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Abstract

Background: Common disease-specific outcomes are vital for ensuring comparability of clinical trial data and enabling meta
analyses and interstudy comparisons. Traditionally, the process of deciding which outcomes should be recommended as common
for a particular disease relied on assembling and surveying panels of subject-matter experts. This is usually a time-consuming
and laborious process.

Objective: The objectives of this work were to develop and evaluate a generalized pipeline that can automatically identify
common outcomes specific to any given disease by finding, downloading, and analyzing data of previous clinical trials relevant
to that disease.

Methods: An automated pipeline to interface with ClinicalTrials.gov’s application programming interface and download the
relevant trials for the input condition was designed. The primary and secondary outcomes of those trials were parsed and grouped
based on text similarity and ranked based on frequency. The quality and usefulness of the pipeline’s output were assessed by
comparing the top outcomes identified by it for chronic obstructive pulmonary disease (COPD) to a list of 80 outcomes manually
abstracted from the most frequently cited and comprehensive reviews delineating clinical outcomes for COPD.

Results: The common disease-specific outcome pipeline successfully downloaded and processed 3876 studies related to COPD.
Manual verification indicated that the pipeline was downloading and processing the same number of trials as were obtained from
the self-service ClinicalTrials.gov portal. Evaluating the automatically identified outcomes against the manually abstracted ones
showed that the pipeline achieved a recall of 92% and precision of 79%. The precision number indicated that the pipeline was
identifying many outcomes that were not covered in the literature reviews. Assessment of those outcomes indicated that they are
relevant to COPD and could be considered in future research.

Conclusions: An automated evidence-based pipeline can identify common clinical trial outcomes of comparable breadth and
quality as the outcomes identified in comprehensive literature reviews. Moreover, such an approach can highlight relevant
outcomes for further consideration.

(JMIR Med Inform 2021;9(2):e18298) doi: 10.2196/18298
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Introduction

Over the past decade, comparative effectiveness research has
taken center stage as a major vehicle to facilitate informed

decisions on optimal treatment regimens as well as a means to
improve health care at both the individual and population levels
[1]. Comparative effectiveness research has been defined by
the Institute of Medicine committee as “the generation and
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synthesis of evidence that compares the benefits and harms of
alternative methods to prevent, diagnose, treat, and monitor a
clinical condition or to improve the delivery of care. The purpose
of comparative effectiveness research is to assist consumers,
clinicians, purchasers, and policy makers to make informed
decisions that will improve health care at both the individual
and population levels” [2]. Randomized controlled trials (RCTs)
are considered the gold standard for clinical effectiveness
research [3].

RCTs are conducted to determine whether an intervention is
effective by comparing outcomes between different arms of a
study that are chosen to reflect beneficial and harmful effects
[4]. Results of outcome comparison are used by decision makers
to make evidence-based health care choices [5]. Thus, it is
critical that study outcomes used in RCTs are relevant for the
decision makers and allow cross-trial comparison especially
when used to assess the same condition [6]. Recent studies
demonstrated inconsistencies in choices of RCT outcomes,
which limit potential cross-trial comparison and affect the
reproducibility and overall usefulness of RCTs [7]. For example,
a comprehensive review of oncology research found that more
than 25,000 outcomes were reported only once or twice in
oncology trials [8]. Differences in outcome definitions and
measurements make it difficult or even impossible to synthesize
results of different RCTs [9]. An analysis of missing data in
systematic clinical trial reviews found that 71% of reviews could
not obtain relevant key outcomes from the included trials [10].
Significant variation in outcome reporting has been noted by a
recent systematic review of 109 RCTs assessing interventions
for genitourinary symptoms associated with menopause [11].

Misalignment in clinical trial reporting could be addressed by
the introduction of an agreed upon collection of common data
elements (CDEs) [12]. The importance of developing CDEs for
clinical trials, including common disease-specific trial outcomes,
has been emphasized by researchers in various fields of medicine
and public health [13-16]. Common trial outcomes can help
researchers conduct cross-study aggregations and comparisons,
facilitate meta-analyses, and increase reproducibility and
efficiency. Sheehan et al [15] emphasized the importance of
developing CDEs for clinical research generally and noted the
current absence of “formal international specifications governing
the construction or use of Common Data Elements.” Thurmond
et al [13] discussed a multiagency scientific initiative to develop
CDEs for traumatic brain injury and psychological health and
noted that the “use of different measures to assess similar study
variables and/or assess outcomes may limit important advances
in (...) research. Without a set of common data elements (CDEs;
to include variable definitions and recommended measures for
the purpose of this discussion), comparison of findings across
studies is challenging.”

With regard to clinical outcomes specifically (as the primary
class of CDEs clinical trials are concerned with), a lot of
emphasis has been placed on developing standardization
approaches and addressing potential gaps. Ioannidis et al [17]
examined the gaps in outcomes reported by clinical trials. In
their survey of 174 systematic reviews with 1041 trials on
preterm infants, they found that most trials were missing
information on serious common outcomes for this population,

and concluded by recommending the “use of standardized
clinical outcomes that would have to be collected and reported
by default in all trials in a given specialty.”

The traditional approach for the development of common
outcomes for a particular field involves assembling panels of
subject matter experts, who will then embark on an iterative
multiphased deliberation process to identify the set of outcomes
and agree on definitions and time frames. Redeker et al [16]
offer a window into this, describing a process that involves
“convening a working group, subdividing the working group
based on areas of need, holding an introductory meeting,
developing CDEs for assigned areas by subgroups, reviewing
the work of all the subgroups, revising the CDEs based on
feedback, obtaining public review of the identified CDEs,
revising the CDEs based on feedback, and posting the first
versions of the CDEs on the website.” Typically, this
time-consuming and labor-intensive process does not employ
automated or data-driven methods to systematically utilize
information from ClinicalTrials.gov on the thousands of clinical
trials relevant to the conditions under consideration.

ClinicalTrials.gov is the most comprehensive international
clinical trial registry that contains over 350,000 research studies
from 216 countries [18]. Registration with ClinicalTrials.gov
includes submission of verified, detailed, and structured
information pertinent to clinical trial design, study timeline,
inclusion/exclusion criteria, primary and secondary outcomes,
subject follow-up, and trial results. Data from ClinicalTrials.gov
have found a variety of innovative uses in biomedical
informatics research. For example, Huser and Cimino have
worked to link ClinicalTrials.gov to PubMed to analyze the
proportion of trials that reported results through publication
[19] and to understand the quality and completeness of the links
[20]. Anderson et al [21] used ClinicalTrials.gov data to study
level of compliance with result reporting requirements.
Bourgeois et al [22] used ClinicalTrials.gov data to compare
industry-funded trials to nonindustry-funded trials in terms of
the likelihood of reporting positive outcomes, while Hartung et
al [23] investigated the discrepancies between results submitted
to ClinicalTrials.gov’s results database and those published in
peer-reviewed journals.

ClinicalTrials.gov data mining has been used to analyze the
characteristics of oncology clinical trials [8], trends in clinical
trials for stroke treatment [24], disparities in racial and ethnic
representation in stem cell clinical trials [25], nonpublication
rates of registered digital health trials [26], and relationships
between mutations and phenotypes [27]. With regard to
outcomes and other CDEs, Huser et al [19,20] examined the
use of CDEs in real data sets and showed how the CDEs
identified change by changing the threshold of commonness.
Vodicka et al [28] analyzed the proportion and characteristics
of ClinicalTrials.gov trials that included patient-reported
outcomes. Luo et al [29] proposed a semiautomatic approach
for identifying inclusion criteria CDEs. Mayer et al [30]
collected variables from 15 HIV clinical trial dictionaries and
clustered them using the Unified Medical Language System
(UMLS). These efforts demonstrate the power of automated
evidence-based approaches. However, the potential of
ClinicalTrials.gov data to inform the development of clinical
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trial outcomes has received very little attention in the biomedical
informatics literature.

Our aim in this work was to address the lack of automated
evidence-based tools in the development of clinical outcomes
by introducing our outcome identification pipeline and
evaluating the technical correctness of its operations, as well as
the quality and relevance of the clinical outcomes identified.

Methods

Data Source: ClinicalTrials.gov
The Food and Drug Administration Amendments Act of 2007
(FDAAA) (Section 801 of Public Law 110-85) requires an entity
or individual who is responsible for an applicable clinical trial
to submit the clinical trial information to the Clinical Trial
Registry Data Bank (CTRDB). For the purposes of the FDAAA,
ClinicalTrials.gov plays the role of the CTRDB maintained by
the National Library of Medicine. ClinicalTrials.gov serves as
a mandatory repository for clinical trials conducted under US
regulatory oversight. Registration in ClinicalTrials.gov or a
similar registry is a prerequisite for publishing clinical trial
results in the majority of peer-reviewed journals.

The ClinicalTrials.gov portal supports self-service queries of
registered clinical trials through a user interface at the website’s
main page. The interface allows the user to search for a
particular condition or disease by inputting its name into the
“condition or disease” field or into the “other terms” field. In
the former case, only trials that focus on the condition are
returned. In the latter case, more results are returned, but they
may not all be relevant to the condition. In parallel to the
website, ClinicalTrials.gov offers a RESTful application
programming interface (API) that allows automated submission
of search queries (eg, from a computer program) and returns
results in a computation-friendly format (eg, XML) for further
processing.

We implemented the ClinicalTrials.gov query pipeline using
Python 3.7 [31] with libraries URLLIB.request, Pandas, and
Xml.etree. In what follows, we provide a technical description
of the components of the pipeline, representing the logical steps
from the input query to the final output, and the list of collated
and ranked clinical outcomes. A visual summary of the
workflow is provided in Figure 1.

Figure 1. Pipeline workflow.
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Step 1: Interfacing With the ClinicalTrials.gov API
Search Endpoint
The input term, representing a condition such as “chronic
obstructive pulmonary disease (COPD)”, is embedded into a
URL that is used by the URLLIB.request module to interface
Cl in i ca lTr i a l s . gov ’s  RESTfu l  API  a t
https://clinicaltrials.gov/ct2/results/download_fields?cond=COPD.

Other parameters of the API call include the following: the
number of results to be returned per call (down_chunk), the
results page (if the total number of matching results exceeds
the number of results per page, the results will be broken into
several chunks, and each must be accessed with a separate API
call that references that page’s number), and the format of the
results table (down_fmt, which can be specified as XML, CSV,
PDF, etc).

This call mimics the search for the term using the “condition
or disease” field on the user interface. By substituting “term”
for “cond” in the URL, the call would return the same results
obtained by querying for the term using the “other terms” field
on the web page.

In our implementation, we set the number of down_count to
10,000 (the maximum that ClinicalTrials.gov’s API allows) and
down_chunk to 1, which guarantees that most queries will return
results contained in one chunk. For the few queries that yield
over 10,000 matching trials (eg, “cardiovascular diseases” yields
39,704 results), the pipeline continues incrementing the
down_chunk parameter and generating a new API call with the
updated chunk number until the results are exhausted.

Each call returns a table of results in CSV format. Python’s
Pandas library is used to parse the table into a Data Frame
object. The output from this component is a list of Data Frames,
with one for each chunk of each term’s results.

Step 2: Aggregating and Deduplicating the Results
The output of the interface with the search endpoint is a list of
Data Frames (tables). Each table stores the details about the
trials that match the input condition, and those details include
the National Clinical Trial (NCT) number of each trial. The
NCT number functions as a unique identifier for a registered
study and can be used to download the full record of that study.
In the case of multiple tables (due to multiple input terms or
multiple pages of results returned by the API), it is necessary
to aggregate the NCT numbers from all the tables and remove
duplicate NCT numbers if they occur (this happens when the
input terms are related, eg, “emphysema” and “COPD,” as many
trials match both conditions). The output of this step is a list of
unique NCT numbers that identify the trials matching the input
conditions.

Step 3: Interfacing With ClinicalTrials.gov to Download
the Trial Records
Having arrived at the list of NCT numbers for all the trials in
the results, the next step involves interfacing with
ClinicalTrials.gov again to download each result in XML.
ClinicalTrials.gov allows obtaining a single record in XML by
c a l l i n g
https://clinicaltrials.gov/ct2/show/NCT_Number?displayxml=true.

XML is a widely used markup format that most programming
languages can work with and parse. Obtaining the trial data in
XML sidesteps the challenges of parsing the exact text from a
web page. Instead, the XML tree can be searched for the nodes
with certain labels (eg, “primary_outcome” and
“secondary_outcome”), and the values of those nodes are then
immediately accessible in a structured manner. For each NCT
number in our aggregated set of results, a URL call is made and
the XML record of that study is saved for parsing in the next
step.

Step 4: Parsing the XML for Primary, Secondary, and
Other Outcomes and Time Frames
Having downloaded the XML records for the trials that match
the input terms, the next step is to parse the clinical outcome
names, descriptions, and time frames from the XML.

Our implementation uses Python’s built-in xml.etree module to
parse the XML string into a tree. Then, the iter() function is
called on the name of the nodes whose values will be extracted
(primary_outcome, secondary_outcome, and other_outcome).
Each node has further children that record the name of the
outcome (measure), description, and time frames. The pipeline
parses out those elements and stores them along with the NCT
number.

Step 5: Normalizing Outcome Texts and Building a
Frequency Table
Following the parsing of outcomes in the previous step, the next
step in the pipeline is to normalize those texts of those outcomes,
group them, and rank them by frequency. The text normalization
step is needed to handle the numerous heterogeneous ways for
writing the same outcome name. Given an outcome string, the
pipeline applies the following transformations:

1. If the outcome string ends with an abbreviation (letters
between parentheses matching the initials of the words, eg,
“Quality of life [QoL]”), remove the abbreviation.

2. Change the string to all lower case.
3. Replace all punctuation marks with a space.
4. Replace every occurrence of two or more consecutive space

marks with one space mark, and strip the spaces from both
ends of the string.

Then, the normalized form of the outcome text is stored in a
hash table that maps each outcome string to the list of trials in
which it is used. After all the outcome strings are normalized,
the table is sorted by frequency of occurrences.

Step 6: Generating an Output Spreadsheet
In the final step, the pipeline uses the constructed frequency
tables to generate a readable CSV spreadsheet of the clinical
outcomes for the input condition. The spreadsheet consists of
the following three columns: outcome name, number of trials
in which it is used, and the NCT IDs of those trials (allowing
the user to further explore trials).

Evaluation Methods
Our evaluation of the pipeline consisted of the following two
parts: (1) a technical evaluation that compares the pipeline’s
output to the data accessible through ClinicalTrials.gov’s
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website to verify that the downloading and parsing steps are
implemented correctly and (2) a systematic evaluation of the
outcomes identified by the pipeline for COPD in comparison
to the outcomes identified in published widely cited reviews.

Evaluating the Technical Correctness of the Download
and Parsing Processes
We verified the technical correctness of the implementation by
comparing the trials downloaded via the API to the trials that
can be obtained from the ClinicalTrials.gov website’s
self-service query interface. This involved verifying that for
each query condition, the pipeline was downloading the number
of trials as the number that appeared on the website when
manually searching for that condition.

In addition, we verified that the XML parsing and collating
were correct by sampling pairs of outcomes and NCT identifiers
from the resulting spreadsheet, accessing the ClinicalTrials.gov
webpages of those trials, and verifying that all the outcomes
listed in the output are present on that page. We similarly
evaluated the completeness of the pipeline’s output relative to
the website by sampling in the other direction. Starting from
the results obtainable from the website for a given condition,
we sampled various trials and verified that each trial in the
sample appeared in the output of the pipeline along with all the
outcomes listed for it.

Evaluating the Quality of Pipeline-Identified Clinical
Outcomes
To assess the quality and usefulness of the clinical outcomes
that can be automatically identified by the pipeline, we selected
COPD as a testing use case. COPD was chosen because of the
availability of several frequently cited expert reviews delineating
COPD-specific clinical outcomes for clinical research, which
could serve as a gold standard for assessing the relevance of
clinical outcomes generated by the automated pipeline from
ClinicalTrials.gov data.

Clinical outcomes from four published systematic reviews
[32-35] were manually abstracted by the authors, resulting in a
total of 80 outcomes for COPD clinical trials. These four reviews
represent the most widely cited publications systematically
analyzing outcome measures in COPD trials during the last 15
years. These reviews were conducted manually by
internationally recognized expert teams, and they were based
on overall 389 articles referenced in these publications. The
automated pipeline used four query terms related to the condition
(COPD, chronic obstructive pulmonary disease, emphysema,
and chronic bronchitis) to generate pipeline-identified outcomes

that were compared to the outcomes manually abstracted from
the expert reviews.

Evaluation Metrics
The quality of the automated ClinicalTrials.gov pipeline for
clinical outcome generation was assessed using recall and
precision. Treating the literature review outcomes as the gold
standard, every pipeline-identified outcome that appeared in
the gold-standard set was a “true positive” (TP) prediction,
every pipeline-identified outcome not appearing in the gold
standard set was a “false positive” (FP) prediction, and every
outcome from the literature reviews not identified by the pipeline
was a “false negative” (FN) prediction for the pipeline. Recall
was considered the ratio of TP to (TP + FN), while precision
was the ratio of TP to (TP + FP). Intuitively, recall measures
the coverage of our pipeline relative to the benchmark, and a
low recall would mean the pipeline is failing to identify many
benchmark outcomes. Precision, on the other hand, measures
how many of the pipeline outcomes are the same as the
benchmark outcomes, and a low precision indicates that the
pipeline is identifying many outcomes that do not appear in the
benchmark set.

Results

Correctness of the Data Downloading and Parsing
In evaluating the technical correctness of the output, we
employed a number of testing conditions and terms, and
compared the result count from both the pipeline and the
website. There was a perfect match between the two in all cases,
indicating no loss of data that the pipeline is obtaining from the
API as compared to the website. Our evaluation of samples of
the outcomes and trials similarly indicated a perfect match
between the data obtained from the website and the output of
the pipeline, with the only difference being the intentional
normalization by the pipeline of the outcome texts described in
step 5 of the pipeline operation.

Table 1 provides general statistics related to our application of
the pipeline for COPD-related terms. The number of trials
collected for each term was the same as can be seen on the
ClinicalTrials.gov website on January 22, 2020 (number of trials
for a given condition can increase over time as new studies are
registered). As can be seen in Table 1, the number of trials
generated by querying the “other terms” field was higher than
that generated by querying the “condition” field, as the former
includes a search of additional fields.
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Table 1. General statistics.

Querying using the “other terms” fieldQuerying using the “condition” fieldVariable

42013596Number of trials downloaded using the query term “COPD”

33412993Number of trials downloaded using the query term “chronic obstruc-
tive pulmonary disease”

592414Number of trials downloaded using the query term “emphysema”

244182Number of trials downloaded using the query term “chronic bronchi-
tis”

44503876Number of unique trials (after removing duplicates)

42993734Number of unique trials with outcomes listed

96.6%96.3%Percentage of trials listing outcomes

70335856Number of primary outcomes parsed

18,87216,016Number of secondary/other outcomes parsed

13 minutes

35 seconds

10 minutes

34 seconds

Time required by the pipeline to download and parse the trials

Comparing the Automatically Identified Clinical
Outcomes to Published Reviews
On comparing the outcomes identified automatically by the
pipeline to the 80 outcomes abstracted from four widely cited
reviews [32-35], we found matches for 74 of the 80 manually

abstracted ones, giving the pipeline an overall recall of 92%.
Tables 2 and 3 list the top primary and secondary pipeline
outcomes, while Table 4 lists the four reviews’ outcomes that
appeared in more than two reviews. Multimedia Appendix 1
shows the full mapping of the reviews’ outcomes to the
automatically identified ones.

Table 2. Top 15 primary outcomes identified by the pipeline for chronic obstructive pulmonary disease.

Occurrences as primary, nPrimary outcome

32Mortality

30FEV1a

25Quality of life

14Forced vital capacity

14Exercise capacity

13Adverse events

10Dyspnea

10Lung function

9COPDb assessment test

9Endurance time

9Functional capacity

9Safety

8Oxygen saturation

7Six-minute walk test

7Maximum plasma concentration

aFEV1: forced expiratory volume in 1 second.
bCOPD: chronic obstructive pulmonary disease.
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Table 3. Top 15 secondary outcomes identified by the pipeline, excluding outcomes occurring frequently as primary.

Occurrences as secondary, nSecondary outcomes

30Heart rate

25Length of hospital stay

24St. George’s Respiratory Questionnaire

21Blood pressure

20Physical activity

18Inspiratory capacity

18Body composition

16Time to first COPDa exacerbation

16Physician’s global evaluation

15Depression

15Body mass index

13Hospital anxiety and depression scale

13Patient satisfaction

9Use of rescue medication

9Cost-effectiveness

aCOPD: chronic obstructive pulmonary disease.

Table 4. Top outcomes abstracted from published reviews.

Source (references)Outcomea

[32-35]Baseline Dyspnea Index

[32-35]Transition Dyspnea Index

[32-35]Borg Dyspnea Scale

[32-35]Medical Research Council Dyspnea Scale

[32-35]Chronic Respiratory Disease Questionnaire

[32-35]St. George’s Respiratory Questionnaire

[32-34]Body mass index, airflow obstruction, dyspnea, and exercise capacity

[32-35]Six-minute walk test

[32-35]Incremental shuttle walk test

[32-34]SpO2: peripheral oxygen saturation

[32-35]Forced expiratory volume in 1 second (FEV1)

[32-35]Forced vital capacity (FVC)

[32-35]FEV1/FVC

[33-35]Static lung volumes

[33-35]Number of exacerbations

[33-35]Mortality

aOutcomes that appear in three or more reviews are shown. The full list of 80 outcomes and their equivalent from the pipeline can be seen in Multimedia
Appendix 1.

While calculating the pipeline recall of the pipeline’s output,
we searched for the 80 outcomes abstracted from the expert
reviews and found 74 of them among the automatically
generated outcomes, thus yielding recall of 92%. For calculating
the pipeline precision as described in the methods section, the

entire pipeline output required manual review of all
automatically generated outcomes since many of them
represented the same concept but were phrased differently and
used a different abbreviation or spelling. To streamline this part
of the assessment, only outcomes used in four or more clinical
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trials were considered for grouping, which eventually yielded
a total of 96 pipeline outcomes. We evaluated each of those to
see if they had an equivalent among the 80 outcomes abstracted
from the expert reviews. Overall, 76 of the grouped outcomes
had equivalent counterparts among the outcomes abstracted
from the expert reviews, yielding a precision of 79%.

Examining the Differences Between Pipeline Outcomes
and Review Outcomes
To better understand the quality of the pipeline’s output, we
looked at the difference in results between what the pipeline
generated and the outcomes from the literature. Textbox 1 lists
the review outcomes that had no equivalent in the pipeline
output, while Table 5 lists the top pipeline outcomes that had
no equivalent in the abstracted reviews.

Textbox 1. Top false negatives (outcomes from the abstracted reviews with no match among pipeline-identified outcomes).

Outcomes

Nottingham Health Profile

Medical Outcomes Study 6-Item General Health Survey (MOS-6A)

Symptom Severity Index

Two-minute step-in-place test

Time spent in weight-bearing activities

Sputum visual analog scale

Manchester Respiratory Activities of Daily Living Questionnaire

Table 5. Top false positives (outcomes generated by the pipeline but not appearing in any of the abstracted reviews).

FrequencyOutcome

14Sleep quality

10Self-efficacy

10Pharmacokinetics

9Berg balance scale

9Maximum plasma concentration

7Duration of mechanical ventilation

7Pulmonary vascular resistance

6Diaphragmatic function

6Cognitive function

5Timed up and go

5Patient activation

5Neural respiratory drive

4Handgrip strength

4Short physical performance battery

4Severe Respiratory Insufficiency Questionnaire

Discussion

Principal Findings
We have introduced a general automated pipeline for
evidence-based generation of clinical outcomes using data from
ClinicalTrials.gov. We evaluated the quality of the generated
outcomes for COPD by comparing to a list of outcomes
collected from four comprehensive reviews. We found great
overlap between the autoidentified outcomes and the manually
abstracted ones. Treating the review outcomes as the gold
standard, the pipeline results achieve 0.92 recall overall and

0.79 precision for the top outcomes (used in more than three
studies).

In investigating the cause for lower precision relative to recall,
we examined the FPs (those outcomes that are identified by the
pipeline but are not part of the benchmark set). Table 5 lists the
most frequent pipeline FPs. We find that most of these FPs
appear relevant to the underlying condition (COPD) yet have
not been covered in any of the four reviews we considered. This
argues that the relatively low precision is not due to the pipeline
generating irrelevant outcomes, but rather the pipeline
identifying outcomes not included in the benchmark set. This
points to the potential of this automated evidence-based
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approach to highlight measures and domains that might be
underused in the literature.

Limitations
While the results are encouraging, there are two main limitations
to the data-driven evidence-based approach. First, there is a
great deal of fragmentation in how the same outcome could be
described when the data are entered into the trial registry, which
leads to a large number of overlapping outcomes being
identified. While the text normalization module can handle
surface-level variations, some of the variations will require
specialized ontologies (eg, to recognize that “spirometry” and
“FEV1” are related outcomes). Some variations will still require
some human judgment (eg, should “number of readmissions”
and “number of hospitalizations” be grouped together for more
compactness of the results or is the semantic difference sufficient
to warrant keeping them distinct?).

The second limitation is that while the pipeline can be very
useful in giving a data-backed view of the most frequent
outcomes, it cannot replace the traditional role of experts in
providing guidelines for which outcomes are suitable to use in
a given situation. Combining the proposed evidence-based
pipeline with expert analysis has the potential to greatly facilitate
traditional workflow for CDE development. Recent publication
evaluating methodology for the development of clinical outcome
sets expressed concerns that the currently accepted methodology
relies entirely on agreement and lacks alternatives [36,37].
Methods used in the selection of instruments for outcomes
included in trial outcome sets can be improved by including
automated means for identifying common disease-specific
outcomes used in registered clinical trials [38,39].

There are many studies that used ClinicalTrials.gov data for
systematic analysis. However, most of those studies focused on
analyzing the quality and compliance of the data on
ClinicalTrials.gov. For example, Huser and Cimino linked
records of interventional studies to PubMed publications and
showed that a large segment of trial sponsors failed to meet
their mandate in publishing trial results [20]. Compliance with
result reporting obligations was also the focus of the work by
Anderson et al [21]. Other studies have also utilized
ClinicalTrials.gov data to cluster clinical trials with similar
eligibility criteria features [40], to characterize semantic
heterogeneity of data elements [41], and to analyze
nonpublication rates of registered clinical trials [26].

With respect to CDEs, there have been very few efforts to make
use of ClinicalTrials.gov’s data. Kentgen et al [42] collected
data from patient care forms related to acute coronary syndrome
and then used the UMLS to semantically annotate and generate
a list of the most common data elements. As in our study, the
authors noted a lack of standardized and semantically enriched

documentation for clinical outcomes. In another study, Holz et
al [43] used UMLS to identify and harmonize a semantic core
of CDEs for acute myeloid leukemia. However, neither of these
studies used data from ClinicalTrials.gov. Among the few works
that made use of trial registry data for CDE identification, Luo
et al [29] proposed a semiautomatic approach for identifying
disease-specific eligibility criteria. They used UMLS semantic
types to parse CDEs from inclusion criteria free text. Their
results showed that an automated approach can achieve very
good performance compared with human annotators. The main
difference between their work and ours is that they focused on
eligibility criteria CDEs while we focused on clinical outcomes.

Vodicka et al [28] analyzed the proportion of trials that used
patient-reported outcomes. While their work similarly includes
parsing of ClinicalTrials.gov data, the focus of their analysis
was characterizing the temporal trends of the usage of a
predefined class of outcomes and the variation by sponsor type.
To the best of our knowledge, this is the first report that focuses
on the automated identification of clinical outcomes and
evaluates the coverage of the identified outcomes by comparing
to comprehensive and widely cited reviews.

Future Directions
For future work, we plan to address the fragmentation issue by
using the UMLS [44] in conjunction with the MetaMap API
[45] and ontologies on BioPortal [46] to cluster related outcomes
and allow the user to explore them by outcome domain or
measure. According to Huser et al [47], optimal analyses of
CDEs require engagement of multiple data sources and
biomedical ontologies as well as real-world research use cases.

Furthermore, we believe that there is a lot of potential in the
other data elements that ClinicalTrials.gov provides. This
includes time frames of the outcomes as well as the Medical
Subject Heading (MeSH) terms. For the time frames, the
pipeline is currently parsing them along with the outlines, and
the next step would be to fine tune the parsing and aggregation
of time frames to include them in the output of the pipeline.
MeSH terms are potentially very useful in aiding the
classification and navigation of the variety of extracted
outcomes. Since those MeSH terms typically include
information about additional conditions, inclusion criteria, and
intervention types, grouping the outcomes by the associated
MeSH terms can offer the user of the data a way to zoom in and
zoom out as needed.

Conclusions
ClinicalTrials.gov offers a wealth of data that has not been fully
utilized. An automated pipeline that leverages these data to
identify relevant clinical outcomes for any given condition can
greatly aid the traditional processes around clinical outcome
selection and facilitate clinical trial fidelity and comparability.
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