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Abstract

Background: Deep learning (DL)–based artificial intelligence may have different diagnostic characteristics than human experts
in medical diagnosis. As a data-driven knowledge system, heterogeneous population incidence in the clinical world is considered
to cause more bias to DL than clinicians. Conversely, by experiencing limited numbers of cases, human experts may exhibit large
interindividual variability. Thus, understanding how the 2 groups classify given data differently is an essential step for the
cooperative usage of DL in clinical application.

Objective: This study aimed to evaluate and compare the differential effects of clinical experience in otoendoscopic image
diagnosis in both computers and physicians exemplified by the class imbalance problem and guide clinicians when utilizing
decision support systems.

Methods: We used digital otoendoscopic images of patients who visited the outpatient clinic in the Department of
Otorhinolaryngology at Severance Hospital, Seoul, South Korea, from January 2013 to June 2019, for a total of 22,707
otoendoscopic images. We excluded similar images, and 7500 otoendoscopic images were selected for labeling. We built a
DL-based image classification model to classify the given image into 6 disease categories. Two test sets of 300 images were
populated: balanced and imbalanced test sets. We included 14 clinicians (otolaryngologists and nonotolaryngology specialists
including general practitioners) and 13 DL-based models. We used accuracy (overall and per-class) and kappa statistics to compare
the results of individual physicians and the ML models.

Results: Our ML models had consistently high accuracies (balanced test set: mean 77.14%, SD 1.83%; imbalanced test set:
mean 82.03%, SD 3.06%), equivalent to those of otolaryngologists (balanced: mean 71.17%, SD 3.37%; imbalanced: mean
72.84%, SD 6.41%) and far better than those of nonotolaryngologists (balanced: mean 45.63%, SD 7.89%; imbalanced: mean
44.08%, SD 15.83%). However, ML models suffered from class imbalance problems (balanced test set: mean 77.14%, SD 1.83%;
imbalanced test set: mean 82.03%, SD 3.06%). This was mitigated by data augmentation, particularly for low incidence classes,

JMIR Med Inform 2021 | vol. 9 | iss. 12 | e33049 | p. 1https://medinform.jmir.org/2021/12/e33049
(page number not for citation purposes)

Cha et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:parkhj@yuhs.ac
http://www.w3.org/Style/XSL
http://www.renderx.com/


but rare disease classes still had low per-class accuracies. Human physicians, despite being less affected by prevalence, showed
high interphysician variability (ML models: kappa=0.83, SD 0.02; otolaryngologists: kappa=0.60, SD 0.07).

Conclusions: Even though ML models deliver excellent performance in classifying ear disease, physicians and ML models
have their own strengths. ML models have consistent and high accuracy while considering only the given image and show bias
toward prevalence, whereas human physicians have varying performance but do not show bias toward prevalence and may also
consider extra information that is not images. To deliver the best patient care in the shortage of otolaryngologists, our ML model
can serve a cooperative role for clinicians with diverse expertise, as long as it is kept in mind that models consider only images
and could be biased toward prevalent diseases even after data augmentation.

(JMIR Med Inform 2021;9(12):e33049) doi: 10.2196/33049
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Introduction

Machine learning (ML) based on deep learning (DL) in medical
imaging is developing at a rapid pace, to fill the gap between
the capacity of specialists interpreting the images and the need
for interpreted images. Many studies [1-6] show the possibility
that the performance of image classification is on par or better
than that of medical specialists in terms of accuracy. Despite
the promising results of these studies, characteristics of DL have
not been thoroughly evaluated and compared with human
experts, particularly in the domain of clinical practice. In tasks
such as medical image diagnosis, where accountability is an
important issue, cooperation between human experts and ML
models is necessary [1]. To foster cooperation between humans
and machines, the characteristics of human intelligence (HI)
and DL-based artificial intelligence (AI) should be specified at
the individual and systemic levels.

The class imbalance in real-world clinics is a big challenge in
data-driven ML. Different numbers of samples in various classes
due to imbalanced incidences inherent in the human population
are expected to induce biases toward high incident classes during
the training process.

Conversely, human medical experts learn in-depth by
experiencing limited numbers of cases, thus have less bias for
classes of different sizes [7]. However, clinical experience
differs among clinicians, and every clinician has their own
classification biases, that is, strengths and weaknesses in
classifying certain diseases [8]. Due to the bias induced by
individual experience, physicians may have large interindividual
variability. Meanwhile, ML models are statistically biased based
on the amount of data but show consistent performance among
different models [9]. Despite general speculations, these 2 biases
for data size for each class and interindividual variation due to
differential (small sample–biased) experiences have not been
directly evaluated in the clinical diagnostic setting.

In this study, we investigated the differential characteristics of
ML models and human experts concerning class imbalance bias
and interrater variability. For this, we use as the example the
classification of ear and mastoid disease using otoendoscopic
images. Ear and mastoid diseases are common in, but not limited
to, developing countries in Southeast Asia, Western Pacific
regions, and Africa [10]. However, otolaryngologists are

shorthanded in many developing countries, with as few as <1
otolaryngologist per a million people in 64% of African counties
[11]. Therefore, nonotolaryngologists in primary care are likely
to see patients with these diseases in clinics, and they must play
a role in managing ear diseases, particularly in areas with limited
access to otolaryngologists. However, nonotolaryngologists are
prone to misdiagnosing otitis media, which is a major part of
ear disease [11-13]. Evaluating ear disease involves careful
history taking and physical examination using conventional
otoscopy or otoendoscopy. The initial impression of otoscopy
is an essential gateway to diagnosis and treatment.

One of the domain-specific challenges in ear disease
classification, as in other medical fields, is the class imbalance
problem discussed earlier. This problem may affect both
clinicians and ML models but possibly more so ML models.
Because ear diagnosis is conducted by clinicians with diverse
levels of expertise, the variability of individual performance is
apparent in this field [14,15].

To investigate and compare the effect of the class imbalance
problem between human physicians and ML models as well as
interindividual variability, we evaluated the diagnostic rate and
interrater reliability of otoendoscopic images among 3 groups:
otolaryngologists (2 specialists and 4 residents),
nonotolaryngologists (2 family medicine specialists, 2
emergency medicine specialists, and 5 general practitioners),
and 13 convolutional neural network (CNN)–based classification
models in both balanced and imbalanced test sets, each
containing 300 otoendoscopic images. We also examined the
dependency of the accuracy on the prevalence of each class in
the machines compared with that of human experts. The class
imbalance problem was evaluated concerning diverse data
augmentation strategies generalizable for most CNN-based
classification models to overcome the aforementioned class
imbalance problem. We also evaluated the effect of the
augmentation strategy in improving classification accuracy
according to the incidence of the disease. All these evaluations
were conducted by optimizing our previous automated diagnosis
system [9]. Furthermore, we sought the possibility of using our
classification system as a virtual otolaryngologist to assist
physicians by comparing the accuracy and likelihood of
diagnosis between our classification system and
otolaryngologists.
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Methods

Patient Data Selection and Acquisition
Digital otoendoscopic images from patients who visited the
outpatient clinic in the Department of Otorhinolaryngology at
Severance Hospital, Seoul, South Korea from January 2013 to
June 2019 were used. A total of 22,707 otoendoscopic images
routinely taken using different otoendoscopic cameras by
otolaryngology residents, faculty, or experienced nurses were
reviewed for labeling. The image resolution was 640 x 480
pixels in the DICOM format. We excluded postsurgerical status
photos, duplicate images, images that were significantly out of
focus or fuzzy, and otoendoscopic images from the same
patient’s follow-up data without changes in the diagnosis. We
aggressively excluded similar images if an image was taken
multiple times at slightly different angles; we selected only one
of the images. As a result, 7500 otoendoscopic images were
selected for labeling. This study was approved by the Severance
Hospital Institutional Review Boards (IRB No 2019-0467-001).
Written informed consent was obtained from physician
participants. All methods complyed with the Declaration of
Helsinki.

Analysis and Labeling of Otoendoscopic Images
Otoendoscopic photos containing eardrums and the external
auditory canal (EAC) were classified into 6 categories to cover
all diseases based on the Color Atlas of Endo-Otoscopy [16]:
(1) normal eardrum and EAC including healed perforation and
tympanosclerosis; (2) tumorous condition, in which there are
tumors in the middle ear, EAC, or cerumen impaction; (3) otitis
media with effusion; (4) myringitis or otitis externa; (5)
perforated eardrums; (6) attic retraction or middle ear atelectasis.
Internally, there were more subclasses, but we consequently
merged those subclasses into the 6 aforementioned classes
because we could not acquire an adequate number of sample
sizes of smaller subclasses. Since the goal of the diagnosis
system is to offer an appropriate treatment strategy in real-world
clinics, the label was constructed considering both required
treatment and the similarity of physical findings.

Often, there could be multiple etiologies present in 1
otoendoscopic image. For example, attic retraction with middle
ear effusion could be present. In such cases, the image was
labeled as attic retraction according to our labeling priority.
This priority was determined by the certainty of disease and
possible need for surgery.

To ensure the ground-truth label was correct, we applied
additional steps in labeling, since the accuracy of otoscopy by
a single physician may only be 75% [17]. First, all images were
double-checked by reviewing the patient’s diagnosis in the
electronic medical record by the attending physician at the time,
who had at least 10 years of clinical experience in a tertiary
referral center. Second, if the otoendoscopic image was not
trivial, even after reviewing the medical records, additional test

results (audiological tests including pure-tone audiometry and
impedance audiometry, radiological tests including computed
tomography, magnetic resonance imaging) were considered for
labeling the ground truth. Last, if the first author could not agree
or make an appropriate impression on the otoendoscopic image
even after combining medical records and additional tests, the
picture was discarded. An in-house graphic user interface
software built with MATLAB2019a (MathWorks Inc, Natick,
MA) was used for manual labeling.

Supervised Training of CNN Models for EAC Data
With Transfer Learning
Public CNN models were pretrained with the ImageNet database
[18] to classify 1000 natural objects that served as a base model
for transfer learning of otoendoscopic images. Pareto-efficient
models were chosen to be transferred to this study domain. They
were ResNets [19] (ResNet101, ResNet152), InceptionV3 [20],
InceptionV4 [21], Inception-ResNet-V2 [21], VGG-19 with
batch normalization [22], SENet [23], DenseNet [24], and
NASNet [25,26]. Those models were modified to classify 6
categories of otoendoscopic images by replacing the last fully
connected layer of each model with a layer of 6 fully connected
output nodes. For model optimization, Adaptive Moment
Estimation (ADAM) [27] with a batch size of 32 was used.
Larger batch sizes were not used according to a study reporting
the advantage of smaller batch sizes [28]. We trained for a total
of 20 epochs with differential learning rates. The initial learning
rate was 0.01 in the last transferred layer for 5 epochs. After 5
epochs, fine-tuning was done: All the layers were trained for 7

epochs with a discriminative learning rate, ranging from 1x10-4

in the last layer to 1x10-6 in the first layer. Afterward, we trained

for 7 epochs with a learning rate of 1x10-9 in the last layer and

3.3x10-10 in other layers. To prevent overfitting, affine
transformations of images were applied. A horizontal flip,
rotation of up to 20 degrees, random scales between 0.8 and
1.2, change of lighting up to 20%, and a random symmetric
warp of magnitude between –0.2 and 0.2 were randomly applied
with a probability of 75% on every epoch. Model construction,
training, validation, and testing were implemented using Pytorch
[29] with the Fastai library [30].

Comparison of the Accuracy of the Models With
Diverse Training Settings

Comparison of Model Construction and Performance
According to Training Sample Size
Among a total of 7500 otoendoscopic images, 7200 images
(300 mutually exclusive images were left out for testing in both
balanced and imbalanced scenarios; Table 1) were used for
training in 20 epochs. To maximize available data for training,
we included data from other test sets into the training set; that
is, we put the imbalanced test dataset into the training set when
evaluating in the balanced testing environment and vice versa
when evaluating in the imbalanced testing environment.
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Table 1. Composition of the training and test sets as well as labels, sorted by labeling priority.

Number of imagesClassification

Test-imbalancedb (n=300), n (%)Test-balanceda (n=300), n (%)Training (n=6900), n (%)

51 (17.00)50 (16.77)1793 (26.99)(1) Tympanic perforation

20 (6.67)50 (16.77)521 (7.56)(2) Attic retraction/atelectasis

15 (5.00)50 (16.77)256 (3.71)(3) Myringitis/otitis externa

29 (9.67)50 (16.77)506 (7.33)(4) Otitis media with effusion

18 (6.00)50 (16.77)285 (4.13)(5) Tumors

167 (55.67)50 (16.77)3539 (51.29)(6) Normal

aAll classes are distributed equally.
bClasses are distributed proportionally to the training set.

We chose random image samples using different random seeds
5 times to flatten accuracy fluctuations. Performance according
to training sample size was evaluated to verify the significance
of the larger training sample size: 10% (720 images), 25% (1800
images), 50% (3600 images), 90% (6480 images), and 100%
(7200 images).

Strategies to Overcome Class Imbalance Between Labels
Class imbalance was inevitable due to the diverse incidence of
various ear diseases. To mitigate this problem, 3 strategies were
incorporated in training: oversampling, the mixup [31] method,
and focal loss [32] as the loss function (focal loss with γ = 1).
Oversampling was done by copying images in the smaller
classes to a level equivalent to the largest class, combined with
affine transformations of images. Images of diseases other than
normal eardrums were oversampled to reach the number of
normal eardrum images in the current database. Images of otitis
media with effusion and attic retractions were augmented
approximately 6-fold. The images of myringitis and tumors
required almost 10-fold oversampling. Mixup and focal loss
are described in detail in Multimedia Appendix 1.

We tested 12 models with 8 different configurations (baseline,
with and without oversampling, focal loss, and mixup) resulting
in a total of 12 x 2 x 2 x 2 = 96 CNN-based ML model variants.

Evaluation of the ML Model Accuracy and Similarities
in Prediction Tendency in Both Balanced and
Imbalanced Test Sets
After fine-tuning various CNN-based ML models, the accuracies
of all models were evaluated in both balanced and imbalanced
testing scenarios (Table 1). The first, balanced, 300-image set
consisted of 50 images for each label, which is different from
the incidence ratio in clinical settings but better suited for
measuring accuracies. The second, imbalanced, 300-image set
contained different numbers of images with each label based
on its prevalence in the database, which may represent the
proportion of disease in real-world clinics, particularly a tertiary
referral hospital. Also, the likelihood of diagnosis between
different ML models was evaluated using the Fleiss kappa
method [33]. The kappa (κ) scores were interpreted as follows:
κ<0 as poor, 0.01-0.20 as slight, 0.21-0.40 as fair, 0.41-0.60 as
moderate, 0.61-0.80 as substantial, and 0.81-1 as almost perfect
agreement [34].

Evaluation of Human Physicians’Diagnoses: Accuracy
and Variability
A computerized online questionnaire consisting of 2 sets of 300
questions, identical to the ML model’s balanced and imbalanced
test sets (600 images in total, Table 1), was presented to 14
participants in 3 groups: 6 otolaryngologists (2
otolaryngologists, 4 otolaryngology residents), 8
nonotolaryngologists who had previous exposure to otoscopy
(2 emergency medicine specialists, 2 family medicine
specialists), and 4 general practitioners). Informed written
consent was obtained from all participants.

All participants answered the questionnaire in the same order.
Participants were requested to answer according to the same
labeling priority as in ML models if more than one pathology
was present in the given image. Along with the diagnosis, the
participants were asked to rate the confidence of their diagnosis
on a scale of 1 (not confident) to 10 (very confident). The
participants were not told whether the set was balanced or
imbalanced, since it might have provided additional clinical
suspicion of less common disease entities.

Interrater agreement among individual groups was calculated
using the aforementioned Fleiss kappa method [33]. Spearman
correlation analyses were also performed to check the possible
relationships between confidence and accuracy of diagnosis to
determine whether higher confidence is associated with better
accuracy.

Comparison of Diagnostic Performance and Tendency
Between Physicians and ML Models
All the answers, which were provided in identical order, from
the human physicians and ML models were lined up to compare
the accuracy. We evaluated the differences in the classification
pattern depending on the class prevalence between physicians
and ML models in both balanced and imbalanced test sets. We
measured the likelihood of the ML model’s diagnosis to that of
human physicians by comparing kappa values. We also
compared the per-class accuracy, precision, recall, and F1 scores
between physicians and ML models. We then analyzed the
differential effects of class prevalence in accuracy and prediction
counts using linear regression analysis.
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Results

Training and Test Sets
We used a total of 6900 otoendoscopic images from 6 classes
for training (Table 1). The training dataset was imbalanced,
reflecting the prevalence of ear disease. Although the dataset
was obtained based on a tertiary referral center, therefore having
rich pathologic cases, normal classes were substantially
common. The testing environment consisted of 2 different
settings: (1) balanced test set (300 sample images), consisting
of 6 classes with 50 images each, without considering the
prevalence of ear diseases and (2) imbalanced test set (300

samples), each class distributed proportionally to the training
dataset. Figure 1 displays representative classes and their
activation heatmaps. The classification system could focus on
important areas of eardrums and EACs. For attic retraction, the
DL model focused on pathologic attic areas of the eardrum.
When EACs were wet due to inflammation of the middle or
external ear, it was visible in the heatmap. Normal and middle
ear effusions have the same area of interest, mainly the eardrum
and the middle ear cavity, which was correctly depicted by the
classification system. Perforation of the tympanic membrane
was visualized by the heatmap, as well as middle ear tumors
inside the tympanic membrane (Figure 1).

Figure 1. Representative class and their activation heatmap (Grad-CAM): (A) attic retraction), (B) myringitis or otitis externa, (C) normal findings,
(D) otitis media with effusion, (E) tympanic perforation, (F) middle ear or external ear canal tumors.

ML Model Performance Over Different Numbers of
Training Samples, the Class Imbalance Problem, and
Modifications
When testing with the baseline model (without adjustment of
class imbalance in training), the overall average accuracy was
82.78% in the imbalanced (according to disease prevalence)
test set. However, in the balanced test set, the overall accuracy
was 68.69% (chance level: 16.7%), substantially inferior to the
accuracy of 82.78% for the imbalanced testing data. To mitigate
the class imbalance problem, we retrained a classification model
using oversampling, mixup, and focal loss. We tested every

combination of these strategies under the balanced testing
environment. Applying all 3 strategies in the training phase had
a synergistic effect, achieving an average of 8.41% gain (average
accuracy: 77.14% vs 68.69%) in the balanced test set while
compromising 0.75% in the imbalanced test set. Especially,
oversampling was universally beneficial (Multimedia Appendix
2). The augmented classifier gained more per-class accuracy
for classes with fewer samples, such as attic retractions, than
the baseline model, leading to better overall accuracy in the
balanced test set (n=7200; Figure 2; additional example results
of both test sets with a Resnet101-based classifier available in
Multimedia Appendix 3).
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Figure 2. Per-class recall and overall classification accuracy (bars = 95% CI) for classes according to the number of training samples and augmentation,
trained with 12 different convolutional neural network models and tested on the balanced test set. Acc: overall accuracy; Ar: attic retraction, destruction;
No: normal; Oe: myringitis or acute otitis externa; Om: otitis media with effusion; Tp: tympanic perforation; Tu: middle or external ear canal tumors
or cerumen impaction.

To explore the relationship between the classification bias and
the size of the training dataset in detail, we compared the
classification performance over different numbers of training
samples when tested in a balanced testing environment. The
overall accuracy increased with a higher number of samples.
The adjustment for the class imbalance during the training steps
improved the performance, particularly for classes with fewer
training samples (Figure 2). For classes with a high incidence
rate, there were no significant gains by augmentation as they
already reached a plateau of accuracy, not to mention the
oversampling method synthesizes more images for smaller
classes to match the most common, “normal,” class.
Nevertheless, augmenting images (affine transformations) for
rare classes did not yet reach a saturated accuracy as the number
of total training samples increased.

AI Versus HI in Per-Class Accuracy and Interrater
Variability
The diagnostic accuracy of the 2 test sets was evaluated
separately (Table S2 in Multimedia Appendix 4; additional

metrics including precision, recall, and F1 scores are in
Multimedia Appendix 4). All participants, including prediction
models, assessed the same collection of images in the same
order to rule out bias caused by different questionnaire layouts.
Otolaryngologists (n=6) significantly outperformed
nonotolaryngologists (n=8) in both balanced (mean 71.17%,
SD 3.37% vs mean 45.63%, SD 7.90%; Mann-Whitney U=0;
P<.001) and imbalanced (mean 72.84%, SD 6.41% vs mean
44.08%, SD 15.84%; Mann-Whitney U=0.5; P=.001) test sets.
Our fine-tuned CNN-based ML models (n=12) tended to be
better than otolaryngologists (n=6) in both imbalanced (mean
82.03%, SD 3.06% vs mean 72.84, SD 6.41%; Mann-Whitney
U=10.50; P=.014) and balanced (mean 77.14%, SD 1.84% vs
mean 71.17%, SD 3.37%; Mann-Whitney U=3; P<.001) test
sets and outperformed nonotolaryngologists in both test sets
(Figure 3A).

Figure 3. Mean (A) overall diagnostic accuracy and (B) Fleiss generalized kappa for interrater reliability (error bars = 95% CI); the predictions by the
ResNet152-based deep learning model were assumed to be a human rater. ENT: otolaryngologists; ENT+ML': machine learning model plus
otolaryngologists; ML: baseline machine learning models; ML': augmented machine learning models; Non-ENT: nonotolaryngologists; Non-ENT+ML':
machine learning model plus nonotolaryngologists; NS: not statistically significant. *P<.001 (Mann-Whitney test: ENT vs Non-ENT; Wilcoxon
matched-pairs signed-rank test: ML vs ML').

Compared with nonotolaryngologists, ML models had better
accuracy in all classes. Compared with otolaryngologists, ML
models were better at predicting normal ears, tympanic
perforations, and attic retractions, which were more prevalent

in the training dataset. The diagnosis rate of otitis media with
effusion and myringitis was similar between prediction models
and otolaryngologists. For classifying tumorous conditions,
otolaryngologists were better than prediction models in the
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balanced test set (Table S2 in Multimedia Appendix 4). The
overall accuracy for all physicians was not significantly different
between the balanced and imbalanced test sets, while both
augmented (n=12; median 5.3; P=.001; Wilcoxon matched-pairs
signed-rank test) and baseline (n=12; median 13.3; P<.001;
Wilcoxon matched-pairs signed-rank test) ML models had
significantly higher accuracy in the imbalanced test set (Figure
3A). Of note, augmented ML models had gained significant
accuracy in the balanced test set (n=12; median 8.3; P<.001;
Wilcoxon matched-pairs signed-rank test) without loss of
accuracy in the imbalanced test set (n=12; median 0.8; P=.28;
Wilcoxon matched-pairs signed-rank test) compared with ML
models without augmentation.

Regarding variance in accuracy, ML models had similar
prediction results across different models, resulting in a low SD
(1.76%), which was much lower than that of the otolaryngology
specialists (5.86%) and nonotolaryngologists (14.82%). The
results of the Fleiss generalized kappa as a measure of interrater
reliability are presented in Figure 3B. Between ML models, ĸ
scores ranged between 0.77 and 0.85, indicating a substantial
diagnostic similarity among ML models. The ĸ score was >0.60
between 2 otolaryngology specialists and mostly >0.50 between
all otolaryngology specialists and residents, which corresponds
to moderate agreement between them. However, it was mostly
<0.30 between nonotolaryngologists, which may be interpreted
as fair agreement between these physicians. The predictions by
the ML models were more likely to resemble those of
otolaryngologists than nonotolaryngologists, showing similarity
to otolaryngologists (Figure 3B; ĸ=0.5947, SD 0.05, n=12 vs
ĸ=0.2966, SD 0.13, n=16; P<.001; Mann-Whitney U test).

Using the 4 top-performing models (ResNet152, DPN92,
InceptionV4, and Densenet201), we constructed an ensemble

classifier by adding and taking the maximum arguments
following the softmax activation function in each classifier.
Using this approach, we were able to gain an average of 1.83%
in the balanced dataset and 3.5% in the imbalanced dataset,
reaching 80.33% and 86.67% overall accuracy, respectively
(Table S2 in Multimedia Appendix 4). The ensemble classifier
of the different models outperformed any other CNN-based
classifier alone in overall accuracy and proved to be a stable
model for final prediction. Indeed, ensembling had a positive
but, at the same time, limited effect in enhancing the overall
accuracy because of diagnostic similarity, as indicated by high
ĸ scores between models.

AI Compared With HI in Class Prevalence and Size
of the Training Dataset
In otolaryngologists, accuracies tended to be stable regardless
of sample sizes, whereas ML models showed a bias towards
prevalent classes (Figure 4). Also, the augmentation method
showed significantly improved accuracies in minor classes (attic
retraction: n=12, median 15.0, P<.001; otitis media with
effusion: n=12, median 13.0, P=.005; middle or external ear
canal tumors or cerumen impaction: n=12, median 6.0, P=0.01;
myringitis or acute otitis externa: n=12, median 13.0, P<.001;
Wilcoxon matched-pairs signed rank tests). Otolaryngologists
had a higher variance in the accuracies compared with the
augmented ML models in prevalent classes (normal, tympanic
perforation) and overall accuracy. We additionally analyzed the
count of predicted samples, which corresponds to true-positive
and false-negative predictions, for each class of the balanced
test set. Each classification had 50 occurrences in the set, so
ideally, the count of predicted samples (true positives and false
negatives) should be 50, which is drawn as the dotted line in
Figure 4B.

Figure 4. In the balanced test set, (A) per-class recall and overall accuracy (bars indicate 95% CI) and (B) prediction counts in individual classes (the
dotted line at 50 indicates the sample size of the balanced test set for each class; x axis is on a logarithmic scale). Classes are listed left to right by
descending number of training samples. Each class had 50 samples in the balanced test set (a total of 300 samples for all 6 classes). Nonotolaryngologists
had too high variations and low accuracies and were not plotted. ENT: Y intercept=42.14 (95% CI 39.14-45.24), slope=0.006836 (95% CI
0.004805-0.008939), pseudo R-squared=0.3262; ML’: Y intercept=37.89 (95% CI 35.77-40.07), slope=0.01053 (95% CI 0.008981-0.01211), pseudo
R-squared=0.8665; ML: Y intercept=26.68 (95% CI 24.73-28.69), slope=0.02028 (95% CI 0. 01861-0.02198), pseudo R-squared=0.9167. Acc: overall
accuracy; Ar: attic retraction; ENT: otolaryngologist; FN: false negative; ML: baseline machine learning models; ML': augmented machine learning
models; No: normal; Oe: myringitis or acute otitis externa; Om: otitis media with effusion; Tp: tympanic perforation; TP: true positive; Tu: middle or
external ear canal tumors or cerumen impaction. *P<.01 (Wilcoxon matched-pairs signed rank test).

ML models showed more bias towards the number of training
data, as more prevalent classes tended to have more than 50
counts (above the dotted line; normal class was above the line
and therefore overly diagnosed), while rarer classes such as
myringitis or acute otitis externa had a lower count (below the

dotted line; underdiagnosed). Different classification tendencies
of humans and machines were evaluated with respect to their
dependency on class prevalence. The Poisson regression analysis
for the correlation between each class’s number with the
corresponding number of predictions showed a significantly
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different slope between otolaryngologists, augmented ML
models, and baseline ML models (Figure 4B; slope: 0.021 for
ML, 0.011 for ML’, and 0.007 for otolaryngologists). The
likelihood ratio test with the null hypothesis had one curve for
all data sets, and the alternative hypothesis had a different curve
for each data set. The likelihood ratio between baseline ML
models and the augmented ML models was 76.36 (P<.001),
and the likelihood ratio between the augmented ML models and
humans was 7.958 (P=.019). Differing slopes indicated that the
ML models tended to produce more likely predictions based on
the number of training samples.

Of note, otolaryngologists’ predictions were not well fitted
linearly because of individual differences in prediction (pseudo
R-squared=0.3262). While the augmented ML model had
mitigated the class imbalance problems, it still preferred
prevalent classes, which was not apparent with
otolaryngologists.

Discussion

Principal Findings
The main implications of this study are 3-fold: (1) Work by HI
and AI shows different behaviors (prevalence dependency and
interrater variability); (2) data augmentation reduces the class
imbalance problem but the result is different according to the
sample sizes of each class, requiring a certain amount of data
samples for the rare class to achieve a reliable level; and (3)
considering the high accuracy comparable to otologists and high
variations in diagnostic performance by site clinicians, our ML
model may act as a virtual otoendoscopic image analysis
consultant, as long as clinicians consider that this ML model
considers only images and there are potential biases in the ML
models toward prevalence.

First, we showed that machines work in different ways than
human knowledge, which is exemplarily reflected in the effects
of class imbalance. As expected, ML models showed bias toward
higher prevalent samples in the training set, but lower interrater
(or ML model) variations. In contrast, human experts showed
high interrater variations in their classifications but no
prevalence-dependent biases. For example, the normal class is
diagnosed when all other pathologies are excluded; hence, it is
inherently difficult to diagnose despite its extensive prevalence.
Meanwhile, cerumen impaction and tympanic perforation were
less prevalent in the dataset, but they were classified correctly
more times than the normal class by the human raters because
of the obvious findings. Attic retractions and otitis media with
effusions were subtle in many cases; hence, they were diagnosed
with lower accuracy (Figure 4A). Therefore, for physicians, the
difficulty lies mainly in class-specific abstract rules, which the
data-driven ML model does not detect.

Second, although the class imbalance problem was mitigated
by combining strategies in the training phase (oversampling,
mixup, and focal loss), it had less effect for prevalent diseases
but more for rare diseases (Figure 2). For the data-driven
approach using ML, finding the hyperspace of features that
covers within-class diversity, different from the other classes,
is not trivial. ML attempts to find within-class diversity using

imaging features based on statistics, which demands a large
sample size to capture within-class variability. Indeed, in ML
models, a higher number of samples in training produced better
accuracies and reduced model variability (Figure 2), which is
in line with the results of a previous study [9]. In reality, due
to low incidence, we lacked a sufficient number of data samples
for less prevalent diseases. Data augmentation improves the
overall accuracy and recall of individual classes, especially for
less prevalent classes. However, data augmentation was
performed by manipulating the given dataset, which limited its
diversity within images for rare classes compared with that of
prevalent classes. Therefore, having more actual data for training
is still essential for higher performance, particularly for rare
classes. Often, datasets contain an abundance of normal and
common disease classes and lack uncommon diseases. It is a
general problem in the field of medical imaging, especially
when diseases are rare and obtaining sufficient samples is
difficult [35].

Third, our ML model showed the possibility of acting as a
physician’s assistant in real-world clinics. Inconsistent
performance in humans was apparent, especially in the group
of nonotolaryngologists (ĸ=0.24, 95% CI 0.21-0.26) compared
with ML models (ĸ=0.83, 95% CI 0.81-0.84). Physicians often
overestimated their skills despite the variance in their diagnostic
capabilities, leading to faulty and inconsistent clinical
information delivered to patients. Meanwhile, machines
sometimes produced errors in trivial cases, even if their overall
accuracies were expected to be on par or better than those of
otolaryngologists. When making diagnostic suggestions,
physicians’ decisions should be taken into account to
compensate for faulty ML suggestions, not to mention that the
final responsibility of the decision should be on the care
provider. In a previous study, diagnosis of middle ear disease
by nonspecialists was reportedly only 30% in a study with
primary care trainees [36] and 50% in a study with pediatricians
just after finishing a continuing medical examination course
[37]. Even for otolaryngologists, the accuracy of diagnosing
otitis media using a pneumatic otoscope was 73% [37], which
implies that accurate diagnosis using otoscopy is challenging
[13,14,17]. Computer-aided diagnosis may be beneficial for
both experts and nonotolaryngologists, for example, with our
proposed ML model.

It is worth mentioning that our ML model acted as an
otolaryngologist since the interrater variability (kappa) score
between the ML model and otolaryngologist was similar to the
kappa score between otolaryngologists (Figure 3B, ENT and
ENT+ML’). Therefore, having our ML models interpret
otoendoscopic images may be similar to having an on-demand
otolaryngology consultant. Considering the shortage of
specialists, nonotolaryngologists may combine our image
interpretation results and clinical manifestations, which our ML
does not consider, to deliver an accurate diagnosis and care for
their patients.

Limitations
We point out the limitations and future directions of our study.
Due to privacy issues, we could not perform our model outside
the institution, and external validation could not be performed.
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However, our otoendoscopic images were acquired from a
diverse set of types of imaging equipment, which may mimic
external validation. Also, as pointed out in our Methods section,
one image may have multiple pathologies but was labeled
according to the labeling priority. Multilabel classification
should be conducted in the future, along with multimodal models
that consider a patient’s clinical information. Last but not least,
although our ML models showed good accuracy in analyzing
images, the current model does not consider additional clinical
information, which most clinicians consider when making a
diagnosis. Therefore, our ML model’s higher accuracy in image
translation may not necessarily correlate to better diagnostic
expertise to physicians in the real world.

Comparison With Prior Work
In our previous study [9], we also classified ear disease into 6
entities but tested our model in a 5-fold cross-validation manner.
Therefore, overall accuracy was less affected by classes of lower
prevalence, showing inferior performance when applying the
model in real-world clinics. A more recent study by Byun et al
[38] assessed the effects of diagnostic assistant systems when
used by otolaryngology residents. However, the diversity of
disease was limited (only 4 diseases) and did not cover all ear
diseases, especially external ear diseases and tumors. Also, the
test set’s size was small and did not test under various
circumstances, that is balanced and imbalanced test sets. Our
work addressed these effects and tests in both settings with a
larger test set and more importantly, nonotolaryngologists, who
may benefit most from using diagnostic assistance. We also
measured the interrater reliability using kappa statistics, proving

our proposed ML model similar to an otolaryngologist rather
than a general practitioner.

Conclusions
Among the many potential differences, we focused on the
data-driven classification bias of AI due to class imbalances of
data in real-world clinics. ML is trained to find statistically
optimal features from a large amount of training data in a way
that improves the overall classification accuracy. Different
numbers of samples in different classes due to imbalanced
incidences inherent in the human population induce difficulty
in building a reliable ML model. Based on the results of class
imbalance, sample size, and accuracy (Figure 2), we still prefer
a large but imbalanced dataset to a small but balanced dataset
for a robust ML model. Therefore, our future system should
analyze the strengths and weaknesses of the human experts and
weigh the ML results to make suggestions depending on the
situation: It provides strong suggestions when ML is superior
and weak suggestions when ML is vulnerable. Along with
suggestions, the system may display relative confidence in its
diagnostic ability. Especially in atypical and rare diseases, this
approach may provide more robust diagnoses, making the
prediction system similar to consulting a fellow expert trained
in a different institution for a second opinion.

Considering the practical situation in the clinical field that is
short of otolaryngology specialists, clinicians may utilize our
diagnostic assistance systems to deliver reliable patient care,
while keeping in mind that the ML model does not consider
additional clinical information and could be biased toward
prevalent diseases.
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