standard
We generated a list of terms for COVID-19–related semantic
categories of symptoms (“fever,” “high fever,” “cough,” “wet
cough,” “dry cough,” “congestion,” “nasal congestion,” “pain,”
“chest pain,” “muscle pain,” “shortness of breath,” “dyspnea,”
“tachypnea,” “malaise,” “headache,” “sore throat”), findings
(“hypoxia,” “opacities,” “bilateral opacities,” “infiltrates,” “lung
infiltrates”), and disorders (“ARDS,” “respiratory distress,”
“acute respiratory distress syndrome,” “pneumonia”) described
in Cascella et al [1]. We queried each word embedding source
detailed in Table 1 using these COVID-19–related phrases and
retrieved the top 20 phrases based on ranked cosine similarity
(terms closest to 1.0 signifying high similarity). Three annotators
(a biomedical informatician, a clinical general internist and
informatician, and a second-year medical student) encoded each
returned phrase with the following semantic class types:

• Negation (black): a negation of the query term (eg,
“afebrile” is a negation of “fever”)

• Synonyms (green): a lexical variant of the query term with
highly similar or synonymous meaning, including
misspellings and short forms (eg, “ARDS” is a synonym
for “Acute Respiratory Distress Syndrome”)

• Symptom/signs (yellow): any symptom, observation, finding,
or syndrome that is not a synonym of the query term (eg,
“fever” is a symptom returned by “cough”)

• Disease/disorders (blue): any disease, disorder, or diagnosis
that is not a synonym for the query term (eg, “pneumonia”
is a disorder returned by “dyspnea”)

• Hyponym (light red): a more specific semantic type of the
query term (eg, “ground-glass opacities” is a hyponym of
“opacities”)

• Hypernym (dark red): a broader semantic type of the query
term (eg, “cough” is a hypernym of “productive cough”)

• Qualifiers (teal): any nonclinical temporal, spatial, quality,
extent, or size descriptor (eg, “dry” is a qualifier for
“cough”)
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• Anatomical location (orange): any clinical anatomical or
positional descriptor (eg, “lower lobe” is an anatomical
location)

• Therapeutic (purple): any medication, therapy, or procedure
(eg, “mechanical ventilation” is a therapeutic device)

• Other (grey): any semantic type that was not among the
aforementioned or a nonclinical type (eg, “traffic” returned
for “congestion”)

Assessing Interannotator Agreement
For each annotator pair, we computed the interannotator
agreement for the semantic class types for each queried term
using Cohen kappa [37] using sklearn [38]. Specifically, for
each queried phrase (eg, “fever”), each annotator encoded the
semantic type of the returned candidate term compared to the
queried term (eg, returned term “pyrexia” encoded as a synonym
for queried term “fever”). We report the overall interannotator
agreement by category (symptom, finding, and disorder) and
by queried term (“fever,” “dry cough”). We also depict semantic
disagreements between each pair of annotators using heat maps
generated using matplotlib [39].

Analyzing the Similarity Between COVID-19 Queried
and Returned Terms
We depict the broad range of terms returned across openly
available word embedding sources. For each queried term, the
returned term will maintain the same semantic type across word
embedding sources but might return a different cosine similarity

or occur in only select sources. Therefore, for all unique returned
terms within the top 20 ranked by cosine similarity, we
visualized the returned term based on its frequency among the
word embedding sources at any rank using word clouds
generated with matplotlib. The size of the word is a weighted
representation of how frequently the returned term occurred
across the seven-word embedding source; the score is bounded
between 0.14 (observed within only one of seven word
embedding sources) and 1.0 (observed within all seven word
embedding sources). Additionally, of the terms that occurred
at least once among the top 20 ranked terms across the seven
embeddings, we plotted the range of cosine similarities.
Observed top-ranked terms may have cosine similarity values
ranging from 0 to 1.0. If a top-ranked term was not found within
another embedding source, the term received a value of –1.

Assessing the Semantic Distribution Patterns for
Returned Candidate Terms by Source
We determined the distribution of semantic classes among
returned candidates for each queried term according to word
embedding source. Our goal is to identify common semantic
themes among the queried-returned term pairs that might be
driven by the word embedding source construction. We
performed a content analysis with simple mean comparisons
for each semantic category as well as terms with and without
modifiers across embedding sources to identify additional
association patterns (Table 2).

Table 2. Queried terms (symptoms, findings, and disorders) with and without modifiers.

With modifierCategory and term without modifier

Symptoms

“high fever”“fever”

“wet cough,” “dry cough”“cough”

“nasal congestion”“congestion”

“chest pain,” “muscle pain”“pain”

Findings

“bilateral opacities”“opacities”

“lung infiltrates”“infiltrates”

Disorders

“respiratory distress,” “acute respiratory distress syndrome”“ARDS”a

aARDS: acute respiratory distress syndrome.

Generating Symptom Severity Profiles for Patients
With Pneumonia, ARDS, and COVID-19
As a proof of concept, we compared the proportion of patients
that can be classified according to COVID-19 illness severity
groups using terms indicative of their clinical features for three
cohorts: patients with pneumonia, ARDS, and COVID-19. For
the patients with pneumonia and ARDS cohorts, we queried all
inpatient encounters and their resulting discharge summaries
with COVID-19–related disorders: ARDS (International
Classification of Diseases [ICD] codes: 518.5, 518.81, 518.82)
and pneumonia (ICD codes: 480-488) from the MIMIC III

database [12]. For the patients with COVID-19 cohort, we
queried all COVID-19 inpatient encounters from our EPIC
PennChart COVID-19 registry from March 2020 to August
2020 and the resulting discharge summaries. In Table 3, we
denote the clinical findings associated with COVID-19
respiratory illness severity categories [1]. We applied the
expanded lexicon for COVID-19 respiratory illness severity
clinical features using synonyms detected from all embedding
approaches (keywords + embedding expansion). For each cohort,
we report the proportion of patients with the clinical feature
documented within one or more discharge summaries.
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Table 3. Clinical findings according to the COVID-19 respiratory illness severity groups.

Clinical featuresCOVID-19 respiratory illness severity

Mild fever, cough (dry), sore throat, malaise, headache, muscle pain, nasal
congestion

Mild illness

Cough and shortness of breathModerate pneumonia

Fever is associated with severe dyspnea, respiratory distress, tachypnea, and
hypoxia

Severe pneumonia/acute respiratory distress syndrome

Results

We queried seven embedding sources with 15 symptom terms,
five finding terms, and four disorder terms, resulting in 10,080
annotations (top 20 returned candidate terms × 25 queried terms
× seven word embedding sources × three annotators).

Assessing Interannotator Agreement
We observed high overall pairwise interannotator agreement
between annotators (ie, A#=Annotator#) for each semantic

category: symptoms (0.86-0.99), findings (0.93-0.99), and
disorders (0.93-0.99). For A1/A2 and A2/A3, we observed low
to moderate interannotator agreement for “malaise” (0.40-0.41),
“muscle pain” (0.6), “headache” (0.65-0.68), and “dry cough”
(0.68). For A3/A1, interannotator agreement was consistently
high (≥0.93). In Figure 1, we report the distribution of each
queried term’s overall agreement between paired annotators.
The color bar represents the third annotator pair. Overall
agreement by COVID-19 category and by queried term for each
annotator pair can be found in Multimedia Appendix 1.

Figure 1. Pairwise interannotator agreement according to semantic category for each queried term.

In Figures 2-4, for each returned term, we also computed
interannotator agreement across semantic types. Across
annotator pairs, we observed high interannotator agreement for
all semantic types. Each heat map depicts systematic differences
between annotators. In Figure 2, A1/A2 more often disagreed
about whether a returned term was a hypernym, hyponym, or

negation. In Figure 3, A2/A3 more often disagreed about
whether a returned term was a synonym, disease or disorder,
hypernym, hyponym, other, or negation. In Figure 4, A3/A1
most often disagreed about whether a returned term was a
negation or other term.
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Figure 2. A1/A2 interannotator agreement of returned terms according to semantic type.

Figure 3. A2/A3 interannotator agreement of returned terms according to semantic type.
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Figure 4. A1/A3 interannotator agreement of returned terms by semantic type.

Analyzing the Similarity for Returned Candidate
Terms
We report the broad range of queried terms returned across word
embedding sources. For brevity, we depict three
COVID-19–related concepts, one of each semantic category:
symptom (“fever”; Figure 5), finding (“lung infiltrates”; Figure
6), and disorder (“acute respiratory distress syndrome”; Figure
7). For “fever,” synonyms (eg, “pyrexia,” “fevers,” and
“febrile”) and signs or symptoms (eg, “chills” and “diarrhea”)

were common among the returned terms. For “lung infiltrates,”
the most frequent semantic types included anatomical locations
(eg, “lungs,” and “peribronchial”) and hypernyms (eg,
“infiltrate” and “infiltration”) were among the returned terms.
For “ARDS,” disease or disorders (eg, “SARS” [severe acute
respiratory syndrome] and “aSARS-CoV”), synonyms (eg,
“ards” and “respiratory-distress-syndrome”), and hypernyms
(eg, “syndromee” and “syndrome-critical” were observed
commonly among the returned terms.

Figure 5. Word cloud depicting each returned term for “fever.” Colors correspond to semantic class types.
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Figure 6. Word cloud depicting each returned term for “lung infiltrates.” Colors correspond to semantic class types.

Figure 7. Word cloud depicting each returned term for “acute respiratory distress syndrome.” Colors correspond to semantic class types. ALI: acute
lung injury; ARDS: acute respiratory distress syndrome; ARI: acute respiratory infection; SARS: severe acute respiratory syndrome; SARS-CoV: severe
acute respiratory syndrome–related coronavirus.

In Figure 8, we observe that, given a queried term (eg, “fever,”
“lung infiltrates,” and “acute respiratory distress syndrome”),
returned terms differ by cosine similarity and variance. For
example, some returned terms have high cosine similarity and
low variability (left most in red and orange only), while others
demonstrate variable cosine similarity and high variability (right
most in all colors). Examples of returned terms with high cosine
similarity and low variability include “fever”: “fevers,”
“fevering,” and “pyrexia”; “lung infiltrates”: “infiltration,”

“infiltrates,” and “peribronchial”; and “acute respiratory distress
syndrome”: “syndrome(ARDS),” “aSARS,” and
“syndromeards.” Examples of returned terms with variable
cosine similarity and high variability include “fever”: “fevered,”
“fever-based,” and “fever-like”; “lung infiltrates”:
“infiltrational,” “consolidations,” and “bronchioepithelial”; and
“acute respiratory distress syndrome”: “syndrome-is” and
“syndrome-level.”
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Figure 8. Cosine similarity measures for each unique returned term among the top 20 terms across all word embedding sources returned for the queried
terms “fever,” “lung infiltrates,” and “acute respiratory distress syndrome.” Color range indicative of cosine similarity level (0.0-1.0), not semantic
type.

Assessing the Distribution of Semantic Types for
Returned Candidate Terms by Source
We determined the distribution of semantic classes among
returned candidates for each queried term according to word
embedding source. Our goal is to identify common semantic
themes among the queried and returned candidate term pairs
that might be driven by the word embedding source construction.
We observed that the BioWordVec Extrinsic and BioWordVec
Intrinsic embeddings (Figure 9 e-f) were more likely to generate
synonyms (green), which is notably depicted for “fever,”
“headache,” “hypoxia,” “dyspnea,” and “infiltrates.” Word
embedding sources generated based on characters tend to return
more synonyms (mean count of 7.2 synonyms) compared to
token-based embedding sources (mean count ranged from 2.04
to 3.4 synonyms). We also observed more negation terms for
“hypoxia” (mean count of 2.29 negations); “congestion” (mean
count of 1.57 negations); and “dry cough,” “wet cough,” and
“tachypnea” (all had mean counts of 1.0 negations) compared
to other terms (mean counts ranged from 0.00 to 0.71 negations).
We observed a high mean count of hypernyms for “dry cough”
(mean count of 6.43 hypernyms), “high fever” (mean count of
5.57 hypernyms), and “acute respiratory distress syndrome”
(mean count of 4.43 hypernyms) over other terms (mean counts
ranged from 0 to 3.29 hypernyms). Across the other word
embeddings (Figure 9 a-d and g), if a symptom or sign queried
term was provided, we more often observed a symptom or sign
returned term (mean average of 6.62 symptoms or signs)
compared to nonsymptom or sign queried terms (mean average

of 3.035 symptoms or signs). This also held true for disorders
(mean average of 6.24 disorders) compared to nondisorders
(mean average of 1.18 disorders). Across word embedding
sources (Figure 9), we observed that qualifiers were more often
returned when the queried term contained a qualifier for some
terms (eg, “dry cough” and “wet cough” return time and
consistency qualifiers like “wet” and “runny”; both mean counts
of 4.14 qualified terms) over the nonqualified queried term
“cough” (mean count of 1.71 qualified terms). Similar patterns
were observed for “high fever” (mean count of 3.71 qualified
terms), “fever” (mean count of 0.0 qualified terms), “bilateral
opacities” (mean count of 6.14 qualified terms), and “opacities”
(mean count of 2.71 qualified terms). Furthermore, if a queried
term contained an anatomical location as an adjective in the
term phrase (eg, “nasal congestion”), the returned terms were
often anatomical locations compared to queried terms without
adjectives. We observed notable differences in mean counts of
returned terms with anatomical qualifiers for “nasal congestion”
(mean count of 6.71 anatomical terms) and “congestion” (mean
count of 0.42 anatomical terms), “chest pain” (mean count of
8.43 anatomical terms) and “pain” (mean count of 3.57
anatomical terms), and “lung infiltrates” (mean count of 10.57
anatomical terms) and “infiltrates” (mean count of 6.71
anatomical terms). In few cases, the standard GloVe
embeddings, BioWordVec Extrinsic, and BioWordVec Intrinsic
embeddings returned some terms with common term usage (eg,
“congestion” returns “traffic,” “bypass,” or stop words such as
“and,” “a,” and “of”).
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Figure 9. For each symptom, finding, and disorder queried term, the distribution of semantic types for returned term colored by semantic type for each
embedding source: (a) BioNLP Lab PubMed + PMC W2V, (b) BioNLP LabWiki + PubMed + PMC W2V, (c) BioASQ, (d) Clinical Embeddings
W2V300, (e) BioWordVec Extrinsic, (f) BioWordVec Intrinsic, and (g) Standard GloVe Embeddings. ARDS: acute respiratory distress syndrome.

Generating Symptom Severity Profiles for Patients
With Pneumonia, ARDS, and COVID-19
Figure 10 shows the proportion of patients from each disorder
cohort (pneumonia, ARDS, and COVID-19) that have one or
more terms documented within their discharge summary
representing clinical features from Table 3. The total number

of patients in each cohort varied: pneumonia (n=6410), ARDS
(n=8647), and COVID-19 (n=2397). A higher proportion of
patients had documented fever (0.61-0.84), cough (0.41-0.55),
shortness of breath (0.40-0.59), and hypoxia (0.51-0.56)
retrieved than other clinical features. Terms for dry cough
returned a higher proportion of patients with COVID-19 (0.07)
than pneumonia (0.05) and ARDS (0.03) populations.
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Figure 10. The proportion of patients with each COVID-19 clinical feature documented within their discharge summary according to disorders
(pneumonia, ARDS, and COVID-19). ARDS: acute respiratory distress syndrome.

Discussion

Assessing Interannotator Agreement
We observed high overall pairwise interannotator agreement
for the symptoms, findings, and disorder categories. Annotators
A1 and A3 were more often in agreement. For the A1/A2 and
A2/A3 pairs, we observed low to moderate interannotator
agreement for queried terms such as “malaise,” “muscle pain,”
“headache,” and “dry cough.” Annotators A1 and A3
systematically classified notably fewer returned terms as
hypernyms and hyponyms than A2. For example, “migraine”
is a hypernym for “headache.” Additionally, A2 more easily
identified negated terms through medical terminology. Many
cases required more clinical domain knowledge to make these
distinctions, which were easier for the general internist.

Analyzing the Similarity Between COVID-19 Queried
and Returned Terms
When analyzing the cosine similarities between queried terms
and returned terms, we observed that returned terms range from
high cosine similarity and low variability to variable cosine
similarity and high variability. We hypothesize that terms with
high cosine similarity and low variability are more likely to be
synonyms and useful for training an information extraction. In
practice, the presence and cosine similarities of a term varied
across word embedding sources. Our ability to identify and rank
likely synonyms for lexicon development may be improved
with additional processing steps and comparisons between the
queried and returned terms for lexical similarity [40],
morphological derivation [8], and short form construction and
expansion [41].

Assessing the Semantic Distribution Patterns for
Returned Candidate Terms by Source
We determined the distribution of semantic classes among
returned candidates for each queried term according to the word

embedding source. Our study intentions were to assess the
distributional hypothesis that words with similar meanings are
often used in similar contexts. Generally, if a symptom or sign
queried term was provided, we often observed a symptom or
sign returned term. This also held true for disorders.
Furthermore, our goal was to identify common semantic themes
among the queried and returned candidate term pairs that might
be driven by the word embedding source construction. We
observed that the BioWordVec Extrinsic and BioWordVec
Intrinsic embeddings were more likely to generate synonyms.
We hypothesize that this is likely due to training based on the
characters rather than the token; thus, the returned terms often
share a common set of characters (queried term: “fever”;
returned term: “feverish”) or high lexical similarity.
Character-based embeddings will often return lexical variations
of the queried term. Although BioNLP, BioASQ, and Clinical
Embeddings generated fewer synonyms, these were often
medical terms for the lay queried term (eg, “lethargy” for
“malaise,” “cephalea” for “headache,” and “rhinorrhea” for
“nasal congestion”). To maximize the diversity of learned
synonyms, multiple embeddings could be most beneficial.
Returned negated terms were expressed with prefixes (eg,
“non-pneumonia-related”), suffixes (eg, “fever-free”), or medical
terminology (eg, “normoxia”). Hypernyms were commonly
observed among queried terms with an adjectival phrase (eg,
“high fever,” “muscle pain,” “dry cough,” and “lung infiltrates”).
Moreover, we observed that qualifiers were often returned when
the queried term contained a qualifier (eg, time, consistency,
and anatomical location qualifiers). For developing a clinical
information extraction system, these returned terms can be
useful for brainstorming synonyms as inclusionary terms as
well as antonyms as exclusionary terms. We suspect that a mix
of hypernyms and qualifiers were often returned, given the
semantics of the individual parts of the queried phrase. It was
not surprising that standard GloVe embeddings returned some
terms with a nonclinical word sense (eg, “congestion” returns
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“traffic” or “bypass”) because they were trained using the
CommonCrawl domain-independent corpora. Similarly,
BioWordVec Extrinsic and BioWordVec Intrinsic occasionally
return stop words, as these were not removed prior to training
and perhaps should be for detecting meaningful synonyms.

Generating Symptom Severity Profiles for Patients
With Pneumonia, ARDS, and COVID-19
We created an expanded lexicon of COVID-19 respiratory
illness clinical features (Table 3) using synonyms detected from
all embedding approaches. We assessed the proportion of
patients from three disorder cohorts (pneumonia, ARDS, and
COVID-19) with each clinical feature documented within their
discharge summary. We observed that terms indicative of
clinical features for fever, cough, shortness of breath, and
hypoxia retrieved a higher proportion of patients than clinical
features. For fever and cough, our lexicons for capturing
contextualized mentions of these clinical features (eg, high fever
or wet or dry cough) retrieved modest proportions of patient
cases. This is likely due to the variability of qualitative and
quantifications of these symptoms (eg, productive cough and
fever of 102° F) in discharge summaries. Terms indicative of
dry cough returned a higher proportion of patients with
COVID-19 than pneumonia and ARDS populations. This is not
surprising given that this is a prominent symptom reported
among patients with COVID-19.

Limitations and Future Work
Our study has a few notable limitations. We began this study
during the early stages of the COVID-19 pandemic when the
symptomatology was less understood. COVID-19 is a
heterogeneous disease with emerging symptomatology identified
through ongoing clinical observational studies. Emerging

COVID-19–related symptomatology (ie, loss of smell, loss of
taste, and COVID toes) were not included in our analysis, as
their association with COVID-19 were not well understood at
the time of our study. We leveraged existing word embedding
sources to better understand the utility of embeddings for
synonym generation. We recognize that further experimentation
is needed to support broader claims of their utility. As a proof
of concept of patient information retrieval, we applied an
expanded lexicon of terms representing clinical features of
COVID-19 to three disorder cohorts (pneumonia, ARDS, and
COVID-19). Although these terms retrieved a high proportion
of patients, we acknowledge that additional terms might be
necessary to accurately identify these features and that
contextualization (ie, negation, severity, experiencer, and
temporality [42-44]) is critical to generating accurate patient
profiles. We look forward to addressing these issues as next
steps within our clinical information extraction pipeline powered
by Linguamatics [45]. These text-derived and contextualized
variables will be available through our clinical research
databases—COVID-19 Informatics for Integrating Biology and
the Bedside database [46] and Penn Genotype and Phenotype
database supported by the Observational Medical Outcomes
Partnership common data model [47]—at the end of Spring
2021.

Conclusion
Word embeddings are a valuable technology for learning
semantically and syntactically related terms including synonyms
and useful for text classification and information extraction
tasks. When leveraging openly available word embedding
sources, choices made in the development of the embeddings
can significantly influence the types of phrases and information
learned.
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