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Abstract

Background: The identification of an appropriate rhythm management strategy for patients diagnosed with atrial fibrillation
(AF) remains a major challenge for providers. Although clinical trials have identified subgroups of patients in whom a rate- or
rhythm-control strategy might be indicated to improve outcomes, the wide range of presentations and risk factors among patients
presenting with AF makes such approaches challenging. The strength of electronic health records is the ability to build in logic
to guide management decisions, such that the system can automatically identify patients in whom a rhythm-control strategy is
more likely and can promote efficient referrals to specialists. However, like any clinical decision support tool, there is a balance
between interpretability and accurate prediction.

Objective: This study aims to create an electronic health record–based prediction tool to guide patient referral to specialists for
rhythm-control management by comparing different machine learning algorithms.

Methods: We compared machine learning models of increasing complexity and used up to 50,845 variables to predict the
rhythm-control strategy in 42,022 patients within the University of Colorado Health system at the time of AF diagnosis. Models
were evaluated on the basis of their classification accuracy, defined by the F1 score and other metrics, and interpretability, captured
by inspection of the relative importance of each predictor.

Results: We found that age was by far the strongest single predictor of a rhythm-control strategy but that greater accuracy could
be achieved with more complex models incorporating neural networks and more predictors for each participant. We determined
that the impact of better prediction models was notable primarily in the rate of inappropriate referrals for rhythm-control, in which
more complex models provided an average of 20% fewer inappropriate referrals than simpler, more interpretable models.

Conclusions: We conclude that any health care system seeking to incorporate algorithms to guide rhythm management for
patients with AF will need to address this trade-off between prediction accuracy and model interpretability.

(JMIR Med Inform 2021;9(12):e29225) doi: 10.2196/29225
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Introduction

Atrial Fibrillation
Atrial fibrillation (AF) affects an estimated 2.3 million
Americans, with projections to over 10 million by the year 2050
[1,2], at current estimated costs of over US $26 billion each
year in total [3] or US $18,000-US $20,000 per patient [4].
According to an analysis of the MarketScan database, patients
diagnosed with AF underwent a mean 11.25 (SD 7.51) outpatient
office visits, mean 4.74 (SD 5.24) outpatient hospital visits, and
mean 0.71 (SD 1.28) emergency department visits, and were
hospitalized for a mean 1.59 (SD 3.39) days on average over a
given 6-month period [5]. Although the only treatment that has
consistently reduced mortality from AF is the use of oral
anticoagulation agents to prevent thromboembolic stroke [6-19],
patients with AF can still have acute coronary syndromes, heart
failure, and cardiovascular death at a rate of approximately 5%
per year [20-23], including 35%-50% with hospital admissions
or death within 5 years, even in the presence of oral
anticoagulation [24,25]. Furthermore, the use of anticoagulation
has no direct impact on the symptoms a patient may experience
from AF, on the effect AF may have on underlying
cardiovascular physiology, or on the long-term outcomes of
being in AF rather than sinus rhythm. As such, the treatment of
AF beyond identification of individuals needing anticoagulation
is generally directed toward one of two strategies: (1) a
rate-control strategy, focused solely on reducing the rate of
ventricular excitation without attempting to restore sinus rhythm,
or (2) a rhythm-control strategy, in which the focus is on
restoring sinus rhythm using direct electrical energy
(cardioversion), antiarrhythmic medications [26,27], catheter
ablation, or a combination of two or more of these approaches
[6,26,28-30]. Although a rate-control strategy can typically be
performed under the care of a primary care physician,
application of a rhythm-control strategy generally requires input
from a specialist in cardiology or cardiac electrophysiology.
Given the complexity of the decision about when to pursue a
rhythm- or rate-control strategy, patients in whom a
rhythm-control strategy is unlikely may be reflexively referred
to cardiology or cardiac electrophysiology; in contrast, patients
in whom a rhythm strategy would be beneficial may not be
referred to a specialist who could provide this service. A method
to identify patients who are more or less likely to undergo a
rhythm-control strategy upstream could thus provide an
attractive resource to improve care efficiency.

Use of Electronic Health Records
The expansion of electronic health records (EHRs) has created
the opportunity to develop automated methods of prediction
using machine learning. Although machine learning methods
can provide superior predictability over standard methods in
some cases, this improved accuracy often comes at the expense
of using black box methods for prediction, in which it is not
clear what specific information is being used by a given model
to make predictions [31]. Within the space of clinical
decision-making, such opacity can be a problem as it not only
prevents users from gaining trust in the model but also provides
little feedback in terms of how potential factors might be
modified to change a decision. Our group has previously

described the application of machine learning methods to EHRs
for the prediction of incident AF and other outcomes [32,33].

In this study, we applied a step-by-step process to develop
prediction models of increasing complexity using EHR data to
predict whether a given patient is likely to have a rate- or
rhythm-control strategy at the time of diagnosis of AF. We
structured our analysis to examine and compare methods that
offer a range of levels of model interpretability as well as
prediction accuracy. In conclusion, we have provided a set of
models that can be applied using EHR data at the point of care
to guide referrals for AF management broadly within a health
care system.

Methods

Study Population
The University of Colorado (UC) Health hospital system
includes 3 large regional centers (north, central, and south) over
the front range of Colorado. All UC Health hospitals share a
single Epic instance, with backups and storage within Epic’s
Cogito Suite of databases, including Chronicles (operational
database), Clarity (relational database), and Caboodle
(dimensional database). In 2016, the UC entered into a unique
partnership with Google to allow data from Caboodle to be
loaded and stored in a research-focused data warehouse called
the Health Data Compass, located entirely on the Google Cloud
Platform, which was used by our team for this study. The data
set was obtained using Google Big Query applied to the EHR
system to return patients who were seen for outpatient
encounters between October 11, 2010, and October 26, 2020,
and were between the age group of 18 and 100 years at the index
encounter, defined as the first time that a diagnosis of AF was
entered for an outpatient seen at a UC Health clinic (see
Multimedia Appendix 1, Table S1, for AF diagnosis definitions).
The full data set contained 42,022 participants and was split
into a training set (31,517/42,022, 75%) and a testing set
(10,505/42,022, 25%), with model development performed
using the training set and model comparisons using the testing
set. This protocol was approved by the UC Multiple Institutional
Review Board (#20-2192) using deidentified and uniquely
encoded data sets, with a waiver of informed consent.

Clinical Predictors
Clinical predictors were grouped into two broad categories,
which were defined as big data predictors and known predictors.
Big data predictors included any diagnosis (International
Classification of Disease [ICD]-9 or ICD-10) or procedure event
for each patient before the index encounter, as well as race,
ethnicity, and financial class. Any medication that was active
and administered via the oral route at the index encounter was
also included as a big data predictor. For each participant, an
array was created for active medications, procedures, and
diagnoses, followed by the use of a tokenizer (Keras Tokenizer)
to create a one-hot encoded data set with each unique
medication, procedure, and diagnosis assigned its own variable,
resulting in a data set containing 50,845 variables. Known
predictors were defined as any cardiac or metabolic diagnoses
that have been identified as having a potential association with
the risk of AF, including hypertension (ICD-9 401.X; ICD-10
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I10.X) [6,21,34], obesity (ICD-9 278.X; ICD-10 E66.X) [34-37],
diabetes mellitus (ICD-9 250.X; ICD-10 E11.X), coronary artery
disease (ICD-9 414.X; ICD-10 I25.X), and heart failure (ICD-9
428.X; ICD-10 I50.X) [21,24,34,38,39], and mitral valve disease
(ICD-9 424.X or 394.X, ICD-10 I34.X), as well as age and sex.
Age was normalized (mean subtracted and divided by SD) for
all analyses except for logistic regression models and decision
trees (not including random forests [RFs]), which used the
unnormalized age. This allowed for improved optimization of
the models that used the normalized age and greater
interpretability of the models that used the unnormalized age.
Missing values were imputed using the median value
(continuous variables) or mode (discrete variables). No
participants were missing age or sex, and diagnoses were
assumed to be absent if the value was unavailable.

Outcome: AF Treatment Strategy
AF treatments were defined as any medication, including
antiarrhythmic medications, external cardioversion, or AF
ablation procedure that was ordered within 6 months after the
index encounter (Multimedia Appendix 1, Table S2). We
defined the order for any antiarrhythmic medication, ablation,
or cardioversion procedure as a rhythm-control strategy and
any nodal agent or absence of a treatment order as a rate-control
strategy. Treatments were only assessed following the index
encounter (ie, the first outpatient visit at which the diagnosis of
AF was entered); we did not examine subsequent treatments or
study visits beyond the first 6 months after the index encounter.
In one subanalysis, we examined the first selected
rhythm-control strategy after the AF diagnosis, grouped into
one of the following categories: antiarrhythmic medication,
external cardioversion, and ablation.

Modeling Strategy

Model Development
As the total number of participants to whom a rhythm-control
strategy was applied was relatively low (imbalanced data), we
first compared four methods of resampling: synthetic minority
oversampling technique (SMOTE) [40,41], random
oversampling, random undersampling, and Tomek links
undersampling [42], as well as the use of raw features.
Resampling was performed only in the training set.

Model development proceeded from the most interpretable
(logistic regression) to the most complex and opaque (combined
methods incorporating neural networks in ensemble format).
Originally, we planned to run all models on both groups of
inputs, known and big data predictors. However, we found that
only deep learning models provided predictive accuracy for big
data predictors. Thus, we ran the non–deep learning models on
the known predictors only (Multimedia Appendix 1, Table S7).
For logistic regression, we used the training data set to develop
binary logistic regression classifiers for models of rate- versus
rhythm-control and multinomial logistic regression for models
of the first AF treatment strategy among those identified as
having a rhythm-control strategy. For RFs, extreme gradient
boosting, K-nearest neighbors, and naïve Bayes classification,
grid search for hyperparameter optimization was performed
using five-fold cross-validation on the training set, with manual

grid optimization to ensure that the grid contained the optimal
hyperparameters (ie, if a hyperparameter value was identified
on the upper end of the grid range, the grid was expanded to
ensure that the overall optimal hyperparameter was not beyond
the bounds of the grid space).

The approach to fitting neural networks was to first increase
the complexity (lower learning rate and increased numbers of
layers and neurons) to improve fit on the training data and then
to include regularization methods (eg, decrease the learning rate
and add dropout) as the out-of-sample loss began to increase,
as noted in the examination of learning curves (Multimedia
Appendix 1, Figure S1). We used feed-forward neural networks
for deep learning architecture. Unless described otherwise,
neural networks used fully connected layers with Elu activation
(except the final layer, sigmoid), He initialization, L2
regularization (Penalty=0.01), dropout (20%), batch
normalization, binary cross-entropy loss, Root Mean Square
Propagation optimizer with learning rate=1e-4, ρ=0.9, and 50
training epochs with early stopping. Formal comparisons of
predictive accuracy are presented; any model structure or
hyperparameters that are not presented can be assumed to have
provided inferior predictive accuracy compared with the
presented models.

We also examined several ensemble methods by integrating the
optimal model on the basis of big data predictors (from neural
networks) with known predictors to allow interpretability of the
impact of each component on the overall prediction accuracy.
We first included the predicted probability of a rhythm-control
strategy for each participant on the basis of the neural network
as an input into either a RF or logistic regression, with SMOTE
resampling for the training set. We also examined the weights
and structure of the neural network with big data inputs
combined with auxiliary input from known predictors
concatenated at the final layer, followed by the addition of a
fully connected layer (called neural network combined) with
sigmoid output to predict rhythm-control strategy. Weights from
pretrained layers of the former models were frozen, with training
only on additional layers after the addition of known predictors.

Model Interpretation
Our main goal was to identify an optimal model to predict the
probability of providers applying a rhythm-control strategy on
the basis of classification accuracy and interpretability.
Classification accuracy was defined primarily by the F1 score,
with supportive metrics including the area under the receiver
operator characteristic curve (AUC), precision (positive
predictive value), recall (sensitivity), accuracy (% correct
predictions), and inspection of the 2 × 2 contingency table.
Interpretability was examined by inspecting the relative
importance of each predictor according to the metrics available
for each modeling approach. For logistic regression, importance
was defined by the chi-square statistic from a nested likelihood
ratio test, with and without inclusion of the predictor in the
model. For RFs, importance was defined by the Gini index,
which describes the mean decrease in impurity across all nodes,
averaged over all decision trees [43]. We also examined
individual decision trees manually for the interpretability and
relevance of decision cut-points.
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Model calibration was assessed using calibration curves created
by binning the predicted probability from each model over the
deciles of prediction and examining the actual proportion of
rhythm-control strategies within each decile. Receiver operator
characteristic and precision-recall curves were plotted using
standard methods (sklearn). To allow inspection of these models
within the context of triggering referrals for evaluation of the
rhythm-control strategy, we also plotted the proportion of
appropriate, inappropriate, and missed appropriate referrals
according to varying probability thresholds from each prediction
model. These classifications were assigned by comparing
whether a rhythm-control strategy was predicted by the model
and whether it was actually used for each participant. Thus,
appropriate referrals indicated the participants for whom a
rhythm-control strategy was predicted and used, inappropriate
referrals indicated those for whom a rhythm-control strategy
was predicted but not used (false positives), and missed
appropriate referrals indicated those for whom a rhythm-control
strategy was not predicted but was used (false negatives).

Computing Resources
Analyses and marginal estimation using logistic regression
applied to the known predictors were conducted using Stata, IC
(version 16, StataCorp, Inc). Analyses using both known and
big data predictors were performed using scripts written in
Python 3.7.4, with dependencies (software packages) including
the following: imblearn 0.0, Keras 2.2.4, numpy 1.19.4, pandas
0.25.1, scikit-learn 0.23.2, and tensorflow 2.4.0. Scripts were
developed and tested using Jupyter Notebook and deployed
using command line programming at the UC’s Health Data
Compass Eureka virtual environment, hosted on Google Cloud
Platform, using 64 central processing units and approximately
8-10 GB RAM, depending on the modeling requirements.

Results

Known Predictors
The overall study population demographics are provided in
Table 1, split according to the strategy deployed (rate vs
rhythm-control) and the training or testing set. A rhythm-control
strategy was ordered within 6 months of AF diagnosis in 7.51%
(3155/42,022) of patients. On average, patients undergoing a
rhythm-control strategy were younger and male, with lower
rates of existing cardiac conditions other than obesity. Among
patients ordered for a rhythm-control strategy (and for whom
this information was available), 20.88% (495/2370) were first
ordered for ablation, 9.7% (230/2370) were ordered for an
antiarrhythmic medication, and 69.41% (1645/2370) were
ordered for external cardioversion. All known predictors (Table
1), except for obesity and hypertension, were significantly
associated with a rhythm-control strategy at P<.005 (after
Bonferroni adjustment for multiple comparisons). Nonlinearity
of the interaction with age and sex was notable (Figure 1);
younger men were more likely to have a rhythm-control strategy,
with normalization of the sex-dependent effect by older age.
Among the individuals in whom a rhythm-control strategy was
ordered, the age-sex interaction remained significant, although
the relationship between age and probability of rhythm-control
strategy was no longer nonlinear (Figure 1). In addition,
hypertension diagnosis was the strongest predictor of the type
of rhythm-control strategy used. Individuals with a previous
diagnosis of hypertension were less likely to have an ablation
or antiarrhythmic medication and more likely to have a
cardioversion ordered (Figure 1).
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Table 1. Population demographics.

Testing set (n=10,505)Training set (n=31,517)Demographics

Rate control
(n=9720)

Rhythm control
(n=785)

Rate control
(n=29,147)

Rhythm control
(n=2370)

72.3 (12.7)67.1 (11.6)72.1 (12.9)66.4 (12.0)Age (years), mean (SD)

4115 (42.3)265 (33.8)12,588 (43.2)779 (32.9)Sex (female), n (%)

4870 (50.1)372 (47.4)14,577 (50)1036 (43.7)HTNa, n (%)b

1243 (12.8)156 (19.9)3877 (13.3)366 (15.4)Obesity, n (%)c

1768 (18.2)115 (14.7)5305 (18.2)343 (14.5)Diabetes, n (%)d

2497 (25.7)164 (20.9)7433 (24.5)475 (20)CADe, n (%)f

1874 (19.3)142 (18.1)5625 (19.3)488 (20.6)Heart failure, n (%)g

1687 (17.4)124 (15.8)4841 (16.6)394 (16.6)Mitral valve disease, n (%)h

aHTN: hypertension diagnosis.
bInternational Classification of Disease-9 401.X; International Classification of Disease-10 I10.X.
cObesity diagnosis (International Classification of Disease-9 278.X; International Classification of Disease-10 E66.X).
dDiabetes mellitus (International Classification of Disease-9 250.X; International Classification of Disease-10 E11.X).
eCAD: coronary artery disease.
fInternational Classification of Disease-9 414.X; International Classification of Disease-10 I25.X.
gHeart failure (International Classification of Disease-9 428.X; International Classification of Disease-10 I50.X).
hMitral valve disease (International Classification of Disease-9 424.X or 394.X; International Classification of Disease-10 I34.X).

Figure 1. (A) Predictive margins for rhythm-control strategy. Based on logistic regression with age and age-squared and age-sex interactions. Error
bars represent the 95% CIs applied to each age-sex combination. (B) Predictive margins for the type of rhythm-control strategy: ablation, antiarrhythmic
drug, and external cardioversion. Based on multinomial logistic regression for the first rhythm-control treatment applied, with age and age-squared and
age-sex interactions. Error bars represent the 95% CI applied to each age-sex combination. (C) Predictive margins for the effect of hypertension diagnosis
on the rhythm-control strategy. Based on multinomial logistic regression for the first rhythm-control treatment applied, with age and age-squared and
age-sex interactions. Error bars represent the 95% CI applied to each age-sex combination.
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Among the supervised learning algorithms to predict a
rhythm-control strategy based only on known predictors
(Multimedia Appendix 1, Table S3), we found that all methods
had a similar magnitude of F1 score and that some resampling
method (SMOTE being most common) was needed for optimal
prediction (Table 2). Feature importance applied to the highest
performing RF model demonstrated that age was by far the
strongest predictor (Table 3). Inspection of the decision tree
(Figure 2) indicated that age <70 years was strongly associated
with a rhythm-control strategy, and age >89 years was strongly

associated with the rate-control strategy. When the models were
tested on age-stratified data, there was a slight improvement in
the average AUC associated with increased age, but this was
not statistically significant (Multimedia Appendix 1, Figure
S3). The logistic regression results showed similar relative
importance for the features, although RF favored coronary artery
disease slightly more than sex as a predictor compared with the
logistic regression, and mitral valve disease was relatively less
important for regression than RF (Table 3).

Table 2. Best supervised learning models.

PrecisionRecallAccuracyAUCbF1 scoreResamplingModela

0.1160.4760.6890.5910.186SMOTEdRandom forestc

0.1060.5630.6140.5910.179Random oversamplingExtreme gradient boostinge

0.1050.6820.5410.6050.181Random undersamplingK-nearest neighborsf

0.1080.6090.5960.6020.184SMOTENaïve Bayesg

0.1080.6540.5700.6080.185SMOTELogistic regression

aAll models except neural network applied to known predictors only.
bAUC: area under the receiver operator characteristic curve.
cRandom forest hyperparameters: estimators=200, maximum features=8, maximum leaf nodes=300.
dSMOTE: synthetic minority oversampling technique.
eExtreme gradient boosting hyperparameters: booster=gbtree, η=0.9, γ=0, α=1, λ=0.
fK-nearest neighbors: N=500.
gNaïve Bayes: α=0.

Table 3. Feature importance.

P valueLogistic chi-square (df)Random forest impurity reductiona (%)Predictor

<.001462.11 (4)81.74Age (years)

<.00121.28 (1)3.25CADb

<.00160.61 (3)3.01Sex

.018.04 (1)2.82Mitral valve disease

<.00118.46 (1)2.78Diabetes mellitus

<.00117.59 (1)2.43Heart failure

.044.03 (1)2.36Hypertension

.112.61 (1)1.62Obesity

aFor random forest (synthetic minority oversampling technique resampling).
bCAD: coronary artery disease.
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Figure 2. Decision tree for rhythm-control strategy. Based on known predictors to classify rate- versus rhythm-control strategy using the training data.
Maximum depth=2, minimum samples to split nodes=50.

Big Data Predictors
For big data predictors, only neural networks provided an F1
score over 0.0, so we focused on identifying the optimal neural
network to predict a rhythm-control strategy. Across all neural
networks using raw features, SMOTE, or random
undersampling, we found that a 2-layer neural network with
SMOTE provided superior prediction accuracy on the basis of
the F1 score (Multimedia Appendix 1, Table S4). When
examined within the context of logistic regression, decision
tree, and RF, predictions from the big data neural network were

by far the most predictive (Multimedia Appendix 1, Table S5).
When combined as an ensemble with RF (RF combined) and
neural network (neural network combined), the predictive
accuracy remained high, with comparable F1 scores across
models (Table 4) and clear improvement in prediction compared
with RF or logistic regression based only on known predictors
(Figure 3). Examination of calibration (Figure 3) indicated that
all models were poorly calibrated and tended to overfit the data
(predict rhythm-control strategy more often than this strategy
was ordered).

Table 4. Combined big data (BD) and known predictor models.

PrecisionRecallAccuracyAUCaF1 scoreModel

0.1810.4510.8070.6430.258Random forests combined

0.1940.3500.8430.6170.250Neural network combined

0.1950.3870.8350.6290.260Neural network (BD predictors)

aAUC: area under the receiver operator characteristic curve.
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Figure 3. (A) Receiver operator characteristic curves for prediction models. Shown are top five models, including random forest combined and neural
network combined (use big data and known inputs), random forest and logistic regression (use only known inputs), and neural network (only big data
inputs). (B) Calibration curves (top) and histograms (bottom) for prediction models. Shown are top five models, including random forest combined and
neural network combined (use big data and known inputs), random forest and logistic regression (use only known inputs), and neural network (only big
data inputs). ROC: Receiver operator characteristic.

On the basis of precision-recall analysis (Multimedia Appendix
1, Figure S2), we examined the rate of appropriate,
inappropriate, and missed appropriate referrals that would result
from implementing an automated algorithm using these models
at the time of AF diagnosis (Figure 4; Multimedia Appendix 1,
Table S6). As expected, we found that the proportion of

appropriate referrals (referral when rhythm-control strategy is
likely) increased and missed appropriate referrals decreased
with an increase in the sensitivity (recall) threshold used to
guide the decision. However, it was also found that more
complex models, such as those using combined known and big
data predictors within a black box context, had a lower rate of
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inappropriate referrals for thresholds between 0.3 and 0.8. To
put this in context, if the model was applied to 10,000 patients
at the time of AF diagnosis, increasing the sensitivity (recall)
threshold from 0.5 to 0.7 would decrease the number of missed
appropriate referrals by 150 patients for both models, at the
expense of an increase in the number of inappropriate referrals

of 1690 (logistic regression) to 1850 (RF combined). The use
of models based solely on known predictors would increase the
proportion of inappropriate referrals by approximately 20%
compared with those that included big data predictors (Figure
4; Multimedia Appendix 1, Table S6).

Figure 4. Decision curves for prediction models based on proportion of appropriate and inappropriate referrals that would result from applying the
model at different levels of sensitivity (thresholds): (A) random forest combined, (B) neural network combined, (C) random forest, (D) logistic regression,
and (E) neural network.

JMIR Med Inform 2021 | vol. 9 | iss. 12 | e29225 | p. 9https://medinform.jmir.org/2021/12/e29225
(page number not for citation purposes)

Kim et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Discussion

Principal Findings
In this EHR-based observational study of automated algorithms
for the prediction of a rhythm-control strategy, we made several
observations about the modeling process and the impact of using
greater amounts of data to guide referrals. First, we found that
nearly all methods were significantly improved by integration
of some form of resampling during training (SMOTE being the
most effective generally), which has been described previously
by our group and others for the prediction of imbalanced
outcomes. Although these approaches tended to improve the
prediction accuracy as assessed by the F1 score and other
measures of classification, they resulted in models that tended
to predict a rhythm-control strategy more often than one was
actually used, suggesting that they were overfitting the data.
This result is consistent with previous work using machine
learning to predict rare outcomes from EHR data by our team,
including the prediction of AF itself [33] and myocardial
infarction [32].

Second, we found that only neural networks could provide the
computational power to produce accurate prediction models
with big data inputs; none of the other approaches provided an
AUC over 0.5 (F1 score>0.0) when applied to big data inputs.
This result is also similar to previous findings with the
application of machine learning to EHR data [32,33] and
suggests the power of deep learning over standard methods,
which has been demonstrated widely across a range of
applications [44-46].

Finally, and most interestingly, we found that although no
method was clearly superior to the others, there appeared to be
a trade-off in which more interpretable models on the basis of
known predictors alone provided inferior predictive accuracy
compared with the use of more opaque, black box approaches
incorporating deep neural networks. Specifically, we found that
a model based solely on age could be reasonably effective for
identifying patients in whom a rhythm-control strategy could
be applied, but that greater levels of predictive accuracy required
incorporation of much larger amounts of information, at the
expense of not knowing which specific predictors (diagnoses,
medications, or prior procedures) among the over 50,000 were
needed. The benefit of using these more complex models was
evident in a lower rate of inappropriate referrals within a wider
range of thresholds, in which increasing the sensitivity of the
predictions to decrease the number of missed appropriate
referrals resulted in approximately 20% more inappropriate
referrals for all but the lowest and highest thresholds. The
bottom line is that a health system seeking to implement a
clinical decision support algorithm could find a substantial
increase in the costs due to inappropriate referrals in order to
apply a more interpretable approach to guiding clinical
decisions.

This study offers several comments, and the broader implications
applied to both decisions about rhythm-control strategies and
the role of machine learning and statistical modeling in
EHR-based clinical decision support. In terms of rhythm- versus
rate-control strategies, there are little data about the best

approach for a given patient at the time of AF diagnosis. Early
clinical trials limited to antiarrhythmic medications for
rhythm-control showed no difference in outcomes for
rhythm-control compared with a rate-control strategy [47-50],
although more recent trials that include AF ablation for
rhythm-control have noted improvements in ventricular function
[21,38] and lower rates of stroke and death among patients with
heart failure treated using a rhythm-control strategy that included
AF ablation [24,51-53]. The recently published Early Treatment
of Atrial Fibrillation for Stroke Prevention Trial 4 [54] examined
early application of a rhythm-control strategy (within a year)
and noted a reduction in the combined outcome of
cardiovascular death, stroke, or cardiac hospitalizations
[48,50,55], although the study did not directly measure costs
[55]. Within the context of an automated referral algorithm,
increasing the number of referrals blindly across the population
is unlikely to be cost-effective, as we found that there was
overall a relatively low rate (3155/42,022, 7.51%) of patients
who had a rhythm-control strategy ordered within a 6-month
period. In contrast, a program that avoids referrals for
rhythm-control due to the overall low rate is likely to result in
many patients being denied the opportunity to undergo treatment
that could improve morbidity and mortality. We did not
specifically examine long-term outcomes in this investigation,
although we anticipate that like many models of automated
decision-making, the procedure must start by mimicking expert
decisions before moving on to models that incorporate outcomes.
For example, the AlphaGo computer algorithm for playing Go
began with modeling expert moves in the first version [56]
before using automated game simulation to identify a model
that could achieve suprahuman performance [57].

With regard to the use of deep learning models to make
predictions about clinical decisions, there is an important issue
of out-of-sample predictive accuracy, which includes model
overfitting—fitting noise in the training data set that results in
reduced predictive accuracy in the testing and validation data
set—as well as sampling bias related to the population used to
derive the prediction model being different from that in which
it is applied. One of the remarkable features of modern deep
learning methods is that through regularization techniques, such
as dropout, these models are capable of fitting data in which
the number of trainable parameters is greater than the number
of samples or participants. However, due to the curse of
dimensionality, the use of such a large number of predictors
results in a large space of extrapolation (few data points nearby
one another), in such a manner that only through trial and error,
and use of strictly held-out testing data sets, can one increase
the probability of fitting signal rather than noise. Even with
careful attention to learning curves, one still cannot be certain
of a model’s predictive robustness without continued validation
in external data sets. Such work is planned for these models, in
which the trade-off between the use of a simple model with
highly mappable inputs but lower predictive accuracy is
balanced against the use of a complex deep learning model with
greater accuracy; however, this requires a method to directly
map approximately 50,000 features to the model input for
application. Ultimately, more work will be needed to understand
both the conceptual challenges of deep learning for clinical
decision-making related to bias and overfitting, as well as the
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practical issues of how one applies a model developed in one
EHR to another.

Limitations
As expected from the examination of clinical decision-making
using EHR data alone, there are several limitations to our study.
First, as a result of the sheer number of encounters analyzed,
we were unable to provide a manual chart or clinical validation
of the decisions made in terms of rate or rhythm-control. As we
defined the first diagnosis of AF as the first time it was entered
into the EHR, it is highly likely that participants may have had
undocumented AF before the index encounter and that a rate-
or rhythm-control strategy may have been addressed at that
point in time or by providers outside of our health care system.
In addition, it is possible that many AF diagnoses were made
in error and that patients may have had atrial flutter or
supraventricular tachycardia rather than AF, in which case rate
versus rhythm-control decisions would be irrelevant. Although
we have an ongoing project to examine decisions at a
patient-by-patient level, such an approach would not scale for
the purposes of this analysis. Second, we selected an arbitrary
6-month window over which to assign a patient to a given
strategy on the basis of whether a known rhythm-control
approach was ordered. We were thus blind to patients who might
have undergone a rhythm-control strategy outside the 6-month
window or patients who started out with a rhythm-control
strategy but then changed to rate-control going forward. Finally,
although we were able to collect EHR-based data to apply
predictive models, we were unable to obtain perhaps more
relevant data pertaining to the decision about rate or rhythm
control as it is applied clinically, such as symptoms or patterns
of AF presentation. Clinically, symptoms are among the
strongest reasons for referral for evaluation of AF by experts,
and the inability to measure the symptoms with which a patient
presents and how they progress is a limitation of our approach.
Additional work using natural language processing of clinical
notes or integration of other types of data related to patient

activity or symptoms could provide a solution, although such
data were not available at the time of this analysis. Importantly,
the combined methodology we have described could be easily
expanded to include this information without the need to retrain
models entirely and could be directly analyzed in the same
manner in which we integrated known predictors of AF
alongside 50,000 big data inputs for prediction.

Conclusions
Historically, the direct application of clinical decision models
was limited by data input capacity, integration of analytics with
data storage, and the inability to deliver results directly at the
point of care. However, advances in computer technology over
the past 30 years have provided solutions to these problems
toward the goal of incorporating artificial intelligence into
clinical decision-making. The recent expansion of EHR use
now provides vast amounts of data that can be collected, stored,
and applied for clinical prediction at the point of care, without
the need for manual data entry. These advances have created
the opportunity for fully integrated artificial intelligence–based
decision analysis at a scale previously unseen in clinical
investigations, as well as allowing for dynamic updating of
prediction models over time as greater amounts of data are
collected and technologies and treatment options expand. This
study is among the first to apply machine learning within the
clinical decision context using this massive amount of data in
a manner that could be directly applied within a health care
system. The trade-off between model interpretability and
predictive accuracy that we found is likely to be repeated across
many future applications in which understanding the role of
predictors is balanced against thousands, and potentially
millions, of dollars in unnecessary referrals if such a system
were automated. Clearly, more work is required before these
systems can be implemented without oversight from a clinician;
however, as we have noted, administrators and health care
decision-makers should be aware that there is likely to arise a
situation in which interpretability comes with a cost.
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