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Abstract

Background: Semantic textual similarity (STS) measures the degree of relatedness between sentence pairs. The Open Health
Natural Language Processing (OHNLP) Consortium released an expertly annotated STS data set and called for the National
Natural Language Processing Clinical Challenges. This work describes our entry, an ensemble model that leverages a range of
deep learning (DL) models. Our team from the National Library of Medicine obtained a Pearson correlation of 0.8967 in an
official test set during 2019 National Natural Language Processing Clinical Challenges/Open Health Natural Language Processing
shared task and achieved a second rank.

Objective: Although our models strongly correlate with manual annotations, annotator-level correlation was only moderate
(weighted Cohen κ=0.60). We are cautious of the potential use of DL models in production systems and argue that it is more
critical to evaluate the models in-depth, especially those with extremely high correlations. In this study, we benchmark the
effectiveness and efficiency of top-ranked DL models. We quantify their robustness and inference times to validate their usefulness
in real-time applications.

Methods: We benchmarked five DL models, which are the top-ranked systems for STS tasks: Convolutional Neural Network,
BioSentVec, BioBERT, BlueBERT, and ClinicalBERT. We evaluated a random forest model as an additional baseline. For each
model, we repeated the experiment 10 times, using the official training and testing sets. We reported 95% CI of the Wilcoxon
rank-sum test on the average Pearson correlation (official evaluation metric) and running time. We further evaluated Spearman
correlation, R², and mean squared error as additional measures.

Results: Using only the official training set, all models obtained highly effective results. BioSentVec and BioBERT achieved
the highest average Pearson correlations (0.8497 and 0.8481, respectively). BioSentVec also had the highest results in 3 of 4
effectiveness measures, followed by BioBERT. However, their robustness to sentence pairs of different similarity levels varies
significantly. A particular observation is that BERT models made the most errors (a mean squared error of over 2.5) on highly
similar sentence pairs. They cannot capture highly similar sentence pairs effectively when they have different negation terms or
word orders. In addition, time efficiency is dramatically different from the effectiveness results. On average, the BERT models
were approximately 20 times and 50 times slower than the Convolutional Neural Network and BioSentVec models, respectively.
This results in challenges for real-time applications.

Conclusions: Despite the excitement of further improving Pearson correlations in this data set, our results highlight that
evaluations of the effectiveness and efficiency of STS models are critical. In future, we suggest more evaluations on the
generalization capability and user-level testing of the models. We call for community efforts to create more biomedical and
clinical STS data sets from different perspectives to reflect the multifaceted notion of sentence-relatedness.
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Introduction

Background
Semantic textual similarity (STS), a measure of the degree of
relatedness between sentence pairs, is an important text-mining
research topic [1]. STS has been widely used in biomedical and
clinical domains, including information retrieval (finding
relevant sentences or passages [2]), biocuration (finding key
sentences for evidence attribution [3]), and question answering
(finding answer-snippet candidates [4]). Despite its importance,
expertly annotated STS data sets are lacking in the biomedical
and clinical domains. For example, STS-related data sets in the
general domain have been developed for nearly a decade, with
almost 30,000 annotated sentence pairs in total [5], whereas
similar data sets in the biomedical and clinical domains had
only hundreds of pairs in total before 2018 [6]. The organizers
of the Open Health Natural Language Processing (OHNLP)
Consortium have dedicated efforts to expanding such data sets
and establishing STS open challenges in the clinical domain
since 2018. MEDSTS [7], consisting of 1068 curated sentence
pairs, was used in the BioCreative/OHNLP challenge task in
2018 [8]. In 2019, over 1000 curated sentence pairs were added
to the MEDSTS, renamed ClinicalSTS [9], which was used in
the National Natural Language Processing Clinical Challenges
(n2c2)/OHNLP. This work is a poststudy of the n2c2/OHNLP
challenge.

Overall, 33 teams submitted 87 models to the n2c2/OHNLP
challenge task; Pearson correlation was used as the evaluation
measure, ranging from −1 (strong negative relationship) to 1
(strong positive relationship). Our National Library of Medicine
and National Center for Biotechnology Information team
developed an ensemble model by leveraging a range of deep
learning models from 3 categories: word embedding based,
sentence embedding based, and transformer based (which is
described in the following sections). This model achieved a
Pearson correlation of 0.8967 in the official test set, ranking
second among all of the teams (P=.88 compared with the first
rank, with a Pearson correlation of 0.9010). The top 10 best
team submissions demonstrated relatively close performances
with Pearson correlations of 0.85 to 0.90. According to the
organizer’s overview, most of the top systems used deep
learning models [9].

A Pearson correlation of approximately 0.9 suggests that the
model’s predictions have a very strong correlation with gold
standard annotations [10]. Such results might give the
impression that deep learning models have already solved STS
in the clinical domain. Nevertheless, the human-level correlation
in this data set is significantly lower; for example, the agreement
between 2 annotators in ClinicalSTS had a weighted Cohen κ
of 0.6 [9], suggesting that only a moderate level of correlation
was achieved by human experts [10]. Therefore, we urge caution
with regard to the extremely high correlation achieved by the
models (which might be potentially due to overfitting) and argue

that it is critical to understand how these models perform in
reality rather than further improve the performance in this data
set. Therefore, in this postchallenge study, we aim to analyze
the effectiveness and efficiency of 5 deep learning models in
depth:

• For effectiveness, we investigate how a single deep learning
model performs in this specific data set and further analyze
the robustness of models in sentence pairs of different
degrees of similarity.

• For efficiency, we measure the inference time taken by the
deep learning models in the testing set. This is an important
indicator of whether these models can be used in real-time
applications, such as sentence search engines. To the best
of our knowledge, few studies on STS in the biomedical
and clinical domains have considered model efficiency.
However, given that models have already achieved a
Pearson correlation of approximately 0.90, measuring
efficiency is arguably more important, as it quantifies
whether these models could be used in production.

The principal findings are 2-fold. First, a single deep learning
model trained directly on the official training set only (ie,
without more advanced techniques, such as multitask learning
and transfer learning) could already achieve a maximum Pearson
correlation of 0.87; however, the training set’s robustness to
sentence pairs of different similarity levels differs significantly.
A particular observation is that BERT models made the most
errors (a mean squared error of over 2.5) on highly similar
sentence pairs (similarity no less than 4). BERT models cannot
capture highly similar sentence pairs effectively when they have
different negation terms or word orders. Second, although the
deep learning models achieved relatively close Pearson
correlations (from 0.82 to 0.87; single models), the time
efficiency differed dramatically. For example, the difference in
Pearson correlations of BERT and sentence embedding models
was within 0.002, but the inference time of BERT models was
approximately 50 times greater than that of sentence embedding
models. This brings practical challenges to using BERT models
in real-time applications, especially without the availability of
graphics processing units (GPUs). Furthermore, although there
has been a tremendous effort to make ClinicalSTS available to
the community, their source corpora inevitably limit the diversity
of sentence pairs and annotation inconsistencies. Thus, we call
for community efforts to create more STS data sets from
different perspectives to reflect the multifaceted notion of
sentence relatedness; this, in turn, will further improve the
generalization performance of deep learning models.

Here, we introduce popular deep learning STS methods that
have been used in the biomedical and clinical domains. The
methods are broadly categorized in terms of the language models
applied: word embeddings, sentence embeddings, and
transformers.
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Word Embedding–Based Models
Word embeddings are relatively early language models that
significantly change how text is modeled. The semantic of each
word is represented in a high-dimensional vector trained on
large-scale corpora in an unsupervised manner. Primary word
embedding methods include (1) word2vec, based on local
contexts, such as using a word as input to predict its nearby
words [11]; (2) Glove, based on global co-occurrence statistics
[12]; and (3) fastText, which extends word2vec by adding word
n-grams [13]. Many word embedding variations (eg, pretrained
in the biomedical or clinical corpora, integrated with entities,
and adopted retrofitting methods) are publicly available [14-16].
First, word embedding–based STS models use these embeddings
to obtain vector representations of the words in sentence pairs
and then use either Convolutional Neural Networks (CNNs) or
recurrent neural networks to process (typically to obtain spatial
or semantic patterns), followed by fully-connected layers to
make predictions [16].

Sentence Embedding–Based Models
Sentence embeddings extend word embeddings by modeling
sentence-level representations. The primary methods include
(1) Doc2vec, similar to word2vec, using a word as input and
predicting the paragraph rather than nearby words [17]; (2)
FastSent, using a sentence as input and predicting the adjacent
sentences [18]; and (3) SentVec, which extends word2vec and
fastText by using both words (and their n-grams) and the
associated sentences as inputs for training [19]. Compared with
word embedding–based models, sentence embedding–based
STS models are simpler: first, they use sentence embeddings

to obtain sentence vectors and then use fully-connected layers
for predictions [20].

Transformer-Based Models
Transformers are recent language models that revolutionize text
representation methods. Using a self-attention mechanism, this
model can capture long-range dependencies [21].
Transformer-based language models, such as BERT [22] and
GPT [23], have replaced recurrent neural networks for many
text-based applications. To date, many transformers pretrained
in the general or biomedical and clinical domains are publicly
available [24-27]. Similar to sentence embedding–based models,
transformer-based STS models directly use transformers to
obtain sentence representations and then use fully-connected
layers for predictions [22].

Methods

Sentence Similarity Models

Overview
Five deep learning STS models from the 3 categories above
were benchmarked: the Convolutional Neural Network (CNN)
model [28] (from the word embedding–based category), the
sentence embedding model, using BioSentVec [29] (from the
sentence embedding–based category), and transformer models
(from the transformer-based category), using BioBERT [24],
BlueBERT [25], and ClinicalBERT [26]. We chose these models
because they achieved top-ranked performance in STS-based
tasks [5,8,9]. The general architecture is shown in Figure 1, and
the descriptions are as follows.

Figure 1. Model architecture overview. (A), (B), and (C) demonstrate the architecture of the Convolutional Neural Network (CNN), BioSentVec, and
Bidirectional Encoder Representations from Transformers models, respectively. Details are provided in the Methods section. BERT: Bidirectional
Encoder Representations from Transformers; CONV: convolutional layer; FC: fully-connected layer.

Word Embedding–Based Model (CNN Model)
We adapted the CNN model from a study by Shao [28] a
top-ranked system in SemEval-2017 Task 1. The CNN model
transforms the input sentence pair into vectors and learns the
similarities between the corresponding vectors. The backbone
is a Siamese neural network, whereby the model weights are
shared when processing the 2 input sentences. The model
consists of 3 layers (shown in Figure 1A). The first embedding
layer consists of word and character embeddings. It is used to

transform the raw text into a 2D semantic vector space. In this
study, we evaluated several word embeddings. We found that
word embeddings pretrained in the biomedical and clinical
domains did not have additional advantages in this specific data
set. This observation is consistent with the previous word
embedding evaluation using the same source data set [15].
Therefore, we used Glove pretrained in the general domain for
the following experiments. The second layer consists of
convolutional and max-pooling layers to extract special
information from the embeddings. Therefore, the 2D semantic
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vector space is transformed into a 1D vector to represent the
semantics of a sentence. The third layer provides a calculation
of the absolute difference and dot product between the vectors
of the 2 sentences. This is followed by the fully-connected layers
to produce the final similarity prediction.

Sentence Embedding Model (BioSentVec Model)
We used the model from [29], which achieved the highest
performance on MEDSTS for the post–BioCreative/OHNLP
challenge task [20]. The model structure is similar to the CNN
model above, as shown in Figure 1B. The primary difference
is that this model uses BioSentVec to directly produce the
sentence vectors. Therefore, there are no convolutional or
pooling layers.

Transformer-Based Model (BioBERT, BlueBERT, and
ClinicalBERT Models)
This model structure is illustrated in Figure 1C. First, the
sentences were concatenated as one input (as recommended by
the authors of BERT [22]), followed by a BERT module and
fully-connected layers. We benchmarked 3 different BERT
modules: (1) BioBERT [24], pretrained on PubMed abstracts
and PubMed Central full-text articles; (2) BlueBERT [25],
pretrained on PubMed abstracts and Medical Information Mart
for Intensive Care-III clinical notes; and (3) ClinicalBERT [26],
pretrained on clinical notes using the weights from BioBERT.

Additional Machine Learning Baseline Model (Random
Forest)
Although the top-performing submissions used deep
learning–based models [30], it is also critical to compare with
traditional machine learning–based models to better understand
the effectiveness and efficiency of deep learning–based models.
Therefore, we evaluated the performance of a classic machine
learning model as an additional baseline. Specifically, we

adapted the random forest model, which achieved the best
performance out of 13 submissions in the 2018
BioCreative/OHNLP challenge task [20,30]. This model uses
manually engineered features in 5 dimensions to capture
sentence similarity: token-based, character-based,
sequence-based, semantic-based, and entity-based. We
performed feature selection based on the performance of the
validation set and ultimately selected 13 features.

Data Set, Evaluation Metric, and Hyperparameter
Tuning
The details of the data set are presented in the data description
studies [7,9]. In short, the data set consists of 2054 sentence
pairs, with the similarity annotated on a scale of 0 to 5: (1) 0,
if the 2 sentences are entirely dissimilar; (2) 1, if the 2 sentences
are dissimilar but have the same topic; (3) 2, if the 2 sentences
are not equivalent but share some details; (4) 3, if the 2 sentences
are roughly equivalent but some important information is
different; (5) 4, if the 2 sentences are mostly equivalent and
only minor details differ; and (6) 5, if the 2 sentences are
semantically equivalent [7]. The data set was annotated by 2
medical experts, with a weighted Cohen κ of 0.60 as the
interannotator agreement measure [9].

The training and testing sets were officially released by the task
organizers and consisted of 1642 and 429 sentence pairs,
respectively. We randomly sampled approximately 20% of the
sentence pairs (329 pairs) from the training set as the validation
set. The Pearson correlation coefficient was used as the official
evaluation metric.

Given that the models have different architectures and
hyperparameters, we performed hyperparameter tuning for the
CNN, BioSentVec, and BERT models separately, rather than
using the same values. The values of the hyperparameters are
listed in Table 1.
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Table 1. Hyperparameters of the sentence similarity models. Common hyperparameters are shared among all of the models. In contrast, model-specific
hyperparameters are only for specific models.

BERTb variationBioSentVecCNNaHyperparameters

Common hyperparameters

128, 32512, 256, 128, 32128FCc layers

0.50.50.5Dropout

AdamWarmupSGDdAdamOptimizer

2e-55e-31e-3Learning rate

321664Batch size

Specific hyperparameters

128N/Ae170Maximum length

N/AN/A1800Convf

MaximumN/AMaximumPooling

aCNN: Convolutional Neural Network.
bBERT: Bidirectional Encoder Representations from Transformers.
cFC: fully-connected.
dSGD: stochastic gradient descent
eN/A: not applicable.
fConv: convolutional layers.

Evaluation Methods
We measured the Pearson correlation (for effectiveness) and
the running time in seconds (for efficiency) on the testing set.
To compare the 5 models quantitatively, we repeated the
experiments 10 times on the same training, validation, and
testing sets and reported the results of Wilcoxon rank-sum test
on the average Pearson correlation and running time at 95% CI.
We chose the same evaluation metric and statistical test as the
task organizers for consistency [9]. We further evaluated the
Spearman correlation, R², and mean square error as additional
metrics for effectiveness.

In practice, the running time can be significantly affected by
the computing environment rather than the model architecture.
For instance, GPUs could significantly boost the inference time;
however, many sentence search servers (especially research
tools) may not have GPUs available. Different multi-processing
methods may have an impact on the running time as well. For
a fair comparison, we used a single processor on the central
processing unit for model inference on the testing set and tracked
the running time accordingly.

Results

Effectiveness and Efficiency Results
Table 2 presents the effectiveness and efficiency results. All 5
deep learning models had reasonable and very close
effectiveness results for this data set. The difference between
the average Pearson correlation was within 3%. The BioSentVec
model achieved the highest Pearson correlation (0.8497),
followed by BioBERT (0.8481; P=.74). The deep learning
models had approximately 15% higher Pearson correlation than
the baseline random forest model. In addition, the results
demonstrate that a single deep learning model can achieve a
maximum Pearson correlation score of 0.87. We further
developed a model by averaging the predictions of the 4 best
models. The ensemble model further improved the score by
close to 0.90. This observation is consistent with our submission
results. Table 3 provides additional effectiveness measures.
BioSentVec consistently showed the highest performance in 3
out of 4 metrics, followed by BioBERT.
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Table 2. Effectiveness and efficiency results for the official test set. The models are ranked by the mean effectiveness results in descending order. The
P value of the Wilcoxon rank-sum test at a 95% CI is shown for each model compared with the model with the highest effectiveness or efficiency
results. The results of the ensemble model also are provided; however, this study focuses on single models in terms of, for example, their robustness to
sentence pairs of different similarity levels and their inference time for production purposes.

Efficiency (seconds)Effectiveness (Pearson correlation)Model

Lowest efficiencyP valueValues, mean (SD)Maximum

effectiveness

P valueValues, mean (SD)

Five benchmarking models

1.96N/A1.48 (0.23)0.8654N/Aa0.8497 (0.0099)BioSentVec

95.66<.00185.05 (4.93)0.8698.740.8481 (0.0122)BioBERT

95.21<.00185.20 (4.74)0.8677.390.8442 (0.0161)ClinicalBERT

88.22<.00184.81 (1.63)0.8613.020.8320 (0.0232)BlueBERT

4.97<.0014.35 (0.27)0.8307<.0010.8224 (0.0043)CNNb

Additional machine learning baseline model

0.03.990.03 (0.00)N/AN/A0.6848 (0.0022)Random forest

Ensembled model

N/AN/AN/A0.8940N/A0.8782Ensemble model

aN/A: not applicable.
bCNN: Convolutional Neural Network.

Table 3. Additional effectiveness results of individual models. The models are ranked by the Pearson correlation coefficient in descending order.

Values, mean (SD)Model

MSEbR²aSpearman correlationPearson correlation

Five benchmarking models

0.8709 (0.0434)0.6705 (0.0325)0.7708 (0.0073)0.8497 (0.0099)BioSentVec

0.8803 (0.0362)0.6636 (0.0275)0.7951 (0.0100)0.8481 (0.0122)BioBERT

0.9155 (0.0502)0.6357 (0.0391)0.8066 (0.0149)0.8442 (0.0161)ClinicalBERT

0.8935 (0.0670)0.6520 (0.0544)0.7701 (0.0244)0.8320 (0.0232)BlueBERT

0.9428 (0.0519)0.6136 (0.0436)0.7674 (0.0087)0.8224 (0.0043)CNNc

Additional machine learning baseline model

1.1614 (0.0025)0.4154 (0.0025)0.6572 (0.0027)0.6848 (0.0022)Random forest

aR2: coefficient of determination.
bMSE: mean square error.
cCNN: Convolutional Neural Network.

In contrast to the effectiveness results, the efficiency results
differed dramatically among the models. As shown in Table 1,
it took about 1.5 seconds, on average, for the BioSentVec model
to predict the similarities of 429 sentence pairs in the testing
set; the counterpart of the CNN model took about 4.5 seconds,
on average. In contrast, all BERT models require more than 80
seconds, on average, for inference.

Error Analysis
We further analyzed the common errors made by the models.
Figure 2 shows the quantitative evaluations. We categorized
the sentences into 5 groups based on the annotation guidelines
and measured the MSE between the gold standard and
predictions. Note that we did not use Pearson correlations as
they are heavily influenced by the limited number of instances
in small categories [20]. MSE is thus used as an alternative
metric, which has also been used as a loss function for many
deep learning models for regression-based applications.
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Figure 2. Mean squared error (MSE) of the models for each similarity range. Each category shows the number of sentence pairs and associated MSE
of the models. The overall MSE (median, SD) are also provided in the legend. CNN: Convolutional Neural Network.

Figure 2 shows 2 primary observations. First, the random forest
model had the highest MSE for the pairs with similarity scores
between 0 and 1; the error rate was almost twice that of the deep
learning models. In contrast, the MSEs of the random forest in
other similarity categories were much smaller. This suggests
that the random forest model may not effectively identify
sentence pairs of low similarity. We manually examined the
sentence pairs of low similarity and provided representative
examples where the random forest model had a larger MSE than
the other models, along with the predictions of BioBERT and
BioSentVec for comparison (Table 4). The errors shared
consistent patterns where (1) the sentence structure was similar
(eg, both started with “The patient...”), (2) the pairs shared many
common or similar words (eg, case 4 shares “examined and

normal”), and (3) the semantics of the pairs were rather different.
In such cases, the random forest model failed to capture the
semantics at the sentence level. In addition, cases 1-3 had the
gold standard annotation score of 0, whereas the similar case 5
had the counterpart of 1. One may argue that the drugs in case
5 are rather different, and the procedure was independent and
could have a score of 0; alternatively, given the score of case
5, cases 1-3 could arguably have the same score as well because
they were all related to patient status (similarly, both
BioSentVec and BioBERT provided consistent scores on these
cases). This is also consistent with the findings of the task
organizers [9], which demonstrated that annotating the sentence
similarity is a challenging task as relatedness is
context-dependent.

Table 4. Qualitative examples with a relatively large mean squared error for the random forest model for sentence pair scores from 0.0 to 1.0.

BioSentVecBioBERTRandom forestGold standardSentence pairsCase

1.20.52.50.01 • The patient tolerated the procedure well and was transferred to the recovery
room in stable condition.

• The patient was transferred to the patient appointment coordinator for an
appointment to be scheduled within the timeframe advised.

1.41.43.40.02 • Patient to call to schedule additional treatment sessions as needed other-
wise patient dismissed from therapy.

• Patient tolerated session without adverse reactions to therapy.

1.71.72.00.03 • Patient was agreeable to speaking with social work.
• Patient was able to teach back concepts discussed.

1.12.12.40.54 • Left upper extremity: Inspection, palpation examined and normal.
• Abdomen: Liver and spleen, bowel sounds examined and normal.

1.51.72.61.05 • glucosamine capsule 1 capsule by mouth one time daily.
• Claritin tablet 1 tablet by mouth one time daily.
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Second, all the deep learning models, except the CNN model,
showed reasonable performance for the pairs with similarity
scores between 1 and 4. The MSE was mainly within 1,
suggesting that the predictions were likely in the same category
as the gold standard. However, the BERT models had a much
higher MSE for the pairs with scores from 4 to 5. For example,
ClinicalBERT had an MSE of over 2.5, whereas the counterparts
of both CNN and BioSentVec were lower than 1. Similarly, the
variance of BERT models on sentence pairs with similarity
scores from 4 to 5 was also larger than that of the other models.
Table 5 shows the representative sentence pairs for which

ClinicalBERT had a larger MSE than the other models, along
with the predictions of BioBERT and BioSentVec for
comparison. The examples indicated that ClinicalBERT could
not capture highly similar sentence pairs when there are different
negation terms (eg, case 1) or when the word order is switched
(eg, case 2) as compared with BioBERT and BioSentVec.
Similarly, interannotator consistency may also have an impact
on MSE. For example, sentence pairs from cases 4 and 5
arguably belong to the same category, as the pairs share the
majority of information, except for minor differences.

Table 5. Qualitative examples with a relatively large mean squared error for Bidirectional Encoder Representations from Transformers models for
sentence pair scores from 4.0 to 5.0.

BioSentVecBioBERTClinicalBERTGold standardSentence pairsCase

3.93.42.55.01 • Heart: S1/S2 regular rate and rhythm, without murmurs, gallops, or rubs
• Heart: S1, S2, regular rate and rhythm, no abnormal heart sounds or

murmur

3.93.32.35.02 • He denies chest pain or shortness of breath
• He denies shortness of breath or chest pain

2.52.22.44.03 • This patient benefits from skilled occupational and/or physical therapy
to improve participation in daily occupations

• Medical necessity: the patient would benefit from skilled physical therapy
interventions to be able to return to work and engage in self-care activities

3.72.62.84.04 • All questions were answered to the parent’s satisfaction
• All questions were answered and consent was given to proceed

3.62.93.05.05 • The patient understands and is happy with the plan
• The patient verbalized understanding and wishes to proceed

Discussion

Principal Findings
This study has 2 primary findings. First, the effectiveness of
deep learning models on this data set is high (all 5 models have
a Pearson correlation of over 0.8, which is approximately 15%
higher than that of the traditional machine learning model) and
relatively close (the Pearson correlation difference is within
0.03 among the models), but their efficiency is significantly
different. BERT models are, on average, 20-50 times slower
than the CNN and BioSentVec models, respectively.

The dramatically different efficiency results lead to the concern
of using STS models in real-world applications in the biomedical
and clinical domains. To demonstrate this, we further quantified
the number of sentence pairs that could be computed in real-time
based on the sentence search pipeline in LitSense [2]. LitSense
is a web server for searching for relevant sentences from
approximately 30 million PubMed abstracts and approximately
3 million PubMed Central full-text articles. To find relevant
sentences for a query, it uses the standard BM25 to retrieve top
candidates and then reranks the candidates using deep learning
models. The rerank stage in LitSense is allocated for 300 ms
based on evaluations of the developers. Using 300 ms as the
threshold, BERT models can rerank only 2 pairs in real-time,
whereas the CNN and BioSentVec models can rerank
approximately 30 and 87 pairs, respectively. It should be noted

that the results here are for demonstration purposes. In practice,
as mentioned above, many factors could impact the inference
time, such as GPUs and efficient multi-processing procedures.
The real inference time might differ, but the difference between
the models holds, as we fairly compared all of the models in
the same setting. On the basis of these results, we suggest using
compressed or distilled BERT models [31] for real-time
applications, especially when production servers do not have
available GPUs.

The second primary finding is that the random forest model
made more errors in sentence pairs of low similarity (similarity
scores from 0 to 1), whereas BERT models made more errors
on highly similar sentence pairs (similarity scores from 4 to 5).
The random forest model cannot effectively capture the sentence
semantics when a sentence pair shares consistent structures and
similar words but distinct topics. In contrast, ClinicalBERT had
an MSE of over 2.5 for highly similar sentence pairs, especially
when different negation terms or the word order is switched.
As mentioned above, the results also suggest that interannotator
consistency may also impact MSE, showing the difficulty of
relatedness-based tasks.

Limitations
The main limitation of this study is that the analysis was
conducted using the ClinicalSTS data set alone. To the best of
our knowledge, the data set is already the largest available
sentence similarity data set in this domain. Other data sets, such
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as BOSSES, are much smaller. We believe that it is critical to
developing more sentence similarity data sets from other sources
in the biomedical and clinical domains, which could expand
our analysis and further improve the existing methods.

Another limitation is that the ClinicalSTS data set lacked
user-level evaluations. The notion of relevance is
context-dependent: sentence pairs with high similarity scores
predicted by the models may not necessarily be considered
relevant by users [32]. Previous studies demonstrated that the
top sentences ranked by the top STS models were not the most
relevant to users based on manual judgment [33]. Therefore, it
is critical to conduct user-level assessments to understand
whether STS models can facilitate information retrieval in
practice, in addition to understanding the effectiveness and
efficiency measures. We consider this as future work.

Comparison With Prior Work
Most existing studies focus on developing innovative methods
to improve correlations in the testing set. Top-ranked methods
are summarized in the overview papers on clinical STS
challenge tasks [8,9], from traditional machine learning methods
[30] to word and sentence embedding–based methods [20] and
transformer-based methods [24]. Other studies further used
advanced learning methods, such as representation fusion [34]
and multitask learning [27]. The reported Pearson correlations
range from 0.83 to 0.90, which is consistent with our study.
Although it is exciting to further improve the state-of-the-art
results, it is more critical to understand the effectiveness and
efficiency of these models in depth, especially when the
human-level correlation level is only moderate in these data
sets.

Only 2 studies have compared the effectiveness of STS models
in the biomedical and clinical domains [35,36]. Tawfik et al
[35] compared the performance of a range of embeddings in
sentence-based data sets (mostly classification-based
applications, not STS) in the biomedical domain. Studies have
shown that embeddings pretrained in biomedical and clinical
corpora could achieve reasonable Pearson correlation scores,
which is consistent with our study. However, these studies
focused mainly on the Pearson correlations and did not consider
model robustness or efficiency. Arguably, the latter is more
critical to using STS models in practice.

Conclusions
In this postchallenge study, we comparatively analyzed the
effectiveness and efficiency of 5 deep learning models in the
ClinicalSTS data set. Although these models achieved high
Pearson correlation scores, their robustness varied dramatically
in terms of sentence pairs at different similarity levels, and
BERT models have significantly longer inference times. In
addition, the models achieved Pearson correlations of
approximately 0.90 in this data set, whereas the human-level
agreement was only moderate. Taken together, these
observations make us cautious about the further improvement
of this data set and argue for a more thorough evaluation of the
model-generalization capability and user-level testing. We also
call for community efforts to create more STS data sets from
different perspectives to reflect the multifaceted notion of
sentence relatedness, which will further improve the
generalization performance of deep learning models.
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