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Abstract

Background: Electronic medical records (EMRs) are usually stored in relational databases that require SQL queries to retrieve
information of interest. Effectively completing such queries can be a challenging task for medical experts due to the barriers in
expertise. Existing text-to-SQL generation studies have not been fully embraced in the medical domain.

Objective: The objective of this study was to propose a neural generation model that can jointly consider the characteristics of
medical text and the SQL structure to automatically transform medical texts to SQL queries for EMRs.

Methods: We proposed a medical text–to-SQL model (MedTS), which employed a pretrained Bidirectional Encoder
Representations From Transformers model as the encoder and leveraged a grammar-based long short-term memory network as
the decoder to predict the intermediate representation that can easily be transformed into the final SQL query. We adopted the
syntax tree as the intermediate representation rather than directly regarding the SQL query as an ordinary word sequence, which
is more in line with the tree-structure nature of SQL and can also effectively reduce the search space during generation. Experiments
were conducted on the MIMICSQL dataset, and 5 competitor methods were compared.

Results: Experimental results demonstrated that MedTS achieved the accuracy of 0.784 and 0.899 on the test set in terms of
logic form and execution, respectively, which significantly outperformed the existing state-of-the-art methods. Further analyses
proved that the performance on each component of the generated SQL was relatively balanced and offered substantial
improvements.

Conclusions: The proposed MedTS was effective and robust for improving the performance of medical text–to-SQL generation,
indicating strong potential to be applied in the real medical scenario.

(JMIR Med Inform 2021;9(12):e32698) doi: 10.2196/32698
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Introduction

Electronic medical records (EMRs) contain abundant medical
information on patients and are usually stored in structured
relational databases with multiple relational tables [1]. Using

EMRs, patient data can be traced back over an extended period
of time and by multiple health care providers. EMRs can help
identify those who are due for preventive checkups, screenings,
or vaccinations. They also can record whether a patient’s vital
signs (eg, blood pressure, weight) fall within normal limits [2,3].
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However, retrieving EMRs from databases may not be easy for
medical experts. They usually lack specific training on using
SQL to perform queries on relational databases. Even for
experienced informaticians, it could be troublesome to deal with
massive SQL queries from databases of different structures and
applicable scenarios, especially if complex SQL grammars were
involved. Therefore, automating the transformation of textual
questions written in natural language into SQL queries has great
potential to facilitate clinical information retrieval and improve
the efficiency of medical diagnosis and treatment decisions.

Text-to-SQL generation [4,5] is the task of transforming natural
language questions into SQL queries. As shown in Figure 1,
given the medical textual question “Tell me the insurance and
primary disease of James Sloan,” a text-to-SQL model can
transform the question into a SQL query. It is then used to
retrieve the corresponding EMR information that is stored in
structured medical databases. This task has attracted widespread
attention from different domains. The representative studies
include automatic terminal information service [6-8] for a flight
booking system, GeoQuery [9,10] for a US geography query,

WikiSQL [5] for querying Wikipedia, and Spider [11] for
realistic applications of several different domains. In many
studies, the text-to-SQL generation is regarded as a task similar
to natural language generation. Deep neural networks are often
adopted as encoders and decoders (eg, the sequence-to-sequence
[Seq2Seq] [12] framework with an attention [13,14] or copy
mechanism) [15]. The input of the model is the textual question
and the output is the SQL query that is viewed as an ordinary
word sequence [16,17]. However, the same SQL query can be
represented by multiple word sequences, which may affect the
training effectiveness of Seq2Seq models. For example, the
order of the 2 column names in the Select clause shown in
Figure 1 may not influence the execution result of the query,
but the Seq2Seq models may treat them as 2 different sequences.
To solve this problem, several methods were proposed by
incorporating the syntactical structure of SQL [18,19]. For
instance, SQLNet [18] proposed a sketch-based sequence-to-set
method. A generic sketch highly in line with the SQL grammar
was first used and then it only needed to predict the slots in the
sketch instead of generating the entire sequence in order.

Figure 1. Application scenario of medical text–to-SQL generation.

Compared with other domains, corresponding explorations in
the medical domain are insufficient. Due to the privacy
requirements of medical data, a large-scale training corpus is
still lacking. Furthermore, jargon and specialized phrases often
occur in the medical text. They cannot be represented well by
the models trained on other domains. But these terms are
sometimes the key points of a medical question. In the limited
relevant research, rule-based or those verified on small-scale
datasets are most often found, such as methods of translating
the medical questions into SPARQL Protocol and RDF Query

Language (SPARQL) queries [20] and converting the clinical
questions into EMR-dependent structured queries [21]. To push
this forward, Yu et al [22] introduced a new criteria-to-SQL
generation dataset for clinical trials. However, the targeted free
text is quite different from other query text in terms of length
and content. Wang et al [23] constructed the first large-scale
text-to-SQL generation dataset, MIMICSQL, in the medical
domain based on the widely used Medical Information Mart for
Intensive Care (MIMIC III) dataset [24]. They also proposed a
Seq2Seq-based model, Translate-Edit Model for

JMIR Med Inform 2021 | vol. 9 | iss. 12 | e32698 | p. 2https://medinform.jmir.org/2021/12/e32698
(page number not for citation purposes)

Pan et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Question-to-SQL (TREQS), to directly generate the SQL query
for a given medical question by using the dynamic and temporal
attention mechanism and controlled copying technique. But
these works are preliminary explorations and do not integrate
much intrinsic information related to the SQL itself (eg, the tree
structure of SQL). Therefore, there is still much room left for
further progress.

In this study, we propose a novel model for medical text–to-SQL
generation named MedTS for the medical text–to-SQL
generation task. First, the medical entities (ie, the table and
column names) are recognized via schema linking. A pretrained
Bidirectional Encoder Representations From Transformers
(BERT) [25] model is then used as an encoder to enhance the
question representation. The BERT-based encoder can exploit
the relationship of entities between medical text question and
database schema. Second, a grammar-based long short-term
memory (LSTM) [26] decoder is adopted to generate the
tree-structured intermediate representation instead of directly
transforming a medical question into SQL query. It is in
accordance with the chronological order of the syntax tree of
SQL and can reduce the search space at each decoding step.
Finally, according to the predefined set of context-free grammar,
the intermediate representation is transformed into the
corresponding SQL query. Experiments were conducted on the
MIMICSQL dataset. We compared the proposed model with 5

competitor methods and further analyzed the performance of
each component of the generated SQL query. An online system
is accessible to better demonstrate the application of MedTS
[27].

Methods

Dataset
We evaluated our proposed method on MIMICSQL [23], which
is the first large-scale medical dataset for text-to-SQL generation
task in the health care domain. The medical information in
MIMICSQL is derived from MIMIC III. All of the medical
information was first anonymized to protect patient privacy and
then stored in 5 tables in the medical database (Figure 1),
including demographic (Demo), laboratory tests (Lab), diagnosis
(Diag), procedures (Pro), and prescriptions (Pres). The questions
and corresponding SQL queries in MIMICSQL were
automatically generated based on fixed templates [28]. Next, 8
freelancers with medical domain knowledge were recruited
from a crowd-sourcing platform to validate the question as
realistic and reasonable or rephrase the generated question. The
information of the MIMICSQL dataset is summarized in Table
1. We adopted the same data partition as in the TREQS [23],
in which all the question-SQL pairs were randomly split into
training, validation, and test sets in the ratio of 0.8:0.1:0.1,
respectively.

Table 1. The summary of the MIMICSQL dataset.

CountType

46,520Patients, n

5Tables, n

23/5/5/7/9Columns in tablesa, n

10,000Question-SQL pairs, n

18.39Template question length (in words), mean

16.45Rephrased question length (in words), mean

21.14SQL query length, mean

1.1Aggregation columns, mean

1.76Conditions, mean

aThe 23/5/5/7/9 correspond to the numbers of columns in the Demographics/Diagnosis/Procedure/Prescriptions/Laboratory tests tables.

Overview of the Proposed Method
Given a textual question X={x1,x2,x3,...} and the database
schema, the goal of this work was to transform the textual
question into a SQL query, while ensuring the SQL query
retained the same semantic meaning as the textual question.

An overview of MedTS is shown in Figure 2. In the first step,
schema linking recognized the database schema information
and added corresponding linking marks into the question.
Second, the textual question along with linking marks and the
database schema information were fed into the pretrained
encoder and grammar-based decoder to generate an intermediate
representation. Third, the final SQL query was generated based
on the intermediate representation.
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Figure 2. Overview of our proposed method of medical text–to-SQL task. LSTM: long short-term memory.

Schema Linking
Similar to the method in IRNet [19], the purpose of schema
linking was to recognize the mentioned entities in the medical
question and assign a linking mark, which referred to
recognizing the column names and table names in the medical
database. We enumerated all the n-grams (n∈[1,5]) in a question
and arranged them in descending order based on the length. If
an n-gram exactly matched a column name or was a subset of

a column name, we marked this n-gram as a column. The
recognition of a table followed the same way. If an n-gram was
recognized as both a column and a table, we marked it as a
column because the column mark has higher priority than the
table mark. Once an n-gram was identified, we removed other
n-grams that overlapped with it. By doing this, we obtained all
the entities mentioned in the question. Once an entity was
recognized and linked with a mark, it became a span and was
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encoded into one vector in the encoding process, such as the
insurance recognized as a column in Figure 2.

Attention-Based Encoder Using Pretrained BERT
After schema linking, we identified the entities and assigned
linking marks. The given medical question X was transformed

to [(x1,τ1),...,(xm,τm)] where xi was the ith span and τi was the
mark of xi assigned during schema linking. If xi was not an
entity, τi was None. Let C={c1,c2,...} and T={t1,t2,...} denote
the set of all column names and table names. In order to enhance
the relationship between the question and database schema, we
concatenated the question X and database schema [C,T] with
special tokens, where one classification token [CLS] was used
as the first token and several separation tokens [SEP] were used
as separators of different information, as follows:

In this work, we first used a pretrained BERT as the encoder.
The purpose was to convert the textual question with marks
assigned by schema linking and database schema into hidden
representations via the multihead attention mechanism [29].

Then, for each span, we took the average of the hidden
representations of word and mark as the span representation.
Last, through a fully connected pooling layer, we obtained the
final hidden representations of question HX, column names HC,
and table names HT. The nonlinear transformation of [CLS]
representation tanh(WHCLS+b) was used to initialize the decoder,
where W and b were trainable parameters.

Tree-Structured Intermediate Representation
Tree-structured intermediate representation refers to a syntax
tree that bridges the question and the SQL query. It contains
SQL information implicated in the textual question and could
be transformed to a SQL query more intuitively due to the nature
of the tree structure of SQL. Figure 3 demonstrates an example
of generating an intermediate tree from an input question.
Different from the previous works that used the grammar to
assist the SQL generation [19,22], we designed the grammatical
rules based on the MIMICSQL dataset. Specifically, we kept
only the necessary rules occurring in the dataset to make the
prediction more accurately and added a new rule for predicting
the condition value.

Figure 3. Example of tree-structured intermediate representation: (a) grammar rules that transform the SQL query into an abstract syntax tree, (b)
example of the action sequence generated by the grammar-based decoder with 4 types of actions, and (c) intermediate tree constructed from the action
sequence in b following the grammar rules in a.

To construct the intermediate tree from a SQL query, we first
defined a set of grammar rules, as shown in Figure 3a. The
intermediate tree starts from a root node Z. Since there are no
complicated SQL components such as Union in this task, a
single node R was directly attached to Z. Then, we attached a
node Select or Filter under R, which was determined by the
Select clause or Where clause, respectively. For the subtree of
node Select, according to the number of columns in the Select

clause, the same number of nodes A were attached to node
Select. Each node A comprised an aggregation function node,
a node C, and a node T. The aggregation function could be either
of none, max, min, count, etc, while node C denoted the column
name and node T denoted the table name. For the subtree of
node Filter, it was determined by the conditions in the Where
clause. If there was more than one condition, the corresponding
number of Filter nodes would be attached. Next, for each Filter
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node, it attached a relational operator, a node A, and a node V.
Relational operators include more than (mt), less than (lt), equal
(e), etc. Node V denotes the condition value. The intermediate
tree in Figure 3c was generated by the action sequence in Figure
3b following the grammar rules defined in Figure 3a. The
generation process was in the depth-first, left-to-right order.

Grammar-Based Decoder
The generation process of the intermediate tree was formalized
into sequential applications of actions. The actions either applied
a production rule on the derivation tree or produced a terminal
node. According to the grammar rules, we defined 4 types of
actions (ie, ApplyRule, SelectColumn, SelectTable, and
SelectValue) and adopted the grammar-based decoding strategy
[30,31]. ApplyRule(r) applied a production rule r to construct
the skeleton of the intermediate tree, and the other 3 types of
actions were designed to produce the terminal tokens. Thus, the
goal of the decoder was to generate an action sequence A based
on the outputs of the encoder. Formally, the decoding process
was formalized as follows:

where ai was the action taken at time step i, a<i was the sequence
of actions before i, and n was the number of total time steps of
the whole action sequence.

The probability of selecting a rule r as the current action ai was
calculated as follows:

where denoted the current hidden state of LSTM, vi and ui

denoted the context vectors that were obtained by performing
attention over HX and [HC;HT], e(r) was the one-hot vector for
rule r.

The SelectColumn action was implemented via a
memory-enhanced pointer network to select a column c, in
which the memory was used to record the selected columns
[32]. Once a column was selected, it was removed from the
schema and recorded in the memory. The probability of selecting
a column c was calculated as follows:

where SCH denoted selecting from the schema, MEM denoted

selecting from memory, and and denoted the
corresponding hidden representations of columns.

For the SelectTable action, we leveraged the relationship
between columns and tables to prune irrelevant tables. Thus,

the decoder predicted the table t that the selected columns belong
to. The probability of choosing a table t was calculated as
follows:

As for SelectValue, since the value was always mentioned in
the textual question, the decoder extracted a condition value v
by finding a start position and an end position from the question
via 2 different pointer networks, respectively, as follows:

where pstart and pend denoted the probabilities of the start and
end positions.

Afterward, in order to keep the extracted value consistent with
the value in the database, we also adopted the
condition-value-recover technique proposed in TREQS [23] to
find the most similar value in the look-up table content by
computing the ROUGE-L (Recall-Oriented Understudy for
Gisting Evaluation based on the Longest Common Subsequence)
[33] score between them.

SQL Query Generation
According to the grammar rules in Figure 3, when inferring a
SQL query from an intermediate tree, we traversed the whole
intermediate tree and mapped each node to the corresponding
SQL component. The production rule applied on node Z denoted
that it was just a single SQL query. The node R represented the
start point. Following the child nodes of node R, we generated
the skeleton of a SQL query, such as whether the SQL query
had a Select clause or Where clause corresponding to the node
Select and Filter, respectively. The node Select indicated how
many columns the Select clause had. The node Filter indicated
how many different conditions were in the Where clause. Based
on the subtree of node Select or Filter, we filled in the details
(ie, the aggregation function, relational operator, column name,
table name, and condition value). The From clause was
generated from the nodes of selected tables by identifying the
shortest path that connected these tables in the schema.

Experimental Settings
We adopted the pretrained uncased base BERT as our encoder,
and the hidden size was set as 768. For the decoder module, the
hidden size of LSTM was set as 300. The maximum length of
the action sequence was set as 128. The size of the attention
vector was set as 300. The coarse-to-fine framework [34-36]
was used to model the generation process. The Adam optimizer
[37] was adopted to train the model parameters for 100 epochs.
The learning rate was set as 1e-06, and gradient clipping was
used with a maximum gradient norm of 5.0. During training,
we set the batch size as 8. The numbers of ApplyRule,
SelectColumn, and SelectTable candidate actions were 24, 39,
and 5 respectively. The size of the SelectValue candidate action
was based on the length of the input textual question. We
selected the model which achieved the best performance on the
validation set. The MedTS was implemented with PyTorch [38]
and trained on a Tesla V100 GPU (NVIDIA Corp). Our code
has been shared on GitHub to facilitate other researchers [39].
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We compared our proposed MedTS with 5 competitor methods.
Seq2Seq [14] is an LSTM-based model with the attention
mechanism, in which the SQL query is regarded as an ordinary
word sequence. PtrGen [15] is a Seq2Seq-based
pointer-generator network, which can directly copy the word
from the input question to alleviate the repetition and
out-of-vocabulary (OOV) phenomenon. SQLNet [18] is a
sketch-based text-to-SQL model to avoid the order problems
that occurred in the Seq2Seq model. Coarse2Fine [36] is a
2-stage neural architecture for text-to-SQL. A classifier is first
used to obtain a rough sketch of the SQL query and then the
details of SQL are filled in based on the input and the sketch
individually. TREQS [23] is also a 2-stage text-to-SQL model,
including an attentive-copying mechanism and condition value
recovery mechanism.

All text-to-SQL methods were evaluated with 2 popular metrics
[5], execution accuracy (AccEX) and logic form accuracy (AccLF),
which are complementary to evaluate the quality of the
generation of SQL queries.

• AccEX=NEX⁄N, where N denotes the total number of
question-SQL pairs and NEX denotes the number of SQL
queries that can be executed and achieve the correct answers

• AccLF=NLF⁄N, where NLF denotes the number of queries that
match exactly with the ground truth of the SQL query

Results

Quantitative Evaluation
Table 2 provides the quantitative results on the validation and
test sets. Seq2Seq achieved 0.103 AccLF and 0.173 AccEX on
the test set. SQLNet performed better than Seq2Seq, since it
considered the dependencies between the components of SQL
query based on a graph derived from the sketch. But it was not
easy to cover all the queries. PtrGen performed much better
than SQLNet with 0.180 AccLF and 0.292 AccEX on the test set
because it directly extracted words from textual questions to
reduce the OOV words, especially when most values occurred
in the original question. Coarse2Fine achieved decent
performance since it incorporated the schema information into
question encoding, but it was limited by the number of sketches
and had difficulty handling more complex SQL. TREQS further
improved the performance via several effective mechanisms,
such as controlled generation and placeholder replacement. But
it is just based on the Seq2Seq framework and did not consider
the intrinsic structure information of SQL itself. Compared to
all the methods mentioned above, MedTS achieved the best
performance with 0.681 AccLF and 0.880 AccEX on the validation
set and 0.784 AccLF and 0.899 AccEX on the test set, which
outperformed the best competitor method by at least 29% and
27% in terms of AccLF and AccEX, respectively, on the test set.

Table 2. The logic form accuracy (AccLF) and execution accuracy (AccEX) of SQL query generated by various methods.

TestValidationMethods

AccEXAccLFAccEX
bAccLF

a

0.1730.1030.1950.092Seq2Seq

0.2600.1420.2250.086SQLNet

0.2920.1800.3250.181PtrGen

0.4960.3780.3090.217Coarse2Fine

0.6540.5560.6750.562TREQS

0.8990.7840.8800.681MedTS

aAccLF: logic form accuracy.
bAccEX: execution accuracy.

Performance on Each Component of SQL
In order to further analyze the generation result, we broke down
the SQL queries into 5 components according to the SQL
grammar structure, including aggregation operation, aggregation
column, table, condition column along with its operation, and
condition value. The experimental results are shown in Table
3. Since Coarse2Fine cannot handle multitable questions and
is limited by table-aware assumption, its performance cannot
be compared to other methods. Aggregation operation refers to
the operations in the Select clause used to aggregate all the
values of a column and return a single value, such as Count,
Sum, Avg, etc. All methods except for Coarse2Fine achieved a
very high accuracy of more than 97%. Aggregation column was
the target column in the Select clause for the aggregation
operation. MedTS outperformed other methods significantly

by at least 5% and 12% on validation and test sets, respectively.
Table was the target table in the From clause. Except for the
Coarse2Fine, the other methods achieved similar accuracy.
MedTS achieved the best performance. Condition column along
with its operation represented the column and operation in the
Where clause. Compared to the other competitor methods,
MedTS achieved a large improvement by at least 8% on the test
set. Condition value refers to the condition value in the Where
clause. It was observable that the performance on condition
value primarily played a vital role in the overall SQL generation
performance. MedTS achieved improvement by at least 11%
on the test set. In summary, the experimental results of MedTS
on each component of SQL were relatively balanced and better,
especially the performance on aggregation column and condition
value.
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Table 3. Accuracy of each component of SQL query.

TestValidationMethods

ConvalConc+oTableAggcolAggopConval
fCon d

c+o
e

TableAggcol
cAgg a

op
b

0.4130.4480.5280.4900.5240.2140.2600.3210.3130.321Coarse2Fine

0.2960.5650.8920.6960.9700.1740.4710.9260.8720.978Seq2Seq

0.1400.7490.9410.8730.9890.0800.7220.9330.9390.994SQLNet

0.2350.8240.9260.8300.9870.2360.7950.9440.9170.987PtrGen

0.7630.8440.9410.8270.9930.6940.8340.9420.9120.990TREQS

0.8510.9190.9510.9850.9910.7850.8930.9710.9880.994MedTS

aAgg: aggregation.
bOp: operation.
cCol: column.
dCon: condition.
ec+o: column and operation.
fVal: value.

Ablation Study
We also conducted an ablation study to analyze the impact of
schema linking as well as the use of different types of pretrained
representations on question encoding and show the results in
Table 4. When the schema linking was not used, the
performance of MedTS dropped by 1.4% on AccLF and 1.3%
on AccEX on the test set, which demonstrated the effectiveness
of schema linking. The tested pretrained representations included
a recurrent neural network (RNN)-based encoder (ie,
BioWord2Vec [40]) and two BERT-based encoders (ie,
ClinicalBERT [41] and BioBERT [42]). As shown in Table 4,

the RNN-based encoder with pretrained BioWord2Vec
performed far worse than the BERT-based encoder by at least
21.0% on AccLF and 17.9% on AccEX on the test set. We argue
that the main reason is that the LSTM encoder cannot model
the interaction of the entire sequence itself. As for the
BERT-based encoders, we observed that the performance of
ClinicalBERT was inferior to the others since it specializes in
clinical notes that are obviously different from the natural
language text. Compared to MedTS (with uncased base BERT),
BioBERT achieved slightly better performance since it uses the
medical literature for pretraining which is more beneficial to
the representations of medical questions.

Table 4. The experimental results of the ablation study.

TestValidationMethods

AccEXAccLFAccEX
bAccLF

a

0.8990.7840.8800.681MedTS

0.8870.7730.8700.669w/o SL

0.6440.5010.6900.472w/ BioWord2Vec

0.7840.6340.7710.556w/ ClinicalBERT

0.9040.7900.8820.684w/ BioBERT

aAccLF: logic form accuracy.
bAccEX: execution accuracy.

Discussion

Principal Findings
Our proposed model MedTS achieved the best AccLF and AccEX

on the validation and test sets, with pretrained encoder and
grammar-based decoder. The abstract syntax tree was introduced
as the intermediate representation to bridge the gap between
medical text and the SQL query. The primary outcomes of this
study were (1) a new state-of-the-art model for medical
text-to-SQL generation task was proposed and validated and
(2) an online demonstration system with the capabilities of

transforming the medical text to SQL query and further returning
the query results was provided. Experimental results
demonstrated that MedTS has great potential to help medical
experts facilitate clinical information retrieval and improve the
efficiency of decision-making for medical diagnosis and
treatment.

Model Performance
MedTS has the ability to capture the semantic relationship
between words within textual questions and the dependency
relationship between the text and database schema, benefitting
from the multihead attention mechanism adopted by the
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pretrained encoder. It is difficult for competitor methods to
obtain information as rich using the RNN-based encoder.
Meanwhile, MedTS can effectively reduce the search space via
the grammar-based decoding strategy, which predefines
grammatical rules and introduces the tree-structured intermediate
representation. Although several mechanisms were designed in
the competitor methods to make the generated SQL query more
accurate, they still view the SQL query as an ordinary word
sequence and ignore the intrinsic structure characteristic of SQL
itself, which makes them perform worse than MedTS.

Case Study
In addition to quantitative evaluations, we conducted an
extensive set of qualitative case studies on the test data to
analyze the generated SQL query. We manually analyzed all
1000 text-SQL pairs in the test set. Among them, 784 generated
SQL queries that were entirely consistent with the ground truth,
and 115 generated SQL queries that were not identical to the
ground truth in the logical form but also achieved accurate
execution results. Most of them were caused by the different
positions of the 2 tables connected by the join operation (eg,
example 1 in Table 5). This phenomenon also explains why the
quantitative evaluation results of AccEX are higher than AccLF

in Table 2. In addition, 5 generated SQL queries were correct
but considered wrong by the AccEX because of the various orders
of column in the select clause (eg, example 2 in Table 5). The
remaining 96 pairs generated incorrect SQL queries. We grouped
their errors into different categories from 2 perspectives: clause

and element. The clauses included select, join, and where, and
the elements included operator, table, column, value, and others.
The statistical results are shown in Table 6. Note that there was
no operator in the join clause. Similarly, since the value only
presented in the where clause, the value error of select and join
clauses was none. When there was a table error in the where
clause, it was usually due to the wrong decision in the select or
join clauses, so we did not count these types of errors again.
The rest of the errors, such as more or less conditions, are
grouped into other categories.

From the element’s perspective, we observed that the prediction
errors of column and value account for the majority. From the
perspective of the clause, more than 50% of clause errors were
in where clauses, while most where clause errors were due to
incorrect values or columns. Example 3 in Table 5 is a
representative case of where clause error due to the incorrect
value. The value of expire_flag is a numeric type in SQL but a
text description in the question. Example 4 in Table 5 shows a
case of where clause error due to the wrong column, in which
the admityear and dob_year are semantically close, leading to
the wrong choice. It was challenging to achieve high accuracy
in these cases, since MedTS is based on the pointer network
that selects terms from textual questions to generate SQL
queries. The operation error means that the condition column
and value in the where clause are correct but the operator is
wrong, which may return completely opposite results, as shown
by example 5 in Table 5.
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Table 5. Five representative examples of qualitative case study.

Examples

Example 1

Qa: Let me know the short title and ICD-9b codes of diagnoses for patient John Gartman.

Gc: Select diagnoses.“icd9_code,” diagnoses.“short_title” from demographic inner join diagnoses on demographic.hadm_id = diagnoses.hadm_id
where demographic.“name” = “john gartman”

Pd: Select diagnoses.“icd9_code,” diagnoses.“short_title” from diagnoses inner join demographic on diagnoses.hadm_id = demographic.hadm_id
where demographic.“name” = “john gartman”

Example 2

Q: Tell me which primary disease the patient Walter Locher is suffering from and whether he is still alive or not.

G: Select demographic.“expire_flag,” demographic.“diagnosis” from demographic where demographic.“name” = “walter locher”

P: Select demographic.“diagnosis,” demographic.“expire_flag” from demographic where demographic.“name” = “walter locher”

Example 3

Q: Calculate the number of dead patients who were admitted to hospital before 2123.

G: Select count (distinct demographic.“subject_id”) from demographic where demographic.“expire_flag” = “1” and demographic.“admityear”
< “2123”

P: Select count (distinct demographic.“subject_id”) from demographic where demographic.“expire_flag” = “0” and demographic.“admityear”
< “2123”

Example 4

Q: How many American Indian/Alaska Native ethnic background patients were born before 2148?

G: Select count (distinct demographic.“subject_id”) from demographic where demographic.“ethnicity” = “american indian/alaska native” and
demographic.“admityear” < “2148”

P: Select count (distinct demographic.“subject_id”) from demographic where demographic.“ethnicity” = “american indian/alaska native” and
demographic.“dob_year” < “2184”

Example 5

Q: Find the minimum number of days of hospital stay for patients born before the year 2200.

G: Select min (demographic.“days_stay”) from demographic where demographic.“dob_year” > “2200”

P: Select min (demographic.“days_stay”) from demographic where demographic.“dob_year” < “2200”

aQ: textual question.
bICD-9: International Classification of Diseases Clinical Modification, 9th Revision.
cG: golden truth.
dP: predicted result.

Table 6. Statistical analysis of error categories.

#Element Error (%)WhereJoinSelect

12 (10.6)3—a9Operator, n

14 (12.4)—68Table, n

27 (23.9)10—17Column, n

44 (38.9)44——Value, n

16 (14.2)394Other, n

113 (100)60 (53.1)15 (13.3)38 (33.6)#Clause Error (%)

aNot applicable.

Comparison With Prior Work
In the medical field, a few studies have focused on the
text-to-SQL task, but most of them either proposed rule-based
methods [20,21] or validated on the small-scale datasets [22].

Wang et al [23] constructed the first large-scale medical
text–to-SQL dataset and proposed a neural model TREQS to
undertake this task. However, TREQS focused on solving the
OOV problem and condition value generation. Compared with
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the rule-based methods, our proposed model has better
applicability and can be extended to other datasets. Compared
with the previous neural models, our model adapts more
advanced deep learning methods to this task and achieves the
optimal experimental performance on a large-scale dataset.

Limitations and Future Work
As discussed above, several problems are still to be solved, such
as improving the accuracy of the conditioncolumn and value in
the where clause, especially the gap between natural language
description and the value stored in the database. In future work,
we will continue to improve the accuracy and robustness of the
model (eg, introducing more schema information such as the
data type of column to achieve the goal of practical deployment).
In addition, the form of question and SQL in MIMICSQL is
relatively simple, which is not enough to cover various situations
in the practical applications. Therefore, we plan to keep

exploring different data forms for more practical scenarios, such
as generating SQL queries containing more complex clauses.

Conclusion
In this work, we proposed a medical text–to-SQL method named
MedTS, which incorporates a BERT-based attention encoder
to obtain schema-enhanced text representation and a
grammar-based LSTM decoder to generate the intermediate
action sequence before generating a SQL query. By introducing
the intermediate representation, MedTS can reduce the search
space during decoding and mitigate the mismatch problem
between the medical question and the SQL query. Experiments
on the MIMICSQL dataset demonstrate that MedTS
substantially outperforms the state-of-the-art methods. Further
analyses on each component of SQL query and the case study
confirm MedTS’s effectiveness and robustness, demonstrating
its strong potential.
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